
Ad-hoc file systems at extreme scales

Mehmet Soysal, Achim Streit

Abstract This work presents the results of the project with the acronym ADA-FS
(Advanced Data Placement via Ad-hoc File Systems at extreme scale). The project
which has been approved for the ForHLR II aims to improve I/O performance for
highly parallel applications by using distributed on-demand file systems. These tem-
porary file systems are created on the allocated compute nodes, using the node-local
disks for the on-demand file system. Through integration into the scheduling sys-
tem of the supercomputer, it can be requested like any other resource. The research
approach contains the design of the file system itself as well as the questions about
the right planning strategy for the necessary I/O transfers. In the granted project for
the ForHLR II we are investigating the methods on how to integrate the approach
into a HPC system. Also, we are evaluating the impact of the on-demand created
file systems to running HPC jobs and the applications.

Key words: file systems, on-demand file systems, wall time, data staging

1 Introduction

Today’s HPC systems utilize parallel file systems that comply with POSIX seman-
tics, such as Lustre [1], GPFS [2], or BeeGFS [3]. The storage subsystem within
HPC systems is increasingly becoming a bottleneck. Furthermore, the performance
is limited by the interface between the global file system and the compute nodes.
Moreover, parallel file systems (and their I/O subsystem) are often shared by many
users and their jobs. When users develop applications for HPC systems, they typ-
ically tend to optimize for computing power, sometimes disregarding the I/O be-
havior of the application. While the computing resources can often be allocated ex-
clusively, the global PFS is shared by all users of a HPC system. This environment
makes it difficult for the user to optimize the application concerning I/O. There are
many possible factors a user would have to consider. Influences from the back-end

Steinbuch Centre for Computing, Karlsruhe Institute of Technology
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany e-mail: mehmet.
soysal@kit.edu,achim.streit@kit.edu

1

2 M. Soysal, A. Streit

storage device, network interface, storage servers, data distribution, request size,
and other applications slowing down the PFS [4].
One of the reasons why PFSs struggle with certain I/O operations is that they have
to cover a wide range of applications. In addition, the PFS must be robust with
high availability as the HPC system is dependent on the global storage system. But
there are applications and scenarios that do not suit the general case. This includes
scenarios and cases in which large amounts of data or millions of small files are
generated, causing high load on the storage system. Consequently, bad behaving
applications can result in poor performance affecting all users. The ADA-FS project
aims to improve I/O performance for highly-parallel applications by a distributed
ad-hoc overlay file systems. In order to achieve our goals, several challenges need
to be addressed.
The first step is to find a way to deploy these on-demand file systems on production
systems. It has to be minimal invasive and should not involve any changes to the
operating model. This initial step also includes performance measurements with
synthetic benchmarks. The results for this first step are represented in Chapter 3.
Another point in our approach is the question, if the data can be pre-staged to the
allocated compute nodes. For this challenge it is important to know which nodes
are going to be allocated to a waiting job. To this end, we investigated how the run
times of jobs can be predicted and how good they must be to allow our approach.
Methods from the field of machine learning were used here, to predict run times.
Also we simulated different workloads of HPC systems and evaluated the impact
of improved wall time estimates. In Chapter 4 we present our evaluation regarding
this part of the project. The next Chapter includes applications and use cases of
our users. Here we present how much performance is achievable with our approach
and what impact we have on applications and the HPC system. For this we picked
three different applications from our users. We examined the application behavior
with the on-demand file system and how our approach can help these use cases. We
present the results of the real usage scenarios in Chapter 5. First we start with the
related work in the next Chapter 2 and conclude at the end with a summary of the
approved project.

2 Related Work

The project covers different scientific domains, e.g., machine learning, file systems,
scheduling and a wide range of applications. In this chapter we give a brief intro-
duction in the important parts of the related work.

Ad-hoc file systems at extreme scales 3

2.1 I/O

In the recent past there have been many developments and innovations to improve
I/O throughput and performance. We cannot cover everything and try to give a brief
overview of existing solutions. Many solutions are implemented at multiple levels in
the I/O stack, but four basic categories can be formed: file system features, hardware
solutions, libraries and dynamic system re-configurations.

File system features

File Systems have received interesting new features to reduce I/O bottlenecks.
BeeGFS offers storage pools [5] to group storage targets in different classes, e.g.,
one pool with very fast solid state drives. GPFS has implemented a Highly Available
Write Cache (HAWC)[6]. Node-local solid-state drives (SSDs) are used as buffers
for the global file system. As a result, random I/O patterns are processed on local
storage. Lustre has the Progressive File Layouts (PFL) [7] feature, which adjusts
dynamically the stripe pattern and chunk size based on I/O traffic.
However, such solution are only available when using the vendor software solution.

Hardware solutions

Today’s wide spread use of SSDs in compute nodes of HPC systems has provided a
new way of accelerating storage. SSDs have been considered for file system meta-
data [8] [9], as its meta-data performance is a major bottleneck in HPC environ-
ments.
A different kind of hardware solutions are burst buffers, which aim to reduce the
load on the global file system [10].

Libraries

There is a large number of libraries available for improving I/O behavior of an appli-
cation. Middleware libaries, such as MPI-IO [16], help to improve usage of parallel
storage systems, e.g. data sieving and collective I/O [17]. High-level libraries, such
as HDF5 [18], NETCDF [19] or ADIOS [20], are trying help users to express I/O as
data structures and not only as bytes and blocks. These libraries are not in contrast
to our approach. The advantages of using such libraries also apply to the on-demand
file systems.

4 M. Soysal, A. Streit

System reconfiguration

Like our approach, the configuration of the system can be modified to improve I/O.
There are several basic methods. A Dynamic Remote Scratch [22] implementation
was developed to create an on-demand block device and use it with local SSDs as a
LVM [23] device. Another software based solution is the RAMDISK Storage Accel-
erator [24]. It introduces a additional cache layer into HPC systems. Our approach
also fits into this category.

2.2 Job walltime prediction

Batch schedulers are responsible for the resource planing and allocate the nodes to a
job [25]. One of the factors of this resource planning is based on wall time estimates,
given by the user. It is a well known problem that the user provided estimates are far
from optimal. Enhanced predictions of HPC job wall time can be used to improve
the scheduling performance [26]. With exact information about the run time of a job,
the scheduler can predict more accurately when sufficient resources are available to
start queued jobs [27]. However, the user requested wall time is not close to the
real used wall time. Gibbons [28, 26], and Downey [27] use historical workloads
to predict the wall times of parallel applications. They predict wall times based on
templates. These templates are created by analyzing previously collected metadata
and grouped according to similarities. However, both approaches are restricted to
simple definitions.
In the recent years, the machine learning algorithms are used to predict resource
consumption in several studies [31, 32, 33, 34, 35, 36].
However, all of the above mentioned studies do not try to evaluate the accuracy of
the node allocation predictions. Most of the publications focus on observing the uti-
lization of the HPC system and the reliability of the scheduler estimated job start
times. In our work we focus on the node allocation prediction and how good wall
time estimates have to be. This directly affects, whether a cross-node, ad-hoc, inde-
pendent parallel FS can be deployed and data can be pre-staged, or not.

2.3 Machine learning

Machine learning (ML) is about knowledge retrieval from data. It can also be un-
derstood as statistical learning and predictive analytics. In general, machine learning
is a method to learn from a set of samples with a target value and use the learned
data to predict target values from unknown samples. For our evaluation, we use a
supervised machine learning approach [39].
In our evaluation, the AUTOML library auto-sklearn[40] (based on scikit-learn[41,
42]) is used to automate the complex work of machine learning optimization. In a

Ad-hoc file systems at extreme scales 5

classical ML process, different models and systems are explored until the best is
chosen and auto-sklearn automatizes this process.

3 Deployment on-demand file system

Usually HPC systems use a batch system, such as SLURM [43], MOAB [44], or
LSF [45]. The batch system manages the resources of the cluster and starts the user
jobs on allocated nodes. At the start of the job, a prologue script may be started on
one or all allocated nodes and, if necessary, an epilogue script at the end of a job (see
Figure 1). These scripts are used to clean, prepare, or test the full functionality of the

Fig. 1: Job flow for creating an on-demand file system

nodes. We modified these scripts to start the on-demand file system upon request.
During job submission a user can request an on-demand file system for the job. This
solution has minimal impact on the HPC system operation. Users without the need
for an on-demand file system are not affected.

3.1 Benchmarks

As initial benchmarks we tested the startup time of the on-demand file system and
used the ,,iozone“ benchmark for a throughput test. The Startup and shutdown times
are shown in Table 1. The delivered tools in the BeeOND package have a serial part

Table 1: BeeGFS startup and throughput

Nodes 8 16 32 64 128 256

Startup (s) 10.21 16.75 29.36 56.55 152.19 222.43
Shutdown (s) 11.90 12.13 9.40 15.96 36.13 81.06
Throughput (GiB/s) 2.79 6.74 10.83 28.37 54.06 129.95

6 M. Soysal, A. Streit

during initialization. After optimizing these regions we were able to start BeeGFS
within 60 seconds on 512 nodes.
In Fig. 2a we show the IoZone [46] benchmark to measure the read and write
throughput of the on-demand file system (solid line). The Figure show that perfor-
mance increases linearly with the number of used compute nodes. The limiting fac-
tor here is the aggregate throughout of the used SSDs. A small throughput variation
can be observed due to normal performance scattering of SSDs [47]. The dotted line
indicates the theoretical throughput with NVMe devices. At assumed speeds with
[3500]MB/s read and [2000]MB/s write performance for todays common PCIe x4
NVM devices [48].

(a) IoZone Throughput (b) Disabled root switch

Fig. 2

Fig. 3: Scheme of the fabric topology (small island)

In a further test, we evaluated the storage pooling feature of BeeGFS [5]. We cre-
ated a storage pool for each leaf switch(see Fig. 3). In other words, when writing
to a storage pool, the data is distributed via the stripe count and chunk size, but re-
mains within the storage pool and thus on a switch. Only the communication with
the meta data server is forwarded across the core switches. Figure 2b shows the
write throughput for three scenarios. Each scenario uses a different number of core
switches with six being the full expansion level. In the first experiment, with all six

Ad-hoc file systems at extreme scales 7

core switches, there is only a minimal performance loss, which indicates a small
overhead when using storage pools. In the second case we turned three switches
off, and in the last case we turned off five switches. With reduced number of core
switches the throughput drops due to the reduced network capacity. If the topology
is taken into account, and storage pools are created accordingly, it is possible to
achieve the same performance as with the full expansion.

3.2 Conclusion

Adding the on-demand file system functionality to an HPC system is easy. There
is no need to change the operating model. An on-demand fs is only started for jobs
when it is actually requested. While the startup times might be acceptable on smaller
HPC systems, they are not feasible at large scales. What exactly is acceptable, how-
ever, depends on several factors. A few minutes start-up time might be acceptable
if the jobs runs for a day, but waiting a hour for the on-demand fs when the job is
running not much longer might be not.
Various observations show that with this approach the network is no longer the bot-
tleneck. Since the fabric of an HPC system has a high bisection bandwidth, there
is enough bandwidth left for an on-demand fs. However, if the network is designed
somewhat weaker, enormous bandwidths can still be achieved with taking the topol-
ogy into consideration.

4 Walltime prediction

An investigation whether data can be pre-staged also belongs to the tasks of this
project. One of the challenges is to know which nodes are going to be allocated to
a queued job. The HPC scheduler predicts these nodes based on the user given wall
times. Therefore, we have decided to evaluate whether there is an easy way to au-
tomatically predict such wall time. Our proposed approach for wall time prediction
is to train an individual model for every user with methods from the machine learn-
ing domain. As historical data, we used workloads from two of the HPC-systems at
the Karlsruhe Institute for Technology / Steinbuch Centre for Computing [49], the
ForHLR I + II [50] [51] clusters. We used Automatic machine learning (AUTOML)
to pre-process the input data and selecting the correct model including the optimiza-
tion of hyperparameters. In this work, the auto ML library auto-sklearn [40] is used.
It is based on scikit-learn [41], [42].
Figure 4 shows the R2 score for models of the users on ForHLR I+II with 30 min
AUTOML. A concentration of the points in the upper right corner indicates a higher
number of good models for the training and test data. A more descriptive illustration
of the results are given in Figure 5 for the ForHLR II. Here the median absolute error
is compared between the AUTOML, the default linear regression, and the user given

8 M. Soysal, A. Streit

Fig. 4: X-Axis R2 score on training samples, Y -Axis R2 score on test samples for
ForHLR I+II with 30 min AUTOML

wall time prediction. On the ForHLR II cluster 50% of the prediction have a smaller

Fig. 5: Y-Axis Cumulative distribution, X-Axis Median absolute error ForHLR II.

median absolute error of around 21 min, 43 min, 186 min for the AUTOML model,
the linear regression model, and the user prediction, respectively.

4.1 Node Prediction

Predicting the run times of jobs is only aspect of the challenge. However, the de-
cisive factor is the prediction of which nodes will be allocated to a job. In this fol-
lowing investigation, we have determined the influence of the wall-time on the node

Ad-hoc file systems at extreme scales 9

prediction. Therefore the ALEA Simulator [52] has been extended to simulate the
time of the node list.
The main goal of our experiments was to identify how good or bad are node allo-
cation predictions subject to variously accurate job wall time estimates. Therefore,
we have conducted several experiments where job run time estimates were subse-
quently improved, starting with very imprecise wall time estimates as provided by
real users of the system and continuing to fully accurate job run time estimates. For
this purpose, we introduce T̃Req, the “refined” requested wall time,

T̃Req = TRun +λ (TReq−TRun) with λ ∈ [0,1], (1)

where TReq is the user requested wall time and TRun is the run time of the job. Each
job in the workload is then adjusted by the same λ , effectively simulating different
precision of provided wall time estimates.
The simulation of the workloads is shown in Figure 6, each bar represents a simu-
lation with a different λ value. The last bar, labeled “Alea”, is the simulation with
Alea’s built-in wall time prediction. Each row shows the simulation of a specific
workload with two different scheduling algorithms. A conservative back-filling al-
gorithm (left column) and a simple FCFS algorithm (right column). The bars are
categorized into four groups based on the TNAP. The blue part represent the jobs that
are started immediately after the job is submitted(instant). The orange part represent
queued jobs with a TNAP between 0 and 1. Jobs with a TNAP from one second up to
10 minutes are represented by the green part. Red indicates a TNAP value for more
than 10 minutes (long term prediction). The class of jobs with long-term predictions
(red) is in our focus. This long-term predictions increases significantly only at very
small λ ≤ 0.1 which already proves that very good run time estimates are needed.
The results in Figure 6i-j show a high rate of jobs that are started immediately after
the job submission. There are several reasons for this. First, the workload time-frame
is almost two years and various maintenance slots have not been simulated. During
the simulation, the queue is processed normally during maintenance time. Second,
a part of the nodes has been separated for a limited time for various campaigns. The
consumption of the campaigns is not included in the workloads.

4.2 Conclusion

Two different investigations were carried out here. At the first one we showed how
you can achieve good walltime predictions with very simple means. We only used
general meta-data and trained an individual model for each user. The results are very
remarkable, considering that hardly any manual optimizations were performed on
the models.
The second part of the work examined how good the predictions should be for our
approach. The results are very sobering. It turned out that even with almost perfect

10 M. Soysal, A. Streit

(a) ForHLR I Backfill algorithm (b) ForHLR I FCFS algorithm

(c) ForHLR II Backfill algorithm (d) ForHLR II FCFS algorithm

Fig. 6

predictions, there is still a lot of uncertainty. If an FCFS algorithm is used, the
situation looks a bit better, but this would have a negative effect on the load.
It has therefore been concluded that further work is needed here. In this case, a
modification must be made to the operational processes of the scheduler. We have
achieved this by developing a plug-in (On-demand burst buffer plugin) for the
SLURM scheduler. If required, this plugin starts an on-demand plugin and transfers
the data on the temporary fs. The challenge with the unknown node list is solved
with reservations by this plugin.

5 Scientific applications

We have evaluated several applications regarding to on-demand file systems. We
have selected application which either generated a very high load on our system or
the I/O part is identified as a bottleneck.

Ad-hoc file systems at extreme scales 11

5.1 super sph

We evaluated the application super sph (”Simulation for Smoothed Particle Hydro-
dynamics”) [54] which is developed at ,,Institut für Strömungsmaschinen” @KIT.
The software scales up to 15000 Cores and 109 particles. The first implementa-
tion of the software created a file per process and required data-gathering as post-
processing. A new implementation is now writing directly to time steps using MPI-
IO which makes the data-gathering process unnecessary. From our observation – file
per process method is causing heavy load on the PFS. Using MPI-IO is slower but
has less impact on global PFS. Figure 7 show the results of super sph when writ-
ing directly to the global filesystem (Lustre) and to an on-demand created filesystem
(BeeOND/BeeGFS). For the benchmark we used 256 Nodes. While using the simple

(a) Write troughput with file-per-
process method

(b) Write troughput with MPI-IO method

Fig. 7: Write benchmark with super sph.

file-per-process method we gain a small performance increase. When using MPI-IO
is important to choose the right parameters for the file-system. If the chunksize is
not adequate the performance loss is tremendous.

5.2 OpenFOAM

Another application we investigated is OpenFOAM [55]. OpenFOAM is a toolkit
for computational fluid dynamics (CFD) written in C++. It is a widely used open-
source fluid dynamics code [56] for engineering applications. OpenFOAM offers
tools for many areas of research, like heat transfer, reacting flows, or multi-phase
flows. Investigation of I/O performance has been performed with a OpenFOAM
case, using OpenFOAM v1712 and a custom solver developed for detailed combus-
tion simulations [57, 58]:

12 M. Soysal, A. Streit

Use case: A production run simulation of an experimentally investigated burner of
laboratory scale [59]. The focus of this setup lies on simulating the burner flame
in great detail, including all intermediate chemical species that are formed during
combustion. Due to the physical complexity of the flame, the computational domain
consists of 150 million cells. The simulation is typically run on 5 000–28 000 CPU
cores [60]. In this work, the case has been run on 240 nodes or 4800 processes,
leading to the creation of 95 files per process or half a million files in total, with
about 0.2 MB per file or 25 MB per process or 120 GB in total. For previous runs
with 28 800 CPU cores, the number of files which are written at the same time
increases to 2.7 million.

(a) execution time per timestep using on-
demand fs

(b) execution time per timestep using global fs

Fig. 8

Figure 8 show results for our scenario. We run the application five times on 240
Nodes. The Blue line is the average execution time of the time steps. The black bars
represent the min/max values for the time steps. The high spikes in both cases occur
when the application is writing his intermediate results. Fig. 8a show the results
when OpenFOAM is writing to the on-demand fs and 8b when using the global
file system. The spikes are higher when using the on-demand, this is explained by
the fact that the data is stored on the nodes. The On-demand fs has to share the
resources with the application on the compute nodes. But what also can be seen, is
the deviation(black bars) is much higher when using the global file system. Here the
advantage is the dedicated bandwidth and meta data performance which is offered
by a private on-demand file system.

5.3 NASTjA

The NAStJA framework [61] is another application we examined with the use of
on-demand file systems. NAStJA is a massively parallel stencil code solver. It is de-
signed for simulations in several scientific domains. The framework provides several
modules for writing out the results. For our purpose, we configured a single file per

Ad-hoc file systems at extreme scales 13

block per time step. A basic phase-field model of crystal solidification was chosen
for the simulation.
Use case: A run with 4800 parallel NAStJA processes is distributed to 4800 work-
ing nodes with 20 processes each. A particular node is reserved for the BeeGFS
processes. We choose 4 800 blocks, i.e., one block per core, of the size of [1]MB
each and write out every 20th time-step of a total of 100 000 time-steps.

(a) execution time per timestep using on-
demand fs

(b) execution time per timestep using global fs

Fig. 9

Figure 9 show results for the NAStJA scenario. We run the application five times on
240 Nodes. The Blue line is the average execution time of the time steps. The black
bars represent the min/max values for the time-steps. Here we see another result in
contrast to OpenFOAM use case. Fig. 9a show the results when NAStJA is writing
to the on-demand fs and 9b when using the global file system. When using the
on-demand fs there is almost no deviation, while using the global fs, there are high
spikes during the whole simulation.

5.4 Data staging

We also considered the case of copying data back to the PFS while the application is
running. For this purpose, we used different NAStJA simulations on 23 nodes with
16, 19, and 20 cores per node for the application. The remaining resources on the
compute nodes are then available for the on- demand file system and data staging.
Of course, when using all 20 cores for the application there are no physical cores
left, but we wanted to evaluate how much the interference is. For reference, each
simulation is performed without data staging. To stage the data, during the NAStJA
execution, we used the parallel copy tool dcp [62]. As the staging workflow, we
considered two cases: a single node with four dcp processes, and a case with one
dcp process per compute node. In the case of a single node the MDS server node of
the on-demand file system was used. Figure 10 show the average execution time per
time-step of five runs in our different scenarios. With 16 cores for the application,
from available 20 cores, the run times are similar whether the run was executed with

14 M. Soysal, A. Streit

or without data staging. When using 19 or 20 cores, the application is slowed down
when the copy is executed with one process per node. At the beginning, the slow-
down is significant (orange line) due to the high amount of metadata operations. In
this case, a portion of the data is indexed on every node and this is causing interfer-
ence with the application. When using only the MDS-server to copy the generated
data (green line) the indexing is done only on the node with the MDS-server. If there
are enough free resources on the compute nodes, the data can be staged-out without
slowing down the application. Staging the data back afterwards with dcp needs ap-
proximately 30 seconds, and only 6 seconds for the pure data transfer. This raises
the question of whether it makes sense to copy the data back during the simulation.

Fig. 10: Execution time per time-step. Different scenarios w/o data staging.

5.5 Conclusion

The results with real applications and use cases are already very good in the early
phase. The use of on-demand file system immediately reduces the load on the global
file system. This is of great importance for the shared HPC system and means a
much more stable operation with less interference between the jobs. The impact
of an on-demand fs to the application is minimal. However, we have only tested a
handful of applications and use cases to see if an on-demand fs becomes a disad-
vantage. Also the results for data-staging are promising, depending on whether you
have much or little time to move the data, there are ways to choose the right method.
Also the influence on the application is controllable.

Ad-hoc file systems at extreme scales 15

6 Summary

On-demand file systems is easy adaptable into a HPC System. It immediately re-
duces the load on the global file systems. Startup and shutdown times are acceptable
only for long running jobs. For very short running jobs it might be use senseless, but
experience shows that large scale jobs usually request longer wall times. However,
many more factors have to be taken into account here to enable a reasonable and
fast use in a wide range. There are also many factors to consider during deployment
so that a user is not overwhelmed, e.g., setting the right strip-count und chunk-size
parameters.
It turned out that pre-staging data to the compute nodes is not possible with the
unreliable allocation prediction of the scheduler. Here a modification is needed to
cope with the issue of the unknown node list. A Plugin has been developed which
solves this issue, by using reservations. The plugin extends the use of the built-in
burst buffer concept and creates aa on-demand fs and moves the required data to the
temporary fs.
The trend in the HPC environment clearly shows that faster solid state disks keep
coming into the compute nodes. With these, the advantages of on-demand file sys-
tems on the compute nodes should be even more significant.

Acknowledgments

The project ADA-FS is funded by the DFG Priority Program ,,Software for exascale
computing” (SPPEXA, SPP 1648), which is gratefully acknowledged. This work
was supported by the Helmholtz Association of German Research Centres (HGF)
and the Karlsruhe Institue of Technology. This work was performed on the computa-
tional resource ForHLR II with the acronym ADA-FS funded by the Ministry of Sci-
ence, Research and the Arts Baden-Württemberg and DFG (“Deutsche Forschungs-
gemeinschaft”). We would like to thank the operation team of the ForHLR II cluster,
which allowed us to adapt operational areas of the system to our needs.

References

1. S. Microsystems, “LUSTRETM FILE SYSTEM High-Performance Storage Architecture and
Scalable Cluster File System,” http://www.csee.ogi.edu/∼zak/cs506-pslc/lustrefilesystem.pdf,
2007, accessed: September 05 2016.

2. F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system for large computing clusters,” in
Proceedings of the 1st USENIX Conference on File and Storage Technologies, ser. FAST ’02.
Berkeley, CA, USA: USENIX Association, 2002.

3. J. Heichler, “An introduction to BeeGFS,” http://www.beegfs.com/docs/Introduction to
BeeGFS by ThinkParQ.pdf, 2014, accessed: September 6, 2016.

16 M. Soysal, A. Streit

4. O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, and G. Antoniu, “On the root causes of cross-
application I/O interference in HPC storage systems,” in Parallel and Distributed Processing
Symposium, 2016 IEEE International. IEEE, 2016, pp. 750–759.

5. BeeGFS, “BeeGFS Storage Pool,” https://www.beegfs.io/wiki/StoragePools, 2018, accessed:
August 18 2018.

6. IBM, “GPFS - highly available write cache (hawc),” 2018. [Online]. Avail-
able: https://www.ibm.com/support/knowledgecenter/en/STXKQY 5.0.0/com.ibm.spectrum.
scale.v5r00.doc/bl1adv hawc.htm

7. R. Mohr, M. J. Brim, S. Oral, and A. Dilger, “Evaluating progressive file layouts for lustre.”
8. J. Xing, J. Xiong, N. Sun, and J. Ma, “Adaptive and scalable metadata management to

support a trillion files,” in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, ser. SC ’09. New York, NY, USA: ACM, 2009, pp.
26:1–26:11. [Online]. Available: http://doi.acm.org/10.1145/1654059.1654086

9. S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock, “I/O performance chal-
lenges at leadership scale,” in Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, Nov 2009, pp. 1–12.

10. N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, and C. Maltzahn, “On
the role of burst buffers in leadership-class storage systems,” in Mass Storage Systems and
Technologies (MSST), 2012 IEEE 28th Symposium on. IEEE, 2012, pp. 1–11.

11. T. Wang, K. Mohror, A. Moody, K. Sato, and W. Yu, “An ephemeral burst-buffer file system for
scientific applications,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2016, p. 69.

12. DataDirect Networks, “IME - Flash native cache,” https://www.ddn.com/products/
ime-flash-native-data-cache/, 2018.

13. CRAY, “Cray R© DataWarpTM Applications I/O Accelerator,” https://www.cray.com/
datawarp, 2018.

14. J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez, M. Polte, and
M. Wingate, “Plfs: a checkpoint filesystem for parallel applications,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis. ACM,
2009, p. 21.

15. BeeGFS, “BeeONDTM: BeeGFS On Demand,” http://www.beegfs.io/wiki/BeeOND, 2018,
accessed: August 18 2018.

16. R. Thakur, W. Gropp, and E. Lusk, “On implementing MPI-IO portably and with high per-
formance,” in Proceedings of the sixth workshop on I/O in parallel and distributed systems.
ACM, 1999, pp. 23–32.

17. ——, “Data sieving and collective I/O in ROMIO,” in Frontiers of Massively Parallel Com-
putation, 1999. Frontiers’ 99. The Seventh Symposium on the. IEEE, 1999, pp. 182–189.

18. M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An overview of the HDF5
technology suite and its applications,” in Proceedings of the EDBT/ICDT 2011 Workshop on
Array Databases. ACM, 2011, pp. 36–47.

19. R. Rew and G. Davis, “Netcdf: an interface for scientific data access,” IEEE computer graphics
and applications, vol. 10, no. 4, pp. 76–82, 1990.

20. J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexible IO and integration
for scientific codes through the adaptable IO system (ADIOS),” in Proceedings of the 6th in-
ternational workshop on Challenges of large applications in distributed environments. ACM,
2008, pp. 15–24.

21. W. Frings, “SIONlib,” http://www.fz-juelich.de/ias/jsc/EN/Expertise/Support/Software/
SIONlib/ node.html, 2009.

22. M. Neuer, J. Salk, H. Berger, E. Focht, C. Mosch, K. Siegmund, V. Kushnarenko, S. Kombrink,
and S. Wesner, “Motivation and implementation of a dynamic remote storage system for I/O
demanding HPC applications,” in International Conference on High Performance Computing.
Springer, 2016, pp. 616–626.

23. D. Teigland and H. Mauelshagen, “Volume managers in linux.” in USENIX Annual Technical
Conference, FREENIX Track, 2001, pp. 185–197.

Ad-hoc file systems at extreme scales 17

24. T. Wickberg and C. Carothers, “The RAMDISK storage accelerator: A method of
accelerating I/O performance on HPC systems using RAMDISKs,” in Proceedings of
the 2nd International Workshop on Runtime and Operating Systems for Supercomputers,
ser. ROSS ’12. New York, NY, USA: ACM, 2012, pp. 5:1–5:8. [Online]. Available:
http://doi.acm.org/10.1145/2318916.2318922

25. M. Hovestadt, O. Kao, A. Keller, and A. Streit, “Scheduling in hpc resource management
systems: Queuing vs. planning,” in Job Scheduling Strategies for Parallel Processing, D. Fei-
telson, L. Rudolph, and U. Schwiegelshohn, Eds. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2003, pp. 1–20.

26. R. Gibbons, “A historical application profiler for use by parallel schedulers,” in Job scheduling
strategies for parallel processing. Springer, 1997, pp. 58–77.

27. A. B. Downey, “Predicting queue times on space-sharing parallel computers,” in Parallel Pro-
cessing Symposium, 1997. Proceedings., 11th International. IEEE, 1997, pp. 209–218.

28. R. Gibbons, “A historical profiler for use by parallel schedulers,” Master’s thesis, University
of Toronto, 1997.

29. W. Smith, I. Foster, and V. Taylor, “Predicting application run times using historical informa-
tion,” in Job Scheduling Strategies for Parallel Processing. Springer, 1998, pp. 122–142.

30. W. Smith, V. Taylor, and I. Foster, “Using run-time predictions to estimate queue wait times
and improve scheduler performance,” in Workshop on Job Scheduling Strategies for Parallel
Processing. Springer, 1999, pp. 202–219.

31. A. Matsunaga and J. A. Fortes, “On the use of machine learning to predict the time and re-
sources consumed by applications,” in Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing. IEEE Computer Society, 2010, pp.
495–504.

32. N. H. Kapadia and J. A. Fortes, “On the design of a demand-based network-computing system:
The purdue university network-computing hubs,” in High Performance Distributed Comput-
ing, 1998. Proceedings. The Seventh International Symposium on. IEEE, 1998, pp. 71–80.

33. A. W. Mu’alem and D. G. Feitelson, “Utilization, predictability, workloads, and user runtime
estimates in scheduling the IBM SP2 with backfilling,” IEEE Transactions on Parallel and
Distributed Systems, vol. 12, no. 6, pp. 529–543, 2001.

34. F. Nadeem and T. Fahringer, “Using templates to predict execution time of scientific workflow
applications in the grid,” in Proceedings of the 2009 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid. IEEE Computer Society, 2009, pp. 316–323.

35. W. Smith, “Prediction services for distributed computing,” in Parallel and Distributed Pro-
cessing Symposium, 2007. IPDPS 2007. IEEE International. IEEE, 2007, pp. 1–10.

36. D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Backfilling using system-generated predictions
rather than user runtime estimates,” IEEE Transactions on Parallel and Distributed Systems,
vol. 18, no. 6, 2007.

37. Xsede. https://www.xsede.org/.
38. Karnak start/wait time predictions. http://karnak.xsede.org/karnak/index.html.
39. M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning. MIT press,

2012.
40. M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter,

“Efficient and robust automated machine learning,” in Advances in Neural Information
Processing Systems 28, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, Eds. Curran Associates, Inc., 2015, pp. 2962–2970. [Online]. Available:
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf

41. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

42. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pret-
tenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, and G. Varo-
quaux, “API design for machine learning software: experiences from the scikit-learn project,”

18 M. Soysal, A. Streit

in ECML PKDD Workshop: Languages for Data Mining and Machine Learning, 2013, pp.
108–122.

43. “Slurm - schedmd,” http://www.schedmd.com.
44. “Adaptive Computing,” http://www.adaptivecomputing.com.
45. “IBM - platform computing,” http://www.ibm.com/systems/platformcomputing/products/lsf/.
46. D. Capps and W. Norcott, “Iozone filesystem benchmark,” 2008. [Online]. Available:

http://iozone.org/
47. E. Kim, “SSD performance-a primer: An introduction to solid state drive perfromance, evalu-

ation and test,” Tech. rep., Storage Networking Industry Association, Tech. Rep., 2013.
48. J. J. Hung, K. Bu, Z. L. Sun, J. T. Diao, and J. B. Liu, “PCI express-based NVMe solid state

disk,” in Applied Mechanics and Materials, vol. 464. Trans Tech Publ, 2014, pp. 365–368.
49. Steinbuch Center for Computing, “Scc,” http://www.scc.kit.edu, 2016, accessed: August 16,

2016.
50. “Forschungshochleistungsrechner ForHLR 1,” www.scc.kit.edu/dienste/forhlr1.php, 2018.
51. “Forschungshochleistungsrechner ForHLR 2,” www.scc.kit.edu/dienste/forhlr2.php, 2018.
52. “Alea 4: Job scheduling simulator,” February 2019, https://github.com/aleasimulator.
53. M. Soysal, M. Berghoff, and A. Streit, “Analysis of job metadata for enhanced wall time

prediction,” in Job Scheduling Strategies for Parallel Processing, 2018.
54. S. Braun, R. Koch, and H.-J. Bauer, “Smoothed particle hydrodynamics for numerical predic-

tions of primary atomization,” vol. 15, no. 1, pp. 56–60, 2017.
55. OpenCFD, OpenFOAM: The Open Source CFD Toolbox. User Guide Version 1.4, OpenCFD

Limited. Reading UK, Apr. 2007.
56. “The OpenFOAM foundation,” https://openfoam.org/, 2018.
57. T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, and H. Bockhorn, “Improved vectorization for

efficient chemistry computations in openfoam for large scale combustion simulations,” in High
Performance Computing in Science and Engineering ’17, W. Nagel, D. Kröner, and M. Resch,
Eds. Springer, 2018.

58. T. Zirwes, F. Zhang, T. Häber, and H. Bockhorn, “Ignition of combustible mixtures by hot
particles at varying relative speeds,” Combustion Science and Technology, vol. 0, no. 0, pp.
1–18, 2018. [Online]. Available: https://doi.org/10.1080/00102202.2018.1435530

59. R. Barlow, S. Meares, G. Magnotti, H. Cutcher, and A. Masri, “Local extinction and near-field
structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets,” Combust. Flame,
vol. 162, no. 10, pp. 3516–3540, 2015.

60. T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, and H. Bockhorn, “Automated code generation
for maximizing performance of detailed chemistry calculations in OpenFOAM,” in High Per-
formance Computing in Science and Engineering ’17, W. Nagel, D. Kröner, and M. Resch,
Eds. Springer, 2017, pp. 189–204.

61. M. Berghoff, I. Kondov, and J. Hötzer, “Massively parallel stencil code solver with
autonomous adaptive block distribution,” IEEE Transactions on Parallel and Distributed
Systems, 2018. [Online]. Available: http://doi.acm.org/10.1109/TPDS.2018.2819672

62. D. Sikich, G. Di Natale, M. LeGendre, and A. Moody, “mpifileutils: A parallel and distributed
toolset for managing large datasets,” Lawrence Livermore National Lab.(LLNL), Livermore,
CA (United States), Tech. Rep., 2017.

