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MAXIMUM NORM ERROR BOUNDS FOR THE FULL

DISCRETIZATION OF NON-AUTONOMOUS WAVE EQUATIONS

BENJAMIN DÖRICH, JAN LEIBOLD, AND BERNHARD MAIER

Abstract. In the present paper, we consider a specific class of non-autonomous
wave equations on a smooth, bounded domain and their discretization in space

by isoparametric finite elements and in time by the implicit Euler method.
Building upon the work of Baker and Dougalis (1980), we prove maximum

norm estimates for the semi discretization in space and the full discretization.

The key tool is the gain of integrability coming from the inverse of the dis-
cretized differential operator. For this, we have to pay with time derivatives on

the error in the L2-norm which are reduced to estimates of the differentiated

initial errors.

1. Introduction

In the present paper we consider the non-autonomous wave equation

∂ttu(t, x) = −λ(t, x)
−1

Lu(t, x) + f(t, x), t ∈ [0, T ], x ∈ Ω,(1.1)

with a uniformly elliptic differential operator L of order two with special emphasis
on the (shifted) Laplacian. The domain Ω ⊆ RN , N = 2, 3, is assumed to be
bounded and convex with a sufficiently regular boundary. On this, we impose
homogeneous Dirichlet or Neumann boundary conditions. We discretize (1.1) with
isoparametric finite elements in space and the implicit Euler scheme in time and
derive maximum norm error bounds for the semi discretization in space and the
full discretization.

A bound in the maximum norm allows us to control the numerical error at every
point in the domain. Compared to the classical estimates in L2, see, e.g., [8, 9],
which are implied (with non-optimal order) by our maximum norm error estimates,
and in the energy space H1, see, e.g., [19, 30], they provide an additional insight
in the approximation quality. For example, they become particularly interesting if
one wants to approximate the quasilinear wave equation

∂ttu(t, x) = −λ(u(t, x))
−1

Lu(t, x) + f(t, x, u(t, x)).(1.2)

The reason is, that this equation is only well-posed as long as λ(u) satisfies a
pointwise lower bound. When discretizing (1.2) in space, it has to be ensured
that the spatial discretizaion inherits this property. Since this requires a pointwise
bound of the numerical approximation, maximum norm estimates, as they are
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provided in this paper, are sufficient to guarantee such constraints. So far, an inverse
inequality has to be employed, which leads to an unsatisfactory CFL condition,
even for methods which are known to be unconditionally stable, or a restriction to
higher-order finite elements, see, e.g., [1,30,31]. Alternatively, H2-conforming finite
elements, as suggested in [46], can be employed. For those, Sobolev’s embedding
can be used to obtain maximum norm estimates, once the convergence in H2 is
established. However, in order to achieve this type of conformity, the number of
degrees of freedom has to be increased significantly. Our hope is to show that these
constraints are only of theoretical nature and can be removed. We are confident,
that the analysis presented here for the linear problem (1.1) is an important step
towards the quasilinear problem (1.2) and also for higher-order methods in time.

In the articles of Baker, Dougalis, and Serbin [6,7], the space and time discretiza-
tion of the linear autonomous wave-equation (i.e., λ = 1, f = 0 in (1.1)) by finite
elements and one- or two-step methods, respectively, is analyzed. In our paper,
we extend their analysis to the more general case of linear, non-autonomous wave
equations and also to nonconforming finite elements. We point out that the latter
cannot be omitted due to the following reason: In the error analysis, we rely on
elliptic regularity results only available on a smooth domain Ω. Unfortunately, this
prevents us from using these results on a computational domain Ωh with a piece-
wise polynomial boundary. Our research is mainly inspired by [6,7] and we are not
aware of further maximum norm estimates for wave equations discretized by finite
elements. For finite differences on a square combined with a fourth-order in time
scheme, an error bound under a CFL condition is established in [25].

For the spatial semi discretization in [6], Baker and Dougalis trade integrability,
coming from the inverse of the discretized differential operator Lh, for time deriva-
tives on the error in the L2-norm. Those errors are controlled by the derivatives of
the initial error which can be bounded using a properly preconditioned initial value.
For our semi discretization, we use a similar approach and transfer the results with
additional technical effort to the non-autonomous case.

For the full discretization, the proofs in [6,7] rely on an expansion of the discrete
error in the eigenbasis of Lh. However, we are not aware of how to generalize this
approach to the non-autonomous case. Hence, we pursue the strategy of the semi
discretization. From the implicit Euler scheme we derive discrete derivatives and
adapt the proofs to derive fully discrete error bounds.

In both the semi discrete and the fully discrete case, the most delicate parts are
the estimates of the (discrete) derivatives of the initial errors. In the autonomous
case, many terms cancel out and a spatial error bound of order k + 1 for order k
finite elements is achieved. The additional terms arising in the non-autonomous
case, however, lead to a spatial error bound of order k.

Further, we comment on maximum norm error bounds for finite element dis-
cretizations of elliptic problems as they are the fundamental tool for our error
bounds in the time-dependent case. The first quasi-optimal error bounds in the
maximum norm were given by Natterer [32] and Scott [43]. Many extensions and
refinements have been achieved in the following years, see, e.g., [33,34,36,37,40–42,
45]. More recently in the context of nonconforming space discretizations, maximum
norm error bounds for linear finite elements applied to an inhomogeneous Neumann
problem were derived in [21]. For evolving surface finite element methods, similar
estimates are considered in [23]. In [13], the authors of the present paper extended
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the approach in [11] to derive stability of a generalized Ritz map to higher-order
isoparametric elements.

We also briefly comment on further work conducted in the context of maximum
norm error estimates for parabolic problems. Here, we are aware of two strategies:
In [5, 10], a similar approach as for the wave equation is taken and integrability is
gained for time derivatives. Alternatively, some kind of stability of the semigroup
generated by Lh on L∞ is shown. This is done either directly using energy tech-
niques, see, e.g., [38, 39], or via resolvent estimates on L∞, see, e.g., [4, 12, 35, 44].
However, such stability estimates cannot be expected for hyperbolic problems in
general, see [2, Exa. 8.4.9] and [27].

The paper is organized as follows: In Section 2, we present the analytical frame-
work and the space discretization by isoparametric Lagrange finite elements. After
providing some properties of the discretized objects, we state our main results on
the error bounds for the semi discretization in space and the full discretization by
the implicit Euler method.

The main parts of the proof of the semi-discrete error bound are given in Sec-
tion 3. Here, we exchange the integrability in the error for time derivatives of the
defect and trace those back to the initial values. We adapt the presented technique
in Section 4 and transfer it from the continuous to the discrete derivatives in order
to prove the theorem on the fully discrete error bound.

Section 5 is devoted to the final conclusion of our main results. We collect several
approximation results and estimate the defects. Further, the (discrete) derivatives
of the initial error as well as the errors in the first approximations of the fully
discrete scheme are bounded.

In Appendix A, we collect some further results employed in the error analysis.

Notation. In the rest of the paper we use the notation

a . b ,

if there is a constant C > 0 independent of the spatial parameter h and the time
step-size τ such that a ≤ Cb. For the sake of readability, we introduce the notation
tn = nτ and

xn := x(tn)

for an arbitrary time-dependent, continuous object x(t) in some Banach space X.
Further, we define

‖x‖L∞(X) := max
[0,T ]
‖x(t)‖X , ‖xn‖`∞(X) := max

m=1,...,n
‖xm‖X .

If it is clear from the context, we write Lp instead of Lp(Ω) or Lp(Ωh).

2. General Setting

For a convex, bounded domain Ω ⊂ RN , N ∈ {2, 3}, with boundary ∂Ω ∈
Cs,1, s ∈ N, we study the non-autonomous wave equation (1.1) with a positive,
self-adjoint operator L on L2(Ω), stemming from a uniformly elliptic second-order
differential operator with regular coefficients. Therefore, we introduce the spaces
H = L2(Ω) and V = D(L1/2). The equation is further equipped with initial values

u(0) = u0, ∂tu(0) = v0

and homogeneous Dirichlet or Neumann boundary conditions. Our analysis relies
on the following regularity assumptions of λ.
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Assumption 2.1. There are κ ∈ N and `max ≥ 1 such that the following holds.

(λ1) There exist Cλ ≥ cλ > 0 such that the function λ : [0, T ]× Ω→ R satisfies

cλ ≤ λ(t, x) ≤ Cλ, t ∈ [0, T ], x ∈ Ω.

Moreover, we have for κ̂ = max{κ, `max}

λ, λ−1 ∈ C2
(
[0, T ],W κ̂,∞(Ω)

)
and λ ∈ C3

(
[0, T ], L∞(Ω)

)
.

(λ2) For 0 ≤ ` ≤ `max and u ∈ D(L`/2) it holds

λu, λ−1u ∈ D(L`/2).

We note that assumption (λ2) guarantees that the multiplication with λ preserves
the boundary conditions incorporated in L.

Example 2.2. Two admissible choices are L = −∆ with Dirichlet boundary
conditions (V = H1

0 (Ω)) and L = −∆ + Id with Neumann boundary conditions
(V = H1(Ω)). In this case, we have the following sufficient conditions for (λ2).

(a) If ∇xλ has compact support in Ω, (λ2) is satisfied for any `max ∈ N.

(b) For homogeneous Dirichlet boundary conditions, we always have `max ≥ 2
and achieve `max ≥ 4 by the product rule if

∇xλ
∣∣
Γ

= 0.(2.1)

In the Neumann case, it holds `max ≥ 1 and (2.1) yields `max ≥ 3.

(c) Having the quasilinear case (1.2) in mind, and assuming λ = λ(t, u) where
u is the solution in V , then (2.1) follows directly in the Neumann case and
in the Dirichlet case, a sufficient condition is given by ∂uλ(t, 0) = 0.

Further, condition (λ1) directly yields the following lemma.

Lemma 2.3. Let Assumption 2.1 be satisfied for some κ ∈ N. Then, we have for
t ∈ [0, T ], 0 ≤ ` ≤ κ, 1 ≤ p ≤ ∞, and j ∈ {0, 1, 2} the bounds∥∥∥∂jtλ(t)ϕ

∥∥∥
W `,p

≤ Cλ ‖ϕ‖W `,p ,
∥∥∥∂jtλ(t)

−1
ϕ
∥∥∥
W `,p

≤ Cλ ‖ϕ‖W `,p ,

with a constant Cλ > 0 depending on λ and its derivatives.

Equivalently to (1.1), we consider the non-autonomous wave equation in first-
order formulation

∂ty(t) = Λ(t)
−1

Ay(t) + F (t), t ∈ [0, T ],(2.2)

with initial value y(0) = y0 in the product space X = V ×H, with

y =

(
u
∂tu

)
, y0 =

(
u0

v0

)
, Λ(t) =

(
Id 0
0 λ(t)

)
, A =

(
0 Id
−L 0

)
, F (t) =

(
0
f(t)

)
.

In particular, we emphasize that under Assumption 2.1 the operator Λ generates
the time-dependent inner product

(ϕ | ψ)Λ(t) = (Λ(t)ϕ | ψ)X , t ∈ [0, T ], ϕ, ψ ∈ X.(2.3)

The corresponding norm is equivalent to the norm of X, i.e., we have

cΛ ‖ϕ‖2X ≤ ‖ϕ‖
2
Λ(t) ≤ CΛ ‖ϕ‖2X , t ∈ [0, T ], ϕ ∈ X,(2.4)
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with constants

cΛ = min{1, cλ}, CΛ = max{1, Cλ}.

Further, we conclude from (λ2) the continuity of the map

Λ(t) : D(A`)→ D(A`), 0 ≤ ` ≤ `max, t ∈ [0, T ].(2.5)

Our analysis relies on the solution operators of the Poisson equation in second- and
first-order formulation, respectively. In particular, we introduce the second-order
solution operator S : H → V given by

(Sϕ | ψ)V = (ϕ | ψ)H , ϕ ∈ H, ψ ∈ V.(2.6)

For the analysis, we heavily rely on the following elliptic regularity result [17,
Thm. 2.4.2.5].

Theorem 2.4 (Elliptic regularity). Let ∂Ω ∈ C1,1, then for all 1 < p < ∞ there
is a constant Cp > 0 such that for all ϕ ∈ Lp(Ω) it holds

‖Sϕ‖W 2,p ≤ Cp ‖ϕ‖Lp .

Furthermore, we define the first-order solution operator T: X → D(A) by

T =

(
0 −S
Id 0

)
.

In particular, this implies TA = Id on D(A) and AT = Id on X.

Space discretization. We study the nonconforming space discretization of (2.2)
based on isoparametric finite elements. For further details on this approach, we
refer to [15]. In particular, we introduce a shape-regular and quasi-uniform mesh Th,
consisting of isoparametric elements of degree k ∈ N. The computational domain
Ωh is given by

Ωh =
⋃

K∈Th

K ≈ Ω,

where the subscript h denotes the maximal diameter of all elements K ∈ Th. Based

on the transformations FK mapping the reference element K̂ to K ∈ Th, we intro-
duce the finite element space of degree k for the Neumann case

WN
h = {ϕ ∈ C(Ω) | ϕ|K = ϕ̂ ◦ (FK)−1 with ϕ̂ ∈ Pk(K̂) for all K ∈ Th} ⊂ V ,

and C(Ω) replaced by C0(Ω) for WD
h in the Dirichlet case. Here, Pk(K̂) consists of

all polynomials on K̂ of degree at most k. The discrete approximation spaces are
given by

HN
h =

(
WN
h , (· | ·)L2(Ωh)

)
, HD

h =
(
WD
h , (· | ·)L2(Ωh)

)
,

V Nh =
(
WN
h , (· | ·)H1(Ωh)

)
, V Dh =

(
WD
h , (· | ·)H1

0 (Ωh)

)
,

and we set Xh = Vh ×Hh with
(
Vh, Hh

)
∈
{(
V Nh , HN

h

)
,
(
V Dh , HD

h

)}
.

Following the detailed construction in [15, Sec. 5], we introduce the lift operator
Lh : Hh → H. In particular, for p ∈ [1,∞] there are constants cp, Cp > 0 with

cp ‖ϕh‖Lp(Ωh) ≤ ‖Lhϕh‖Lp(Ω) ≤ Cp ‖ϕh‖Lp(Ωh) , ϕh ∈ Lp(Ωh),(2.7a)

cp ‖ϕh‖W 1,p(Ωh) ≤ ‖Lhϕh‖W 1,p(Ω) ≤ Cp ‖ϕh‖W 1,p(Ωh) , ϕh ∈W 1,p(Ωh),(2.7b)
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cf. [15, Prop. 5.8]. Further by [14, Sec. 4], the lift preserves node values, i.e. in
particular

(2.8) IhLhϕh = ϕh, ϕh ∈ Vh ,
where we denote the nodal interpolation operator by Ih : C(Ω)→ Vh. As shown in
[15, Thm. 5.9], we have for m ∈ {0, 1}, 1 ≤ p ≤ ∞, and 1 ≤ ` ≤ k the estimates

‖(Id− LhIh)ϕ‖Wm,p(Ω) . h
`+1−m ‖ϕ‖W `+1,p(Ω) , ϕ ∈W `+1,p(Ω).(2.9)

Further, ` = 0 is allowed for N < p ≤ ∞.
We define the adjoint lift operators LH∗h : H → Hh and LV ∗h : V → Vh by(

LH∗h ϕ | ψh
)
Hh

= (ϕ | Lhψh)H , ϕ ∈ H, ψh ∈ Hh,(2.10a) (
LV ∗h ϕ | ψh

)
Vh

= (ϕ | Lhψh)V , ϕ ∈ V, ψh ∈ Vh.(2.10b)

From [18, Thm. 5.3] and [15, Lem. 8.24], we obtain for 1 ≤ ` ≤ k the bounds∥∥LH∗h ϕ
∥∥
Hh
. ‖ϕ‖L2(Ω) , ϕ ∈ L2(Ω).(2.11a) ∥∥(Ih − LH∗h )ϕ

∥∥
Hh
. h`+1 ‖ϕ‖H`+1(Ω) , ϕ ∈ H`+1(Ω),(2.11b)

as well as for 0 ≤ ` ≤ k∥∥(Id− LhLV ∗h )ϕ
∥∥
Vh
. h` ‖ϕ‖H`+1(Ω) , ϕ ∈ H`+1(Ω).(2.12)

For the analysis in the following sections, we additionally rely on stability and
approximation properties of LV ∗h . These features are well known in the literature
for conforming finite elements, see, e.g., the monograph [11, Ch. 8]. In the non-
conforming case, stability is shown by the authors for isoparametric finite elements
in [13]. For the Neumann problem, the convergence of linear elements is studied
in [21], and it will be part of our future research to extend this to higher-order
isoparametric finite elements. Further, in the context of evolving surfaces similar
estimates are considered in [23].

Assumption 2.5. The adjoint lift is stable in W 1,∞, i.e.,∥∥LV ∗h ϕ
∥∥
W 1,∞(Ωh)

. ‖ϕ‖W 1,∞(Ω) , ϕ ∈W 1,∞(Ω).

For 0 ≤ ` ≤ k, it holds∥∥(Id− LhLV ∗h )ϕ
∥∥
W 1,∞(Ω)

. h` ‖ϕ‖W `+1,∞(Ω) , ϕ ∈W `+1,∞(Ω).(2.13)

Combining (2.7) with (2.9) and (2.13) immediately gives the bound∥∥(Ih − LV ∗h )ϕ
∥∥
W 1,∞(Ωh)

. hk ‖ϕ‖Wk+1,∞(Ω) , ϕ ∈W k+1,∞(Ω).(2.14)

We will also employ the inverse estimate, cf. [11, Thm. 4.5.11] or [29, Lem. 5.6].

‖ϕh‖L∞ ≤ Ch
−N/p ‖ϕh‖Lp .(2.15)

We introduce the first-order lift operator Lh : W `,p(Ωh)2 → W `,p(Ω)2, ` = 0, 1,
1 ≤ p ≤ ∞ and reference operator Jh : V ×H2(Ω)→ Xh defined by

Lh =

(
Lh 0
0 Lh

)
, Jh =

(
LV ∗h 0

0 Ih

)
,

which are bounded uniformly in h due to (2.7), (2.9) and (2.12). In particular, we
have

(2.16) Jh ∈ L(
(
W 1,∞(Ω)

)2
,
(
W 1,∞(Ωh)

)2
).
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For t ∈ [0, T ] we define the discrete operators λh(t) : Hh → Hh, Λh(t) : Xh → Xh,
and the discrete right-hand side Fh(t) by

λh(t)ϕh = Ih

(
λ(t)Lhϕh

)
, Λh(t) =

(
Id 0
0 λh(t)

)
, Fh(t) =

(
0

LV ∗h f(t)

)
.(2.17)

By (2.8), one can replace λ(t) by LhIhλ(t). Note that if Assumption 2.1 holds for
some κ ≥ 2, we have λ(t), f(t) ∈ H2(Ω) and thus by (2.7) it holds λ(t)Lhϕh ∈ C(Ω).
Hence, the discrete operators and the discrete right-hand side are well defined.
Moreover, as Ih is a nodal interpolation operator the inverse operators satisfy

λh(t)
−1
ϕh = Ih

(
λ(t)

−1Lhϕh
)
, Λh(t)

−1
=

(
Id 0

0 λh(t)
−1

)
.(2.18)

Correspondingly to Lemma 2.3, we collect important properties of λh in the follow-
ing lemma.

Lemma 2.6. Let Assumption 2.1 be satisfied for some κ ≥ 2. Then, we have for
t ∈ [0, T ], ` ∈ {0, 1}, 1 ≤ p ≤ ∞, and j ∈ {0, 1, 2} the bounds∥∥∥∂jtλh(t)ϕh

∥∥∥
W `,p

≤ Cλ ‖ϕh‖W `,p ,
∥∥∥∂jtλh(t)

−1
ϕh

∥∥∥
W `,p

≤ Cλ ‖ϕh‖W `,p ,

with a constant Cλ > 0 depending only on λ and its derivatives.

Proof. We note that by (2.17) and (2.18) it is sufficient to find a constant C inde-
pendent of h such that for ϕh, ψh ∈ Vh it holds

(2.19)
∥∥Ih(LhϕhLhψh)∥∥W `,p(Ωh)

≤ C ‖ϕhψh‖W `,p(Ωh)

for ` ∈ {0, 1}, 1 ≤ p ≤ ∞. This can however be reduced by the affine transformation

to the reference element K̂, cf. [15, Lem. 4.12], where the constant then only

depends on N and k, i.e., the (finite) dimension of Pk(K̂). �

Furthermore, due to the definitions of Jh and Λh based on the nodal interpolation
operator Ih, we particularly have by (2.8) the identities

Λh(t)Jh = JhΛ(t), Λh(t)
−1
Jh = JhΛ(t)

−1
.(2.20)

Finally, we introduce the operators Lh : Vh → Hh and Ah : Xh → Xh given by

(Lhϕh | ψh)Hh
= (ϕh | ψh)Vh

, Ah =

(
0 Id
−Lh 0

)
, ϕh, ψh ∈ Vh.

Note that these operators are not uniformly bounded with respect to h.
Correspondingly to (2.3) and (2.4), the discrete operator Λh generates the time-

dependent inner product

(ϕh | ψh)Λh(t) = (Λh(t)ϕh | ψh)Xh
, t ∈ [0, T ], ϕh, ψh ∈ Xh,

with the induced norm being equivalent to the norm of Xh, i.e., we have

cΛh
‖ϕh‖2Xh

≤ ‖ϕh‖2Λh(t) ≤ CΛh
‖ϕh‖2Xh

, t ∈ [0, T ], ϕh ∈ Xh.(2.21)

We define the discrete solution operator Sh = L−1
h : Hh → Vh by

(Shϕh | ψh)Vh
= (ϕh | ψh)Hh

, ϕh, ψh ∈ Vh,(2.22)

and further the corresponding first-order solution operator

Th =

(
0 −Sh
Id 0

)
,
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which again satisfies ThAh = Id and AhTh = Id.
The spatially discrete non-autonomous wave equation in first-order formulation

then reads

∂tyh(t) = Λh(t)
−1

Ahyh(t) + Fh(t), t ∈ [0, T ],(2.23)

with the initial value

yh(0) = y0
h = ThΛh(0)ThJhAΛ(0)

−1
Ay0.(2.24)

Due to (2.20), this corresponds to

y0
h =

(
ThΛh(0)

)2
Jh
(
Λ(0)

−1
A
)2
y0.

We emphasize that this choice, which is motivated by [6], is crucial for our analysis.
For error bounds of differentiated errors such choices also had to be employed in
[16,22]. Similarly, the right-hand side Fh defined in (2.17) satisfies

(2.25) Fh = ThJhAF.

In the spatially continuous case, the solution operator S can be used to obtain
regularity which is traded in for pointwise estimates via the bounded map

S : L2 → H2 ↪→ L∞.

However, since we use Lagrangian finite elements which are not H2-conforming, this
approach does not work with Sh. Hence, in the following we provide estimates of Sh
that directly give us integrability without a detour via higher-order Sobolev spaces.
The following result has already been proven in [10, Lem. 4.1] in the conforming
case only, and we give an adapted version of the proof in Appendix A. Since we
work throughout the paper with the first-order formulation, we state the result for
Th.

Lemma 2.7. Let Assumption 2.5 be satisfied, ∂Ω ∈ C1,1, p ≥ 2 and q, r ≥ 1 with
0 ≤ 1

r −
1
p <

1
N . Then, the solution operator Th satisfies

‖Thξh‖Lp×Lq . ‖ξh‖Lq×Lr

for ξh ∈ Xh.

A direct consequence of the above lemma for N = 2, 3, is the possibility to
consider the maps

Xh ↪→ L4 × L2 Th−→ L4 × L4 Th−→ L∞ × L4 Th−→ L∞ × L∞,(2.26)

which allow us to bound the maximum norm ‖·‖L∞×L∞ in terms of the energy
norm ‖·‖X if we apply the solution operator Th sufficiently often. We explain in
Section 3 how to employ this observation.

We can finally state our first main result on the semi discretization. The proof
is given in Section 3. We use the notation

k∗ = max{k, 2}

in order to treat linear and higher-order finite elements simultaneously.
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Theorem 2.8. Let ∂Ω ∈ Ck+1,1, let Assumption 2.1 hold for `max ≥ 2 and
κ = k + 1, and let Assumption 2.5 be satisfied. Further, assume that the so-
lution of (1.1) satisfies

y ∈ C3
(
[0, T ],W k+1,∞(Ω)×W k+1,N+1(Ω)

)
∩ C3

(
[0, T ],

(
Hk∗+2(Ω) ∩ D(L)

)
×
(
Hk∗+1(Ω) ∩ D(L)

))
∩ C

(
[0, T ],W k+1,∞(Ω)×W k,∞(Ω)

)
,

and the right-hand side

f ∈ C3
(
[0, T ], Hk∗(Ω)

)
∩ C2

(
[0, T ],W k+1,∞(Ω)

)
∩ C

(
[0, T ],

(
Hk∗+2(Ω) ∩ D(L)

)
,

and the initial value yh(0) is chosen as in (2.24). Then we have the error bound

‖y(t)−Lhyh(t)‖L∞×L∞ ≤ Ch
k,

where C is independent of h.

Full discretization. We study the full discretization with the backward Euler
scheme

∂τy
n
h = (Λnh)−1Ahy

n
h + Fnh ,(2.27)

where τ > 0 denotes the time step and the discrete approximation of the time
derivative is for a sequence (ϕn) given by

∂τϕ
n =

ϕn − ϕn−1

τ
.(2.28)

For the fully discrete scheme, we introduce the initial value

y0
h = ThΛ1

hThJhA(Λ1)−1Ay0(2.29)

which corresponds, due to (2.20), to

y0
h = ThΛ1

hThΛ2
hJh(Λ2)−1A(Λ1)−1Ay0.

Our second main result on the full discretization, which is proved in Section 4,
then reads as follows.

Theorem 2.9. Let ∂Ω ∈ Ck+1,1, let Assumption 2.1 hold for `max ≥ 4 and
κ = k + 1, and let Assumption 2.5 be satisfied. Further, assume that the so-
lution of (1.1) satisfies

y ∈ C5([0, T ], H1(Ω)×H2(Ω))

∩ C4([0, T ],W 1,∞(Ω)×W 1,N+1(Ω))

∩ C3([0, T ],W k+1,∞(Ω)×W k+1,N+1(Ω))

∩ C3
(
[0, T ],

(
Hk∗+2(Ω) ∩ D(L)

)
×
(
Hk+1(Ω) ∩ D(L)

))
∩ C2([0, T ],D(A2))

∩ C([0, T ],W k+1,∞(Ω)×W k,∞(Ω)) ∩ C([0, T ],D(Ak∗+3)) ,

and the right-hand side

f ∈ C3
(
[0, T ], Hk∗(Ω)

)
∩ C2

(
[0, T ],W k+1,∞(Ω) ∩ D(Lk

∗/2)
)
∩ C

(
[0, T ],D(Lk

∗/2+1)
)
,

and the initial value y0
h is chosen as in (2.29). Then, there is τ0 > 0 such that for

τ ≤ τ0 we have the error bound

‖y(tn)−Lhy
n
h‖L∞×L∞ ≤ Cτ + Chmin{k,`max−2}, n ≥ 3,
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where C is independent of h and τ , and τ0 is independent of h.

We refer to Remark 5.9 below in order to explain the minimum in the convergence
rate. Further, we emphasize that the first three approximations do not enter the
above error bound. If we want to bound them as well, we need the following
resolvent estimates in the maximum norm.

Assumption 2.10. It holds the resolvent estimate for µ > 0∥∥∥(µ+ λh(t)
−1

Lh)−1x
∥∥∥
L∞(Ωh)

≤ C | log(h)|
1 + |µ|

‖x‖L∞(Ωh)

with a constant C independent of h and t.

Remark 2.11. Resolvent estimates of this type have been shown in the literature
at least for the case λ(t, x) = λ0 ∈ R>0. For example, in [3, Thm. 2.2] and
[4, Thm. 1.1] homogeneous Dirichlet boundary conditions and Lagrangian finite
elements on smooth domains were considered and in certain cases the logarithmic
factor can be removed. In [24, Thm. 15], the case N = 3 on polyhedral domains
is studied. However, since the technique of proof is related to the ones in As-
sumption 2.5, i.e. [13], [23], we expect that this proof extends to our more general
case.

This yields the convergence also of the first approximations.

Theorem 2.12. Let the assumptions of Theorem 2.9 hold. If additionally Assump-
tion 2.10 is valid, we obtain∥∥y(t`)−Lhy

`
h

∥∥
L∞×L∞ ≤ C

(
τ + hk

)
| log(h)|`, ` = 0, 1, 2.

Extension to other Lp×Lq bounds. We briefly comment on how to extend the
above stated results to dimension N = 1 as well as error bounds in the spaces

L∞ × Lp
∗

and Lp
∗
× Lp

∗
,

for p∗ < 2N
N−2 , since they are easily concluded from the proofs presented in this

paper. The main modifications are given by an adaption of (2.26).
In the case N = 1, we use Sobolev’s embedding to see

Xh ↪→ L∞ × L2 Th−→ L∞ × L∞,
and the proofs shorten significantly as we only have to apply Th once. Further, we
simplify the initial value in (2.29) and the right-hand side to

y0
h = Jhy

0, Fh(t) =

(
0

Ihf(t)

)
.(2.30)

Similarly, for N = 2, 3 we employ a variant of (2.26)

Xh ↪→ Lp
∗
× L2 Th−→ Lp

∗
× Lp

∗ Th−→ L∞ × Lp
∗

such that we only need to apply Th once or twice, respectively. For a bound in
Lp
∗ × Lp∗ we use the initial value (2.30) and for L∞ × Lp∗ we take

y0
h = ThJhAy0, Fh(t) =

(
0

Ihf(t)

)
.(2.31)

From these, the corresponding versions of Theorems 2.8 and 2.9 are derived along
the lines of the following sections.
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Corollary 2.13. Let ∂Ω ∈ Ck+1,1. Further, let y be the solution of (1.1), and let
the initial value yh(0) be chosen as in (2.31).

(a) Let Assumption 2.1 hold for `max ≥ 1, and let y satisfy

y ∈ C2
(
[0, T ],W k+1,∞(Ω)×W k+1,N+1(Ω)

)
∩ C2

(
[0, T ],

(
Hk∗+2(Ω) ∩ D(L)

)
×
(
Hk∗+1(Ω) ∩ D(L)

))
∩ C

(
[0, T ],W k+1,∞(Ω)×W k,∞(Ω)

)
,

and the right-hand side

f ∈C2
(
[0, T ], Hk∗(Ω)

)
∩ C1

(
[0, T ],W k+1,∞(Ω)

)
∩ C

(
[0, T ], Hk∗+1(Ω) ∩ D(L)

)
.

Then, we have the error bound

‖y(t)−Lhyh(t)‖L∞×Lp∗ ≤ Chk,
where C is independent of h.

(b) Let Assumption 2.1 hold for `max ≥ 3 and let y satisfy

y ∈ C4([0, T ], H1(Ω)×H2(Ω))

∩ C3([0, T ],W 1,∞(Ω)×W 1,N+1(Ω))

∩ C2([0, T ],W k+1,∞(Ω)×W k+1,N+1(Ω))

∩ C2
(
[0, T ],

(
Hk∗+2(Ω) ∩ D(L)

)
×
(
Hk+1(Ω) ∩ D(L)

))
∩ C1([0, T ],D(A2))

∩ C([0, T ],W k+1,∞(Ω)×W k,∞(Ω)) ∩ C([0, T ],D(Ak∗+2))

and the right-hand side

f ∈ C2
(
[0, T ],W k+1,∞(Ω) ∩ D(Lk

∗/2)
)
∩ C

(
[0, T ],D(Lk

∗/2+1)
)
.

Then, we have the error bound

‖y(tn)−Lhy
n
h‖L∞×Lp∗ ≤ Cτ + Chmin{k,`max−1}, n ≥ 2,

where C is independent of h.

A bound on the first approximation can be achieved similarly to Theorem 2.12.

3. Analysis of the space discretization

3.1. Strategy of the proof. We now prove Theorem 2.8, i.e., we derive an error
bound for the spatially discrete approximation obtained by (2.23) in the maximum
norm. To this end, we proceed as follows. We split the error in

(3.1) y(t)−Lhyh(t) =
(
Id−LhJh

)
y(t) +Lh

(
Jhy(t)− yh(t)

)
=: eJh(t) +Lheh(t)

and derive an equation for the discrete error eh. With the solution operator T, we
rewrite (2.2) as

TΛ(t)∂ty = y + TΛ(t)F (t), t ∈ [0, T ],

with initial value y(0) = y0. Correspondingly, we use the discrete solution operator
Th to obtain from (2.23) the semi-discrete equation

ThΛh(t)∂tyh = yh + ThΛh(t)Fh(t), t ∈ [0, T ],(3.2)
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∥∥eh(t)
∥∥
L∞×L∞

∥∥∂jt eh(t)
∥∥
X

∥∥∂jt δh,T(t)
∥∥
L∞×L∞

Lemma 5.2

∥∥∂jt eh(0)
∥∥
X

Lemma 5.5

∥∥∂jt δh,A(t)
∥∥
X

Lemma 5.4

Lemma 3.1 Lemma 3.2

Figure 1. Strategy of the proof of Theorem 2.8.

with initial value yh(0) = y0
h. Thus, we conclude that the discrete error eh solves

the evolution equation

ThΛh(t)∂teh(t) = eh(t) + δh,T(t), t ∈ [0, T ],(3.3)

with initial value eh(0) = e0
h = Jhy0 − yh(0) and the defect

δh,T(t) =
(
ThJh − JhT

)
Λ(t)∂ty(t) + JhTΛ(t)F (t)− ThΛh(t)Fh(t).(3.4)

As illustrated in Figure 1, the proof of Theorem 2.8 mainly consists of two steps.
First, in Lemma 3.1 we exchange the maximum norm of eh(t) for bounds of time
derivatives of eh(t) in Xh. To do so, we use (3.3) and Lemma 2.7, i.e., we rely on
the property of the solution operator to gain integrability as sketched in (2.26).

Next, in Lemma 3.2 we trace back the time derivatives of eh(t) to time derivatives
of the initial error eh(0), which can be bounded due to the specific choice (2.24) of
the discrete initial value y0

h. Here, we obtain from (2.2) and (2.23) for the discrete
error eh the evolution equation

Λh(t)∂teh(t) = Aheh(t) + δh,A(t), t ∈ [0, T ],(3.5)

with the defect

δh,A(t) =
(
JhA−AhJh

)
y(t) + JhΛ(t)F (t)− Λh(t)Fh(t).(3.6)

Note that we have the relation δh,A = Ahδh,T. Moreover, we emphasize that this
defect was already studied in the unified error analysis provided in [18]. However,
here we also have to bound time derivatives of δh,T and δh,A. We postpone the
derivation of these bounds as well as the estimates for the time derivatives of the
initial error to Section 5.

3.2. Proof of Theorem 2.8. Our first result shows how to bound the error in the
maximum norm in terms of time derivatives of the error in the energy norm.

Lemma 3.1. Let the assumptions of Theorem 2.8 hold. Then, it holds

max
[0,T ]
‖eh‖L∞×L∞ .

2∑
j=0

max
[0,T ]

∥∥∥∂jt δh,T∥∥∥
L∞×L∞

+

2∑
j=0

∥∥∥∂j+1
t eh

∥∥∥
L∞(X)

.

Proof. From (3.3) we obtain for j = 0, 1, 2 the relation

(3.7) ∂jt eh(t) = −∂jt δh,T(t) +

j∑
`=0

(
j

`

)
Th∂

j−`
t Λh(t)∂`+1

t eh(t) .
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We choose (p0, p1, p2, p3, p4) = (∞,∞, 4, 4, 2) and, since 0 < 1
pn+2

− 1
pn
< 1

N , taking

norms gives by Lemma 2.7 the estimate∥∥∥∂jt eh(t)
∥∥∥
Lpn×Lpn+1

.
∥∥∥∂jt δh,T(t)

∥∥∥
Lpn×Lpn+1

+

j∑
`=0

∥∥Th∂
j−`
t Λh(t)∂`+1

t eh(t)
∥∥
Lpn×Lpn+1

.
∥∥∥∂jt δh,T(t)

∥∥∥
L∞×L∞

+

j∑
`=0

∥∥∂`+1
t eh(t)

∥∥
Lpn+1×Lpn+2 .

Resolving this, we arrive at

‖eh(t)‖L∞×L∞ .
2∑
j=0

∥∥∂jt δh,T(t)
∥∥
L∞×L∞ +

2∑
j=0

∥∥∂j+1
t eh(t)

∥∥
L4×L2 .

Finally, we use Sobolev’s embedding to obtain

‖ξh‖L4×L2 . ‖ξh‖X , ξh ∈ Xh,

which concludes the proof. �

In the following lemma, we provide the bounds of the time derivatives appearing
in Lemma 3.1 in the X norm using the initial errors and certain defects.

Lemma 3.2. Let the assumptions of Theorem 2.8 hold. Then, there is a constant
C > 0 independent of h such that for 1 ≤ j ≤ 3 we have∥∥∥∂jt eh∥∥∥2

L∞(X)
. eCT

j∑
`=1

(∥∥∂`teh(0)
∥∥2

X
+
∥∥∂`t δh,A∥∥2

L∞(X)

)
.

Proof. In the following, we prove for 1 ≤ j ≤ 3 the estimate

∥∥∥∂jt eh∥∥∥2

L∞(X)
. (1 + T )eCT

(∥∥∥∂jt eh(0)
∥∥∥2

X
+
∥∥∥∂jt δh,A∥∥∥2

L∞(X)
+

j−1∑
`=1

∥∥∂`teh∥∥2

L∞(X)

)
.

(3.8)

The result then follows from using this bound recursively. In the following, we often
suppress the time arguments to increase the readability.

To prove (3.8), we first obtain by taking the derivative of (3.5) with respect to
time

j∑
`=0

(
j

`

)
∂j−`t Λh∂

`+1
t eh −Ah∂

j
t eh = ∂jt δh,A,

for j = 0, . . . , 3. Taking the inner product with ∂jt eh gives(
Λh∂

j+1
t eh | ∂jt eh

)
X

=
(

Ah∂
j
t eh | ∂

j
t eh

)
X

+
(
∂jt δh,A | ∂

j
t eh

)
X

−
j−1∑
`=0

(
j

`

)(
∂j−`t Λh∂

`+1
t eh | ∂jt eh

)
X
.

Since Ah is skew-symmetric with respect to the inner product of Xh, we obtain
with the triangle inequality and Young’ inequality the bound

2
(

Λh∂
j+1
t eh | ∂jt eh

)
X
≤
∥∥∥∂jt δh,A∥∥∥2

X
+ 2j

∥∥∥∂jt eh∥∥∥2

X
+

j−1∑
`=0

(
j

`

)∥∥∥∂j−`t Λh∂
`+1
t eh

∥∥∥2

X
.
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In particular, due to the boundedness of Λh by Lemma 2.6 and the corresponding
time derivatives, we conclude

2
(

Λh∂
j+1
t eh | ∂jt eh

)
X
≤
∥∥∥∂jt δh,A∥∥∥2

X
+ Cj

∥∥∥∂jt eh∥∥∥2

X
+ Ĉj

j−1∑
`=1

∥∥∂`teh∥∥2

X
,(3.9)

with the constants

Cj = 2j + j ‖∂tΛh‖2L(Xh) , Ĉj = max
`=0,...,j−1

(
j

`

)∥∥∥∂j−`t Λh

∥∥∥2

L∞(L(Xh))
.

Note that these constants are bounded independently of j ≤ 3 by C3 and Ĉ3,
respectively.

We rely on (3.9) to bound the first term on the right-hand side of

d

dt

∥∥∥∂jt eh∥∥∥2

Λh(t)
= 2

(
Λh∂

j+1
t eh | ∂jt eh

)
X

+
(
∂tΛh∂

j
t eh | ∂

j
t eh

)
X
.

Moreover, integration in time, using the boundedness of ∂tΛh for the second term,
and the norm equivalence (2.21) yields

∥∥∥∂jt eh∥∥∥2

Λh(t)
.
∥∥∥∂jt eh(0)

∥∥∥2

Λh(0)
+ t
∥∥∥∂jt δh,A∥∥∥2

L∞(X)
+ t

j−1∑
`=1

∥∥∂`teh∥∥2

L∞(X)

+

∫ t

0

∥∥∥∂jt eh(s)
∥∥∥2

Λh(s)
ds.

Finally, the Gronwall inequality implies for all t ∈ [0, T ]

∥∥∥∂jt eh(t)
∥∥∥2

Λh(t)
. eCt

(∥∥∥∂jt eh(0)
∥∥∥2

Λh(0)
+ t
∥∥∥∂jt δh,A∥∥∥2

L∞(X)
+

j−1∑
`=1

∥∥∂`teh∥∥2

L∞(X)

)
and (3.8) follows with (2.21). �

With these preparations we can prove our first main result.

Proof of Theorem 2.8. Using the decomposition (3.1) and the stability of the lift
in (2.7), we estimate with the approximation properties derived in (2.9) and (2.12)

‖y(t)−Lhyh(t)‖L∞×L∞ ≤ ‖eJh(t)‖L∞×L∞ + CLh,p ‖eh(t)‖L∞×L∞
≤ Chk ‖y(t)‖Wk+1,∞×Wk,∞ + CLh,p ‖eh(t)‖L∞×L∞ ,

and apply Lemmas 3.1 and 3.2. The remaining defects and errors in the initial
values are bounded in Lemmas 5.2, 5.4 and 5.5. �

4. Analysis of the full discretization

In this section, we establish the proof of Theorem 2.9. The strategy is very
similar to the one in Section 3, see Figure 2, where we replace the continuous by
discrete derivatives. Hence, after introducing some useful calculus, we explain the
adapted strategy.
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∥∥enh∥∥L∞×L∞ ∥∥∂jτenh∥∥X
∥∥∂jτδnh,T∥∥L∞×L∞
Lemma 5.2

∥∥∂jτejh∥∥X
Lemma 5.6

∥∥∂jτδnh,A∥∥X
Lemma 5.4

Lemma 4.4 Lemma 4.6

Figure 2. Strategy of the proof of Theorem 2.9.

4.1. Calculus for discrete derivatives. We first need some auxiliary results for
the discrete derivatives defined in (2.28). A straightforward calculation yields the
following.

Lemma 4.1. It holds the discrete product rule

∂τ
(
ϕnψn

)
= (∂τϕ

n)ψn + ϕn−1(∂τψ
n)

and also the more general discrete Leibniz rule

∂jτ
(
ϕnψn

)
=

j∑
`=0

(
j

`

)(
∂j−`τ ϕn−`

)(
∂`τψ

n
)
, j ≥ 0.

In order to mimic the strategy of the proof of Theorem 2.8, we state the well-
known discrete version of the fundamental theorem of calculus and a direct conse-
quence of a discrete Gronwall lemma.

Lemma 4.2. Let (ϕn) be a sequence in a Hilbert space with inner product (· | ·),
and let k0 ∈ N.

(a) For any M ≥ k0, it holds

1

2

∥∥ϕM∥∥2 ≤ 1

2

∥∥ϕk0−1
∥∥2

+ τ

M∑
j=k0

(
∂τϕ

j | ϕj
)
.

(b) If there are constants α, β1, β2 ≥ 0 such that

(4.1)
(
∂τϕ

j | ϕj
)
≤ α2 + β1

∥∥ϕj−1
∥∥2

+ β2

∥∥ϕj∥∥2
, j ≥ k0,

holds, then for τ ≤ 1
4(β1+β2) and M ≥ k0 we have∥∥ϕM∥∥ ≤ (√1 + 2τβ1

∥∥ϕk0−1
∥∥+
√

2tNα
)

e2(β1+β2)tN .

Proof. Part (a) is for example shown in [20, Lemma 4.2]. Inserting (4.1) in (a)
yields ∥∥ϕN∥∥2 ≤

∥∥ϕk0−1
∥∥2

+ 2τ

N∑
j=k0

(
α2 + β1

∥∥ϕj−1
∥∥2

+ β2

∥∥ϕj∥∥2
)

≤
(
1 + 2τβ1

) ∥∥ϕk0−1
∥∥2

+ 2tNα
2 + 2(β1 + β2)τ

N∑
j=k0

∥∥ϕj∥∥2

and by a Gronwall argument, see, e.g., [26, Lemma 1], we obtain∥∥ϕN∥∥2 ≤
((

1 + 2τβ1

) ∥∥ϕk0−1
∥∥2

+ 2tNα
2
)

e4(β1+β2)tN .

Taking roots yields the assertion. �



16 B. DÖRICH, J. LEIBOLD, AND B. MAIER

We conclude with a useful bound which relates the discrete derivatives to their
continuous limit.

Lemma 4.3. Let Z be some Banach space, j ≥ 1 and x : [0, T ] → Z be j-times
differentiable with bounded derivatives, then∥∥∂jτx(tn)

∥∥
Z
≤ sup
t∈[tn−j ,tn]

∥∥∥∂jt x(t)
∥∥∥
Z
.

Proof. This simply follows from an iterative application of the fundamental theorem
of calculus. �

4.2. Proof of Theorem 2.9. As in (3.1), we are interested in bounds on the
discrete error

enh = Jhy(tn)− ynh ,
and derive for the exact solution inserted in the numerical scheme similar to (3.2)

ThΛnhJh∂τy(tn) = Jhy(tn) + ThΛnhF
n
h + δnh,T

with a defect of the form, using (3.4),

δnh,T = δh,T(tn) + ThJhΛn
(
∂τy(tn)− ∂ty(tn)

)
.(4.2)

From this we obtain the fully discrete error equation

ThΛh(tn)∂τe
n
h = enh + δnh,T.(4.3)

For the estimates in the energy we need the equivalent formulation involving the
operator Ah. To this end, we insert Jhy into (2.27) and obtain

Λh(tn)∂τy(tn) = Ahy(tn) + Fnh + δnh,A

with the defect, using (3.6),

δnh,A = δh,A(tn) + JhΛn
(
∂τy(tn)− ∂ty(tn)

)
.(4.4)

This gives us the second version of the error recursion

Λh(tn)∂τe
n
h = Ahe

n
h + δnh,A.(4.5)

Starting from (4.3), we obtain the following bound as a discrete counterpart to
Lemma 3.1.

Lemma 4.4. Let the assumptions of Theorem 2.9 hold. Then, there exists a con-
stant C > 0 independent of h, τ , and n such that

‖enh‖L∞×L∞ ≤ C
2∑
j=0

∥∥∂jτδnh,T∥∥L∞×L∞ + C

2∑
j=0

∥∥∂j+1
τ enh

∥∥
X

holds for n ≥ 3.

Remark 4.5. From this lemma it becomes clear that this technique does not provide
bounds for n = 0, 1, 2, since we can evaluate ∂jτe

n
h only for n ≥ j.

Proof. As in (3.7), we obtain from (4.3) and Lemma 4.1 for j = 0, 1, 2

∂jτe
n
h = ∂jτ

(
−δnh,T + ThΛh(tn)∂τe

n
h

)
= −∂jτδnh,T + Th

j∑
`=0

(
j

`

)
∂j−`τ Λh(tn−`)∂`+1

τ enh
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and the proof follows along the lines of Lemma 3.1. �

The next step is to establish the discrete analogue to Lemma 3.2 where the
discrete derivatives are bounded in terms of discrete derivatives of the initial error.

Lemma 4.6. Let the assumptions of Theorem 2.9 hold. Then, we have

∥∥∂jτenh∥∥2

X
≤ C(1 + T )eCT

j∑
`=1

(∥∥∂`τe`h∥∥2

X
+
∥∥∂`τδnh,A∥∥2

`∞(X)

)
,

for 1 ≤ j ≤ 3 and n ≥ j + 1.

Proof. As in the proof of Lemma 3.2, we provide the bound

∥∥∂jτenh∥∥2

X
≤ C(1 + T )eCT

(∥∥∥∂jτejh∥∥∥2

X
+
∥∥∂jτδnh,A∥∥2

`∞(X)
+

j−1∑
`=1

∥∥∂`τenh∥∥2

X

)
,(4.6)

cf. (3.8). Using this estimate recursively directly yields the assertion.

To do so, we apply the bounds from Lemma 4.2 for ϕn = Λ
1/2
h (tn)∂jτe

n
h. In

particular, we first study the term

(∂τϕ
n | ϕn)X =

(
Λnh∂

j+1
τ enh | ∂jτenh

)
X

+
((
∂τΛ

1/2
h (tn)

)
∂jτe

n−1
h | ϕn

)
X
,

where we used Lemma 4.1 and the fact that Λ
1/2
h is self-adjoint in Xh. Due to

Assumption 2.1 and Young’s inequality, this implies

(∂τϕ
n | ϕn)X ≤

(
Λnh∂

j+1
τ enh | ∂jτenh

)
X

+ C ‖ϕn‖2X + C
∥∥ϕn−1

∥∥2

X
.(4.7)

For the first term, we obtain with Lemma 4.1 applied to (4.5)

Λnh∂
j+1
τ enh = Ah∂

j
τe
n
h + ∂jτδ

n
h,A −

j−1∑
`=0

(
j

`

)(
∂j−`τ Λn−`h

)(
∂`+1
τ enh

)
.

Thus, taking the inner product in Xh with ∂jτe
n
h yields as in (3.9) the estimate

2
(
Λnh∂

j+1
τ enh | ∂jτenh

)
Xh
≤
∥∥∂jτδnh,A∥∥2

X
+ C ‖ϕn‖2X + C

j−1∑
`=1

∥∥∂`τenh∥∥2

X
.

Using this bound in (4.7) together with the discrete Gronwall lemma in Lemma 4.2,
we obtain (4.6). �

Hence, we conclude our second main result.

Proof of Theorem 2.9. Using a decomposition analogous to (3.1), we estimate as in
the proof of Theorem 2.8

‖y(tn)−Lhy
n
h‖L∞×L∞ ≤ ‖eJh(tn)‖L∞×L∞ + CLh,p ‖enh‖L∞×L∞

≤ Chk ‖y(tn)‖Wk+1,∞×Wk,∞ + CLh,p ‖enh‖L∞×L∞ ,

and apply Lemmas 4.4 and 4.6 for n ≥ 3. The remaining defects and errors in the
initial values are bounded in Lemmas 5.2, 5.4 and 5.6. �
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5. Bounds on the defects and initial conditions

In this section, we provide all bounds missing in the proofs of Sections 3 and 4.
Throughout, we mostly omit the time dependency for the sake of readability. Fur-
ther, we take the assumptions of Section 2 as given and will only be precise about
the regularity of the solution y and the right-hand side f .

5.1. Estimates of the defects. We first provide certain approximation properties
in the maximum norm which are used for the defects.

Lemma 5.1. Let ξ ∈ W k+1,∞(Ω) ×W k,N+1(Ω) and f ∈ C2([0, T ],W k+1,∞(Ω)).
Then, the discrete operators introduced in Section 2 satisfy for j ∈ {0, 1, 2} the
bounds ∥∥(ThJh − JhT

)
ξ
∥∥
L∞×L∞ . h

k ‖ξ‖Wk+1,∞×Wk,N+1 ,(5.1) ∥∥∂jtFh − Jh∂jtF∥∥L∞×L∞ . hk∥∥∂jt f∥∥Wk+1,∞ .(5.2)

Moreover, for ξ ∈
(
H4(Ω) ∩ D(L)

)
×
(
W 2,∞(Ω) ∩ D(L)

)
and the inhomogeneity.

f ∈ C
(
[0, T ], H4(Ω) ∩ D(L)

)
we have the estimates∥∥A2

hFh − JhA2F
∥∥
L∞×L∞ . ‖f‖H4 ,(5.3) ∥∥(AhJh − JhA

)
ξ
∥∥
L∞×L∞ . ‖ξ‖H4×W 1,∞ .(5.4)

Proof. We have for ξ = (ϕ,ψ) ∈W k+1,∞(Ω)×W k,N+1(Ω)(
ThJh − JhT

)
ξ =

((
ShIh − LV ∗h S

)
ψ(

LV ∗h − Ih
)
ϕ

)
,(5.5)

and the second component is bounded by (2.14). Similar to (A.2), we employ the
inverse estimate (2.15) and compute with (2.6) and (2.22)∥∥(ShIh − LV ∗h S

)
ψ
∥∥
L∞
. h−N/6 sup

‖φh‖Vh
=1

((
ShIh − LV ∗h S

)
ψ | φh

)
Vh

= h−N/6 sup
‖φh‖Vh

=1

((
Ih − LH∗h

)
ψ | φh

)
Hh

≤ hk ‖ψ‖Hk+1

where we used the approximation property in (2.11) and hence, (5.1) follows. Sim-
ilarly, (5.2) follows for j = 0, 1, 2 from

∂jtFh − Jh∂
j
tF =

(
0

(LV ∗h − Ih)∂jt f

)
(5.6)

by (2.14). To prove (5.3), we first observe

A2
hFh − JhA2F =

(
0

(LhLV ∗h − IhL)f

)
.(5.7)

Thus, the inverse estimate (2.15) yields∥∥A2
hFh − JhA2F

∥∥
L∞×L∞ . h

−N/2 ∥∥(LhLV ∗h − IhL)f
∥∥
L2

. h−N/2
∥∥(LH∗h − Ih)Lf

∥∥
L2

. h1/2 ‖Lf‖H2 . ‖f‖H4 .
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Note that we used the identity LhLV ∗h = LH∗h L to derive the second estimate and
(2.11) for the third. Due to(

AhJh − JhA
)
ξ =

(
(Ih − LV ∗h )ψ

(LhLV ∗h − IhL)ϕ

)
,

the last estimate (5.4) follows with similar arguments. �

From these approximation properties we conclude the bounds on the defects
appearing in Lemmas 3.1 and 4.4.

Lemma 5.2. Let the solution y ∈ C3([0, T ],W k+1,∞(Ω)×W k+1,N+1(Ω)) and the
right-hand side f ∈ C2([0, T ],W k+1,∞(Ω)).

(a) The defect δh,T(t) introduced in (3.4) satisfies for j ∈ {0, 1, 2} and t ∈ [0, T ]∥∥∂jt δh,T(t)
∥∥
L∞×L∞ . h

k .

(b) If in addition y ∈ C4([0, T ],W 1,∞(Ω)×W 1,N+1(Ω)) , then the defect δnh,T
introduced in (4.2) satisfies for j ∈ {0, 1, 2} and n ≥ j∥∥∂jτδnh,T∥∥L∞×L∞ . τ + hk .

Proof. (a) We decompose the defect δh,T = δ1
h,T + δ2

h,T introduced in (3.4) with

δ1
h,T =

(
ThJh − JhT

)
Λ∂ty , δ2

h,T = JhTΛ(t)F (t)− ThΛh(t)Fh(t) ,

and first consider δ1
h,T. Differentiating gives for j ∈ {0, 1, 2}

∂jt δ
1
h,T =

(
ThJh − JhT

) j∑
`=0

(
j

`

)
∂j−`t Λ ∂`+1

t y ,

so that (5.1) together with Lemma 2.3 implies

∥∥∂jt δ1
h,T

∥∥
L∞×L∞ . h

k

j∑
`=0

∥∥∂`+1
t y

∥∥
Wk+1,∞×Wk+1,N+1 .

With similar arguments, we obtain for j ∈ {0, 1, 2}

∂jt δ
2
h,T =

(
JhT− ThJh

) j∑
`=0

(
j

`

)
∂j−`t Λ ∂`tF + Th

j∑
`=0

(
j

`

)
∂j−`t Λh

(
Jh∂

`
tF − ∂`tFh

)
.

Thus, (5.1) and (5.2) together with Lemma 2.6 imply∥∥∥∂jt δ2
h,T

∥∥∥
L∞×L∞

. hk
j∑
`=0

∥∥∂`tf∥∥Wk+1,∞ .

(b) Thanks to Lemma 4.3, the estimate from part (a) extends to this case and
we only have to provide the following bound for the additional defect

(5.8)
∥∥ThJh∂

j
τ

(
Λn
(
∂τy(tn)− ∂ty(tn)

))∥∥
L∞×L∞ . τ

∥∥∂j+2
t y

∥∥
W 1,∞×W 1,∞ .

We first note that it holds

(5.9) ∂τy(tn)− ∂ty(tn) = τ

1∫
0

(−s)∂2
t y(tn−1 + τs) ds ,
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and hence, we obtain

(5.10)

∂jτ

(
Λn
(
∂τy(tn)− ∂ty(tn)

))
=τ

j∑
`=0

(
j

`

)
∂j−`τ Λn−`

1∫
0

(−s)∂`τ∂2
t y(tn−1 + τs) ds .

The statement in (5.8) then follows from Assumption 2.1, (2.16), Lemma 2.7, and
Lemma 4.3. �

In the next step, we consider the time derivatives of the error which we estimate
in the energy norm. We again provide some approximation properties and recall

k∗ = max{k, 2}.

Additionally, we define the operator

(5.11) Λ̃n :=

(
λ(tn) 0

0 Id

)
and similarly, Λ̃nh, (Λ̃nh)−1, and (Λ̃n)−1.

Lemma 5.3. Let ξ ∈ Hk+1(Ω) ×Hk∗(Ω) and f ∈ C2([0, T ], Hk∗(Ω)). Then, the
discrete operators introduced in Section 2 satisfy for j ∈ {0, 1, 2} the bounds∥∥(Λ̃Jh − JhΛ̃h

)
ξ
∥∥
X
. hk ‖ξ‖Hk+1×Hk∗ ,(5.12) ∥∥(ThJh − JhT

)
ξ
∥∥
X
. hk ‖ξ‖Hk+1×Hk∗ ,(5.13) ∥∥∂jtFh − Jh∂jtF∥∥X . hk∥∥∂jt f∥∥Hk∗ .(5.14)

If ξ ∈ Hk+1(Ω)×Hk∗(Ω) ∩ D(A) and f ∈ C([0, T ], Hk∗+2(Ω)) ∩ D(∆), then∥∥A2
hFh − JhA2F

∥∥
X
. hk ‖f‖Hk∗+2 ,(5.15) ∥∥(AhJh − JhA

)
ξ
∥∥
X
. hk ‖ξ‖Hk∗+2×Hk+1 .(5.16)

Proof. Let again ξ = (ϕ,ψ). For the first term, we have∥∥(Λ̃Jh − JhΛ̃h
)
ξ
∥∥
X

=
∥∥λhLV ∗h ϕ− LV ∗h (λϕ)

∥∥
Vh

=
∥∥Ih(λLhLV ∗h ϕ)− LV ∗h (λϕ)

∥∥
Vh

and basic manipulations together with (2.19) and (2.14) yield (5.12). For the other
estimates, we proceed analogously to the proof of Lemma 5.1 using the representa-
tion derived there. From (5.5) we derive by the stability of Sh in Vh together with
(2.9) and (2.12) the bound (5.13). By the same arguments, (5.6) implies (5.14).

Starting from (5.7), we follow the lines of Lemma 5.1 without the inverse estimate
to derive (5.15). Finally, from [18, Lem. 4.7] we obtain the bound∥∥(AhJh − JhA

)
ξ
∥∥
X
. ‖(Id− Ih)ϕ‖H1 + ‖(Id− Ih)ψ‖H1 + ‖(Id− Ih)Lϕ‖L2 ,

and (5.16) follows from the bounds in (2.9). �

With these approximations at hand, we can finally provide bounds for the defects
from Lemmas 3.2 and 4.6.

Lemma 5.4. Let the solution y ∈ C3
(
[0, T ],

(
Hk∗+2(Ω) ∩ D(L)

)
×
(
Hk+1(Ω) ∩

D(L)
))

and the right-hand side f ∈ C3([0, T ], Hk∗(Ω)).
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(a) The defect defined in (3.6) satisfies for j ∈ {0, 1, 2, 3} and t ∈ [0, T ]∥∥∥∂jt δh,A(t)
∥∥∥
X
. hk .

(b) If in addition y ∈ C5([0, T ], H1(Ω) × H2(Ω)), then the defect defined in
(4.4) satisfies for j ∈ {0, 1, 2, 3} and n ≥ j∥∥∂jτδnh,A∥∥X . τ + hk .

Proof. (a) We estimate the defect with the help of Lemma 5.3. We write with
(2.20)

JhΛ(t)F (t)− Λh(t)Fh(t) = Λh(t)
(
JhF (t)− Fh(t)

)
,

and employ Lemma 2.6 and the bounds (5.14) and (5.16) to obtain∥∥∂jt δh,A(t)
∥∥
X
≤ Chk

(∥∥∂jt y∥∥Hk∗+2×Hk+1 +
∥∥∂jt f∥∥Hk∗

)
.

(b) Thanks to Lemma 4.3, it remains to show∥∥∂jτJhΛn
(
y(tn)− ∂ty(tn)

)∥∥
X
. τ

∥∥∂j+2
t y

∥∥
H1×H2 .

Using the continuity of Jh and following the lines of (5.10), immediately yields the
claim. �

5.2. Errors of the differentiated initial values. The last part to prove Theo-
rem 2.8 and Theorem 2.9 is to bound the initial error in Lemma 3.2 and Lemma 4.4.
We recall the preconditioned initial values defined in (2.24)

yh(0) = y0
h = ThΛh(0)ThJhAΛ(0)

−1
Ay0.

and in the fully discrete case in (2.29)

y0
h = ThΛ1

hThJhŷ
0, with ŷ0 = A(Λ1)−1Ay0.(5.17)

The aim of this section is to prove the following bounds.

Lemma 5.5. Under the assumptions of Theorem 2.8 it holds for ` ∈ {1, 2, 3}∥∥∂`teh(0)
∥∥
X
≤ Chk.

Lemma 5.6. Under the assumptions of Theorem 2.9 it holds for ` ∈ {1, 2, 3}∥∥∂`τe`h∥∥X ≤ C(τ + hk
)
.

In order to conclude the desired assertion, we proceed in a series of lemmas and
introduce the notation

Rn =
(
Λn − τA

)−1
, Rnh =

(
Λnh − τAh

)−1
.(5.18)

We provide a detailed proof of Lemma 5.6 first and explain afterwards how to
conclude the assertion of Lemma 5.5. In order to keep the notation more simple,
we assume without loss of generality in the following that the spatial order satisfies

(5.19) k∗ ≤ `max − 2 ,

with `max defined in Assumption 2.1. Note that this directly implies the condition
`max ≥ 4. Hence, by (2.5) and (5.17)

(5.20) ŷ0 = A(Λ1)−1Ay0 ∈ D(Ak∗+1).

In a first step we find a suitable representation for the discrete and exact solutions.
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Lemma 5.7. The numerical solution can be expanded via

∂τy
n
h = RnhAhy

n−1
h +Gnh, Gnh = RnhΛnhF

n
h ,

∂2
τy
n
h = RnhAhRn−1

h Ahy
n−2
h +

(
∂τRnh

)
Ahy

n−2
h +RnhAhG

n−1
h + ∂τG

n
h ,

∂3
τy
n
h = RnhAhRn−1

h AhRn−2
h Ahy

n−3
h + 2∂τRnhAhRn−2

h Ahy
n−3
h

+RnhAh∂τRn−1
h Ahy

n−3
h + ∂2

τRnhAhy
n−3
h

+RnhAhRn−1
h AhG

n−2
h + 2∂τRnhAhG

n−2
h +RnhAh∂τG

n−1
h + ∂2

τG
n
h .

The same holds for ∂`τy(tn), ` = 1, 2, 3, with h formally set to zero and

Gnh → Gn = RnΛn
(
Fn + δn

)
, δn = ∂τy(tn)− ∂ty(tn).

Proof. Starting from (2.27), we multiply by Λnh and reorder the terms to obtain(
Λnh − τAh)ynh = Λnhy

n−1
h + τΛnhF

n
h .

Using the resolvent, this further gives

ynh = yn−1
h + τRnhAhy

n−1
h + τRnhΛnhF

n
h ,

which implies the representation for ∂τy
n
h . The remaining identities are deduced

from the product rule in Lemma 4.1. The results for the exact solution can be
derived from the representation

Λn∂τy(tn) = Ay(tn) + ΛnFn + Λnδn

and the same computations as above. �

In order to bound the expressions in Lemma 5.6, we subtract the representations
for the exact and the numerical solution. Let us for example consider the first term
in ∂3

τe
3
h = Jh∂

3
τy(t3)− ∂3

τy
3
h given by(

∂3
τe

3
h

)
1

= JhR3AR2AR1Ay0 −R3
hAhR2

hAhR1
hAhy

0
h

=
(
JhR3AR2AR1Λ1A−1 −R3

hAhR2
hAhR1

hΛ1
hA−1

h Jh

)
ŷ0,

where we used the initial value (2.29) with ŷ0 = A(Λ1)−1Ay0. In order to bound
the difference, we proceed in two steps. First, we move the operators A and Ah to
the right. Therefore, we employ the identities

ARnΛn = ΛnRnA, AΛn = Λ̃nA,(5.21)

with Λ̃ defined in (5.11). The corresponding equalities are also valid for the discrete

objects and the inverse A(Λn)−1 = (Λ̃n)−1A. Hence, we can write

JhR3AR2AR1Λ1A−1ŷ0 = JhR3Λ2R2(Λ̃2)−1Λ̃1Λ1R1(Λ̃1)−1Aŷ0

and similarly for the discrete counterpart. A reformulation of Lemma 5.7 according
to the above strategy is given in Lemma A.1. The differences of A and Ah as well as
F and Fh are bounded by (5.15) and (5.16), respectively. The remaining differences
in front of them are treated by the following abstract estimate. As a shorthand
notation, we set

m∏
j=1

Bj := Bm . . . B1, m ≥ 1, and
m∏
j=1

Bj := Id, m < 1.
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Lemma 5.8. Let Y ⊆ X be a Hilbert space, m ∈ N, and consider operators
Bjh ∈ L(Xh) and Bj ∈ L(X), j = 1, . . . ,m, with the following properties:

(5.22)

∥∥∥(JhBj −BjhJh)x∥∥∥
Xh

.
(
τ + hk

)
‖x‖Y ,∥∥Bjx∥∥Y . ‖x‖Y .

Then, the product is bounded by∥∥∥∥∥
(
Jh

(
m∏
j=1

Bj
)
−
(

m∏
j=1

Bjh

)
Jh

)
x

∥∥∥∥∥
Xh

.
(
τ + hk

)
‖x‖Y .

Proof. Using the telescopic sum(
Jh

(
m∏
j=1

Bj
)
−
(

m∏
j=1

Bjh

)
Jh

)
x =

m∑
`=1

(
m∏

j=`+1

Bjh

)(
JhB

` −B`hJh
)(`−1∏

j=1

Bj
)
x,

we immediately conclude the assertion. �

With these preparations, we finally conclude the bounds for the initial values.

Proof of Lemma 5.6. We estimate the differences of the continuous and discretized
operators in Lemma A.1. We split the proof in two parts. First, we compare the
products of bounded operators involving

Bj ∈ {Λn, ∂τΛn, ∂2
τΛn, (Λn)−1, Λ̃n, ∂τ Λ̃n, (Λ̃n)−1,Rn,T}(5.23)

and the discrete counterparts using Lemma 5.8 with Y = D(Ak
∗
). In the second

step, we deal with the powers of A and Ah applied to the initial value, the right-hand
side and the defects. Because of ∂Ω ∈ Ck+1,1, we several times use the embedding
D(Ak) ↪→ Hk+1(Ω)×Hk(Ω), see, e.g., [17, Rem. 2.5.1.2].

(i) We first consider the operators involving Λ. Under Assumption 2.1 for κ =
k+ 1 and with Lemmas 2.3 and 2.6 and the bound (5.12), the properties (5.22) are
satisfied. For the resolvent Rn , we directly employ Lemma A.2 to compute with
(2.20) and (5.16)∥∥(JhR −RhJh)y∥∥Xh

= τ
∥∥Rh(JhA−AhJh

)
Ry
∥∥
Xh

≤ Chkτ
∥∥Ak∗+1Ry

∥∥
Xh

≤ Chk
∥∥Ak∗y

∥∥
X
.

Finally using (5.13), T also satisfies (5.22) and Lemma 5.8 is applicable.
(ii) We employ Lemma A.1 and denote any product of operators from part (i)

by Π and the discrete counterpart Πh. Then, we have to compare expressions of
the form

JhΠ(x+ δ)−Πhxh = (JhΠ−ΠhJh)x+ Πh(Jhx− xh) + JhΠδ

with

(5.24) x ∈ {ŷ0,Aŷ0, ∂ντF
ν+1,AνF 1}, δ ∈ {∂ντ δν+1,Aνδ1}

and
xh ∈ {Jhŷ0,AhJhŷ

0, ∂ντF
ν+1
h ,Aν

hF
1
h}

where ν = 0, 1, 2. Then, the first part is covered by part (i), provided that

(5.25)
∥∥Ak∗x

∥∥
X
≤ C
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holds for all x in (5.24). This follows from the assumptions of the theorem and
(5.20). The second part is bounded due to (5.14), (5.15), and (5.16). Lastly, the
estimate

‖JhΠδ‖Xh
.
∥∥A2δ

∥∥
X

together with (5.9) yields

‖JhΠδ‖Xh
. τ

(
max
ν=0,1,2

∥∥Aν+2y
∥∥
L∞(X)

+ max
ν=0,1,2

∥∥A2∂ντ y
∥∥
L∞(X)

)
,

and hence the desired bound. �

Remark 5.9. We note that the bound in (5.25) is most restrictive for x = Aŷ0,
since it implies ŷ0 ∈ D(Ak∗+1). However, due to (2.5) one can at best achieve
ŷ0 ∈ D(A`max−1) which yields the restriction in (5.19).

We now prove Lemma 5.5 and observe that formally setting τ = 0 in (2.27),
we obtain the spatially discretized equation (2.23). This observation drives the
following proof.

Proof of Lemma 5.5. Several steps in the proof simplify, and we mainly explain
why we can weaken the assumption on `max. First note, that compared to the
proof above we replace due to τ = 0

Rn → (Λ0)−1 Rnh → (Λ0
h)−1,

and the most delicate term is given by(
∂3
t eh(0)

)
1

= Jh(Λ0)−1A(Λ0)−1A(Λ0)−1Ay0 − (Λ0
h)−1Ah(Λ0

h)−1Ah(Λ0
h)−1Ahy

0
h

=
(
Jh(Λ0)−1(Λ̃0)−1A− (Λ0

h)−1(Λ̃0
h)−1AhJh

)
A(Λ0)−1Ay0,

which yields the restriction `max ≥ 2. Further, the terms in (5.23) reduce to

Bj ∈ {Λ0, ∂tΛ
0, ∂2

t Λ0, (Λ0)−1, Λ̃0, ∂tΛ̃0, (Λ̃0)−1,T}

and we employ Lemma 5.8 with Y = Hk∗+1(Ω)×Hk∗(Ω). Hence, we eliminated all

powers of A falling on Λ̃ and no further restrictions on `max enter and we proceed
along the lines of Lemma 5.6. �

5.3. Bounds on the first approximations. This section is devoted to the proof
of Theorem 2.12, i.e., we provide bounds for the first three approximations of the
fully discrete scheme (2.27), which are not covered by Theorem 2.9. For the anal-
ysis, we rely on the following stability estimate for the resolvent as a self-mapping
operator on L∞(Ωh)× L∞(Ωh).

Lemma 5.10. Let Assumption 2.10 hold. Then there is a constant C > 0, which
is independent of h, τ and n such that for all ξh ∈ Xh the discrete resolvent Rnh
defined in (5.18) satisfies

‖Rnhξh‖L∞×L∞ ≤ C
| log(h)|

τ
‖ξh‖L∞×L∞ .

Proof. Estimating the single components and employing Assumption 2.10 immedi-
ately yields the assertion. �

With this and the already derived bounds in the previous section, we finally
present the proof of Theorem 2.12.
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Proof of Theorem 2.12. As before, we decompose the error for ` ∈ {0, 1, 2} using
(3.1) and estimate by (2.7), (2.9) and (2.12)∥∥y(t`)−Lhy

`
h

∥∥
L∞×L∞ ≤

∥∥(Id−LhJh
)
y(t`)

∥∥
L∞×L∞ +

∥∥e`h∥∥L∞×L∞
≤ Chk +

∥∥e`h∥∥L∞×L∞ .

Hence, we only have to prove the bound∥∥e`h∥∥L∞×L∞ ≤ C(τ + hk
)
| log(h)|` ,

which is done separately for ` = 0, 1, 2.
(i) For ` = 0, we insert the initial value (2.24) of the semi discretization∥∥e0

h

∥∥
L∞×L∞ ≤

∥∥Jhy(t0)− yh(t0)
∥∥
L∞×L∞ +

∥∥yh(t0)− y0
h

∥∥
L∞×L∞

and estimate both parts. The first part satisfies due to Theorem 2.8∥∥Jhy(t0)− yh(t0)
∥∥
L∞×L∞ ≤ Ch

k.

For the second part, we use the definitions of the initial values in (2.24) and (2.29)
together with (5.21) to obtain

yh(t0)− y0
h = Th

(
Λ0
hThJh(Λ̃0)−1 − Λ1

hThJh(Λ̃1)−1
)

A2y0.

Due to the stability of Th, Λh, Jh, and Λ in W 1,∞ ×W 1,∞, cf. Lemmas 2.3, 2.6
and 2.7 as well as (2.16), and with the Lipschitz continuity of Λ and Λh provided
in Assumption 2.1, we infer∥∥yh(t0)− y0

h

∥∥
L∞×L∞ ≤ Cτ

∥∥A2y0
∥∥
W 1,∞,W 1,∞ .

(ii) For ` = 1, we expand

e1
h = e0

h + τ∂τe
1
h = e0

h + τJh∂τy(t1)− τ∂τy1
h .

Since the first term is bounded by part (i) and the estimate for the second term
follows from (2.16) and the regularity of y ∈ C1

(
[0, T ],W 1,∞(Ω) ×W 1,∞(Ω)

)
, it

is sufficient to provide a bound on ∂τy
1
h. To this end, Lemma 5.7, the definition

(5.17) of the initial value y0
h, and the representation (2.25) of Fh yield

∂τy
1
h = R1

hΛ1
hThJh

(
ŷ0 + AF 1

)
.

Thus, the identity

R1
hΛ1

hTh = Th + τR1
h(5.26)

together with Lemmas 2.7 and 5.10 yields∥∥∂τy1
h

∥∥
L∞×L∞ ≤ C| log(h)|

(∥∥A2y0
∥∥
W 1,∞×W 1,∞ + ‖f‖W 1,∞

)
.

(iii) For ` = 2, we similarly write

e2
h = 2e1

h − e0
h + τ2∂2

τe
2
h = 2e1

h − e0
h + τ2Jh∂

2
τy(t2)− τ

(
τ∂2

τy
2
h

)
and only provide the missing bound on τ∂2

τy
2
h. Using the identity (5.21) we obtain

from Lemma 5.7 together with (5.17) and (2.25)

(5.27)
∂2
τy

2
h = R2

hΛ1
hR1

hJh
(
ŷ0 + AF 1

)
+ ∂τR2

hΛ1
hThJh

(
ŷ0 + AF 1

)
+R2

h∂τΛ2
hThJhAF 1 +R2

hΛ2
hThJhA∂τF

2 .
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Employing the property (5.26) several times, we obtain∥∥τ∂2
τy

2
h

∥∥
L∞×L∞ ≤ C| log(h)|2

(
‖y‖H6×W 3,∞ + ‖f‖H4

)
,

see Lemma A.3 for details. �

5.4. Adaptions for Corollary 2.13. Let us briefly discuss how the above results
can be improved if it is sufficient to have maximum norm convergence only for
u. The proofs of Sections 3 and 4 can be repeated simply using one derivative
less. Also the defects require less regularity in time, but can be bounded similar to
Lemmas 5.2 and 5.4.

However, the theory changes slightly when it comes to the initial values. In the
semi discrete case, we differentiate the error only twice, and hence need to bound
similar to Lemma 5.5(

∂2
t eh(0)

)
1

= Jh(Λ0)−1A(Λ0)−1Ay0 − (Λ0
h)−1Ah(Λ0

h)−1Ahy
0
h

=
(
Jh(Λ0)−1(Λ̃0)−1A− (Λ0

h)−1(Λ̃0
h)−1AhJh

)
Ay0 ,

which only yields the restriction `max ≥ 1, and we proceed as in Lemma 5.5.
For the two discrete derivatives of the error, we have to prove Lemma 5.6 only

for ` = 1, 2. The most critical term is then by (2.31)(
∂2
τe

2
h

)
1

= JhR2AR1Ay0 −R2
hAhR1

hAhy
0
h

=
(
JhR2AR1 −R2

hAhR1
hJh

)
Ay0

=
(
JhR2Λ1R1(Λ̃1)−1A−R2

hΛ1
hR1

h(Λ̃1
h)−1AhJh

)
Ay0.

We note that in fact Lemma 5.8 is also applicable under the condition k∗ ≤ `max−1.
However, this is sufficient as there does not enter another restriction on k∗ from the
choice of the initial value y0

h, cf. Remark 5.9. The rest of the proof then is along
the lines of Lemma 5.6.
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tinuous Galerkin method for nonlinear sound waves, J. Comput. Phys. 415 (2020), 109484,

27. MR4093710
[2] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander, Vector-valued Laplace transforms

and Cauchy problems, Second, Monographs in Mathematics, vol. 96, Birkhäuser/Springer
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Appendix A.

In this appendix we provide the proof of Lemma 2.7 and the postponed calcula-
tions from Section 5. The proof is adapted from the conforming case presented in
[10, Lem. 4.1].

Proof of Lemma 2.7. Let q ≥ 1 and ξh = (ϕh, ψh)T ∈ Xh. Note that it is sufficient
to prove

‖Shψh‖Lp ≤ ‖ψh‖Lr ,(A.1)

for p ≥ 2 and r ≥ 1 with 0 ≤ 1
r −

1
p <

1
N .

For p = 2 and r ≥ 1 with 1
2 ≤

1
r <

1
N + 1

2 , we have

‖Shψh‖2Vh
= (Shψh | Shψh)Vh

= (ψh | Shψh)Hh
. ‖ψh‖Lr ‖Shψh‖L r

r−1
.
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Due to r
r−1 <∞ for N = 2 and r

r−1 <
2N
N−2 for N = 3, Sobolev’s embedding, and

Poincaré’s inequality, imply the bound

‖Shψh‖L2 . ‖ψh‖Lr .

For p =∞, we define the modified solution operator

S̃h = LV ∗h SLh,
which satisfies by Assumption 2.5, Theorem 2.4 for r > N , and (2.7)∥∥S̃hψh∥∥L∞(Ωh)

.
∥∥SLhψh∥∥W 1,∞(Ω)

.
∥∥SLhψh∥∥W 2,r(Ω)

.
∥∥ψh∥∥Lr(Ωh)

.

It remains to bound the difference by the inverse estimate (2.15)

(A.2)

∥∥S̃hψh − Shψh∥∥L∞(Ωh)
. h−N/6

∥∥S̃hψh − Shψh∥∥Vh

= h−N/6 sup
‖ϕh‖Vh

=1

(
S̃hψh − Shψh | ϕh

)
Vh

= h−N/6 sup
‖ϕh‖Vh

=1

(
(ψh | ϕh)Hh

− (Lhψh | Lhϕh)H
)
.

We use a variant of [15, Lem. 8.24] to obtain∣∣(ψh | ϕh)Hh
− (Lhψh | Lhϕh)H

∣∣ . h ‖Lhψh‖Lr ‖Lhψh‖Lr′ . h ‖ψh‖Lr ‖ψh‖Vh
,

and (A.1) follows for p = ∞. Thus, an interpolation argument yields (A.1) for all
2 ≤ p ≤ ∞, see, e.g., [28, Thm. 2.6]. �

Next, we give an extension of Lemma 5.7. We do not provide a proof here, since
the expressions are derived by an iterative application of the identities (5.21).

Lemma A.1. Let ŷ0 be given by (5.20). Then, it holds

∂τy
1
h = R1

hΛ1
h

(
ThJhŷ

0 + F 1
h

)
,

∂2
τy

2
h = R2

hΛ1
hR1

h

(
Jhŷ

0 + AhF
1
h

)
−R2

h∂τΛ2
hR1

hΛ1
h

(
ThJhŷ

0 + F 1
h

)
+R2

hΛ2
h∂τF

2
h +R2

h∂τΛ2
hF

1
h ,

∂3
τy

3
h = R3

hΛ2
hR2

h(Λ̃2
h)−1Λ̃1

hΛ1
hR1

h(Λ̃1
h)−1Ah

(
Jhŷ

0 + AhF
1
h

)
− 2R3

h∂τΛ3
hR2

hΛ1
hR1

h

(
Jhŷ

0 + AhF
1
h

)
−R3

hΛ2
hR2

h(Λ̃2
h)−1∂τ Λ̃2

hΛ1
hR1

hJhŷ
0

+
(
2R3

h∂τΛ3
hR2

h∂τΛ2
hR1

h −R3
h∂

2
τΛ3

hR1
h

)
Λ1
hThJhŷ

0

+R3
hΛ2

hR2
hAh∂τF

2
h +R3

hΛ2
hR2

h(Λ̃2
h)−1∂τ Λ̃2

hAhF
1
h

−R3
hΛ2

hR2
h(Λ̃2

h)−1∂τ Λ̃2
hΛ1

hR1
hAhF

1
h

+R3
hΛ3

h∂
2
τF

3
h +R3

h∂τΛ3
h∂τF

2
h −R3

h∂τΛ3
hR2

hΛ2
h∂τF

2
h

+R3
h∂τΛ3

h∂τF
2
h +R3

h∂
2
τΛ3

hF
1
h −R3

h∂τΛ3
hR2

h∂τΛ2
hF

1
h

−R3
h∂τΛ3

hR2
hΛ2

h∂τF
2
h −R3

h∂τΛ3
hR2

h∂τΛ2
hF

1
h +R3

h∂τΛ3
hR2

h∂τΛ2
hR1

hΛ1
hF

1
h

−R3
h∂

2
τΛ3

hR1
hΛ1

hF
1
h +R3

h∂τΛ3
hR2

h∂τΛ2
hR1

hΛ1
hF

1
h .

The same expansion holds for ∂`τy(t`), ` = 1, 2, 3, with h formally set to zero and

Fnh → Fn + δn, δn = ∂τy(tn)− ∂ty(tn) .

Since, in the case Λ 6= Id, the operator A does in general not commute with the
resolvent, we provide the bounds which are still available given Assumption 2.1.
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Lemma A.2. Let R be the resolvent defined in (5.18) and `max given in Assump-
tion 2.1. Then, for 0 ≤ ` ≤ `max there are constants C` such that∥∥A`Ry

∥∥
X
≤ C`

∥∥A`y
∥∥
X

τ
∥∥A`+1Ry

∥∥
X
≤ C`

∥∥A`y
∥∥
X
.

for all y ∈ D(A`max).

Proof. By the skew-adjointness of A and (2.4), we derive

‖Ry‖X ≤ Cλ ‖y‖X ,

which is the first equation for ` = 0. For 0 ≤ ` ≤ `max − 1, we compute∥∥A`+1Ry
∥∥
X

=
∥∥∥A`ΛR(Λ̃)−1Ay

∥∥∥
X

≤ ‖Λ‖D(A`)←D(A`) ‖R‖D(A`)←D(A`)

∥∥∥(Λ̃)−1
∥∥∥
D(A`)←D(A`)

∥∥A`+1y
∥∥
X

and the claim follows by induction. The second estimate is due to the resolvent
identity

τA`+1Ry = A`ΛRy −A`y

and an application of the above bound. �

We finally prove the bound missing for the convergence of e2
h.

Lemma A.3. The discrete derivative in (5.27) satisfies the bound∥∥τ∂2
τy

2
h

∥∥
L∞×L∞ ≤ C| log(h)|2

(
‖y‖H6×W 3,∞ + ‖f‖H4

)
with a constant C independent of τ and h.

Proof. We decompose into four parts by

∂2
τy

2
h = R2

hΛ1
hR1

hJh
(
ŷ0 + AF 1

)
+ ∂τR2

hΛ1
hThJh

(
ŷ0 + AF 1

)
+R2

h∂τΛ2
hThJhAF 1 +R2

hΛ2
hThJhA∂τF

2

=:
4∑
i=1

(
∂2
τy

2
h

)
i

For the first term, we employ (5.26)

τ
(
∂2
τy

2
h

)
1

= τR2
hΛ1

hR1
hJh

(
ŷ0 + AF 1

)
= τR2

hAhR1
hΛ1

hThJh
(
ŷ0 + AF 1

)
= τR2

h

(
Id + τΛ1

hR1
hAh(Λ1

h)−1
)
Jh
(
ŷ0 + AF 1

)
=
(
τR2

h

)
Jh
(
ŷ0 + AF 1

)
+
(
τR2

h

)
Λ1
h

(
τR1

h

)
(Λ̃1

h)−1AhJh
(
ŷ0 + AF 1

)
=
(
τR2

h

)
Jh
(
ŷ0 + AF 1

)
+
(
τR2

h

)
Λ1
h

(
τR1

h

)
(Λ̃1

h)−1JhA
(
ŷ0 + AF 1

)
+
(
τR2

h

)
Λ1
h

(
τR1

h

)
(Λ̃1

h)−1
(
AhJh − JhA

)(
ŷ0 + AF 1

)
,
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and use Lemmas 2.6 and 5.10 and the bounds (5.3) and (5.4). We further have by
(5.26) that

τ
(
∂2
τy

2
h

)
2

= τ∂τR2
hΛ1

hThJh
(
ŷ0 + AF 1

)
= −

(
τR2

h

)(
∂τΛ2

h

)
R1
hΛ1

hThJh
(
ŷ0 + AF 1

)
= −

(
τR2

h

)(
∂τΛ2

h

)(
Th + τR1

h)Jh
(
ŷ0 + AF 1

)
,

and the bounds follow together with Lemma 2.7 as above. For the last two terms,
we observe

τ
(
∂2
τy

2
h

)
3

=
(
τR2

h

)
∂τΛ2

hThJhAF 1

τ
(
∂2
τy

2
h

)
4

=
(
τR2

h

)
Λ2
hThJhA∂τF

2

such that Lemmas 2.6 and 5.10 yield the assertion. �
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