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A B S T R A C T

Hybrid laminates, such as fiber metal laminates, are increasingly used in engineering applications due to their
outstanding damage tolerance and weight-specific performance. Prone to vibrations, fiber metal laminates
have recently been complemented by viscoelastic elastomer layers in order to achieve a desired level of
damping following the principles of constrained layer damping. This paper presents an analytical modeling
approach based on a unified plate formulation for the rapid and precise analysis of such hybrid laminates
regarding their deformation and dynamic behavior. In order to account for the transverse shear deformation
in the damping layers, the Reissner’s Mixed Variational Theorem is employed. The viscoelastic, thus frequency-
dependent, material behavior is taken into account and the resulting damping quantities analyzed. Damped
and undamped natural frequencies are computed using an iterative algorithm and the results are compared
to the plate’s response to forced vibration. The approach is numerically validated using refined finite element
models. Additionally, laminate parameters are varied in order to investigate their influence on the damping
capabilities of these hybrid laminates.
1. Introduction

Because of their outstanding mechanical properties in relation to
their low mass density, fiber-reinforced polymers (FRPs), such as CFRPs
and glass fiber-reinforced polymers (GFRPs) are widely used in numer-
ous fields such as aerospace and automotive. However, some drawbacks
of FRPs include their limited damage tolerance and undesired dynamic
behavior when subjected to vibrations. The recent development of fiber
metal laminates (FMLs) has been proven effective in increasing the
damage tolerance of FRPs by adding metal layers to the lamination
scheme. The combination of GFRP and aluminum for example has
been widely used in the aviation industry [1]. Nevertheless, FMLs
are still prone to vibrations and can thus cause undesired noise or
fail prematurely. One possibility of damping lightweight structures is
the application of viscoelastic damping materials such as elastomers.
Damping can for example be achieved by covering parts of the struc-
ture with an adherent viscoelastic layer, which undergoes large shear
deformation when the structure is subjected to bending vibrations. This
mechanism was first investigated by Oberst and Frankenfeld [2] and
is commonly referred to as free layer damping (FLD). Closely related
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is the dissipation of energy in a viscoelastic layer constrained between
two stiffer layers, first described by Kerwin [3] and consequently called
constrained layer damping (CLD). Applications of CLD aimed at the
control of vibrations are numerous, and the accompanying research
is summarized by Rao [4] and Zhou et al. [5]. One specific class of
material systems aimed at the improvement of the dynamic behavior
of conventional FMLs are HyCEML. Not only does the elastomer layer
provide damping according to the CLD mechanism, but also allows
the presence of CFRP and aluminum in one laminate by prevent-
ing galvanic corrosion and compensating the mismatch in thermal
expansion coefficients [6]. The damping behavior of such laminates
has been investigated in previous studies by Liebig et al. [7] and
Sessner et al. [8–10]. Similar studies have been conducted on laminates
containing steel layers and GFRP by Sarlin et al. [11].

Advances in the accurate and efficient modeling of laminated struc-
tures have led to a vast amount of techniques for predicting the
structural response of composite and sandwich laminates [12]. Gener-
ally, modeling approaches can be classified into ESL, LW and zig-zag
formulations [13]. While an ESL approach assumes one homogenized
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displacement field for all layers, in a LW approach, each layer is
described by its own set of field variables. Zig-zag formulations are
a combination of ESL and LW approaches, but are not part of the
present study due to their prescribed relation between the transverse
shear strains of adjacent layers. Since the CLD mechanism requires
layers that differ significantly in stiffness, and in this case are relatively
thick, their mechanical behavior can rather be compared with sandwich
structures than monolithic composite laminates. Thus, a LW description
of such CLD laminates appears favorable, as pointed out for sandwich
plates by Carrera and Brischetto [14], Wetzel et al. [15] and Kärger
et al. [16]. The focus of this work is consequently restricted to mainly
LW approaches. Variable kinematics approaches have seen comprehen-
sive research interest in recent years, a commonly used one being the
Carrera Unified Formulation (CUF) [17–19]. An extension of the CUF
is proposed by Demasi [20–24] referred to as the Generalized Unified
Formulation (GUF). Both variable kinematics approaches, CUF and
GUF, allow for LW and ESL descriptions as well as theories of arbitrary
order. As the optimal theory is highly dependent on the problem at
hand, variable kinematics approaches allow for the simple adjustment
of a theory in order to achieve the required accuracy with a minimum
of variables. This procedure is known as the asymptotic/axiomatic
method, investigated among others in [25–28]. The applicability of
GUF to the aforementioned HyCEML material has been shown by
Jackstadt et al. [29]. A further refinement of the GUF is proposed by
D’Ottavio [30] where multiple plies can be treated as an independent
sublaminate in a layerwise description, allowing for different models to
be used within the same laminate.

A great number of publications deal with the dynamic analysis
of composite laminates and sandwich plates. The CUF for example is
applied for vibration analysis by Carrera in [31,32]. Further works
are omitted for brevity, but comprehensive reviews are given by Qatu
et al. [33] and Sayyad et al. [34].

The prediction of the effectiveness of such CLD measures due to
viscoelastic layers has been the subject of numerous studies. Early
propositions for predictive models include the work of Ross et al. [35]
resulting in the commonly used Ross–Kerwin–Ungar (RKU) model.
Furthermore, research dealing with the analysis of such viscoelastic
laminates using appropriate beam, plate and shell theories. Since this
paper focuses on the dynamic response of plates only, works on beams
are omitted, although the publications by Rao and He [36], Ganapathi
et al. [37], Xi and Shepard [38] and Gupta et al. [39] are worth
mentioning. For the prediction of damping in plates with constrained
viscoelastic layers, many authors have employed the FEM. Early works
include Johnson and Kienholz [40] and Rikards et al. [41]. More
recent works utilizing layerwise finite elements for the prediction of the
dynamic response of viscoelastic laminates include, but are not limited
to, Moreira et al. [42], Plagianakos and Saravanos [43], Akoussan
et al. [44] and Ren et al. [45]. The CUF has also been used in said
context by Filippi et al. [46] and Ribeiro et al. [47]. In addition to
the FEM, analytical procedures such as the Navier method [12] have
also been employed to analyze the damping capabilities of viscoelas-
tic laminates. Saravanos and Pereira [48] determine the frequency
response and modal damping parameters of simply supported com-
posite plates with interlaminar damping layers using a discrete-layer
laminate theory. An optimization procedure to increase the damping
loss factor of plates under general edge conditions is presented by Li
and Narita [49]. Alaimo et al. [50] determine the free vibration and
forced vibration response of plates and use a fractional derivatives
approach for representing the viscoelastic layers in frequency domain.
The work of Valvano et al. [51] focuses on the sound transmission of
shells including viscoelastic damping layers. Different types of loading
are considered. Wang et al. [52] use an analytical model to predict the
natural frequencies and modal loss factors of co-cured composite plates
incorporating damping membranes using a first-order zig-zag theory. Li
et al. [53] study the nonlinear vibration behavior of cylindrical shells
2

with partial CLD treatment with the help of an analytical model and
Table 1
Linear elastic material parameters of CFRP under the assumption of transverse isotropy
𝐸1 in GPa 𝐸2 in GPa 𝜈12 𝐺12 in GPa 𝐺23 in GPa

108.70 7.70 0.34 3.76 2.75

Table 2
Linear elastic material parameters
of aluminum sheet metal.
𝐸 in GPa 𝜈

73.10 0.30

find the achievable damping ratios to be dependent on the excitation
amplitudes. Li et al. [54] also study the adaptive vibrational behavior
of plates with magnetorheological elastomer damping layers. Jackstadt
and Kärger [55] apply the GUF based on mixed variational theorem
to determine the forced vibration response of simple isotropic CLD
laminates. The sublaminate based GUF [30] is employed by D’Ottavio
et al. [56] to identify frequency response, modal loss factors and
damped natural frequencies of a variety of laminates incorporating
viscoelastic damping layers.

This paper presents an analytical approach for the dynamic analysis
of hybrid CFRP elastomer metal laminates. To the authors’ knowledge,
the Reissner’s Mixed Variational Theorem (RMVT) in conjunction with
the complex modulus approach and the GUF framework are used for
the first time for the analysis of viscoelastic CLD laminates. In order to
reduce computational effort, the required degrees of freedom (DOF) are
reduced by employing a combined hybrid LW and ESL approach similar
to the sublaminate GUF published in [30]. Specifically, the aforemen-
tioned HyCEML is investigated regarding its damping capabilities. The
analytical approach is verified by comparison with detailed 3D finite
element (FE) simulations. Finally, the influence of variations in layer
thickness and elastic properties of the damping material is examined
making a contribution to the deeper understanding of this intrinsic
damping mechanism.

2. Materials

The HyCEML material class investigated in this study consists of
three individual constituents which are presented in the following. The
unidirectional CFRP plies represent the epoxy based prepreg material
HexPly M77/38/UD150/CHS-12K-70 by Hexcel. The material is as-
sumed to behave transversely isotropic with the linear elastic properties
listed in Table 1. Although the CFRP does show viscoelastic effects,
which have been studied in [7], those are neglected in this study. This
is justified by the fact that in the considered frequency range, the loss
factor tan (𝛿) of the CFRP is lower by magnitudes than the loss factor of
he elastomer material as shown by Sessner [57] and is therefore neg-
igible. The CFRP’s mass density is specified with 𝜌CFRP = 1480 kg∕m3.

The aluminum modeled in this study is based on EN AW-2024 T3
LCLAD AMS-QQA-250/5 alloy sheets. The linear elastic properties are

isted in Table 2 and its mass density taken as 𝜌Al = 2780 kg∕m3. The
iscoelastic damping layers in the HyCEML considered here consist of
n ethylene propylene diene monomer (EPDM) rubber SAA9579-52 by
ummiwerk KRAIBURG GmbH & Co. KG. The mass density is given
y 𝜌EPDM = 1180 kg∕m3. The viscoelastic, thus frequency-dependent,
roperties of this material in terms of its complex shear modulus
∗ = ℜ(𝐺∗) + iℑ(𝐺∗) = 𝐺′ + i𝐺′′ = 𝐺∗(𝜔) (1)

are shown in Fig. 1. The real part of the complex shear modulus
ℜ(𝐺∗) = 𝐺′ is referred to as the storage modulus and represents the
elastic part of the mechanical behavior, whereas the imaginary part
ℑ(𝐺∗) = 𝐺′′ is the loss modulus and describes the dissipative or viscous
contribution. A measure for the material damping is given by the loss
factor tan 𝛿 = 𝐺′′∕𝐺′.
( )
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Fig. 1. Complex shear modulus 𝐺∗ and loss factor tan (𝛿) over frequency of the
elastomer material. The data has been determined in a torsion rheometer test.

Fig. 2. Laminate coordinate system showing two sublaminates 𝑠 (blue) and 𝑠+1 (green).
Layer 𝑠 consists of multiple material layers of which an arbitrary one, 𝑘, is shown as an
example. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3. Modeling approach

3.1. Description of the laminated plate in thickness direction

The description of the laminated plate in thickness direction is illus-
trated in Fig. 14. The global thickness coordinate is 𝑧. The plate consists
of an arbitrary number of material plies with individual thicknesses ℎ𝑘,
which are assumed to have ideal adhesion. For each material layer 𝑘
the dimensionless coordinate

𝜁𝑘 = 2
𝑧𝑘top − 𝑧𝑘bot

𝑧 −
𝑧𝑘top + 𝑧𝑘bot
𝑧𝑘top − 𝑧𝑘bot

(2)

is defined so that 𝜁𝑘(𝑧𝑘top) = 1 and 𝜁𝑘(𝑧𝑘bot ) = −1, where 𝑧𝑘top and 𝑧𝑘bot are
the upper and lower interfaces of ply 𝑘 in the global coordinate 𝑧. Each
material ply 𝑘 is thus described by its coordinates

[

𝑧𝑘top, 𝑧
𝑘
bot

]

and its own
constitutive matrix (Eq. (5) in Section 3.3). Furthermore, the laminated
plate is partitioned into sublaminates. Each sublaminate 𝑠 consists of
one or more material layers 𝑘. Again, a dimensionless coordinate is
introduced as

𝜁 𝑠 = 2
𝑧𝑠top − 𝑧𝑠bot

𝑧 −
𝑧𝑠top + 𝑧𝑠bot
𝑧𝑠top − 𝑧𝑠bot

(3)

ith 𝑧𝑠top and 𝑧𝑠bot being the upper and lower interface of the sublami-
ate 𝑠 in global coordinates.

.2. Variational principle

Due to the fact that the CLD in laminates is driven by transverse
hear stresses within the viscoelastic layers, the Reissner’s Mixed Vari-
tional Theorem [58] is used as the basis of this work since it allows
3

o

or the explicit modeling of out-of-plane stresses. Furthermore, the con-
idered viscoelastic damping layers in the HyCEML class of materials
re comparably thick. Both aspects have previously been addressed by
arrera [32] and the use of a mixed variational principle has been
ncouraged. The RMVT in the dynamic case is herein written as

∫𝛺

(

𝛿𝜺⊤pG𝝈pH + 𝛿𝜺⊤nG𝝈nM + 𝛿𝝈⊤
nM

(

𝜺nG − 𝜺nH
)

)

d𝑉

+ ∫𝛺
𝜌𝛿𝒖⊤�̈�d𝑉 = 𝛿𝐿external. (4)

In Eq. (4), in-plane quantities are denoted by the index p whereas
out-of-plane quantities are indexed with n. By using a modified Voigt
notation, the two vectors containing the infinitesimal strains are 𝜺p =
(

𝜀𝑥𝑥 𝜀𝑦𝑦 𝛾𝑥𝑦
)⊤ and 𝜺n =

(

𝛾𝑥𝑧 𝛾𝑦𝑧 𝜀𝑧𝑧
)⊤. Consequently, the stress

vectors 𝝈p =
(

𝜎𝑥𝑥 𝜎𝑦𝑦 𝜎𝑥𝑦
)⊤ and 𝝈n =

(

𝜎𝑥𝑧 𝜎𝑦𝑧 𝜎𝑧𝑧
)⊤ are used.

Stress quantities for which an explicit modeling approach is chosen
are marked by the index M. Strain components with the index G
are directly derived from the displacement field 𝒖 using standard
geometric relations. The index H indicates that the quantity is cal-
culated from the mixed form of Hooke’s law introduced below in
Section 3.3. On the right-hand side of Eq. (4) the virtual variation
of work 𝛿𝐿external performed by external loads and the inertia term
containing the acceleration �̈� are added.

3.3. Constitutive relations

Resulting from the mixed nature of the variational statement in
Eq. (4), a mixed form of Hooke’s law
{

𝝈p
𝜺n

}

=
{

𝑪pp 𝑪pn
𝑪np 𝑪nn

}{

𝜺p
𝝈n

}

(5)

is used to describe the linear elastic and frequency domain viscoelastic
behavior. Eq. (5) is derived from the classic form of Hooke’s Law as
outlined in Appendix A. A comprehensive deduction can also be found
in [20]. For a viscoelastic material in frequency domain, the stiffness
matrix 𝑪 in Eq. (5) becomes complex valued and is calculated from
the material’s Poisson ratio 𝜈 and the complex shear modulus 𝐺∗ (𝜔) in
Eq. (1). By using the two complex valued Lamé constants

𝜇∗ = 𝐺∗

𝜆∗ = 2𝐺∗𝜈
1 − 2𝜈

(6)

the stiffness tensor 𝐶∗
𝑖𝑗𝑘𝑙 = 𝜆∗𝛿𝑖𝑗𝛿𝑘𝑙+𝜇∗ (𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘

)

is calculated and
transformed into the mixed form in Eq. (5) according to the relations
Appendix A.

3.4. Laminate kinematics and assembly in thickness direction

A modeling approach according to the GUF [20,21] for the three
displacement components and the three out-of-plane stress components
is used. First, a layerwise description is used for each material layer 𝑘:

𝑢𝑘𝑥 (𝑥, 𝑦, 𝑧) = 𝑈𝑘
𝑥,𝛼𝑢𝑥

𝐹𝛼𝑢𝑥
(𝑧)𝛷𝑢𝑥 (𝑥, 𝑦)

𝑢𝑘𝑦 (𝑥, 𝑦, 𝑧) = 𝑈𝑘
𝑦,𝛼𝑢𝑦

𝐹𝛼𝑢𝑦
(𝑧)𝛷𝑢𝑦 (𝑥, 𝑦)

𝑘
𝑧 (𝑥, 𝑦, 𝑧) = 𝑈𝑘

𝑧,𝛼𝑢𝑧
𝐹𝛼𝑢𝑧

(𝑧)𝛷𝑢𝑧 (𝑥, 𝑦)
𝑘
𝑥𝑧 (𝑥, 𝑦, 𝑧) = 𝑆𝑘

𝑥𝑧,𝛼𝜎𝑥𝑧
𝐹𝛼𝜎𝑥𝑧

(𝑧)𝛷𝜎𝑥𝑧 (𝑥, 𝑦)
𝑘
𝑦𝑧 (𝑥, 𝑦, 𝑧) = 𝑆𝑘

𝑦𝑧,𝛼𝜎𝑦𝑧
𝐹𝛼𝜎𝑦𝑧

(𝑧)𝛷𝜎𝑦𝑧 (𝑥, 𝑦)

𝑘
𝑧𝑧 (𝑥, 𝑦, 𝑧) = 𝑆𝑘

𝑧𝑧,𝛼𝜎𝑧𝑧
𝐹𝛼𝜎𝑧𝑧

(𝑧)𝛷𝜎𝑧𝑧 (𝑥, 𝑦)

(7)

n Eq. (7), the indices 𝛼 are summation indices according to Einstein’s
ummation convention. For each displacement or out-of-plane stress
omponent, the order of expansion is chosen individually. Each index 𝛼
hen runs from 1 to 𝑁 + 1 indicating that a specific layer displacement
r out-of-plane stress component is modeled with 𝑁+1 so far unknown
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Fig. 3. Simply supported plate with points 𝐴, 𝐵, 𝐶, 𝐷 and 𝐸 at which the solution is
valuated.

ariables 𝑈𝑘
𝑖,𝛼𝑢𝑖

and 𝑆𝑘
𝑖𝑧,𝛼𝜎𝑖𝑧

respectively. The functions used to expand
isplacement and out-of-plane stress components 𝐹𝛼𝑢𝑖

(𝑧) and 𝐹𝛼𝜎𝑖𝑧
(𝑧)

re combinations of Legendre polynomials and defined as

1 =
𝑃0 + 𝑃1

2
𝑚 = 𝑃𝑚 − 𝑃𝑚−2, 𝑚 = 2, 3…𝑁

𝐹𝑁+1 =
𝑃0 − 𝑃1

2

(8)

here 𝑃𝑛(𝜁𝑘) are the Legendre polynomials of order 𝑛 = 0..𝑁 . The in-
lane dependencies of the solution are summarized in the functions
(𝑥, 𝑦) and will be addressed in the following section.

.5. Formulation of governing equations for a simply supported plate

In this study, simply supported laminated plates according to Fig. 3
re considered and evaluated regarding their damping behavior. The
late has the in-plane dimensions 𝑎 and 𝑏 in 𝑥- and 𝑦-direction. An exact
avier-type solution [12] satisfying the boundary conditions shown

n Fig. 3 can be obtained when the following three trigonometric
istributions for displacements and out-of-plane stresses are assumed:

𝑥 ∶= 𝛷𝑢𝑥 (𝑥, 𝑦) = 𝛷𝜎𝑥𝑧 (𝑥, 𝑦) = cos
(𝑚𝜋𝑥

𝑎

)

sin
( 𝑛𝜋𝑦

𝑏

)

𝑦 ∶= 𝛷𝑢𝑦 (𝑥, 𝑦) = 𝛷𝜎𝑦𝑧 (𝑥, 𝑦) = sin
(𝑚𝜋𝑥

𝑎

)

cos
( 𝑛𝜋𝑦

𝑏

)

𝛷𝑧 ∶= 𝛷𝑢𝑧 (𝑥, 𝑦) = 𝛷𝜎𝑧𝑧 (𝑥, 𝑦) = sin
(𝑚𝜋𝑥

𝑎

)

sin
( 𝑛𝜋𝑦

𝑏

)

.

(9)

he parameters 𝑚 and 𝑛 in Eq. (9) correspond to the number of half
aves in 𝑥- and 𝑦-direction across the plate. The loads acting on the
late are defined accordingly. In the following, the loads are restricted
o those acting perpendicular to the 𝑥, 𝑦-plane on a layer 𝑘’s top or
ottom surface and are expressed by
𝑘,top
𝑧 (𝑥, 𝑦) = 𝛷𝑧𝑄

𝑘,top
𝑧 (10)

nd
𝑘,bot
𝑧 (𝑥, 𝑦) = 𝛷𝑧𝑄

𝑘,bot
𝑧 (11)

here 𝑄𝑘,top
𝑧,𝑚𝑛 and 𝑄𝑘,bot

𝑧,𝑚𝑛 are generic pressure load coefficients defined
ater. In-plane loads are not within the scope of this paper, but can be
reated accordingly as shown in Appendix C.

The governing equations for each layer 𝑘 are then derived by
nserting the approximations for displacements 𝑢𝑘𝑖 and out-of-plane
tresses 𝜎𝑘𝑖𝑧 stated in Eq. (7) into the RMVT in Eq. (4). The layerwise
overning equations are listed in Appendix B. In accordance with GUF,
3 stiffness kernel matrices are obtained for each layer 𝑘 and are listed
n Appendix C. Further details are omitted for reasons of brevity, but
he reader is referred to the original publication by Demasi [20] for
complete deduction. Furthermore, the dynamic analyses require the

efinition of a mass matrix according to the inertia term in Eq. (4).
he corresponding mass kernel matrices 𝐌𝑘

𝑈𝑖𝑈𝑖
are deduced according

o the GUF framework and can also be found in Appendix C alongside
𝑘

4

he resulting loads 𝐑𝑖 . 𝜔
Following the expansion of the 13 stiffness kernels in each layer
, the sublaminates 𝑠, as illustrated in Section 3.1 and Fig. 2, are
ssembled. This is done according to the ESL assembly procedure
utlined in [22]. Thus, the displacement DOF follow an ESL description
hile out-of-plane stress DOF preserve their layerwise nature and

he equilibrium at the interface is imposed. This leads to the global
overning equations

𝑈𝑥𝑈𝑥
𝐔𝑥 +𝐊𝑈𝑥𝑈𝑦

𝐔𝑦 +𝐊𝑈𝑥𝑆𝑥
𝐒𝑥 +𝐊𝑈𝑥𝑆𝑧

𝐒𝑧 +𝐌𝑈𝑥𝑈𝑥
�̈�𝑥 = 𝐑𝑥

𝑈𝑦𝑈𝑥
𝐔𝑥 +𝐊𝑈𝑦𝑈𝑦

𝐔𝑦 +𝐊𝑈𝑦𝑆𝑦
𝐒𝑦 +𝐊𝑈𝑦𝑆𝑧

𝐒𝑧 +𝐌𝑈𝑦𝑈𝑦
�̈�𝑦 = 𝐑𝑦

𝑈𝑧𝑆𝑥
𝐒𝑥 +𝐊𝑈𝑧𝑆𝑦

𝐒𝑦 +𝐊𝑈𝑧𝑆𝑧
𝐒𝑧 +𝐌𝑈𝑧𝑈𝑧

�̈�𝑧 = 𝐑𝑧

𝑆𝑥𝑈𝑥
𝐔𝑥 +𝐊𝑆𝑥𝑈𝑧

𝐔𝑧 +𝐊𝑆𝑥𝑆𝑥
𝐒𝑥 = 𝟎

𝑆𝑦𝑈𝑦
𝐔𝑥 +𝐊𝑆𝑦𝑈𝑧

𝐔𝑧 +𝐊𝑆𝑦𝑆𝑦
𝐒𝑦 = 𝟎

𝑆𝑧𝑈𝑥
𝐔𝑥 +𝐊𝑆𝑧𝑈𝑦

𝐔𝑦 +𝐊𝑆𝑧𝑈𝑧
𝐔𝑧 +𝐊𝑆𝑧𝑆𝑧

𝐒𝑧 = 𝟎

(12)

f the simply supported plate. The vector containing all displace-
ent and out-of-plane DOF will in the following be denoted by 𝐔 =
𝐔𝑥 𝐔𝑦 𝐔𝑧 𝐒𝑥 𝐒𝑦 𝐒𝑧

)⊤ so that the global system of equations in
q. (12) can be written as

𝐔 = 𝐑 −𝐌�̈�. (13)

.6. Loading conditions and solution

In the course of this study, three loading conditions are considered
or the simply supported laminated plate. First, static loading is applied
n order to verify and evaluate the kinematic modeling approach and
he combined ESL and LW assembly procedure. These analyses are
lso used to determine the most suitable theory in terms of order of
xpansion for the subsequent dynamic analyses, which intend to give a
eeper insight into the damping capabilities of the HyCEML material.

.6.1. Static loading
A sinusoidally distributed pressure load on the top surface (𝑘 = 1)

f the plate is applied. The load coefficient in Eq. (10) then equals the
aximum pressure �̄� in the center of plate and the load distribution is

he following:
1,top
𝑧 (𝑥, 𝑦) = 𝛷𝑧𝑄

1,top
𝑧 = sin

(𝑚𝜋𝑥
𝑎

)

sin
( 𝑛𝜋𝑦

𝑏

)

�̄� (14)

Due to the absence of inertia in static loading, the system of equations
becomes

𝐊𝐔 = 𝐑 (15)

and will be solved for the generalized displacement vector 𝐔 containing
all DOF. The resulting displacement and stress fields are calculated
using Eqs. (7) and (5).

3.6.2. Free vibration
The natural frequencies, corresponding mode shapes and modal

damping ratios of the plates are determined under free vibration.
In absence of any external loads and the assumption of a harmonic
displacement field 𝒖 (𝑥, 𝑦, 𝑧, 𝑡) = ei𝜔𝑡�̂�(𝑥, 𝑦, 𝑧) = ei𝜔𝑡�̂�(𝑧)𝛷(𝑥, 𝑦) the system
f equations becomes

𝐊∗
𝑚𝑛 − 𝜆∗𝑚𝑛𝐌𝑚𝑛

)

�̂�∗
𝑚𝑛 = 𝟎 (16)

nd is solved for its complex eigenvalues 𝜆∗ for each mode shape (𝑚, 𝑛).
uantities which represent an amplitude of a harmonic oscillation with

egard to time are marked with (̂). The stiffness and mass matrices in
his case vary with 𝑚 and 𝑛 as the corresponding kernels in Appendix C
re dependent on the functions 𝛷𝑥, 𝛷𝑦 and 𝛷𝑧 in Eq. (9). The damped
ngular natural frequency is calculated as

=
√

ℜ
(

𝜆∗
)

. (17)
𝑚𝑛 𝑚𝑛
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Fig. 4. Flow chart of the iterative eigenvalue solver used for the calculation of natural frequencies.
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able 3
yCEML layup with layer index 𝑘 from top to bottom, rotations 𝜃𝑘 , layer thicknesses

𝑘 and sublaminate index 𝑠 for layerwise (LW), equivalent single layer (ESL) and
ublaminate (Sub) approaches.
Material k 𝜃𝑘 in deg 𝑡𝑘 in mm 𝑠LW 𝑠ESL 𝑠Sub
CFRP 1 0 0.15 1 1 1
CFRP 2 90 0.15 2 1 1
CFRP 3 90 0.15 3 1 1
CFRP 4 0 0.15 4 1 1
Elastomer 5 0 0.50 5 1 2
Aluminum 6 0 0.30 6 1 3
Elastomer 7 0 0.50 7 1 4
CFRP 8 0 0.15 8 1 5
CFRP 9 90 0.15 9 1 5
CFRP 10 90 0.15 10 1 5
CFRP 11 0 0.15 11 1 5

The modal damping property of the structure is analyzed on the basis
of the modal damping ratio

𝜉𝑚𝑛 =
ℑ
(

𝜆∗𝑚𝑛
)

ℜ
(

𝜆∗𝑚𝑛
) . (18)

In order to account for the frequency-dependent viscoelastic material
behavior of the elastomer layers, an iterative algorithm similar to the
one used in [56] is used to approximate the eigenvalues in Eq. (16).
The algorithm as implemented is outlined in Fig. 4. Due to reasons
of readability, the undamped variant of Eq. (16) is shown, but the
procedure remains identical for the damped case with complex stiffness
matrix and eigenvalues. The angular frequency at which the viscoelastic
material behavior as shown in Fig. 1 is evaluated is denoted as 𝜔eval.
In this study, the tolerated absolute deviation of evaluation frequency
𝜔eval and natural frequency 𝜔𝑚𝑛 was chosen as tol = 1 × 10−3 s−1.

.6.3. Forced vibration
Forced vibration analysis is used to determine the complex valued

requency response functions (FRFs) of HyCEML plates. Harmonic point
oads are considered in this study. While no exact solution exists for
hese loads and the assumed plate problem, the Navier method [12]
s used to superimpose a number of exact solutions of the Navier type
een in Eqs. (7) and (9) in order to approximate the solution. A double
rigonometric series is used to express the resulting surface load

1,top
𝑧 (𝑥, 𝑦, 𝑡) =

∞
∑

𝑚=1

∞
∑

𝑛=1
�̂�𝑚𝑛ei𝜔𝑡 ≈

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
�̂�𝑚𝑛ei𝜔𝑡, (19)

here the load coefficient

̂ =
4𝐹0𝛷

(

𝑥 = 𝑥 , 𝑦 = 𝑦
)

(20)
5

𝑚𝑛 𝑎𝑏 𝑧 0 0
epends on 𝑚 and 𝑛 according to Eq. (9). The coordinates where the
oncentrated force 𝐹0 = 𝐹0ei𝜔𝑡 is applied are denoted with 𝑥0 and
0. A concentrated force could be depicted exactly by Eq. (20) if the
eries was expanded towards infinity. In this study however, a cut-off

respectively 𝑁 is defined. Reasonable values for 𝑀 and 𝑁 have
een investigated in [50,55]. For each value of 𝑚 and 𝑛 the system of
quations

𝐊∗
𝑚𝑛 − 𝜔2𝐌𝑚𝑛

)

�̂�∗
𝑚𝑛 = �̂�𝑚𝑛 (21)

s solved. The corresponding layerwise displacement and stress fields
re superimposed accordingly by

∗𝑘
𝑥 (𝑥, 𝑦, 𝑧, 𝑡) =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
�̂�∗𝑘,𝑚𝑛
𝑥,𝛼𝑢𝑧

𝐹𝛼𝑢𝑧
(𝑧)𝛷𝑢𝑥 (𝑥, 𝑦, 𝑚, 𝑛)e

i𝜔𝑡

∗𝑘
𝑦 (𝑥, 𝑦, 𝑧, 𝑡) =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
�̂�∗𝑘,𝑚𝑛
𝑦,𝛼𝑢𝑦

𝐹𝛼𝑢𝑦
(𝑧)𝛷𝑢𝑦 (𝑥, 𝑦, 𝑚, 𝑛)e

i𝜔𝑡

∗𝑘
𝑧 (𝑥, 𝑦, 𝑧, 𝑡) =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
�̂�∗𝑘,𝑚𝑛
𝑧,𝛼𝑢𝑧

𝐹𝛼𝑢𝑧
(𝑧)𝛷𝑢𝑧 (𝑥, 𝑦, 𝑚, 𝑛)e

i𝜔𝑡

∗𝑘
𝑥𝑧 (𝑥, 𝑦, 𝑧, 𝑡) =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
�̂�∗𝑘,𝑚𝑛
𝑥𝑧,𝛼𝜎𝑥𝑧

𝐹𝛼𝜎𝑥𝑧
(𝑧)𝛷𝜎𝑥𝑧 (𝑥, 𝑦, 𝑚, 𝑛)e

i𝜔𝑡

∗𝑘
𝑦𝑧 (𝑥, 𝑦, 𝑧, 𝑡) =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
�̂�∗𝑘,𝑚𝑛
𝑦𝑧,𝛼𝜎𝑦𝑧

𝐹𝛼𝜎𝑦𝑧
(𝑧)𝛷𝜎𝑦𝑧 (𝑥, 𝑦, 𝑚, 𝑛)e

i𝜔𝑡

∗𝑘
𝑧𝑧 (𝑥, 𝑦, 𝑧, 𝑡) =

𝑀
∑

𝑚=1

𝑁
∑

𝑛=1
�̂�∗𝑘,𝑚𝑛
𝑧𝑧,𝛼𝜎𝑧𝑧

𝐹𝛼𝜎𝑧𝑧
(𝑧)𝛷𝜎𝑧𝑧 (𝑥, 𝑦, 𝑚, 𝑛)e

i𝜔𝑡.

(22)

or the forced vibration analysis, the frequency range of interest is
iscretized, and the above solution is calculated on each frequency
oint. It should be noted that due to the assumed loss factor damping,
he above quantities are complex valued and frequency-dependent.

. Model verification and application to HyCEML

The modeling approach illustrated above is implemented in com-
rehensive Python 3.7.4 code. A plate as shown in Fig. 3 with the
imensions 𝑎 = 𝑏 = 0.1m consisting of the laminate layup shown
n Table 3 resulting in an overall laminate thickness 𝑡 = 2.5mm is
nvestigated hereafter.

Field variables are evaluated at any of the points listed in Table 4.
In the following, static loading, free vibration and forced vibration

re considered.
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Table 4
Evaluation points on the simply supported plate from Fig. 3.

Point 𝐴 𝐵 𝐶 𝐷 𝐸

x 0.5𝑎 0.0 0.5𝑎 0.25𝑎 0.125𝑎
y 0.0 0.5𝑏 0.5𝑏 0.25𝑏 0.125𝑏

Table 5
Full layerwise theories with different order of expansions for displacements 𝑢𝑖 and
ut-of-plane stresses 𝜎𝑖𝑧.
Name 𝑁𝑢𝑥 𝑁𝑢𝑦 𝑁𝑢𝑧 𝑁𝜎𝑥𝑧 𝑁𝜎𝑦𝑧 𝑁𝜎𝑧𝑧

LW111
111 1 1 1 1 1 1

LW223
112 1 1 2 2 2 3

LW555
333 3 3 3 5 5 5

4.1. Static loading

Hereafter, a statically loaded plate is analyzed in order to assess
the suitability and verify the analytical approach used further on in
the dynamic studies. The plate is subjected to a sinusoidal pressure
load according to 𝑚 = 𝑛 = 1 in Eq. (14) with an amplitude �̄� =
1MPa. The resulting field quantities are evaluated as through-thickness
distributions at the points 𝐴 = (𝑎∕2|0), 𝐵 = (0|𝑏∕2) and 𝐶 = (𝑎∕2|𝑏∕2)
shown in Fig. 3 and Table 4.

4.1.1. Investigation of higher-order theories
First, full layerwise theories are investigated and compared to a 3D

FEM solution. The FEM solutions presented in this paper have all been
obtained using the commercial software package Abaqus/Standard
2020 employing a converged mesh of quadratic continuum elements.
The investigated theories used to obtain analytical solutions are sum-
marized in Table 5. Layerwise theories are named LW

𝑁𝜎𝑥𝑧𝑁𝜎𝑦𝑧𝑁𝜎𝑧𝑧
𝑁𝑢𝑥𝑁𝑢𝑦𝑁𝑢𝑧

with the bottom indices defining the orders of expansion for the
displacement components and the top indices specifying the expansions
of out-of-plane stresses. Theory LW111

111 is a layerwise theory of first
order, thus representing the least DOF. The higher order theory LW555

333
is shown here as a convergence limit, as an increase in the orders of
expansion does not improve the quality of the solution as previously
shown in [29]. A natural choice is theory LW223

112 which assumed a
linear distribution of in-plane displacements and a quadratic one for
the displacement component 𝑢𝑧 and the transverse shear stresses 𝜎𝑥𝑧
and 𝜎𝑥𝑧. Consequently, a cubic expansion is chosen for the transverse
normal stress component 𝜎𝑧𝑧.

4.1.2. Investigation of the sublaminate approach
In this part, the influence of a further reduction of the DOF used

in the analytical modeling approach using sublaminate kinematics is
assessed. The previously analyzed fully layerwise theory LW223

112 is used
as a reference. It will be compared to an equivalent-single-layer theory
of the same order, namely ESL223

112 in which all material layers share the
same displacement DOF and are thus homogenized over the thickness.
A sublaminate approach, henceforth named Sub223112 is also considered.
The theories are named analogously to the layerwise theories with
regard to the indices representing the orders of expansion for displace-
ments and out-of-plane stresses. Table 3 summarizes how the laminate
is assembled according to the procedure outlined in Section 3.5. In the
case of Sub223112, the top CFRP layers as well as the bottom CFRP layers
are treated as two equivalent-single-layers due to their similar mechan-
ical properties when compared to the other laminate constituents. The
resulting theory equals a layerwise theory with five layers of which two
are sublaminates containing the CFRP layers.
6

4.2. Free vibration

The dynamic behavior of HyCEML is first analyzed under free
vibration. In this case, a larger plate with the dimensions 𝑎 = 𝑏 =
0.4m is considered. The boundary conditions remain identical to those
hown in Fig. 3. No external loads are present so the plate is allowed
o vibrate freely and 25 mode shapes are identified with regard to
heir undamped and damped natural frequency. The iterative algorithm
utlined in Section 3.6.2 to account for frequency-dependent material
ehavior is compared against the state-of-the-art approach, which does
ot consider the frequency dependency of the constitutive law. A
omparison with results obtained with the FEM using Abaqus/Standard
s also presented.

In order to further investigate the CLD mechanism, a parametric
tudy is conducted. First, the stiffness of the elastomer damping layers
s varied. The complex shear modulus 𝐺∗ is scaled so that a scaled
odulus �̃�∗ = 𝜅𝐺∗ is used in the HyCEML layup investigated before
nder free vibration. This ensures that the actual loss factor of the
aterial itself remains constant. The complex shear modulus is scaled

n the range 0.1 to 10. Additionally, the influence of the elastomer
ayer thickness ℎEl on the free vibration behavior is analyzed. The layer
hickness is varied in the range of 0.1mm to 1.5mm. Apart from this,
he laminate layup remains identical.

.3. Forced vibration

Forced vibration analysis is used to determine the material’s fre-
uency response to a harmonic excitation. The HyCEML plate is excited
y a harmonic point load in 𝑧-direction with an amplitude of 𝐹0 = 10N.
n excitation frequency range of 1Hz to 1500Hz is considered. An
xpansion order of 𝑀 = 𝑁 = 64 for the Navier method is applied
ere. In order to capture the modes determined in free vibration, three
ifferent excitation points are considered, namely point 𝐶, 𝐷 and 𝐸 on
he simply supported plate shown in Fig. 3. The resulting displacement
agnitude ‖�̂�∗𝑧‖ and phase angle 𝛿 = arctan2

(

ℑ
(

𝑢∗3
)

∕ℜ
(

𝑢∗3
))

are
valuated and analyzed. A verification of this procedure on a simplified
aminate has been published by the authors in [55].

. Results and discussion

.1. Static loading

In the following, the through-thickness predictions of three full
ayerwise theories are assessed compared to a 3D FEM prediction. The
esults for the three displacement components 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are shown

in Fig. 5. It can be seen that all full layerwise theories yield identical
results for the in-plane displacements 𝑢𝑥 and 𝑢𝑦. Due to the layerwise
theory, a linear approach for these components seems to suffice and
will thus be used in the remainder of investigations in this paper. In
the case of the transverse displacement component 𝑢𝑧 a slight deviation
between the FEM reference prediction and the analytical predictions of
all theories is observed.

The distributions of the normal stresses 𝜎𝑥𝑥, 𝜎𝑦𝑦 and 𝜎𝑧𝑧 are shown
in Fig. 6. The two in-plane normal stresses have been calculated from
the constitutive law Eq. (5) and the displacement field, while the stress
𝜎𝑧𝑧 is integrated from the equilibrium conditions. The reader is referred
to [29] for details on this procedure. All theories under investigation
yield identical results to the FEM reference solution in this case.

Based on the results obtained so far, only theories of the kind LW223
112

will be used in the remainder of this paper as it has been shown to
provide the most accurate results with the least amount of DOF. For
the given problem, the chosen theory has 85 DOF, which is magnitudes
lower than the number of DOF of the converged FEM model, making
the proposed analytical approach computationally efficient. It should
be noted, however, that the choice of theory is problem dependent and
is influenced by, amongst other factors, the plate’s aspect ratio as well
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Fig. 5. Through-thickness distribution of displacements for different LW theories.
Fig. 6. Through-thickness distribution of normal stresses for different LW theories.
s the quantities, which are to be investigated. This is shown by Petrolo
t al. [28] for the RMVT in conjunction with the CUF. For relatively
lender plates, the authors also encourage the use of reduced models,
s adopted in the present study.

A comparison of the predicted displacement field of theories ESL223
112,

ub223112 and LW223
112 is given in Fig. 7. For the in-plane displacements

𝑥 and 𝑢𝑦, the ESL approach differs from the other two as it can be
een as a homogenization across the thickness. While it can globally
e seen as a satisfactory approximation, it fails to give insight into
he kinematics within the laminate. The displacement component 𝑢𝑧 is

greatly underestimated by the ESL approach. The deviation between
the other two theories is negligible. For all three displacements, no
difference is observed when comparing the sublaminate approach with
the full layerwise one. The reason for the underestimation of the
transverse displacement 𝑢𝑧 by theory ESL223

112 is found by view of the
out-of-plane shear strain distribution in Fig. 8. It can be seen that the
ESL approach fails to capture the strongly inhomogeneous strain field
across the thickness, as only a linear ansatz for the displacement is
made for the whole laminate. Noteworthy are the very large transverse
shear strains within the elastomer layers, which in turn are the key
element of the CLD mechanism investigated in this paper.

The integrated out-of-plane stress components predicted by the
three approaches are shown in Fig. 9. It should be noted that even
in case of the ESL as well as sublaminate based approaches the out-
of-plane stresses are modeled layerwise, as described in Section 3.5.
Consequently, the ESL theory yields acceptable results when compared
to the sublaminate and layerwise ones, which again are not distin-
guishable in their predictions for the two out-of-plane shear stresses.
No deviations between any of the three theories is observed in case of
stress component 𝜎𝑧𝑧. Owing to the results presented so far, the sub-
laminate based theory Sub223112 is used in the remainder of this work as
it yields identical results to the full layerwise theory LW223

112 unless local
displacement or strain phenomena within the two CFRP sublaminates
are of interest. These, however, are not within the scope of this work.
7

5.2. Free vibration

The 25 modes of the simply supported plate under investigation
according to Section 4.2 are visualized in Fig. 10. The modes are de-
noted in terms of their number of half waves (𝑚, 𝑛) in 𝑥- and 𝑦-direction.
It should be noted that the modes considered here do not necessarily
correspond to the first 25 modes in order of their occurrence, but are
all modes up to five half waves in 𝑥- and 𝑦-direction.

A complete summary of all the natural frequencies and damping
ratios is, for reasons of brevity, given in Appendix D Table D.6. It
can be summarized, that the undamped natural frequencies 𝑓 0

𝑚𝑛 are
almost identical to those determined with FEM, namely 𝑓 0

FEM. In both
cases, the iterative algorithm according to Fig. 4 has not been used
as indicated by (̄) in the following. The damped natural frequencies,
in which the material’s viscoelastic behavior is taken into account,
are also identical when comparing the proposed analytical approach
𝑓𝑚𝑛 without iteration and the FEM solution 𝑓FEM and lie in proximity
to the undamped ones. The corresponding modal damping ratios 𝜉𝑚𝑛
and 𝜉FEM are also almost identical, verifying the proposed analytical
model for undamped and damped natural frequencies. In both cases,
the frequency-dependent stiffness of the elastomer material has been
evaluated according to its long-term behavior at the lowest frequency
in Fig. 1. However, as there is an increase in the shear modulus, a
stiffer material behavior is expected when excited at higher frequencies.
This is confirmed by the iterated undamped natural frequencies 𝑓 0

𝑚𝑛 in
Table D.6 which have been determined by using the algorithm outlined
in Fig. 4 in Section 3.6.2. This is also observed in the case of the damped
natural frequencies in Table D.6 and Fig. 11, which shows a comparison
of damped natural frequencies determined non-iteratively using FEM
𝑓FEM, non-iteratively with the analytical model 𝑓𝑚𝑛 and iteratively with
the analytical model, namely 𝑓𝑚𝑛. The modes calculated iteratively
occur at significantly higher frequencies. The deviation increases for
the higher modes, which can be explained by the increase of the shear
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Fig. 7. Through-thickness distribution of displacement components for an equivalent-single-layer, layerwise and sublaminate based theory.
Fig. 8. Through-thickness distribution of out-of-plane strain components for an equivalent-single-layer, layerwise and sublaminate based theory.
Fig. 9. Through-thickness distribution of out-of-plane stress components for an equivalent-single-layer, layerwise and sublaminate based theory.
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odulus in Fig. 1 in the frequency spectrum of interest 𝜔 = 1 × 10−1 s−1
o 1 × 103 s−1. When comparing the modal damping ratios 𝜉FEM, 𝜉𝑚𝑛 and
𝑚𝑛 in Fig. 12, the aforementioned agreement of the proposed analytical
pproach with the FEM solution clearly shows. Generally, it can be
bserved that higher modes also tend to show a higher modal damping.
he reason for the increase in modal damping with higher modes is
ound in the state of deformation when more half-waves are present in
he plate. These lead to higher transverse shear strains in the elastomer
ayers and thus to more dissipation due to the material’s viscoelastic
roperties. A similar aspect is visible when comparing corresponding
odes such as (1, 2) and (2, 1). In this case, stronger damping occurs in

he mode with more half waves in 𝑦-direction than in 𝑥-direction. In
his case, the elastomer damping layers can deform more in 𝑦-direction
han in 𝑥-direction due to the lower overall laminate stiffness of the
aminate in 𝑦-direction attributed to the given laminate layup and fiber
rientations. The modal damping ratios calculated with the iterative
lgorithm 𝜉 , however, are significantly lower while still showing an
8

𝑚𝑛 t
ncrease with higher modes due to the aforementioned correlation.
he increase is less pronounced than that observed in the damping
atios not calculated iteratively. This is due to the decrease in the
lastomer material’s loss factor tan (𝛿) as shown in Fig. 1 which is now
aken into account. The relative difference between results obtained
on-iteratively and iteratively is significantly higher in case of the
odal damping ratios than it is for the undamped and damped natural

requencies.
A variation of the elastomer’s complex shear modulus with the

caling factor 𝜅 leads to the results shown in Fig. 13 for the first
en modes. Generally, an increase in stiffness leads to higher natural
requencies for a given mode. Higher modes show a larger relative shift
han lower ones. Conversely, when looking at the change in modal
amping ratio, lower modes are influenced to a larger extent by a
arying stiffness than the higher modes. It can also be stated that the
nfluence of varying stiffness is lower on the natural frequency than on
he modal damping ratio for all modes shown here.
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Fig. 10. Visualization of 25 mode shapes occurring in the simply supported HyCEML plate in terms of the normalized displacement �̃�𝑧.
Fig. 11. Damped natural frequencies determined non-iteratively using FEM, 𝑓FEM, as well as non-iteratively and iteratively, 𝑓𝑚𝑛 and 𝑓𝑚𝑛, using the proposed analytical model.
Fig. 12. Modal damping ratios determined non-iteratively using FEM, 𝜉FEM, as well as non-iteratively and iteratively, 𝜉𝑚𝑛 and 𝜉𝑚𝑛, using the proposed analytical model.
Fig. 14 displays the influence of a variation of the elastomer layers’
thickness on the natural frequencies and modal damping ratios for the
same ten modes. A higher thickness leads to higher natural frequencies
as the overall laminate stiffness is increased. This is particularly true for
9

lower modes compared to higher ones. A similar effect is observed for
the modal damping ratios which are also increased by higher elastomer
layer thicknesses. Again, this effect is more pronounced for lower
modes than for higher ones. Generally, the effect of the elastomer layer
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Fig. 13. Influence of scaled elastomer stiffness on the natural frequency and modal damping factor. Increasing brightness represents higher modes.
Fig. 14. Influence of elastomer layer thickness on the natural frequency and modal damping factor. A thickness of 𝑡 = 0.50mm is taken as reference, as it corresponds to the
laminate considered in the remainder of the paper. Increasing brightness represents higher modes.
thickness on the modal damping ratio is higher than on the natural
frequency.

5.3. Forced vibration

The response of the HyCEML plate to a forced vibration is shown
in Fig. 15 in terms of displacement amplitude ‖�̂�∗𝑧‖ and Fig. 16 for the
corresponding phase angle 𝛿. For comparison, the natural frequencies
𝑓𝑚𝑛 from Table D.6 are also included as vertical lines. It can be noted
that the frequency response differs depending on the point at which
the plate is excited. An excitation in the center of the plate, namely
Point 𝐶 in Fig. 3, generally leads to higher displacement amplitudes,
but fewer modes are excited, which are identified as peaks in amplitude
coinciding with the natural frequencies. An excitation in Point 𝐷 leads
to lower amplitudes while exciting more modes. In case of an excitation
in Point 𝐸, every mode is excited and distinguishable in the frequency
response. When taking the width of each peak as a measure for the
modal damping, the previously observed trend of higher modal damp-
ing with higher modes can also be observed in the frequency response
shown in Fig. 15.

Fig. 16 shows the phase angle between force excitation and the
plate’s response in terms of transverse displacement. Again, the natural
frequencies from Table D.6 are shown for comparison. Excited modes
can be identified by a shift in the phase angle 𝛿 of 𝜋 or less, depending
on the damping of the mode. Consequently, higher modal damping
factors lead to smaller shift in phase angle. For higher excitation
10
frequencies, the distinct modes become harder to identify based on the
phase angle in Fig. 16 alone.

The forced vibration analysis shows exact agreement with the nat-
ural frequencies determined using the iterative algorithm outlined in
Fig. 4. This highlights the importance of iterative procedures when
calculating the natural frequencies and modal damping ratios of lami-
nates containing frequency-dependent materials such as the elastomer
in this study. Consequently, common approaches not accounting for
frequency-dependent material behavior do not suffice when the dy-
namic behavior of constrained layer damping laminates is to be ana-
lyzed. Iterative algorithms such as the one presented here or in [56]
are thus preferable.

6. Conclusions

This study introduces an analytical modeling approach based on the
Generalized Unified Formulation (GUF) for hybrid laminates containing
elastomer layers in order to realize intrinsic damping, the so called
constrained layer damping (CLD). The developed approach for sim-
ply supported plates adopts a sublaminate based assembly procedure,
coupling layerwise and equivalent single layer (ESL) theories. This
analytical modeling approach, requiring a minimum amount of DOF,
allows for an accurate analysis of the static and dynamic behavior of
laminates, as shown in Section 5, containing viscoelastic damping lay-
ers present in CLD applications. The novelties of this paper include the
application of the Reissner’s Mixed Variational Theorem (RMVT) using
a sublaminate GUF for the dynamic analysis of viscoelastic laminates.
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Fig. 15. Frequency response in terms of displacement amplitude ‖�̂�∗𝑧‖ over excitation frequency 𝑓 for three different excitation points. For comparison, the natural frequencies 𝑓𝑚𝑛
re also shown.
Fig. 16. Frequency response in terms of phase angle 𝛿 over excitation frequency 𝑓 for three different excitation points 𝐶, 𝐷 and 𝐸 corresponding to Fig. 3. For comparison, the
atural frequencies 𝑓𝑚𝑛 are also shown.
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y comparison with refined FEM models, this sublaminate approach
s found to be highly accurate and yield identical results as the full
ayerwise theories whilst featuring significantly less degrees of freedom
DOF), making it the approach of choice for the analysis of hybrid
aminates by judgment of the authors.

Free vibration analysis using an iterative algorithm in order to
ccount for the elastomer’s frequency-dependent mechanical behavior
s conducted. The natural frequencies and modal damping ratios are
etermined and compared to FEM solutions. A significant shift in the
alculated natural frequencies is observed when the iterative algorithm
s used. The modal damping ratios in this paper are shown to be influ-
nced even more by the use of an iterative algorithm. As these results
gree well with the peaks seen in the frequency response of the plate
o forced vibration, it can be concluded that the frequency-dependent
tiffness of the damping material should be considered, for example
y adopting the iterative algorithm introduced here. This applies, in
articular, when accurate predictions on the dynamic behavior of CLD
aminates are to be made.

Furthermore, the free vibration analysis has shown that the prop-
rties of the elastomer damping layers significantly influence how the
aminate is damped. While a decrease in stiffness of the elastomer
ayer leads to slightly lower natural frequencies, the modal damping
s increased significantly, especially for lower modes. An increase in
he elastomer layer thickness on the other hand leads to higher natural
requencies, but also increases the modal damping ratio. Again, the
ffect is more pronounced for lower modes. It is concluded that the
hoice of laminate and damping material allow for the specific design
f lightweight laminates regarding its desired damping behavior.

From a theoretical point of view, the analytical modeling approach
ased on the GUF presented here could be extended to consider mate-
ial nonlinearities, especially those of the elastomer material, in order
o analyze possible nonlinear effects in the plate’s frequency response.
uture works could also include the practical application of the CLD
11

m

odeling approach to optimize the lamination scheme for maximum
amping. The use of machine learning algorithms could also be con-
idered in order to find optimal parameter sets regarding material
roperties, lamination scheme and plate dimensions in order to achieve
aximum intrinsic damping with admissible compliance at the lowest
eight possible.
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Appendix A. Constitutive relation

The orthotropic linear elastic behavior in this paper is represented
by the following classic form of Hooke’s law
{

𝝈p
𝝈n

}

=
{

�̂�pp �̂�pn
�̂�np �̂�nn

}{

𝜺p
𝜺n

}

(A.1)

in a modified Voigt notation
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𝜎11
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=
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⎢

⎣

�̂�11 �̂�12 �̂�14 0 0 �̂�13
�̂�12 �̂�22 �̂�24 0 0 �̂�23
�̂�14 �̂�24 �̂�44 0 0 �̂�34
0 0 0 �̂�55 �̂�56 0
0 0 0 �̂�56 �̂�66 0
�̂�13 �̂�23 �̂�34 0 0 �̂�33

⎤

⎥

⎥

⎥

⎥

⎥
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⎦
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(A.2)

ith 𝝈𝑝 =
[

𝜎11 𝜎22 𝜎12
]⊤ and 𝝈𝑝 =

[

𝜎13 𝜎23 𝜎33
]⊤. Strains 𝜺𝑝 and 𝜺𝑛

re defined accordingly. The components of the stiffness matrix 𝑪 from
q. (A.4) can be calculated by the following relations:

pp = �̂�pp − �̂�pn�̂�
−1
nn �̂�np

pn = �̂�pn�̂�
−1
nn

np = −�̂�−1
nn �̂�np

nn = �̂�−1
nn .

(A.3)

ollowing the transformations in Eq. (A.3) the mixed form of Hooke’s
aw is given by
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0 0 0 𝐶56 𝐶66 0
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(A.4)

and is used in the formulation of kernel matrices.

Appendix B. Governing equations

The following variational equations with regard to displacements
and out-of-plane stresses result from Eq. (4):

𝛿𝑢𝑥𝛼𝑥 ∶ − 𝐶𝑘
11

𝜕2𝛷𝑥

𝜕𝑥2 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑥d𝑧 𝑈𝑘
𝑥𝛽𝑥

− 𝐶𝑘
12

𝜕2𝛷𝑦

𝜕𝑥𝜕𝑦 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑦d𝑧 𝑈𝑘
𝑦𝛽𝑦

− 𝐶𝑘
13

𝜕𝛷𝑧
𝜕𝑥 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑧𝑧d𝑧 𝑆𝑘
𝑧𝑧𝛽𝑧𝑧

− 𝐶𝑘
44

𝜕2𝛷𝑥

𝜕𝑦2 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑥d𝑧 𝑈𝑘
𝑥𝛽𝑥

− 𝐶𝑘
44

𝜕2𝛷𝑦

𝜕𝑥𝜕𝑦 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑦d𝑧 𝑈𝑘
𝑦𝛽𝑦

+ 𝛷𝑥 ∫

𝑧𝑘top

𝑧𝑘bot

d𝐹𝛼𝑥
d𝑧

𝐹𝛽𝑥𝑧d𝑧 𝑆𝑘
𝑥𝑧𝛽𝑥𝑧

+ 𝜌𝑘 𝛷𝑥 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑥d𝑧 �̈�𝑘
𝑥𝛽𝑥

= 𝛷 𝐹 | 𝑘 𝑄𝑘,top +𝛷 𝐹 | 𝑘 𝑄𝑘,bot

(B.1)
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𝑥 𝛼𝑥 𝑧=𝑧top 𝑥 𝑥 𝛼𝑥 𝑧=𝑧bot 𝑥
𝑢𝑦𝛼𝑦 ∶ − 𝐶𝑘
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− 𝐶𝑘
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− 𝐶𝑘
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𝑦𝛽𝑦

− 𝐶𝑘
33 𝛷𝑧 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑧𝑧𝐹𝛽𝑧𝑧d𝑧 𝑆𝑘
𝑧𝑧𝛽𝑧𝑧

= 0

(B.6)
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𝐊

𝐊

𝐊

𝐊

𝐊

𝐊

Table D.6
Undamped and damped natural frequencies 𝑓 and damping ratios 𝜉 corresponding to the modes of a simply supported HyCEML plate in Fig. 10.

Mode 𝑓 0
FEM in Hz 𝑓 0

𝑚𝑛 in Hz 𝑓 0
𝑚𝑛 in Hz 𝑓FEM in Hz 𝜉FEM 𝑓𝑚𝑛 in Hz 𝑓𝑚𝑛 in Hz 𝜉𝑚𝑛 𝜉𝑚𝑛

(1, 1) 63.78 64.27 65.40 63.78 0.0290 64.32 0.0064 65.42 0.0019
(1, 2) 165.70 166.62 176.01 165.73 0.0790 166.84 0.0188 176.07 0.0053
(2, 1) 169.19 170.09 179.30 169.22 0.0758 170.31 0.0181 179.36 0.0051
(2, 2) 234.86 236.71 252.18 234.91 0.0892 237.05 0.0213 252.28 0.0059
(1, 3) 321.14 322.92 360.13 321.35 0.1438 323.32 0.0348 360.28 0.0100
(3, 1) 330.72 332.41 368.68 330.91 0.1356 332.80 0.0328 368.82 0.0095
(2, 3) 366.87 369.68 411.17 367.09 0.1394 370.15 0.0338 411.36 0.0096
(3, 2) 373.72 376.45 417.27 373.93 0.1344 376.91 0.0326 417.46 0.0093
(3, 3) 472.76 476.58 537.78 473.11 0.1542 477.10 0.0376 538.05 0.0111
(1, 4) 502.29 505.51 595.31 502.92 0.2006 505.64 0.0490 595.56 0.0154
(4, 1) 521.69 524.71 611.74 522.25 0.1862 524.84 0.0455 612.00 0.0145
(2, 4) 536.16 540.32 633.77 536.80 0.1946 540.49 0.0475 634.06 0.0149
(4, 2) 553.31 557.27 648.39 553.89 0.1828 557.45 0.0447 648.68 0.0142
(3, 4) 616.96 622.08 730.23 617.68 0.1936 622.29 0.0474 730.58 0.0147
(4, 3) 627.90 632.89 739.47 628.58 0.1870 633.09 0.0458 739.82 0.0143
(1, 5) 695.07 700.15 866.41 696.38 0.2447 699.37 0.0601 866.68 0.0201
(2, 5) 722.40 728.30 893.94 723.69 0.2393 727.56 0.0588 894.22 0.0188
(5, 1) 729.13 733.85 896.46 730.26 0.2226 733.11 0.0547 896.88 0.0161
(4, 4) 745.28 751.46 897.70 746.29 0.2073 751.38 0.0509 898.01 0.0197
(5, 2) 754.44 759.98 923.67 755.58 0.2196 759.27 0.0539 923.98 0.0185
(3, 5) 786.81 793.57 974.13 788.16 0.2336 792.86 0.0574 974.49 0.0191
(5, 3) 813.22 819.66 995.75 814.43 0.2188 818.98 0.0538 996.13 0.0182
(4, 5) 893.15 900.81 1110.90 894.70 0.2357 899.88 0.0581 1111.33 0.0194
(5, 4) 909.03 916.51 1123.64 910.51 0.2276 915.60 0.0561 1124.07 0.0190
(5, 5) 1035.50 1044.26 1305.46 1037.40 0.2448 1042.64 0.0604 1305.91 0.0212
𝐊

𝐌

𝐌

𝐌

𝐑

𝐑

𝐑

A

t
f
Q
a
c
u

R

Appendix C. Kernel matrices

The following kernel matrices are derived from Appendix B and
used in the formulation of the global system of equations in Eq. (12).

Stiffness kernel matrices:

𝐊𝑘
𝑈𝑥𝑈𝑥

=̂ 1
𝛷𝑥

(

−𝐶𝑘
11

𝜕2𝛷𝑥

𝜕𝑥2 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑥d𝑧 − 𝐶𝑘
44

𝜕2𝛷𝑥

𝜕𝑦2 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑥d𝑧

)

(C.1)

𝑘
𝑈𝑥𝑈𝑦

=̂ 1
𝛷𝑥

(

−𝐶𝑘
12

𝜕2𝛷𝑦

𝜕𝑥𝜕𝑦 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑦d𝑧 − 𝐶𝑘
44

𝜕2𝛷𝑦

𝜕𝑥𝜕𝑦 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑦d𝑧

)

(C.2)

𝑘
𝑈𝑥𝑆𝑥

=̂∫

𝑧𝑘top

𝑧𝑘bot

d𝐹𝛼𝑥
d𝑧

𝐹𝛽𝑥𝑧d𝑧 (C.3)

𝐊𝑘
𝑈𝑥𝑆𝑧

=̂ 1
𝛷𝑥

(

−𝐶𝑘
13

𝜕𝛷𝑧
𝜕𝑥 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑧𝑧d𝑧

)

(C.4)

𝐊𝑘
𝑈𝑦𝑈𝑦

=̂ 1
𝛷𝑦

(

−𝐶𝑘
22

𝜕2𝛷𝑦

𝜕𝑦2 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑦𝐹𝛽𝑦d𝑧 − 𝐶𝑘
44

𝜕2𝛷𝑦

𝜕𝑥2 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑦𝐹𝛽𝑦d𝑧

)

(C.5)

𝑘
𝑈𝑦𝑆𝑦

=̂∫

𝑧𝑘top

𝑧𝑘bot

d𝐹𝛼𝑦

d𝑧
𝐹𝛽𝑥𝑧d𝑧 (C.6)

𝑘
𝑈𝑦𝑆𝑧

=̂ 1
𝛷𝑦

(

−𝐶𝑘
23

𝜕𝛷𝑧
𝜕𝑦 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑦𝐹𝛽𝑧𝑧d𝑧

)

(C.7)

𝐊𝑘
𝑈𝑧𝑆𝑥

=̂ 1
𝛷𝑧

(

−
𝜕𝛷𝑥
𝜕𝑥 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑧𝐹𝛽𝑥𝑧d𝑧

)

(C.8)

𝑘
𝑈𝑧𝑆𝑦

=̂ 1
𝛷𝑧

(

−
𝜕𝛷𝑦

𝜕𝑦 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑧𝐹𝛽𝑦𝑧d𝑧

)

(C.9)

𝐊𝑘
𝑈𝑧𝑆𝑧

=̂∫

𝑧𝑘top

𝑧𝑘bot

d𝐹𝛼𝑧
d𝑧

𝐹𝛽𝑧𝑧d𝑧 (C.10)

𝑘
𝑆𝑥𝑆𝑥

=̂ − 𝐶55 ∫

𝑧𝑘top

𝑘
𝐹𝛼𝑥𝑧𝐹𝛽𝑥𝑧d𝑧 (C.11)
13

𝑧bot
𝐊𝑘
𝑆𝑦𝑆𝑦

=̂ − 𝐶66 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑦𝑧𝐹𝛽𝑦𝑧d𝑧 (C.12)

𝑘
𝑆𝑧𝑆𝑧

=̂ − 𝐶𝑘
33 𝛷𝑧 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑧𝑧𝐹𝛽𝑧𝑧d𝑧 (C.13)

Mass kernel matrices:

𝑘
𝑈𝑥𝑈𝑥

=̂𝜌𝑘 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑥𝐹𝛽𝑥d𝑧 (C.14)

𝑘
𝑈𝑦𝑈𝑦

=̂𝜌𝑘 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑦𝐹𝛽𝑦d𝑧 (C.15)

𝑘
𝑈𝑧𝑈𝑧

=̂𝜌𝑘 ∫

𝑧𝑘top

𝑧𝑘bot

𝐹𝛼𝑧𝐹𝛽𝑧d𝑧 (C.16)

Load kernel vectors:
𝑘
𝑥=̂𝐹𝛼𝑥 |𝑧=𝑧𝑘top

𝑄𝑘,top
𝑥 + 𝐹𝛼𝑥 |𝑧=𝑧𝑘bot

𝑄𝑘,bot
𝑥 (C.17)

𝑘
𝑦=̂𝐹𝛼𝑦 |𝑧=𝑧𝑘top

𝑄𝑘,top
𝑦 + 𝐹𝛼𝑦 |𝑧=𝑧𝑘bot

𝑄𝑘,bot
𝑦 (C.18)

𝑘
𝑧=̂𝐹𝛼𝑧 |𝑧=𝑧𝑘top

𝑄𝑘,top
𝑧 + 𝐹𝛼𝑧 |𝑧=𝑧𝑘bot

𝑄𝑘,bot
𝑧 (C.19)

ppendix D. Natural frequencies and modal damping ratios

Table D.6 shows the natural frequencies and modal damping ra-
ios corresponding to the studies outlined in Section 4.2. Undamped
requencies are denoted by 𝑓 0. Modal damping ratios are named 𝜉.
uantities which are calculated based on the proposed analytical model
re indexed as ()𝑚𝑛. The index ()FEM consequently denotes quantities
alculated using the FEM. When the proposed iterative algorithm is not
sed, the result is marked by (̄).
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