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saying “technology is always limited by 
the materials available” still holds true 
today.[1] Therefore, developing and opti-
mizing new materials will remain of tre-
mendous importance in the coming years. 
This particularly applies in the light of 
ever-increasing performance requirements 
and a transition toward more effective and 
more sustainable technologies. Based on 
the functionality of these materials, vital 
tasks could be executed more efficiently, 
and tools could be manufactured, which by 
themselves supported the further search 
for even more sophisticated materials. The 
strive for materials to execute more com-
plicated tasks demands an increased com-
plexity of the materials; therefore, people 
started mixing different components, pre-
paring the first complex alloys and com-
posite materials already at an early age of 
history. Nowadays, very complex materials 
with various incorporated elements are 
known and used for a wide variety of dif-
ferent applications. Well-known examples 

for such materials with many different incorporated elements 
are found in the field of electrochemical energy storage (bat-
teries) with electrodes composed of layered delafossite struc-
tures, such as NCM (Li(NiCoMn)O2), Li(NiCoAl)O2, or the spinel  
LiNi0.5Mn1.5O4.[2]

A similar trend toward a more complex composition to enable 
better and tailored performance is seen for the rapidly growing 
material family of MXene,[3] which are 2D metal carbides/
nitrides/carbonitrides with the unique ability to form solid solu-
tions while maintaining their nanolamellar structure.[4] MXenes 
are obtained from removing A-site atoms from the MAX phase 
crystal lattice; we find for MAX phases Mn+1AXn (n = 1–4), where 
M represents an early transition metal element (e.g., V, Nb, Ti, 
Cr), A is an element typically from group 13 or 14 (e.g., Si, Al, 
Ga, Ge), and X is C and/or N.[4,5] MXenes have already demon-
strated their tailored properties. For example, Han et al. studied 
the TiVNb MXene system[5] and effectively modified elec-
tronic and optical properties. The properties of MXenes are also 
greatly influenced by the surface groups, often referred to as Tx 
or Tz; they strongly impact the electronic, electrochemical, and 
electrocatalytic properties.[6] Tailored surface functionality can 
also be seen as one more “element" to modify in addition to the 
chemical modification of the M- and X-site atoms.

A temporary peak of materials complexity was developed 
independently by Cantor and Yeh, who both described the 
formation of an equimolar multi-element single-phase alloy, 
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1. Introduction

The discovery and development of novel materials have always 
accompanied technological progress. Nevertheless, the 1960s 
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FeCrMnNiCo.[7,8] A new concept of alloying strategy to create 
new materials involving the combination of multi-principal 
atomic elements in high concentrations has thus been raised. 
Although alternative names, such as multi-component alloys, 
compositionally complex alloys, and multi-principal-element 
alloys, were suggested, this material class was later framed as 
high-entropy alloys (HEAs) based on simplification.[9,10] How-
ever, despite high entropy being favorable to enhance the for-
mation and stability of random single-phase solid solution in 
a specific structure, entropy is not necessarily the prime factor 
dominating the structure and related properties.[11] HEAs have 
triggered the following-up rapid development of high-entropy 
ceramics (HECs), like high-entropy nitrides (2006)[12] and car-
bides (2010),[13] high-entropy oxides (HEO; 2015),[14] and high-
entropy MXenes (2021).[15] The inspiring work of HEO shows 
a single-phase rock-salt structure with equimolar cations on 
the cationic sublattice, which can be seen as the starting point 
for various subsequent studies about HECs. Consequently, the 
term “high-entropy materials” (HEMs) is nowadays used as an 
umbrella term to describe the whole variety of different high-
entropy compounds in materials science. The HEMs are based 
on increasing the configurational entropy (Sconfig) as much as 
possible to, in some cases, obtain entropy stabilization and 
exploit the resulting cocktail effects that describe the condi-
tion that often a mixed material is more than just the sum of 
its individual parts. The cocktail effects describe the interplay 
of the different elements in one single-phase structure, high-
lighting the importance of every participating element.[16] When 
the elemental composition or the stoichiometry of a HEM is 
changed, the material properties might vary enormously due 
to the changing interactions of the various incorporated ele-
ments. Therefore, it is also possible to tailor the properties by 
the right choice of elements and stoichiometries. In this regard, 
the high-entropy concept describes the strategy to include var-
ious elements in a single-phase structure to exploit the changed 
properties arising from the resulting cocktail effects, lattice dis-
tortion, and, if apparent, entropy stabilization. Since incorpo-
rating many different elements automatically results in a high 
configurational entropy, this concept is coined as “high-entropy 
concept” and limited to materials with a configurational entropy 
above 1.5R, not necessarily including entropy stabilization.

HEMs have gained significant interest and emerged rapidly 
for energy-related applications, such as energy storage, elec-
trocatalysis, and sensors. However, with increased complexity, 
the targeted development and optimization of a specific prop-
erty becomes more complex. Due to the cocktail effects, small 
changes in composition or stoichiometry can significantly alter 
properties, severely complicating predicting the material’s 
behavior by simple chemical understanding. Therefore, the 
high-entropy concept allows for entirely novel material com-
positions and uniquely tailors the materials’ properties. Still, it 
impedes a straightforward optimization of desired properties 
and the development of specific functional materials simply by 
offering too many possibilities to prepare the highly complex 
system and the cocktail effects’ unusual behavior even at small 
compositional changes.

The high-entropy concept paves the way for entirely new 
functional materials with distinctive and tailorable properties. 
However, it is challenging to perform a directed search for a 

specific functionality due to the compositional complexity. 
Several comprehensive reviews on HEMs for energy-related 
applications have already been published.[9,17–20] Therefore, we 
focus on the description and the development of strategies to 
find the most efficient way to identify the proper compositions 
and stoichiometries of HEMs to optimize specific desired prop-
erties. This review will present an overview of the approaches 
developed to optimize the efficiency of directed research to 
prepare HEMs with suitable composition and stoichiometry 
for a given property. To do that, this review guides through the 
jungle of infinite HEM compositions and synthesis methods 
and presents exemplified literature along this way. The 
focus of the properties of the materials will be set to energy-
related applications and the different strategies to obtain high  
performances and optimize certain features of the material. A 
guideline on successfully preparing such HEMs, with a future 
perspective on increasing the efficiency to find the suitable 
composition, will be drawn over the different chapters and a 
clear picture of the different strategies in the existing literature 
presented. The chapters will describe the techniques of “trial 
and error,” “directed research,” “computational design,” and  
“high-throughput” and explain the connections and the state-
of-the-art of the different topics. A timeline of the evolution, 
key application aspects, and possible optimization of materials 
design in the field of HEMs are presented in Figure  1. The 
emergence of HEAs in 2004 was followed by an extensive inves-
tigation of their mechanical properties, since their structure 
is believed to be stabilized by the maximized configurational 
entropy through the highly disordered incorporated elements. 
With the discovery of the entropy-stabilized oxides in 2015, the 
development of many other HEMs for energy-related applica-
tions followed over the years. With modern computational  
calculations, which can shed light on the relationship between 
the local electronic structure and the properties of the mate-
rial, and emerging advanced synthesis techniques, promising 
opportunities are provided to explore novel HEMs in a much 
efficient way.

2. “Trial and Error” and “Directed Research”

As for many other considerable developments, the first HEA 
compositions were found using a “trial and error” approach. 
In 2004, Cantor et  al. investigated the microstructures of 
a cooled alloy, prepared by melt spinning of a 20 metal and 
semi-metal containing melt.[7] The result was the predominant 
face-centered cubic (fcc) solid solution FeCrMnNiCo, com-
posed of equimolar proportions of the respective elements. 
The surprising finding was that most individual metals would 
not form fcc structures when crystallized independently, but 
an entropy stabilization facilitated the formation of a single-
phase fcc structure when mixed. Independently, Yeh et  al. 
reported in the same year a CuCoNiCrAlxFe alloy system, pre-
pared by arc melting, tested different Al concentrations and 
investigated the impact of this concentration on the mechan-
ical and structural properties.[8] These two studies can be seen 
as the birth of the HEAs, a term framed by Yeh and that has 
ever since become widely accepted and used by the majority of 
the community.
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These two initial studies exemplify the conceptual dif-
ferences between “trial and error” and “directed research.” 
The conducted experiments to form the first HEAs were not 
directed to a specific composition or based on predictive tools, 
and the results were a priori unknown accordingly. Owing  
to the vast amount of possible compositions and stoichio-
metries, the “trial and error” approach was very reasonable to 
find the first possible combinations of HEAs. The experiments 
to change the concentration of only one element can be seen as 
the first approach to tailor the HEAs’ properties and change the 
features by “directed research”.

In 2015, Rost et al. applied the high-entropy concept for the 
first time to oxidic ceramics, preparing the first HEOs.[14] These 
HEOs initiated a boost in the research of HECs and were pre-
pared by “directed research”. The idea was to follow the Gold-
schmidt rules, which describe a model to increase the chance to 
obtain stable phases and structures when preparing materials 
with mixed elements.[21] Many more combinations for different 
ceramics were reported from this study, including sulfides, 
fluorides, oxyfluorides, nitrides, carbides, borides, and metal–
organic frameworks.[20,22]

The utilization of HEMs for energy applications started 
with the attempt to use HEAs as hydrogen storage materials. 
Kao et al. chose CoFeMnTiVZr, a C14 Laves structure with the 
known ability to store hydrogen reversibly, and used a “directed 
research” approach to optimize the kinetics and storage capacity 
by changing the concentrations of Ti, V, or Zr.[23] Additionally, 
HEAs’ superior physicochemical stability and extraordinary 
mechanical properties, conspicuously the notable catalytic 
activity and excellent durability, make them very promising for 

electrocatalytic application.[24] Minimizing the usage of noble 
metals or even making their use obsolete would be a highly 
cost-effective alternative route for catalysts. Löffler et  al. dem-
onstrated the utilization of “Cantor alloy” CoCrFeMnNi HEA 
nanoparticles as an oxygen reduction reaction catalyst, which 
does not contain noble metal while shows intrinsic activity 
comparable to Pt.[25] In this study, through “directed research”, 
the necessity of a combination of all the five principal elements 
was verified by removing each element from the quinary HEA 
system.

The first indications that HEMs show promise for electro-
chemical energy storage applications appeared after the intro-
duction of HECs. Since then, many reports have focused on 
using HECs as electrode materials or electrolytes for ionic 
transport. Most of the studies took existing compositions in 
a “trial and error” approach or selectively chose redox-active 
elements and incorporated them using a “directed research” 
technique. The choice of elements to prepare reasonable 
electrochemically active HECs was based on the experi-
ence gathered from known nonhigh-entropy compounds. 
For electrode materials, especially composed of late transi-
tion metals such as Mn, Co, and Ni, which are well-known 
in common secondary battery materials like LiCoO2 (LCO) or  
Li(NiCoMn)O2, are reasonable choices for the design of high-
entropy active materials for electrochemical energy storage 
applications. Both the “trial and error” and the “directed 
research” approach appeared often combined: first, a prom-
ising composition was found, and then one or two elements 
were replaced by other more promising elements to improve 
the material’s performance.

Figure 1.  Timeline of the development of HEMs and some key applications. Experiments through “trial and error” or “directed research” approaches 
dominate the current work on HEMs, and the computational design and high-throughput experimental are just beginning to play a role. Applications 
of HEMs cover many fields, including engineering, energy storage, and conversion.
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The infinite amount of different composition possibilities in 
HECs causes a difficult decision to synthesize and investigate 
the electrochemical properties. The first experiments were per-
formed using (CoCuNiMgZn)O by Rost et al., with each cation 
being present in equimolar ratios on the cationic sublattice of 
a rock salt structure. Bérardan et  al. took this composition as 
a starting point, tested the dielectric constant and the Li-ion 
conductivity.[26] The intention to study the dielectric properties 
of the compound was plausible since all binary oxides are elec-
trical insulators. Still, the bandgap was expected to be not just 
an average. The starting point, using (CoCuNiMgZn)O as an 
initial sample, can be considered as a “trial and error” experi-
ment to test the properties of a new compound, the subse-
quent strategic tailoring with Li and Ga, as a “directed research” 
approach to find out about charge compensation mechanisms 
and to optimize the Li-ion conductivity of the materials.[27]

Later, many more studies reported using HECs for electro-
chemical energy storage, but all had to make the difficult deci-
sion, which composition to take and which elements to replace 
to tailor the materials. Since slight variation in composition 
can result in significant changes in properties due to complex 
interactions of the incorporated ions, the results of a tailoring 
approach can often not be predicted. Additionally, the interac-
tions of the ions and structural changes, such as Jahn–Teller 
distortions or the breaking of low range ordered structures, can 
affect the electrochemical properties of HECs.[28,29] Therefore, 
most reported results are based on “trial and error” approaches, 
while only a few explore “directed research” processes. The 
already described rock-salt structured (CoCuNiMgZn)O was 
also the subject of many other reports about electrochemical 
properties so that this compound can be seen as the point of 
reference for research on HECs for electrochemical energy 
storage and conversion.

The first report on (CoCuNiMgZn)O used for active elec-
trode materials described the conversion reaction behavior 
of the compound, which shows extraordinary capacity stabili-
ties with continuous cycling compared to binary and medium 
entropy (Sconfig < 1.5R) materials.[19,30] For “trial and error”, the 
compound was tested to establish the general electrochemical 
behavior, and later the role of entropy and the individual ele-
ments were investigated by systematically altering the materials 
composition. Eliminating elements has a significant effect on 
stability and redox potential, but the impact of a specific ele-
ment could not be predicted or derived. Qiu et  al. could even 
present increased capacities by changing the morphology of 
the particles by ball-milling and could present indications for 
increased structural stability of a (CoCuNiMgZn)O electrode 
compared to conventional conversion materials.[31]

Further research focused on improving the capacity by 
applying different strategies. By transferring the concept to 
increase the oxygen vacancies in an anode material to change the 
electrochemical properties, a “directed research” experiment was 
done, which modified the composition of (CoCuNiMgZn)O by 
extracting Cu and introducing Li to form (CoNiMgZn)xLi1−xO.[32]  
Other studies connected the grain size and surface area to the 
capacity since there is an increased capacity compared to the 
original material.[33] The complex composition of the (CoCuN-
iMgZn)O and the related compounds impede a precise deter-
mination of the reaction mechanism. Only with the help of 

operando X-ray absorption spectroscopy and differential elec-
trochemical mass spectrometry, more information about the 
electrochemical reactions of the material in a cell could be gath-
ered, leading to the conclusion that a complicated combination 
of alloying and conversion reactions appear based on the incor-
porated elements.[34]

Despite the experimental efforts to optimize the electro-
chemical properties, it remains unclear if the ideal composi-
tion for rock-salt high-entropy conversion electrodes requires 
exactly all five cations of the (CoCuNiMgZn)O system. Due 
to the vast number of different combinations possible for HE 
rock-salt metal oxides structures, there is an infinite number of  
possible combinations, which cannot be experimentally 
explored by using “trial and error” or “directed research”. Solely 
for the single-phase rock-salt structured compounds, M was 
reported to be Co, Ni, Cu, Zn, Mg, Fe, Cr, Mn, Li, Ga, Mo, and 
many more.[35] The possible number of combinations of only 
this one structure, not to speak of changed stoichiometries in a 
specific composition, makes it impossible to test all promising 
variations. Therefore, the search for possible combinations is 
very time-consuming and inefficient. The probability of much 
more viable combinations of cations and anions existing for 
electrochemical applications is extremely high. Despite tran-
sitioning from “trial and error” to “directed research” narrows 
the combinations down, elemental interactions, which might 
appear in complex systems but are not easily recognizable for 
scientists, are not adequately considered.

Besides the rock-salt structured HECs, other crystal struc-
tures were investigated as well for other battery types. Most of 
the research is based on “trial and error” since no comparable 
systems were available, leaving much room for improvement 
using other compositions or stoichiometries. One of those struc-
tures is the spinel structure, which even holds more promise 
for conversion materials, since the redox states of the incorpo-
rated metal ions are higher than for rock-salt structures. These 
spinel structures are mixed-valence compounds, meaning that 
M2+ and M3+ ions occupy the cationic sublattices. Several dif-
ferent compositions, (MgTiZnCuFe)3O4, (NiCoMnFeTi)3O4, 
(CoCrFeMnNi)3O4, and (CoCrFeMnNiAl0.038)3O4−x,  
were explored and the electrochemical performance was meas-
ured.[36] The reports about the capacity and reversibility are very 
similar between (MgTiZnCuFe)3O4 and (NiCoMnFeTi)3O4 and 
between the compounds (CoCrFeMnNi)3O4 and (CoCrFeMnN
iAl0.038)3O4−x. The reasons are most likely particle size issues 
since the X-ray diffractograms for the latter materials showing 
higher capacity indicate smaller domain sizes due to the 
different synthesis procedures. Other spinel compounds were 
reported, including toxic elements like (BeMgCaSrZnNi)3O4, 
and perovskites for lithium-ion and lithium-sulfur batteries.[37]

These results show that it is often uncertain if the improved 
properties arise from the different stoichiometry and composi-
tion of the HEMs or if the particle size and morphology play a 
much more decisive role. Therefore, it is imperative to compare 
the properties of HEMs with similar non high-entropy mate-
rials, for example, the binary compounds or low- to medium-
entropy materials. To trace the properties back to the elemental 
interactions, it is also essential to keep the crystal structure and 
replicate the particle morphology and the preparation method 
since all these factors would complicate a comparison if not 
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similar. It is difficult to find such comparable materials; still, 
if found, then the low- or medium-entropy type of the material 
can be prepared using the same approach as the HEM while 
keeping the number of different elements low.

This strategy was employed by certain different groups and 
gave a deep insight into the properties arising with applying the 
high-entropy concept. The most used cathode active material 
in rechargeable batteries on the market are layered structured 
intercalation materials like LCO or NCM. NCM is an example 
of introducing multiple elements into a single-phase structure 
to exploit the interactions of the different elements. Here, Ni 
and Mn’s introduction to LCO leads to improved reversibility 
and decreased costs (replacing expensive Co). Additionally, stoi-
chiometry can be tailored regarding the needs of the battery, 
NCM compositions with Ni:Co:Mn ratio of 1:1:1, 6:2:2, and 8:1:1 
are investigated or already widely used.

Until now, two different types of high-entropy layered 
oxides are reported, a series of Li(NiCoMnAlFe)O2 type mate-
rials for Li batteries and O3-type sodium-based layered oxide  
NaNi0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2 for revers-
ible sodium intercalation.[38,39] In both materials, the high-
entropy should be created on the transition metal layers of 
the structures, for Li intercalation (NiCoMnAlFe) replaces 
(NiCoMn) as known in NCM CAMs and for Na-ion intercala-
tion, Ni0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04 replaces 
(NiFeMn) as known for a common O3-type Na-ion insertion 
material like Na(NiFeMn)O2. Using “directed research”, the 
careful selection of the incorporated elements suppressed the 
typical P3-to-O3 phase transition that appears in other Na inter-
calation materials and decreases the reversibility of the reac-
tion.[40] When using equimolar transition metal cations for the 
high-entropy Li intercalation material Li(NiCoMnAlFe)O2, the 
redox reaction almost vanished but could be restored by intro-
ducing Na in the parent lattice, forming LiNa(NiCoMnAlFe)O2. 
It was impossible to exclude Li-ion migration into the transi-
tion metal layers, so cation intermixing appeared strongly and 
impeded the capacity.

Lun et al. provided another example of how the high-entropy 
approach influences the structure and structural changes 
during reversible Li-insertion.[29] They applied the strategy to 
compare the HEMs with medium- or low-entropy compounds 
and found that a particular short-range order, which is apparent 
medium- or low-entropy distorted rock-salt structures, could 
be broken by introducing a high number of elements. This 
short-range order blocked Li-pathways; therefore, the capacity 
was strongly improved with an increased number of cations. 
Similar materials as the here used high-entropy oxyfluorides 
were prepared in a different composition earlier and used for 
insertion CAMs. In this example, for the first time, a HEM with 
several cations on the cationic sublattice and several anions on 
the anionic sublattice was prepared by simple ball-milling of 
the already discussed (CoCuNiMgZn)O with LiF.[20] The mate-
rial, Li(CoCuNiMgZn)OF, showed improved performance com-
pared to Li(Ni)OF, which was explained later by Lun et  al.[29] 
The result of the cocktail effects and the mixing of different 
elements could be shown exemplary here, where the simple 
transition of a high-entropy rock-salt oxide to a high-entropy 
rock-salt oxyfluoride results in a change from an anode to a 
cathode material.

These examples show that applying the high-entropy 
approach on different crystal structures can lead to different 
outcomes, which are strongly related to the materials’ ele-
mental interactions and structural changes. This makes it even 
more challenging to design a strategy to improve a particular 
property of a HEM efficiently. The position of most HEMs 
in the middle of a multi-dimensional phase diagram opens a 
huge chemical phase space, which, combined with the impact 
of structural changes on the properties, enables countless pos-
sibilities for functional materials. Using the “trial and error” or 
the “directed research” approach makes it impossible to state if 
the optimal combination of elements or the optimal structure 
resulting from the high-entropy approach is found. Addition-
ally, determining the correct elements to exchange, add or sub-
tract to optimize a specific electrochemical property presents an 
equal challenge. Due to these reasons, other approaches had 
to be explored to find the most promising elements and stoi-
chiometries in HEMs. These will be described in the following 
sections.

3. Computational Design

Significant progress has been achieved on an experimental 
basis in “trial and error” or the “directed research” approach. 
Nevertheless, these two traditionally experimental methods 
require intensive time and cost for experimental evaluations, 
particularly without any guidance or prescreening, and cannot 
meet the fast development of the next-generation energy mate-
rials with advanced performance. Therefore, efficient and effec-
tive scientific strategies that boost the design and discovery 
of high-entropy energy materials are needed. Future feasible 
attempts should address the complexity in physics and chem-
istry when searching for materials correlations, understanding 
materials chemistry, and targeting specific applications. Com-
putational data-driven material discovery enables the acceler-
ated development of new materials, while experimental data is 
often sparse with limited chemical space coverage. The density 
functional theory (DFT) calculation, a computational quantum 
mechanical modeling method, has been used for screening 
new materials during the last few decades.[41] Machine learning, 
a subfield of artificial intelligence, has recently become an 
efficient tool for analyzing existing materials that would revo-
lutionize scientific discoveries to develop energy materials.[42] 
It is anticipated that the use of theoretical and computational 
chemistry to predict quantitative structure-property relation-
ships before experiments will promote further developments 
of HEMs in energy storage and conversion.[43] This section will 
discuss energy-related HEMs for which computationally aided 
material design methods have been successfully applied.

One of the most prevalent strategies for improving mate-
rials’ properties is lattice doping. Ever since the advent of the 
commercializing of the LCO cathode, extensive efforts have 
been devoted to searching for cheaper, structurally more stable, 
and safer alternatives. For improving phase stability, cationic 
doping has been carried out experimentally in “trial and error” 
by choosing different single dopant or even dopant pairs, such 
as Al, Fe, Mg, Ti, or Zr and AlMg, MgTi, or MgGa.[44] Al 
substitution has been widely deployed for alleviating structural 
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deformation at deep charge states. The first computational 
revolution in material science was driven primarily by DFT 
calculations, which tailor functional parameters to reproduce 
experimental results.[45]

At an earlier state for searching a cathode alternative for 
LCO, first-principal calculations have demonstrated its instruc-
tive predictive potential.[46] In 1998, Ceder et  al. predicted and 
verified experimentally that aluminum substitution in novel 
cathode material LiAlxCo1−xO2 could increase energy density 
while reducing the cost.[46] The ab initio computation discov-
ered the intercalation voltage of LiyAlO2 to be 5.4 V, and LiAlO2 
as a solid solution component will lead to higher Li intercala-
tion voltage. Single-phase solid solution (space group R m3 ) 
with y  ≤ 0.5 showing higher equilibrium open-circuit voltage 
was then verified experimentally. This pioneering work has 
inspired hereafter broad interest in computational calculation 
and experimental, although an optimized limited amount of Al 
within 5 at% is generally considered.[47]

A recent study from Zou et  al. on Ni-rich cathode 
LiNi0.92Co0.06Al0.02O2 investigated the electrode electronic struc-
ture change induced by Al substitution using DFT calcula-
tions, revealing not only the improved bulk stability but also 
the interfacial, which has also been proofed experimentally.[48] 
In addition to the single-doping strategy, a multicomponent-
doping approach has been proposed in Ni-rich NCM cathodes 
by understanding the atomic and electronic structure with 
the first-principles DFT calculations dopants.[49] The influence 
of seven cations (Mg, Al, Si, Ti, V, Ga, and Zr) was systemi-
cally assessed.[49] Positive effects of dopants can be divided into 
two distinct categories: phase stability during materials syn-
thesis and reversibility during electrochemical cycles. This 
multicomponent-doping strategy is on its way to complex 
compositions or approaching rational high-entropy approach 
direction, as not a single dopant can solve all the problems 
simultaneously.

Traditionally, for the cathode materials capable of fast lithium-
ion diffusion, the atomic configuration in the crystal structure 
must be in well-layered ordering. The disordering in the crystal 
structure is much overlooked. Recently, with the introduction of 
the 3D lithium-ion percolation theory (lithium migration occurs 
between neighboring octahedral sites via an intermediate tetra-
hedral activated state, referred to as o–t–o diffusion), disordered 
rock-salt (DRX) structure cathodes are receiving significant 
attention due to their high capacity compared with ordered  
layered cathode materials.[20,29,50] In the ideal DRX structure, Li 
and other metal elements are distributed randomly in the rock-
salt cation sublattice in a single phase (space group Fm m3 ).  
Therefore, cations in DRX materials do not have a long-range 
periodic arrangement and intrinsically hold more diverse local 
environments. As mentioned above, the high-entropy concept 
was applied to DRX cathodes by Ceder’s group.[29] Improved 
capacity and decreased polarization have been demonstrated 
owing to increased lithium-ion transportation, which enabled 
the suppressed short-range order resulting from the increase 
of cationic species in the high-entropy cathode. High-entropy  
Li1.3Mn0.1

2+Co0.1
2+Mn0.1

3+Cr0.1
3+Ti0.1Nb0.2O1.7F0.3 shows the 

highest specific capacity of 307 mAh g−1 and most stable cycling 
performance at improved charge/discharge rates with com-
parison to medium-entropy Li1.3Mn0.2

2+Mn0.2
3+Ti0.1Nb0.2O1.7F0.3 

and low-entropy Li1.3Mn0.4
3+Ti0.3O1.7F0.3. The introduction of the 

high-entropy concept reduces or ideally eliminates the short-
range cation order and further broadens the chemical space 
of DRX compounds. Specifically, a total of 23 metal cations 
were considered for compatibility analysis (Figure 2a) by first-
principles DFT calculations, creating 7965 distinct compounds. 
Moreover, in the dataset created by the DFT calculations, low 
short-range order compounds with suitable chemistries could 
also be predicted, and a HE DRX compound with a large 
number of 12 cationic species in similar concentrations was 
successfully prepared as a proof of concept. The phase purity 
and homogenously distribution of different elements were also 
demonstrated, as shown in Figure 2b.

In a high-entropy system, the involvement of multi-
component compounds allows them to form a single-phase 
solid solution with a simple crystal structure because of the high 
configurational entropy. The extraordinary properties of HEMs 
are appealing, while the predictions of multiple competing 
phases or phase separation are still challenging. DFT-based first-
principles calculations have been used for theoretically demon-
strating the formation possibility and stability phase stability of 
new HECs or HEAs.[51,52] Ye et al. demonstrated the experimental 
fabrication of high-entropy carbide (Zr0.25Nb0.25Ti0.25V0.25)C,  
which was initially analyzed by combining first-principles cal-
culations and thermodynamical study.[52,53] Feng et  al. pre-
dicted the phase stability in the quaternary CrMoNbV 
alloy system, in which the configurational entropy plays a crit-
ical role.[53] Then, the entropic stabilization of HEAs has been 
shown experimentally by the phase transformation between 
annealing treatment at low and high temperatures. However, 
a low computational cost has been a significant challenge in 
ab initio computational materials science. The random dis-
tribution of the atoms may induce considerable challenges in 
building an atomic model, and as a result, this creates difficulty 
in guiding the constitution combinations. An atomic model 
which requires a sufficiently large supercell for characterization 
of the highly disordered lattice occupation of multi-principal 
elements is beyond the ability of DFT-based computational 
calculation methods.[54] The continuously growing computa-
tional power has significantly increased the predictive power of 
theoretical calculations. Significant advances and evolution in 
simulation methods and computational science occurred in the 
last decades, resulting in the rapidly increasing computational 
capacity.[55] The big data approaches, including high-throughput 
virtual screening and machine learning, will support dealing 
with extensively large databases, uncover complexities, and 
design novel materials with enhanced properties.[56] In HEMs, 
predictions have been studied mainly for HEAs.

HEAs’ rational design and controllable synthesis in a vir-
tually unlimited compositional space remain a challenge. As 
reported by Yao et al., a serial of multi-elemental alloy nanopar-
ticles (MEA-NPs) as highly active and robust catalysts were first 
predicated using the computationally aided, entropy-driven cal-
culations and then synthesized through the high-temperature 
method.[57] The computational strategy involved prescreening 
millions of compositions, in which DFT calculations were used 
to predict the alloy formation, and a hybrid Monte Carlo and 
molecular dynamics method were applied to examine the struc-
tural stability. Figure 3a–c illustrates the formation of ternary, 
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quaternary, and quinary alloys, in which ten principal elements 
including Ru, Rh, Ir, Pd, Cr, Fe, Co, Ni, Cu, and Mo are consid-
ered, with the constitutions of each element varying from 5% 
to 50%, with a step size of 5%. For the ternary alloys, 7740 com-
positions are derived from these ten active elements, of which 
≈61% (a statistical data) are single-phase alloys (represented by 
yellow dots), while the others are not single-phase solid solu-
tion (represented by purple dots). In the case of a quinary 
system with more elements involved, a total number of more 
than 7 million compositions are screened, with an increased 
ratio (Figure 3d) of solid solution alloy phase, which indicates 
the entropy-driven single-phase stabilization. High-temperature 
synthesis through electrical Joule heating is carried out, and 
the computational predictions are realized experimentally. As 
depicted in Figure  3e,f, the experimentally obtained quinary 
MEA-NPs show thermal stability up to 600 °C from room tem-
perature. The high-temperature catalytic functionality is dem-
onstrated for NH3 decomposition. As demonstrated in this 
work, this computationally aided methodology shows the capa-
bility of the calculations to predict both alloy and nonalloy for-
mation, which guides the synthesis direction for the possible 
compositions that could give rise to solid solution alloy phases 
well before experimental.

HEAs are receiving more and more attention, and the pro-
duction of experimental data has been dramatically accelerated, 
making the large-scale databases of structures and properties 
of chemical compositions and crystal structures available.[55,58] 

The turning of computational chemistry and material science 
to machine learning, which is steering research into a new 
data-driven science paradigm, is coming at the right time. In 
the age of big data, the demands for machine learning and 
other computationally added approaches are drastically growing 
in phase and structure prediction and synthesis of HEAs. As 
a branch of artificial intelligence, machine learning offers new 
approaches to boost discovering new materials, mapping the 
connection of targeted property to numerous materials descrip-
tors. Machine learning aims to create statistical models for 
data analysis and make accurate predictions through devel-
oping algorithms that should learn by themselves based on 
the available data. It is anticipated that machine learning will 
help identify single-phase solid solution compositions from the 
vast compositional space. Other computationally aided calcula-
tions, including high-throughput first-principles investigations, 
are also reported for conventional material for energy-related 
applications.[59] These high-throughput computational design 
has demonstrated its promising predicting ability, which will 
play an essential role in developing HEMs for energy-related 
applications.

Supervised machine learning combined DFT calculations 
have demonstrated the predictive ability to optimize HEAs as 
CO2 and CO reduction reactions catalysts by scanning massive 
spaces of HEAs while aiming at a chance for suitable catalysts. 
Pedersen et al. discovered the adsorption energies for CO and 
H on the disordered HEAs (111) surface with the presumption 

Figure 2.  Density functional theory guided HE DRX cathode design. a) The quantified compatibility of different transition metal pairs with a normal-
ized scale between 0 (highly compatible) and 1 (not compatible). The grey fields represent redox incompatible couples. The white squares indicate 
transition metal couples that were not included. b) HE DRX containing 12 cationic species with pure rock-salt phase confirmed by XRD pattern (top) 
and homogeneous element distribution demonstrated by STEM/EDS mapping (bottom). Scale bar: 400 nm. Reproduced with permission.[29] Copyright 
2021, Springer Nature.
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that the adsorption energy is exclusively determined by the 
elemental labels and locations relative to all adsorbate atoms 
(Figure  4). Because of the disordering, different microstruc-
tures of the adsorption site are present (Figure 4a), determining 
different adsorption features of the reaction intermediates. Spe-

cifically, the weak hydrogen (H) adsorption and strong carbon 
monoxide (CO) adsorption are considered essential. Figure 4b 
shows the differences of the CO and H adsorption energies 
obtained from DFT calculations and Gaussian process regres-
sion predictions for fcc HEAs CoCuGaNiZn and AgAuCuPdPt. 

Figure 3.  Multi-elemental alloy nanoparticles (MEA-NP) composition screening, prediction, and synthesis. Phase selection diagrams for a) ternary,  
b) quaternary, and c) quinary MEA-NPs made from the 10 catalytically active elements (Ru, Rh, Ir, Pd, Cr, Fe, Co, Ni, Cu, and Mo, with the constitutions 
of each element varying from 5% to 50% with a step size of 5%. Yellow dots represent single-phase solid solution, while purple dots represent no 
single-phase. d) Numbers of the compositions (left) and the ratio of the alloy phase in these compositions (right) as a function of the multi-elemental 
systems. e) In situ thermal stability of Ru-5 MEA-NPs from room temperature up to 600 °C (held at each temperature for over 30 min). f) Corresponding 
EDS mapping after the in situ stability test, showing a uniform alloy structure. Reproduced with permission.[57] Copyright 2020, American Association 
for the Advancement of Science.
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The adsorption energies predicted by Gaussian process regres-
sion are within the accepted error range equal to a deviation 
of ±0.1 eV (dashed lines). Therefore, theoretical calculations of 
DFT with supervised machine learning provide a promising 
capability for predicting effective catalyst candidates even lack 
beforehand knowledge of their catalytic properties and offer an 
approach to optimize the composition of HEAs with optimal 
catalytic performance.

As guidance in searching for candidate materials exhib-
iting target properties, computational science complements 
this effort to narrow the search space. Material with predicated 
potentially good performance needs to be synthesized for real-
world applications. Especially for energy storage and conver-
sion applications, material syntheses need to be performed on 
a vast scale requiring reproducibility, safety, and environmen-
tally friendly processes. Therefore, the continuing speed-up 

in computing prediction capabilities needs to be paralleled by 
increased experimental throughput. A new paradigm of the 
future approach would be combining computational prediction 
and high-throughput experimental methods efficiently. High-
throughput computational techniques have been introduced for 
discovering new ternary oxides.[60] A combination of machine 
learning was applied to first extract “chemical rules” from an 
experimentally available crystal structure database, suggesting 
new compositions and structures candidates. Ab initio com-
putation was further used to examine the candidate list with 
an accurate energy model, predicting 209 new compounds. 
Although the computational method can efficiently accelerate 
the discovery/prediction of potential new compounds, the chal-
lenges/limitations exist for the experimental proof, which also 
needs to be carried out efficiently, for example, high-throughput 
experimental. Conversely, the most common limiting factor in 

Figure 4.  Density functional theory with supervised machine learning calculations of HEAs for catalysis. a) Surface configurations around the adsorp-
tion site on a (111) surface, including on-top, FCC-hollow, HCP-hollow adsorption, and adsorbing intermediate, are represented by white circles.  
b) Upper corresponds to CoCuGaNiZn and bottom to AgAuCuPdPt. Predicted (ΔEpred) versus calculated (ΔEDFT) adsorption energies of on-top CO, 
fcc-hollow H, and hcp-hollow H. Blue and red indicate data for 2 × 2 atoms slabs and 3 × 3 atoms slabs, respectively. Prediction errors (defined as 
ΔEpred − ΔEDFT, in eV) are shown in insets. Reproduced with permission.[91] Copyright 2020, American Chemical Society.
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machine learning applications to material science is acquiring 
enough data for reliable parameterization.[61] High-throughput 
experimental provides a powerful method for creating a mas-
sive amount of raw data, in which knowledge and insights can 
be extracted by machine learning.

4. High-Throughput

Investigating multi-component systems composed of three or 
more elements with a desired structure and properties is very 
challenging. Traditionally, the development of new materials 
is generated from a single experiment (“trial and error” and 
“directed research”) at a time; this process results in high cost, 
long manufacturing and analysis time, and exponential growth as 
the complexity of the material increases. However, the vast com-
positional space of multi-component systems, such as HEMs, 
hinders selecting suitable material candidates for many different 
applications.[7,8,10,62] Therefore, significant efforts have been dedi-
cated to developing combinatorial synthesis approaches (aided by 
artificial intelligence) and theoretical predictions to hunt specific 
materials of interest for industry and academic research.[63,64–69] 
A synergy among experimental, theoretical predictions, and arti-
ficial intelligence will significantly aid the development of multi-
component materials for targeted properties. A common trend 
in the workflows[64,67,69–72] presented in different fields suggests 
a path toward developing autonomous and automated protocols, 
as depicted in Figure 5. The workflow starts with combinatorial 
synthesis methods, automated characterization techniques (with 
or without a feedback-measuring loop), automated data analysis, 
creating a material database or material library, and selecting 
materials of interest. The complete workflow can be closed by 
selecting samples of interest for further synthesis and characteri-
zations.[73] However, without theoretical predictions or computa-
tional approaches, the workflow can be considered a fast “trial 
and error” approach.

The relevance of the workflow is that it has been success-
fully implemented in different fields, leading to a high amount 
of data that can be used appropriately for targeted properties. 
Due to the vast chemical compositional space offered by multi-
component materials (such as HEOs), a workflow depicted in 
Figure 5 will enormously aid in investigating HEOs for energy-
related applications. For instance, following such an approach, 
it was possible to screen a vast compositional space for an HEO 
and present a material library relating chemical composition, 
crystal structure, and the bandgap.[69] Thus, research experience 
for element choice and theoretical predictions combined with 
high-throughput and artificial intelligence will accelerate the 
discovery of promising materials.

Several combinatorial studies using high-throughput have 
been conducted to explore the vast compositional space of 
organic–inorganic perovskites,[10,15–17,20] organic materials,[21–25] 
and multi-component materials.[65,67,72,74,75] In the case of 
HEOs (systems containing at least five cations), there is, up to 
date, one high-throughput study reported in the literature.[69]  
Therefore, in the following sections, the literature review is  
limited to some exemplary studies (conducted on ternary/
quaternary systems, organic–inorganic, and organic materials) 
that can be adapted to develop high-throughput studies on 
HEOs.

Based on solid-state reactions or wet chemistry methods, 
HEOs have been fabricated (via “trial and error”).[14,76] There are 
several advances in the automated synthesis using wet chem-
istry, such as the fabrication of organic–inorganic perovskites 
and organic materials.[68,71,77] In these studies, the synthesis pro-
cess is conducted using liquid handling robotics, which allows 
the combination of several water-based solutions and can vary 
the volume of each solution (similar to doping). This process 
is analogous to the “trial and error” synthesis of HEOs using 
reverse co-precipitation and, to a lesser extent, to nebulized 
spray pyrolysis, flame spray pyrolysis, and spin coating.[14,76] The 
liquid handling robotic technology can be adjusted to prepare 

Figure 5.  Workflow. Left: workflow paradigm similar to “trial and error” coupled with theoretical predictions. Right: closed-loop discovery utilizing 
inverse design and a tightly integrated workflow to enable faster identification, scale-up, and manufacturing. Feedback loops during characterization 
can provide instructive information to correct the measuring method or adjust the synthesis method, leading to a more autonomous workflow.
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hundreds of different solutions containing different volumes 
to vary the chemical composition of the desired material or to 
produce combinatorial studies of several candidate elements.[69] 
As described in the organic–inorganic perovskites study by 
Li et  al.,[68] the resulting mixed solutions were not exposed to 
temperatures exceeding 105  °C, which are insufficient for the 
synthesis calcination process of HEOs (>700  °C) using wet 
chemistry. Therefore, such high-throughput synthesis proto-
cols for the synthesis of HEOs require technical modifications. 
One example is the low thermal mass reactor device designed 
by Chan et al.,[78] which raises the temperature during colloidal 
nanocrystals’ synthesis (using a liquid handling robotic system) 
to 350 °C. Similarly, the produced solutions can be incorporated 
into an automated spin coating device, as developed by Macleod 
et al.;[79] however, the additional calcination process required for 
the HEOs needs to be implemented.

A facile method developed for wet chemistry methods shows 
that it is possible to build up to 100 compositional arrays with 
temperature control (up to 250 °C).[80] One promising approach 
proposed by Matsubara et  al.[81] adds an extra step during the 
synthesis using liquid handling robotics. In this approach, 
the liquid solutions in the desired quantities are transferred 
into alumina plates, which can withstand high temperatures. 

Similarly, quartz plates were used for the calcination process 
of HEOs.[69] For solid-state reactions synthesis, the work con-
ducted by Shuang et  al.[82] shows an automated, flexible way 
to fabricate bulk ceramics via precise volume controlling of 
powder materials. Song et al.[83] prepared 91 samples by dosing 
the amounts of ceramic powders to be combined, although 
each of the samples has to be transferred manually to molds 
for isostatic pressing. Using powder dosing units, Stegk et al.[84] 
fabricated up to 40 samples in parallel of the binary material 
system ZrO2Y2O3.

The studies mentioned above provide insightful engineered 
solutions that are crucial for developing a fully automated 
synthesis-characterization workflow. The production of HEOs 
films via vapor deposition is still in its early stages. However, 
successful high-throughput approaches using vapor deposition 
have been implemented for multi-component systems (up to 
4 components) and HEAs.[66,72,75,81,84–88] Therefore, these syn-
thesis paths can provide rightful approaches that can overcome 
further difficulties in developing a fully automated synthesis 
process for HEOs. Figure 6 visualizes different synthesis tech-
niques that can be potentially used to fabricate HEOs. Figure 6a 
shows a promising approach that uses automated procedures 
(via liquid handling robotics) for pouring liquid precursor 

Figure 6.  High-throughput combinatorial synthesis for multi-component systems. a) A workstation for liquid handling robotics used to  
synthesize colloidal nanocrystals. Reproduced with permission.[78] Copyright 2010, American Chemical Society. b) Robotic platform designed to synthe-
size thin films via spin coating, including an annealing oven. Reproduced with permission.[79] Copyright 2020, American Association for the Advance-
ment of Science. c) An automated platform that allows fabrication of ceramic pellets. Reproduced with permission.[82] Copyright 2019, AIP publishing.  
d) Representation of the co-deposition of multiple elements using physical vapor deposition. Reproduced with permission.[65] Copyright 2012, Elsevier 
B.V.

Adv. Energy Mater. 2021, 11, 2102355



www.advenergymat.dewww.advancedsciencenews.com

2102355  (12 of 18) © 2021 The Authors. Advanced Energy Materials published by Wiley-VCH GmbH

materials that allow the fabrication of different materials, for 
instance, colloidal nanocrystals,[78] and recently for HEOs (e.g., 
reverse co-precipitation procedures).[69] It is demonstrated that 
by precisely controlling the reaction conditions, this high-
throughput method allows to tailor and tune chemical composi-
tions (e.g., the process of doping a material), leading to effective 
optimization of physical properties concerning specific applica-
tions. Another example of using a robotic platform to accelerate 
synthesis processing is displayed in Figure  6b. The materials 
precursors are used to fabricate thin films via spin coating, the 
automated platform is capable of transporting the samples into 
an annealing furnace, and it is coupled to a module to record 
the optical spectra of each produced sample. The automated 
platform in Figure 6b is a self-driving laboratory[79] and should 
be considered as an example to follow as a fully automated fab-
rication process. A critical aspect for properly characterizing 
ceramic materials is their bulk density (e.g., sintered pellets 
free of pores and dense films). Highly dense ceramic pellets 
are desired for studying mechanical or transport (e.g., ionic 
conductivity) properties, and hence many energy-related appli-
cations. In Figure 6c, an automated platform was designed to 
fabricate ceramic pellets.[82] Although it is not guaranteed that 
the density of all such pellets is very high, it will be possible 
to screen promising candidates and focus on specific chemical 
compositions. Another way to produce dense materials is the 
fabrication of films or coatings, as shown in Figure 6d, a repre-
sentation of the co-deposition of three different elements using 
magnetron sputtering is depicted.[65] Using this configuration 
makes it possible to resolve the spatial chemical composition 
of the material and analyze gradients in the chemical compo-
sition. The drawback of film production via magnetron sput-
tering, is that the number of elements that are co-deposited is 
limited by the amount of target materials that can be physically 
placed inside the equipment.

Two key parameters essential for HEO materials are i) the 
distribution of the constituent elements should be homoge-
neous and randomly distributed, and ii) the material should 
display a single phase.[18,89] Basic characterization techniques 
have been used to screen HEOs’ chemical composition and 
crystal structure via scanning electron microscopy coupled with 
energy-dispersive X-ray spectroscopy (SEM-EDS) and X-ray dif-
fraction (XRD).[18,39,90] In addition, advanced characterization 
techniques such as transmission electron microscopy, atom 
probe tomography, inductively coupled plasma-optical emission 
spectroscopy, and synchrotron radiation have been utilized to 
further address the cation distribution in the crystal structure 
and purity of the crystal structure.[14,18,39,90]

In the field of inorganic materials, automated characteriza-
tion using XRD, SEM-EDS, and synchrotron radiation tech-
niques have been developed to screen the basic characteristics 
of multi-component bulk materials or thin films.[66,72,75,85–87] 
Although automated synchrotron radiation experiments can 
be considered the fastest way to screen the crystal structure 
of multiple samples, it is limited by beam-time availability. 
Despite the time constraints and big data analysis (which can 
be aided by artificial intelligence), the relevance of automated 
characterization is enforced by developing materials libraries, 
which are helpful for the fast identification of materials func-
tionalities of interest. For instance, high-throughput studies 

of shape memory alloys based on the compositional space of 
the quaternary NiTiCuV showed that out of 177 different 
compositions, 32 displayed a shape memory effect.[87] In the 
case of oxides, high-throughput studies on ternary metal vana-
date (MVO, MCu, Ag, W, Cr, Co, Fe) allow correlating the 
microstructural and chemical features of the oxides with their 
possible functionality in solar water splitting.[86] Using a scan-
ning superconducting quantum interference device micro-
scope, Hasegawa et al. built a magnetic material library for the 
La1−xCaxMnO3 and Nd1−xSrxMnO3 films.[92] The automation of 
an ultraviolet–visible spectrometer allowed to conduct band gap 
measurements on a series of samples, which deviate chemically 
from equiatomic HEOs.[69]

Figure  7 displays three examples of material libraries for 
binary, quaternary, and quinary oxides. The main idea of the 
material library is to provide a visual correlation of chemical 
composition, crystal structure, and an investigated property. In 
Figure  7a, a material library correlating the bandgap and the 
photocurrent density of the FeVO combinatorial thin film 
was presented by Kumary et  al., highlighting that between 54 
and 66 at% Fe the maximum photocurrent density is achieved, 
the material was obtained by using magnetron sputtering.[87] 
Matsubara et  al. evaluated the ionic conductivity in the 
Ca(Nb,Ta)BiO system, for which 288 compositions were 
fabricated. As depicted in Figure  7b, the material library pro-
vides a practical approach to visualizing the fabricated samples’ 
ionic transport properties.[81]

In Figure  7c–e, landscapes of the crystal structure, oxygen 
vacancy concentration, and bandgap allow visualizing the effect 
of 91 samples that chemically deviate from the equiatomic 
(located in the center of the diagrams) HEO (CeLaSmPrY)O2.[69] 
These landscapes show, for instance, that the majority of the 
samples tend to form a fluorite crystal structure. Meanwhile, 
the oxygen vacancy concentration and bandgap maps provide 
information to select a region of interest; for example, the maps 
allow finding which chemical compositions are needed if a 
material with a single-phase, low vacancy concentration, and 
low bandgap is desired. The visualizations mentioned above, 
presented in Figure  7, can facilitate compositional selection 
based on basic parameters or properties, for example, a spe-
cific ionic conductivity, bandgap, or the correlation between the 
desired crystal structure and property. It is noteworthy that the 
materials libraries presented in Figure  7 can be considered as 
isothermal phase-property diagrams since no extra heat treat-
ments were made on the produced samples. This means that, 
for each additional heat treatment, a new material library will 
be generated.

In powders, like most of the HEOs, the characterization 
process requires human interaction, that is, removing the 
sample from typically a ceramic crucible (necessary for high-
temperature calcination processes) to a device that can realize 
the measuring. The automation of characterization techniques 
depends on the status of the as-synthesized samples. For 
example, samples produced via magnetron sputtering (like 
in Figure  6d) can be easily set on automated X-ray diffraction 
analysis. In contrast, in the case of powders, the X-ray dif-
fraction experiment can require further engineer solutions 
(modification of synthesis processing). Indeed, a compatibility 
technically engineered solution must be designed for each 
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synthesis process to avoid human interaction and facilitate 
automated characterization measurements. In high-throughput 
experimental studies, the choices of elements or compositional 
ranges are based on research experience or predictions from 
theoretical simulations. The common trend is that experi-
mental high-throughput must be developed in combination 
with computational–theoretical design.

High-throughput techniques can be classified regarding 
their targeted scopes. Upscaling processes might not be that 

important for material exploration since today many charac-
terization techniques require only a small amount of mate-
rial. Indeed, producing larger quantities of materials might be 
a bottleneck of this technology; for example, high-throughput 
techniques presented in Figure  6a,b can produce only small 
amounts of materials. Although many synthesis techniques 
allow increasing the amount of produced sample without 
great additional efforts (e.g., a robot filling more mL or L of 
liquids into vials combined with a solid-state synthesis in 

Figure 7.  Materials libraries for multi-component oxides. a) Material libraries obtained via physical vapor deposition. ML1, ML2, and ML3 were 
obtained with different deposition conditions; the chemical composition maps show the variation of Fe content for each deposition condition,  
while the photocurrent density map highlights that between 54 and 64 at% Fe the highest photocurrent densities were found (ML3 maps). Repro-
duced with permission.[87] Copyright 2018, American Chemical Society. b) Chemical composition and ionic conductivity maps for the quaternary  
system Ca(Nb,Ta)BiO. Reproduced with permission.[81] Copyright 2020, Springer Nature. c) Crystallographic phase map, d) landscape of the 
oxygen vacancy concentration (I560/I460), and e) phase property diagram (direct bandgap) for the chemical space of 91 oxides containing three or more 
elements of the HEO (CeLaSmPrY)O2. Reproduced with permission.[69] Copyright 2021, Wiley-VCH GmbH.
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a large furnace), other conventional synthesis methods for 
ceramics, like self-propagating high-temperature synthesis 
that scales with the amount of reactants, are not so much suit-
able for high-throughput synthesis method. Therefore, the 
big strength at present of the high-throughput methods is the 
fast production of many different samples, for example, in 
a recent work, the authors claim synthesis and characteriza-
tion of ≈100 samples in 1 week, but each sample only contains 
material in the milligram range.[69] As for the introduction of 
many other upscaling processes in different fields of science, 
a general adaptation or adjustment of the existing synthesis 
procedures has to be performed to suit the requirements of 
high-throughput techniques, with the possible consequence of 
abandoning some conventional techniques. Nevertheless, tech-
niques like solid-state synthesis, nebulized spray pyrolysis, and 
physical vapor deposition are very suitable for high-throughput 
methods and allow the development of promising experiments. 
In this regard, high-throughput techniques are more suited for 
materials exploration than for large-scale synthesis. Following, 
upscaling production of the candidate material can be con-
ducted using industrial equipment.

Another bottleneck that appears especially toward the goal 
of the rational and computational design of high-throughput 
experiments is that a parallel synthesis can be conducted or 
implemented easily. Still, the characterization often has to be 
performed in a serial way (for example, X-ray diffraction). This 
change from a parallel to many serial experiments, especially 
the lack of parallel characterizations, enlarges the time factor 
necessary to perform the whole high-throughput/machine 
learning/computational design cycle. Due to the large time 
factor, less information can be collected for the machine 
learning process, and the information needed for the compu-
tational design are gathered slowly. In this regard, scientific, 
and most importantly, engineering efforts, to enable the par-
allel characterization of materials, need to be developed to pro-
vide the necessary information in a reasonable time scale for 
machine learning and, subsequently, the computational design. 
The computational design will be positively enhanced if the 
whole cycle (as in the workflow in Figure 5) is accelerated and 
the information generation increases exponentially.

5. Outlook

Due to their extraordinary mechanical, physical, chemical, 
and electrochemical properties, high-entropy materials, 
including high-entropy alloys and high-entropy ceramics 
with a constitution in equal or near-equal molarity, have 
been intensively investigated in different fields. Our review 
has highlighted in particular energy-relation properties and 
applications. Until now, the research on compositions, struc-
tures, and properties of high-entropy materials has remained 
mainly based on experiments through “trial and error” or 
“directed research” approaches. The computational design 
and high-throughput are just beginning to play a role. Based 
on the experiments, theoretical calculations would serve as 
an effective approach to clarify the relationship between the 
structures, composition, and properties and streamline mate-
rial innovation.

Over the past decades, computational-driven materials design 
has gained an increasingly predictive capacity with the advance-
ment of computer hardware and software and is playing a sig-
nificant role in accelerating the discovery of cost-effective mate-
rials. The continuous increase of computational resources and 
the development of more efficient codes enable computational 
high-throughput studies. However, high-throughput computa-
tional simulation for high-entropy materials might face the pre-
diction challenge for developing codes with complex multiscale 
models that are truly predictive. Yet, the computational power 
needed to feed a large scale of highly accurate data from first-
principles calculations is still the bottleneck. Machine learning, 
which can go far beyond the limitations of the current electronic 
structure method, seems to be a more appropriate computational 
technique, allowing the investigation of novel complex mate-
rial systems with emerging phenomena. The challenges exist in 
acquiring the enormous amount of data and assuring the quality 
of the training data, which highly determine the accuracy of the 
machine learning model.

High-throughput experimental can rapidly establish the 
material “libraries” that correlate the chemical composition and 
crystal structure with functional properties, which is particularly 
appropriate to the experimental complement of computational 
calculation and simulation. Computational design coupled with 
high-throughput and artificial intelligence seems not far to be 
a reality in the laboratory, where the production and charac-
terization of many different samples can be freely conducted, 
and failure is more tolerated. However, the high-throughput 
synthesis methods of choice or computational predictions may 
not be fully adjusted to industry requirements. For example, 
using liquid handling robotics, it is possible to synthesize ≈100 
samples in several days. However, the amount of sample is low 
(hundreds of milligram), which is by far out of industrial scal-
ability. In this context, automated high-throughput laboratories 
can be the place for selecting candidate materials, for which 
further development must be conducted for their scalability. 
Further assessment for applications and commercialization will 
benefit from implementing them together with industrial col-
laborations, which can be considered a further feedback loop 
for checking the lab research’s insufficiencies and optimizing 
the research to fit the real-world condition of an application.

From the perspective of the future development of high-
entropy energy materials, computational approaches like den-
sity functional theory and machine learning need to be further 
implemented in the research of high-entropy ceramics other 
than high-entropy alloys. In contrast to the extensive compu-
tational investigation of high-entropy alloys as electrocatalysts, 
high-entropy ceramics, which have found their electrocatalytic 
applications for the oxygen evolution reaction, deserve much 
attention and effort to further expand their energy conversion 
applications. Like the emergence of big-data-driven materials 
informatics, interdisciplinary collaborations will bring other 
breakthrough applications to overcome many bottlenecks 
encountered by conventional materials.

Further combining experiments and computational simula-
tions, especially high-throughput computational analyses and 
high-throughput experimental, will allow researchers to explore 
the phase and complex compositional space of high-entropy 
materials more efficiently while cutting the time and cost of 
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material design substantially. Predictive material research, 
thereby, serves as a fast track toward discovery and innovation. 
Moreover, functional characteristics of high-entropy materials 
are also connected with microstructure, surface condition, and 
interface constructions. High-throughput computations as 
machine learning could be trained based on a vast experimental 
database for the requirement like microstructure or mor-
phology. Other facile and rapid processes like high-throughput 
synthesis and electrochemical techniques require more invest-
ment and efforts to accelerate the identification of the materials 
of functional application. A combination of both will promote 
the development and application of high-entropy materials in 
energy storage and conversion. This particularly applies to fast-
tracking innovation in the field of novel materials with complex 
composition, such as the emerging material class of MXene.
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