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We present a spin-orbit configuration interaction program
which has been tailored for the description of the magnetic
properties of polynuclear metal complexes with partially filled
d- and f-shells. The spin-orbit operators are directly included in
the configuration interaction program based on Slater-determi-
nants. The lowest states are obtained by a Block-Davidson-type
diagonalisation. The usage of localised active orbitals enables
the construction of start vectors from tensor products of single-
center wave functions that already include spin-orbit interac-
tion. This allows for an analysis of the role and the interplay of

the different metal centres. Furthermore, in case of weak
coupling of the metal centres these tensor products are already
close to the final wave functions ensuring fast convergence. In
combination with a two-layer hybrid parallelisation, this makes
the program highly efficient. Based on the spin-orbit coupled
wave functions, magnetic D-tensors, g-tensors and temper-
ature-dependent susceptibilities can be calculated. The applic-
ability and performance of the program is shown exemplarily
on a trinuclear transition metal (CoIIVIICoII) complex.

1. Introduction

Aggregates of several exchange-coupled open-shell transition
metal spin centres show a large variety of magnetic properties,
that depend on the attributes of the individual spin centres and
how they interact. Depending on their magnetic behaviour,
such aggregates can be used for magnetic cooling,[1] informa-
tion storage, or quantum computing.[2] Quantum chemical
calculations can be very useful to understand and improve the
property one wants to achieve.[3] In the field of information
storage (single molecule magnets), for example, it is important
that the molecule keeps its magnetisation as long as possible.

The magnetic properties of these systems are usually
aroused by metal centres with partially filled d- or f-shells which
show spin and orbital degeneracies. Often, several magnetic
centres are combined in one molecule and the unpaired
electrons of these centres are coupled to almost degenerate
spin states (exchange coupling). Because of the complexity of
the electronic structure, wave function based multi-configura-
tion methods are required which allow to consider ligand-field
splittings, spin-orbit coupling, and exchange coupling with the
same accuracy. This is especially true if there are spatial near-
degeneracies within the individual spin centres. Several ap-
proaches to describe single molecule magnets are based on
complete active space self consistent field (CASSCF) reference
wave functions. The complete active space (CAS) wave
functions, which include static correlation, can qualitatively
describe the ligand-field splitting and the quasi degenerate spin
states.

CASSCF has severe deficiencies in describing exchange
couplings in multinuclear transition metal complexes. Antiferro-
magnetic couplings in particular, commonly denoted as super-
exchange,[4] are severely underestimated in many cases, often
by a factor of 2–3.[5–7] This is especially true if only a minimal set
of metal-centred active orbitals (5 active orbitals per d-block
centre, and 7 active orbitals for each f-block centre) is used.
Extending such an active space is not an option for multinuclear
complexes since then one rather quickly hits computational
limits. To improve upon CASSCF, it is usually considered
mandatory to include dynamic correlation, either by perturba-
tion theory or approaches of configuration interaction (CI) type.
However, including dynamic correlation on top of a large active
space CASSCF calculation is generally very costly.[8] For example
in Ref. [9], for the magnetic exchange coupling in the well-
studied copper acetate monohydrate molecule, the computa-
tional demanding difference dedicated CI (DDCI3) method had
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to be used to get reasonable agreement to experiment, while
multireference methods based on second order perturbation
theory failed to describe the ground-state magnetic coupling.
Moreover, exchange coupling constants with the density matrix
renormalization group method can only be obtained at a high
computational effort.[10] Thus, such methods are not applicable
if one aims for the coupling of more spin centers. Therefore we
follow a pragmatic and cost-effective strategy to improve
CASSCF exchange couplings: It has been demonstrated that
one of the main reasons for the underestimation of super-
exchange in CASSCF-type calculations is the inflexibility of the
CAS ground state wave functions to describe charge-transfer
(CT) configurations.[11] By correcting the weight of the CT
configurations in the wave functions, the modified complete
active space configuration interaction methods (MCASCI)[7] (cf.
Section 2.4) can be used to describe large exchange coupled
systems which are not accessible with traditional multi refer-
ence methods.

The inclusion of spin-orbit coupling is compulsory in many
applications. For example, g-matrix anisotropy or zero-field
splitting would not exist (or be very small) without spin-orbit
coupling. In systems where the ground state is quasi-degener-
ate in the absence of spin-orbit coupling (that is, there are
several spin multiplets with an energy spacing that is not much
larger than the strength of the spin-orbit interaction) these
close-lying states are strongly mixed when spin-orbit coupling
is switched on, such that one has to consider the whole quasi-
degenerate manifold in order to get a qualitatively correct
description of the electronic and magnetic properties.[12]

However, if one includes spin-orbit coupling in the Hamil-
tonian, its symmetry is reduced and the calculations get much
more involved. For this reason, in the common spin-orbit
configuration interaction ansatz (SOCI), one starts the calcu-
lation without spin-orbit coupling and includes this in a second
stage. To this end, one splits the Hamiltonian into a non-
relativistic (or scalar-relativistic) part bHsc and a spin-orbit part
bHSOC, and starts from CI-type wave functions that diagonalise
bHsc

[13]:

hY IjbHsc þ bHSOCjY Ji ¼ dIJEI þ hY I
bHSOC

�
�
�

�
�
�Y Ji (1)

This method is very well suited to treat quasi-degeneracies
provided that the wave functions ΨI encompass at least the
whole quasi-degenerate set of eigenstates of the scalar
Hamiltonian. This is the main drawback of the method because
this number can become very large for oligonuclear transition
metal complexes (it scales exponentially with the number of
spin centres).

As an illustrative example, the spin-orbit coupling in mono-
and polynuclear high-spin CoII compounds will be discussed.
Since the ligand-field states are most important for magnetic
properties, bHsc is usually diagonalised with an active space
containing seven electrons in the five 3d-orbitals (7-in-5), i. e.,
with 120 Slater determinants if the blocking of the different mS

states is not taken into account. Depending on the ligand field,
the ground state of bHsc for a single high-spin CoII centre can be

spatially degenerate (octahedral field) or non-degenerate
(tetrahedral field). In the octahedral case, there is a t52ge

2
g

configuration with a 4T1g ground state and the main part of the
spin-orbit coupling can be accessed in a SOCI where only the
lowest three quartet states of bHsc are considered. The SOCI
ground state is then an isolated Kramers doublet. Note,
however, that this treatment lacks higher-order spin-orbit
effects from the other ligand-field states.

In the tetrahedral case we have a e4t32 configuration with a
4A2 ground state that is well separated from all other ligand-
field states. Spin-orbit coupling affects ground-state properties
only in second order and it is necessary to include all ligand-
field states (10 quartets and 40 doublets) in the SOCI if one
wants to calculate the zero-field splitting of the quartet state.
Now in case of a compound containing three of these CoII

centres, an active space including the electrons and d-orbitals
of all three centres (21-in-15) must be used in the scalar
relativistic calculation. This leads to large CI dimensions but this
can be handled by modern full CI codes. The problem with
SOCI is different: In the octahedral case, the three quartets at
each CoII site couple to 27 spin ladders with one decet, two
octet, three sextet, four quartet, and two doublet states each.
Spin-orbit coupling of all these 324 scalar-relativistic states
(encompassing 1728 micro-states) yields four Kramers doublets
at low energies. It is quite an effort (but still possible) to
generate the CI vectors of all these states that are then used to
calculate the SOCI matrix elements. In the tetrahedral case,
however, one must include all ligand-field states. In the
trinuclear case, there are 564.000 such states (including 202.000
doublets, 188.000 quartets and 75.000 sextets), and it is no
longer possible to calculate and store the CI vectors of all these
states which is a prerequisite to perform the SOCI calculation.

An alternative approach, followed in our work and denoted
CASOCI below, is to include bHSOC directly in the Hamiltonian,
bH ¼ bHsc þ bHSOC, diagonalising both operators at the same time
and the same space as proposed by Ganyushin and Neese in
Ref. [14]. The CI dimension is larger than in the scalar case
because spin-orbit coupling mixes several mS components and
the CI coefficients are no longer real, but this does not impose
a significant burden. What one gains is that one has to
construct only a relatively small number of CI vectors if one is
only interested in the low-lying manifold, because the spin-orbit
effects are automatically included and one never has to
construct high-lying ligand-field states as in the SOCI case. In
our trinuclear CoII example with tetrahedral coordination, one
needs to converge 64 roots (micro-states) arising from the
exchange coupling of the three local 4A2 states, and in the
octahedral case one only needs 8 micro-states assuming that
spin-orbit coupling in the local 4T1g states is stronger than
exchange coupling. We use a determinant-based CI approach
and calculate the required roots efficiently via a Block-
Davidson-type diagonalisation in a spin-string basis using an
effective one-electron spin-orbit operator. This approach has
been tailored in order to calculate the magnetic properties of
molecules comprising up to three exchange-coupled open-shell
metal ions. It can be combined with the MCASCI approach in
order to treat exchange coupled systems. If the exchange
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coupling is relatively weak (which is usually the case), rather
good trial wave-functions (Davidson start vectors) for the full
system can be obtained from tensor products of single-centre
SOCI wave functions that are quite easily calculated through a
full diagonalisation of the single-centre matrix representations
of the (spin-orbit containing) Hamiltonian. In the next section,
details of the method and the implementation are described.
This includes also the extraction of zero-field splitting tensors
and magnetic properties from the CASOCI wave functions.
Finally, a demonstrative application of the new program on a
trinuclear CoIIVIICoII complex is presented.

2. Theory

2.1. Complete Active Space Spin-Orbit Configuration
Interaction for Magnetic Properties

In order to obtain thermodynamic data such as (temperature-
dependent) magnetic susceptibilities, and get information
about possible electronic relaxation pathways, several of the
lowest eigenstates of the molecular system of interest have to
be calculated. In this work, the wave functions and energies of
these electronic states are obtained in a direct CI calculation by
applying the well-established (multi-root) Davidson-Liu
method.[15,16] Spin-orbit coupling (SOC) is of paramount impor-
tance for many magnetic properties and has to be included in
the Hamiltonian. For the calculation of magnetic susceptibilities
one also needs to include the Zeeman interaction with an
external magnetic field. We use a valence-space Hamiltonian in
the space of the active orbitals, where the effect of the doubly
occupied inactive electrons are folded in through the core
energy and Fock operators:

bH ¼ bHsc þ bHSOC þ bHZeeman þ bHMCASCI (2)

where bHsc denotes the usual scalar electronic Born-Oppen-
heimer Hamiltonian, which reads

Ĥsc ¼
P

pq

P

s

Fcore
pq aypsaqsþ

1
2

P

pqrs

P

st

gpq;rsa
y
psa
y
rtastaqs þ Ecore

(3)

where p; q; ::: refer to active orbital indices. Fcore
pq includes the

interaction between the core and valence electrons, and Ecore

contains, besides the nuclear repulsion energy Enuc, the
interaction between the core electrons:

Fcore
pq ¼ hpq þ

X

i

2gpq;ii � gpi;iq

� �

(4)

Ecore ¼ Enuc þ 2
X

i

hii þ
X

i;j

2gii;jj � gij;ji

� �

(5)

(hpq and gpq,rs are the matrix elements of the one-particle
Hamiltonian and the electron repulsion integrals). The indices i,j

run over the inactive (doubly occupied in all Slater determi-
nants) orbitals. The spin-orbit and Zeeman-terms require to go
beyond the spin-free single-replacement operators and are thus
defined entirely through the spin-dependent single-replace-
ment operators ayptaqs (where t;s refer either to α or β spin):

ĤSOC ¼
P

pq
ðhsoc;x

pq aypaaqb þ aypbaqa

� �
þ hsoc;y

pq iaypbaqa � iaypaaqb

� �

þhsoc;z
pq ða

y
pa
ayqa
� aypbaqbÞÞ

(6)

bHZm ¼ bH
x
ZmB

x þ bH
y
ZmB

y þ bH
z
ZmB

z (7)

Ĥk

Zm ¼
P

p;q
ðhZm;k;0

pq aypaaqa þ aypbaqb

� �
þ hZm;k;x

pq aypaaqb þ aypbaqa

� �

þhZm;k;y
pq iaypbaqa � iaypaaqb

� �
þ hZm;k;z

pq aypaaqa � aypbaqb

� �
Þ

(8)

with ~B ¼ ðBx; By; BzÞ the external (homogeneous) magnetic field
vector. Note that we only consider (effective) single-particle
spin-orbit contributions through the vector-type matrix ele-
ments hsoc;l

pq , which however contain the effect of the two-
electron spin-orbit interaction in an averaged manner (cf.
Section 2.5. for details). The Zeeman operator in its most
general form is determined (for each cartesian component
k ¼ x; y; z of the magnetic field) by the scalar (hZm;k;0

pq ) and
vector-type (hZm;k;l

pq ) matrix elements. Note that both k; l can
have the values x,y,z, but for λ these are cartesian components
in spin space while for k these are in the real space. In the
nonrelativistic limit the Zeeman part takes a simpler form, since
spin and orbital dependent parts separate

hZm;k;0
pq ¼

mB

2 lkpq (9)

hZm;k;l
pq ¼

gemB

2 dkldpq (10)

where mB denotes Bohr’s magneton and ge � 2:00231930 is the
free-electron g-factor. As it stands, the orbital part of the
Zeeman operator depends on the origin chosen for the angular
momentum operator. This so-called gauge origin problem is a
major obstacle if the response of a wave function to the
magnetic field has to be calculated, but less so when calculating
first-order magnetic properties from wave functions obtained at
zero field: Expectation values of the Zeeman operator with
unperturbed wave functions, or matrix elements involved in
(quasi-) degenerate first-order perturbation approaches, show a
rather weak gauge dependence. For example, the magnet-
isation curve of the CoIIVIICoII complex (see Section 3.1) has
been calculated using the central V atom or either of the two
Co atoms as the gauge origin, and the plots of all three curves
superimpose.

The last contribution to the Hamiltonian, bHMCASCI, imple-
ments a shift of diagonal elements which corrects the energy of
charge transfer states, as detailed in Section 2.4.
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2.2. Direct Spin-Orbit CI in Spin String Formulation

The key step in the iterative Davidson-Liu algorithm is the
calculation of the sigma vectors[15,16] which are necessary to
update the CI vectors:

~s ¼ H~c (11)

where H denotes the CI matrix based on determinants and ~c
belongs to the set of expansion vectors constructed in the
previous iteration. In order to make efficient use of pipelining
and vector processing of modern computers, an integral-driven
(direct) algorithm has been implemented to construct the
sigma vectors ~s. The number of ~s vectors to be constructed in
each iteration is equal or similar to the number of roots to be
determined, it can be smaller close to convergence and larger
when restarting the Krylov space expansion (see below).

For a scalar Hamiltonian, the seminal work of Siegbahn[17] as
well as Knowles and Handy[18] provides us with a well-
established and efficient full CI algorithm. The (string based)
Knowles/Handy algorithm is probably the best full CI algorithm
if the number of electrons and active orbitals is of about the
same size, which is the case for typical valence-type CASSCF
calculations. Sometimes the use of spin-adapted configuration
state functions (CSFs) is advocated since this reduces the CI
dimension. This however holds to a much lesser degree if spin-
orbit interaction is included, which mixes different-spin CSFs.

Since the Knowles/Handy algorithm is well established, we
will only dwell on its concept as much as required to
demonstrate how to extend this to the spin-orbit and Zeeman
operators. Central to the algorithm is to write Slater determi-
nants as direct products of so-called α and β strings Ia and Ib
that determine which of the α and β spin-orbitals are occupied
in the determinant

jIi ¼ jIaIbi (12)

so that we can label the coefficients of a CI vector with a
compound index IaIb denoting which of the α and β strings
have to be combined to form the corresponding Slater
determinant. Let us first consider the contribution from the
aypaaqa operators

sIa Ib¼
P

p;q

P

Ja ;Jb

hpq IaIb aypaaqa

�
�
�

�
�
�JaJb

D E
cJaJb

¼
P

p;q

P

Ja

hpq Ia aypaaqa

�
�
�

�
�
�Ja

D E
cJa Ib

(13)

so the sum over Jb disappears. Furthermore, for Slater

determinants the coupling coefficients hIa aypaaqa

�
�
�

�
�
�Jai are very

sparse, for a given pair p, q and α-string Ia there is at most one
Ja with a non-zero coupling coefficient �1. It is easy to
construct a table containing this information in compressed
form, that is a table of integers RðIa; p; qÞ. These are defined
such that

R Ia; p; qð Þ ¼

Ja; if there is a Ja with Jaj i ¼ aypaaqaIa
�
�
�

E

� Ja; if there is a Ja with Jaj i ¼ � aypa
aqaIa

�
�
�

E

0; if aypaaqaIa
�
�
�

E
¼ 0:

8
>>>>>>>><

>>>>>>>>:

(14)

This table is easily constructed and can be held in memory.
In the worst case it contains about N2

act2
Nact entries for Nact active

orbitals, which is a very small number compared to the CI
dimension. The outermost loops go over Ia; Ib to make the
updates on the σ vector as memory-local as possible, and the
inner loops go over p,q. There is no loop over Ja which
(together with a parity factor) is simply RðIa; p; qÞ. We note in
passing that for different Ia, different regions of the σ vector are
updated. This allows us to distribute the work load associated
with different Ia on threads running in parallel without the need
to synchronise their memory updates. A more detailed account
of the parallelisation of the program is given in the Supporting
Information.

So far, everything is fairly well known, but it sets the scene
for calculating matrix elements of operators that change the
number of α spin electrons. Consider the contribution

sIa Ib¼
P

p;q

P

Ja ;Jb

hpq IaIb aypa
aqb

�
�
�

�
�
�JaJb

D E
cJaJb

¼
P

p;q

P

Ja ;Jb

hpq Iah aypa Jaj i Ib aqb

�
�

��
�
� Jb

�
�
�
cJaJb

(15)

Again, memory locality considerations suggest that the
outermost loops are over Ia; Ib and the inner loops are over p,q.
There is no loop over Ja and Jb since e.g. for p,q and Ia given,

there is no or only one Ja for which hIa aypa

�
�
�

�
�
�Jai a non-zero value

and that is �1. The only thing one needs are two additional
tables

RþðIa; pÞ ¼

Ja; if there is a Ja with jJai ¼ ja
y

pa
Iai

� Ja; if there is a Ja with jJai ¼ � ja
y

pa
Iai

0; if jaypa
Iai ¼ 0

8
>>>><

>>>>:

(16)

R� ðIa; pÞ ¼

Ja; if there is a Jawith jJai ¼ japaIai

� Ja; if there is a Jawith jJai ¼ � japaIai

0; if japaIai ¼ 0

8
>>><

>>>:

(17)

which are even easier to construct and store since they have
only one active orbital index. Note that R+ and R– connect
strings where the number of electrons differ by �1 so this
contribution to the σ vector leads to a mixing of Slater
determinants with different mS values.
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The lowest eigenvalues and eigenvectors of the CI matrix
are obtained with the iterative multi-root Davidson-Liu
method[15,16] which is a Lanczos Krylov-space expansion method
using a diagonal preconditioner. We have implemented both
the original Davidson preconditioner[15] as well as a modification
due to Olsen[19]. Besides the handling of complex vectors, the
special feature in the target applications is that one may need
to calculate a fairly large number of low-energy roots (Nroots) to
treat multinuclear exchange-coupled complexes. Since in each
iteration up to Nroots new vectors are added to the Krylov space,
the expansion vectors can produce quite some memory
demand, and one has to restrict this number. If adding the new
expansion vectors would expand the Krylov space beyond this
limit, one has to “collapse” the space and continue with the
Nroots best linear combinations of expansion vectors, augmented
by the new expansion vectors. Our observation is that the
Davidson convergence is slowed down if the Krylov space is
restricted to less then 3Nroots expansion vectors, and our
standard setup is to limit the Krylov space to 4Nroots expansion
vectors. Note that in most iterations, the number of σ vectors
that have to be constructed simultaneously is up to Nroots, but in
an iteration following a “collapse” it can be up to 2Nroots.

2.3. Start Vectors for the Direct CI Diagonalisation

Being an iterative method, the convergence of the Davidson
procedure benefits from well-chosen starting vectors, that is,
trial vectors that have a significant overlap with the converged
solutions. Apart from that, a bad starting guess may lead to
convergence to excited states that are not desired in the
calculation. Common procedures include first solving the
eigenvalues problem in a subspace of important configurations,
usually chosen by absolute values of diagonal elements of the
Hamilton matrix, and then projecting them onto the full space
in order to obtain a set of starting vectors. However, this
approach does not account for strong coupling between
different determinants. We found that these approaches have
very limited success when treating oligonuclear complexes, and
that it is vital here that the starting vectors to a fair degree span
the space of the low-energy solutions sought.

If there was no couplings between the metal centres, the
total wave function would be the tensor product of the single-
centre multiplets, at least in the absence of internal redox
reactions where one electron jumps from one centre to the
other.[20] These tensor products span, to a good approximation,
the space of the low-energy wave functions of the oligonuclear
complex with weakly interacting metal centres. To be able to
construct the single-centre multiplets, the orbitals must be
localised on the metal centres. For a single centre, the full CI
dimension is rather small (d 5 case: dimension 252, f 7 case:
dimension 3432) therefore the fragment CI wave functions can
be calculated by conventional CI matrix diagonalisation. For the
CoII d 7 case with tetrahedral coordination outlined above, the CI
dimension is 120. There will be four low-energy micro-states
(the 4A2) well separated from all the others, and the tensor
product of these four micro-states on all three centres yields 64

wave functions which already have a large overlap with the
final 64 low-energy solutions.

We want to stress that using these tensor product start
vectors is a key factor to achieve fast and smooth convergence
in the direct CI iterations. Another view to look at these start
vectors is to note that their number matches the number of
desired roots, and that they do not contain contributions from
wave functions with local ligand-field excitations.

2.4. Modified CASCI for an Efficient Treatment of Exchange
Coupling

When calculating magnetic properties of oligonuclear transition
metal complexes a decent description of the exchange coupling
is quite important, since errors made here can lead to a
calculated ground state multiplet with the wrong total spin.
While the magnetic properties of isolated centres are often
reasonably well described at the CAS level, this is not at all the
case for exchange couplings. The role of different contributions
to the magnetic exchange coupling has been summarised in a
recent review of Malrieu et al.[21] With CAS-type wave functions
that miss dynamical correlation, one usually gets much too
small (often by a factor of 3) antiferromagnetic contributions to
the exchange couplings.[22] However, sophisticated calculations
including dynamic correlation effects on multinuclear exchange
coupled metal complexes are rather scarce because of the
massive computational requirements. One of the reasons for
this is that dynamical correlation is usually taken into account
before one includes spin-orbit coupling, which leads to the
spin-orbit CI procedure whose problems for oligonuclear
complexes have been outlined above.

An alternative approach to a reasonable description of the
magnetic exchange coupling is the modified CASCI (MCASCI)
method.[7] This pragmatic and cost-effective method is rooted in
the observation that the coupling of the metal centres mixes
highly excited charge-transfer states into the low-energy
manifold, and that this mixing makes an important contribution
to the exchange interaction. Since the orbital relaxation that
would result if one electron jumps from one metal centre to the
other cannot happen in the CAS-type wave function, the
charge-transfer states are much too high in energy, therefore
their mixing with the low-energy manifold (and hence the
exchange interaction) is underestimated. Using valence orbitals
that are localised on the metal centres, one can easily identify
the charge-transfer Slater determinants and shift the corre-
sponding diagonal element of the CI matrix by an independ-
ently calculated single-centre relaxation energy Δ. While not
being perfect, the MCASCI method often greatly improves
exchange couplings at virtually no extra cost in the CASOCI
calculation itself.

The non-trivial part of the MCASCI approach is the
calculation of the relaxation energies Δ for all possible “jumps”
of an electron from one centre to another. In practice, these
values are obtained in a series of open-shell Hartree-Fock or
state averaged CASSCF calculations either on mono-nuclear
model complexes or on systems where all but one spin centre
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is replaced by a suitable diamagnetic ion, and to calculate the
amount of orbital relaxation energy when adding or removing
one electron from the open-shell centre. The relaxation energies
do not need to be very accurate, they just need to be in the
right energy range. To our experinece, the approach works
better if the orbitals for the full complex are obtained for the
high-spin states. Problems can occur when the charge transfer
states are very low in energy and in cases where the high-spin
states themselves can be stabilised by charge transfer.

2.5. Relativistic Corrections and Spin-Orbit Hamiltonian

Without spin-orbit interaction, all g values would be isotropic,
and there would be no zero field splittings of multiplets.
Therefore, taking spin-orbit coupling into account is of prime
importance when calculating magnetic properties, even if 3d
metals are involved for which scalar relativistic effects are of
lesser importance. For those systems, it is usually sufficient to
use the non-relativistic scalar Hamiltonian together with the
leading-order Breit-Pauli spin-orbit operator, which implies that
nonrelativistic orbitals are used. To avoid explicit treatment of
two-electron spin-orbit integrals in the CI calculation, an
effective one-particle spin-orbit mean-field (SOMF) operator[23,24]

is used, which contracts the two-electron spin-orbit integrals
with a spin-free density matrix from a reference configuration.
Note that without the two-electron part of the SOMF operator,
the spin-orbit operator would not contain any shielding of the
nuclear potential by the electrons, therefore it cannot be
neglected. A systematic comparison of the SOMF approach, as
opposed to using the full microscopic two-electron spin-orbit
operator, has been presented recently by Netz et al.[25] For
mononuclear 3d complexes, the deviation for g matrices was
negligible, and for the D tensors it was (with one exception)
significantly below 10%.

In compounds with elements heavier than 3d metals, scalar-
relativistic effects have to be included already in the orbital
optimisation step. Here our default option is the Douglas-Kroll
Hamiltonian,[26] but it is also possible to use quasirelativistic
effective core potentials.[27] The (scalar) Hamiltonian used in the
orbital optimisation step, together with the corresponding spin-
orbit part, is then used in the CASOCI calculation.

2.6. Implementation

The CASOCI program itself is a stand-alone program which
needs one- and two-electron matrix elements in the basis of
the localised active orbitals. These integrals are calculated with
the integral code from TURBOMOLE[28,29] but could also be
calculated with any other integral code. The molecular orbitals
coefficients and the specification of active and inactive orbital
sets have to be provided to the integral code, and then all
necessary quantities such as the core Fock-operator Fcore

pq , the
core energy Ecore, the two electron integrals gpqrs, and the spin
orbit and Zeeman matrix elements hsoc

pq , and hZm
pq can be

calculated and stored. The CASOCI program only needs these

matrix elements, whose number is very small since only active
orbital indices are involved. So far the program has been used
with CASSCF orbitals obtained either with MOLPRO[30] or with
the program of Meier and Staemmler[31], where we have
programmed an interface to store orbitals and basis set data in
TURBOMOLE format.

2.7. Magnetic Properties

In recent years, methods based on ab initio wave functions
have been established as standard tools in single molecule
magnetism.[3] In this respect, molecular orbital and generally
wave function analyses together with occupations or energies
can be very helpful to interpret and finally understand magnetic
data.[32] However, to directly compare to and finally understand
the experiment, it is necessary to be able to compute magnetic
properties from ab initio data. Within single molecule magnet-
ism, these properties generally divide into i. thermodynamic
ensemble properties and ii. effective Hamiltonian parameters.

2.7.1. Magnetisation and Susceptibility

In the CASOCI calculation, there is a single molecule. Measure-
ments of magnetisation and magnetic susceptibilities are made
on powder samples which are in thermal equilibrium with the
environment, so we have to consider the free energy of an
ensemble of randomly oriented molecules. Instead of orienting
the molecule in all possible directions, we can consider a
molecule in a fixed orientation and average over all possible
directions of the magnetic field. Boltzmann and rotational
averaging then leads to a free energy expression as function of
the magnitude B of the magnetic field and the temperature T:

F B; Tð Þ ¼ �
kT
4p ln∫

P

i
exp � Ei B~nð Þ

kT

� �
sin qdqd� (18)

with k the Boltzmann constant and ~n a unit vector pointing to
points on the unit sphere:

~n ¼ nx; ny; nz

� �
¼ cos� sinq; sin� sinq; cosqð Þ (19)

In principle one has to sum over all eigenstates of the
molecule so the requirement is that the CASOCI spectrum
encompasses all thermally accessible states. Note that the free
energy only depends on the size of the magnetic field, while
the energy levels of the molecule in a fixed orientation depend
both on the size and direction. The (macroscopic) magnet-
isation M is now simply obtained as

M ¼ �
@F
@B ¼ �

1
4p
∫
X

i

pi
@Ei

@~B
~n sinq dqd� (20)
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pi ¼
exp � Ei B~nð Þ

kT

� �

P
j exp � Ej B~nð Þ

kT

� � (21)

where we have introduced the relative Boltzmann populations
pi which depend on both magnetic field and temperature. In an
isotropic sample, the magnetisation (vector) is necessarily
parallel to the applied magnetic field so we get a scalar quantity
here, and the sign of M denotes whether the magnetisation is
parallel or anti-parallel to the applied field.

The magnetic susceptibility is defined as the second
derivative and we get

c ¼
@M
@B ¼ �

@2F
@B2

¼ �
1

4p∫
1
kT

P

i
pi

@Ei
@~B
�~n

� �
P

j
pj

@Ej
@~B
�~n

 !(

�
1
kT

P

i
pi

@Ei
@~B
�~n

� �
@Ei
@~B
�~n

� �

þ
P

i
pi ~n �

@2Ei
@~B2 �~n

� ��

sin qdqd�

: (22)

The last term involving the second derivatives of the
CASOCI energies w.r.t. the magnetic field contributes diamag-
netism and temperature-independent paramagnetism. This
term is not included in our calculations as we cannot calculate
the response of the orbitals to the applied magnetic field.
Technically, we construct the matrix elements of the field-
dependent Hamiltonian in the space of our CASOCI wave
functions and diagonalise the matrix representation to obtain
the field-dependent Ei, while their derivatives are obtained as
expectation values of the resulting (field-dependent) wave
functions with the Zeeman operator. The integral performing
the rotational averaging is evaluated by numerical quadrature
on a unit sphere. We use Lebedev integration grids[33] which
provide a quite regular triangularisation of the sphere. A 110-
point grid is sufficient in all cases studied so far. Note that the
integrand is symmetric w.r.t. inversion, so for any pair of grid
points related by inversion, only one needs to be treated
explicitly (this reduces the effective number of grid points to
55).

Experimental measurements are usually performed in mag-
netic fields of about 0.1 to 1 Tesla, in this region the magnet-
isation is nearly linear in the magnetic field such that M=B and χ
are numerically very close. The ratio M=B is measured in
experiments with a constant magnetic field where one meas-
ures the ratio of the magnetisation of an unknown and a
reference sample, while χ (the derivative of M) is measured
when one modulates the applied magnetic field and measures
the modulation of the magnetisation. This subtle difference is
only visible at very low temperatures when saturation sets in.

2.7.2. Spin Hamiltonian Parameters

For the analysis of magnetic properties effective Hamiltonian
theory is usually employed, e.g. in order to characterise,
compare and assess the spectroscopic signatures from electron
paramagnetic resonance (EPR) experiments. In this approach,
the measured data is modelled by means of the properties of a
parametrised model Hamiltonian acting solely on pseudo-spin ~S
functions. E.g., for single ion magnets or in the strong exchange
limit[20]

Ĥ~S ¼
b~S � D � b~Sþ mB

~B � g � b~S: (23)

Here, the single-ion D-tensor describes the splitting of a
pseudo-spin multiplet at zero-field, the g-matrix parametrises
the coupling to an applied magnetic field ~B. When no high
resolution high-field EPR data is available, the parameters in
Eq. (23) are usually obtained from fitting the (rather featureless)
temperature dependence of the magnetic susceptibility, and
from symmetry arguments. In these cases it is very helpful if
such parameters can be extracted from ab initio wave functions.
However, it has to be kept in mind that such a mapping
between ab initio and spin Hamiltonian wave functions requires
that one starts with a selection of ab initio micro-states forming
a multiplet, and this is only possible if there is a selection of
2~Sþ 1 ab initio micro-states Ψm with energies Em that are close
in energy and well separated from all other states. What is
needed then to extract spin Hamiltonian parameters are these
energies as well as three matrices containing the matrix
representation of the cartesian components of the Zeeman
operator, namely

Hk
mn ¼ Ym Ĥk

Zm

�
�

�
�Yn

� �
; k ¼ x; y; z (24)

Magnetic axes and g-values can be computed from the
Abragam-Bleaney tensor G ¼ ggT [20]. Based on the ansatz from
Gerloch and McMeeking[34], a straightforward extension to
arbitrary pseudo-spins has been given by Chibotaru:[35]

Gkl ¼
1
m2

B

3
~S ~Sþ 1
� �

2~Sþ 1
� �

X

m;n
Hk

mnH
l
nm (25)

Note that G is invariant to an arbitrary unitary trans-
formation of the multiplet functions Ψm. Diagonalising G yields
the magnetic axes and squares of g-factors.

In order to extract the D-tensor and the g-matrix from ab
initio data, one has to start with a mapping of unitary linear
combinations of the ab initio multiplet functions onto eigen-

functions of the pseudo-spin operator b~Sz , denoted as ~S; ~M
�
�

�
,

conforming to the Condon-Shortley phase convention

~S; ~M
�
�

�
! ~YM ¼

X

m

UMmYm (26)
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with a 2~Sþ 1
� �

� 2~Sþ 1
� �

unitary matrix U. One can then
construct the zero-field and Zeeman Hamiltonian matrix
elements in the basis of the ~YM and determine the spin
Hamiltonian parameters such that the ab initio and spin
Hamiltonian matrix elements match as good as possible[36]. In
the general case, an exact match can only be obtained if one
extends the spin Hamiltonian by higher-order (Stevens) oper-
ators. The parts of the spin Hamiltonian involving D and g are
the lowest-order terms of such an expansion. Determining the
parameters of these lowest-order terms is equivalent to
obtaining a least-squares match of the non-zero matrix
elements of the spin Hamiltonian with the ab initio matrix
elements. Expressions how to calculate D and g from the zero-
field and Zeeman matrix elements are given in Ref. [36].

The results of this procedure depend on the mapping
chosen (matrix U). If one wants to treat a Kramers doublet well
separated from all other states using a pseudo-spin ~S ¼ 1

2, it is
not clear from the outset which linear combination of the two
degenerate ab initio micro-states is “spin up”. For cases with
very weak spin-orbit splitting a mapping may be chosen which
produces approximate eigenfunctions of the true (microscopic)
spin operator Ŝz , for lanthanides the atomic total angular
momentum operator Ĵz can be used instead.

A universal approach for obtaining an unique mapping has
been given by Chibotaru.[35] In this ansatz, one first defines a
cartesian reference frame (often the magnetic axes of the G-
tensor are used) and diagonalises the Zeeman operator for a
magnetic field in the z-direction of the reference frame, and
sorts the resulting eigenfunctions by their Zeeman interaction.
The rationale for such a mapping is that it produces a g-matrix
with gzx ¼ gzy ¼ 0 and gzz > 0. At the end, each mapping leads
to different D;g that are equally “true” if it comes to
reproducing the physics, but what one wants are spin
Hamiltonian parameters that one can also interpret, and the
behaviour of a pseudo-spin with very large off-diagonal g-
matrix elements is against our intuition which tells us that a
magnetic field should align a spin in its direction.

The diagonalisation has not yet specified the (relative)
phase of the functions ~YM. To fix the phases, one considers for
M ¼ � ~Sþ 1; . . . ; ~S the matrix elements

XM ¼ ~YM Ĥref;x
Zm

�
�

�
� ~YMM � 1

� �
(27)

YM ¼ ~YM Ĥref;y
Zm

�
�

�
� ~YMM � 1

� �
(28)

for the Zeeman operators for a magnetic field in the x and y
direction of the reference frame. One then tries to choose the
relative phases such that the matrix elements XM are on the
positive real and YM are on the positive imaginary axis in the
complex plane. XM real leads to gxy ¼ 0 and XM > 0 implies
gxx > 0, while YM purely imaginary yields gyx ¼ 0 and the
imaginary part being positive makes gyy > 0 (see Eq. (33) in Ref.
[36]). Of course, with a single phase factor one cannot fulfil all
four conditions, so one can, for example, choose the phase as
to minimise =ðXMÞ

2 þ <ðYMÞ
2 and fix the sign to make < XMð Þ or

= YMð Þ positive, whichever is larger in absolute value. In normal
cases (with positive g values), this mapping will produce a g-

matrix where the diagonal elements are positive, gzx and gzy are
zero, and gxy and gyx are small.

3. Results

3.1. Zero-Field Splitting in a Sulfur-Bridged Co-V-Co Complex

To test the functionality of the new CASOCI implementation,
we investigated the zero-field splitting in a trinuclear CoIIVIICoII

complex [Co2V(SPh)8]
2� shown in Figure 1, the coordinates are

given in Section S2.1 in the Supporting Information. This quasi-
centrosymmetric system was studied before by means of
mono- and binuclear model complexes using the standard two-
step SOCI approach, for more details see Ref. [32].

Without spin-orbit coupling, all three ions have 4A ground
states arising from the d 7 configuration in tetrahedral coordina-
tion of CoII and the d 3 configuration in octahedral coordination
of VII, respectively. The next states follow at 2600 cm� 1 for CoII

and at 17000 cm� 1 for VII. The corresponding active space is
constructed from 17 electrons in 13 orbitals (five 3d orbitals at
each CoII and three 3d orbitals at VII). Because of the energetic
separation from ligand-field excited states, magnetic anisotropy
in this complex is generated by second order spin-orbit
coupling. While the contribution from quasi-octahedral VII is
negligible, at least the seven quartet states corresponding to
the 4F state of the free ion have to be considered for each
tetrahedral CoII, yielding 4 � 7 � 4 � 4 � 7 ¼ 3136 micro-states that
need to be considered in a SOCI. At the time of our former
study,[32] such a calculation was not possible and computations
in smaller subspaces, e.g., the first spin-ladder (64 micro-states)
were futile. Consequently, we deduced the electronic structure
of the trinuclear complex from the spin-Hamiltonian

Figure 1. Trinuclear CoIIVIICoII system used to test the functionalities of the
CASOCI program. For visualisation, VMD[40] has been used. The active space
contains 17 electrons in 13 orbitals. Co: magenta, V: blue, S: yellow, C: black,
H: white.
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Ĥ~S ¼ � 2J b~S1 �
b~S2 þ

b~S2 �
b~S3

� �

þ D Ŝ2
z;1 þ Ŝ2

z;3

� �

(29)

(with indices 1,3 referring to CoII and 2 to VII) whose parameters
were obtained from mono- and binuclear model complexes.
The result was a well-separated pseudo-quartet state which is
split by zero-field splitting into two Kramers doublets in
agreement with experimental results. Thus the magnetic
properties at low temperatures of this compound are domi-
nated by 4 spin-orbit coupled states only.

With the new CASOCI implementation, such a calculation is
possible to carry out for the whole trinuclear complex and has
thus been performed using def2-TZVP basis sets for Co, V and S
and def2-SVP for C and H.[37] Orbitals were obtained from a
state-averaged CASSCF calculation for 7 � 1 � 7 ¼ 49 decet states,
originating from coupling the 4F ground states of two CoII ions
with 4A of VII. The energies of the CASSCF states are given in the
Supporting Information, Section S2.2, the corresponding active
orbitals in Figure S2. The CASOCI calculations were performed
with and without the MCASCI approach. In the latter, a
relaxation energy of 0.4 Hartree for charge transfer between Co
and V was used. All energies obtained with the MCASCI
approach are denoted as'+ Shift’ in the following. The CASOCI
subspace included 4 � 4 � 4 ¼ 64 micro-states from the
4Aþ4 Aþ4 A ground manifold, start vectors were obtained from
the tensor product states, information about the zero-field
splitting of the individual centres was thus obtained simulta-
neously in this computation and is listed, together with the

(very similar) data from the calculations on mono-nuclear model
complexes[32] in Table 1. The relative energies of the 64 lowest
states for the different approaches are summarized in the
Supporting Information, Section S2.3. Results of the subspace CI
are given in Section S2.4 of the Supporting Information
together with results on complexes were two metal centers
were substituted either by the diamagnetic MgII or ZnII ions. The
CASOCI+Shift energies are plotted in Figure 2 against pseudo-
spin multiplicities. The lowest states reflect the spin-ladder
spectrum generated by the spin Hamiltonian Eq. 29 fairly well,
confirming the second-order nature of spin-orbit coupling in
this complex. From around 2500 cm� 1 and above, such a
mapping is more difficult due to mixing with the lowest ligand-
field states (indicated by the dashed line). The convergence
behaviour of the CASOCI calculation again demonstrates the
advantage of using tensor product states. Before the Davidson
procedure, the energy splitting of these 64 states is caused by
spin-orbit coupling only and is in the range of 700 cm� 1.
However, already after the first iteration, the states are
reordered due to exchange coupling and show the typical spin-
ladder spectrum with a span of about 21J � 4500 cm� 1 with
and 1300 cm� 1 without shift, respectively. Note that in this
complex, we have a rather special case with an exceptionally
strong exchange coupling (Jcalc ¼ � 214:3 cm� 1, Ref. [32]) be-
tween adjacent centres and at the same time very low-lying (
� 2500 cm� 1) single-centre ligand-field excited states, therefore
the latters can intrude into the CASOCI states in the MCASCI
approach, causing convergence problems for the highest roots.
The 4 lowest micro-states, however, which dominate the
magnetic properties at low temperatures, converge in only 27
Davidson iterations which is quite rapid considering the strong
exchange coupling. The zero-field splitting parameters com-
puted from the ab initio wave functions are D ¼ � 28:72 cm� 1,
E ¼ 1:44 cm� 1 with MCASCI shifts and D ¼ � 26:42 cm� 1,
E ¼ 2:41 cm� 1 without. These results are close to the previously
reported values obtained by fitting the temperature depend-
ence of the magnetic moment obtained experimentally
(D ¼ � 26:99 cm� 1, E was not considered in Ref.[32]).

The magnetic powder data was computed from the CASOCI
approach by equation 22 using the lowest 18 states and is
depicted in Figure 3. As can be seen in Figure 2 and Section
S2.3 in the Supporting Information, there is an energy gap after
18 states and the higher states should not contribute to the
magnetic susceptibility up to room temperature. The calculated
magnetic susceptibility is larger than the experimental one at
all temperatures. For further analysis of the influence of
different parameters, a one-centre and a three-centre spin
Hamiltonian were used respectively. Details are summarized in
the Supporting Information, Section S2.5 and Figure S3. In the
one centre Hamiltonian, g1 =2.31 (2.32), g2 =2.34 (2.40), g3 =

2.87 (2.91) was obtained for the lowest quartet state. The
numbers in parentheses refer to CASOCI without MCASCI shifts.
For the three-centre model, the values for CoII are taken from a
mono-nuclear model where VII and one of the CoII were
diamagnetically substituted by MgII.

Compared to other systems, the usage of the MCASCI
approach did not improve the results. It seems that in this case

Table 1. Zero-field splittings (cm� 1) of the trinuclear CoIIVIICoII system. D is
obtained as half the energy difference between the Kramers doublets. In
Ref. [31], a scaled nucleus approach with a scaling factor of 0.61 was used
for the spin-orbit integrals.

DCo DV DCo2V Reference
� 31.6 0.05 � 29:9a [31]

� 27:1b 0:01b � 26.8 this work (CASSCF)

a From projection of three-center onto single-ion spin Hamiltonian. b From
subspace SOCI (see Table S4). The sign of D cannot be obtained from the
subspace SOCI.

Figure 2. CASOCI energies (with shift) of the trinuclear CoIIVIICoII system,
mapped to pseudo-spin multiplicities. Above � 2600 cm� 1, such a mapping
is difficult due to mixing with ligand-field excited states.
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with the very strong coupling along the metal-metal axis, the
antiferromagnetic coupling is overestimated by MCASCI. The
slight increase of χT at higher distances is caused by higher
lying states and is better described by the calculation without
shift. Using the spin Hamiltonian parameters obtained in the
way described in Section 2.7, the susceptibility is similar to the
calculated values. However, a global reduction of the three
components of g for the quartet ground state in the one centre
model or for the ground state of CoII in the three-centre
Hamiltonian with a factor of 0.9 significantly improves the
agreement with the experimental data.

Note that in Ref. [32], the optimal fit of the temperature
dependence of the effective magnetic moment was obtained
with a very small isotropic g-values of 1.83 for VII and 2.12 for
CoII, respectively. In particular the g-factor for VII is in disagree-
ment with the calculations where a g-factor very close to ge is
obtained as expected for a d3 system in quasi-octahedral
environment.

Within the giant spin approximation (strong exchange limit),
one obtains

gCoVCo ¼ 1:6 gCo � 0:6 gV (30)

from the spin projection coefficients for the lowest S ¼ 3=2
state.[38] Therefore, setting gV ¼ 2:0 and gCo ¼ 2:19 leads to
almost the same molecular g value, and adjusting J ¼ � 75 cm� 1

then yields almost the same temperature dependent suscepti-
bility as the original fit of the experimental data (see Figure 3).
With these parameters also the slope of the curve in the low
temperature regime is well described, while the curve obtained

from the ab initio data has a slightly different slope in this
regime which seems to be connected to the anisotropy of the
calculated g-factor.

However, the calculated anisotropy of g in the mono-
nuclear CoII model is in the same range as the values obtained
in Ref. [39] where the magneto-structural correlation of [Co
IIðSPhÞ4�

2� is investigated and CASSCF and n-electron valence
state perturbation theory (NEVPT2) results are compared,
indicating only a small decrease of the zero-field splitting and
of the g-factor anisotropy. Taken into account that a minimal
active space was used in a purely ab initio approach, and also
uncertainties in the experimental measurements cannot be
excluded, the agreement between experiment and theory is
reasonably well.

4. Conclusion

We present a new SOCI program, termed CASOCI, which is
designed for the description of magnetic properties of
oligonuclear 3d- and 4 f-metal compounds. In the CASOCI
program, spin-orbit interaction is directly included into the
diagonalisation, coupling all micro-states in the CAS. This
approach bypasses the necessity of the prevalent two-step
procedure to compute a whole set of scalar quasi-degenerate
states before the SOCI. In oligonuclear complexes, this number
grows exponentially, whereas there are typically only a few low-
lying spin-orbit coupled states, thus favouring the one-step
approach. Our approach is accompanied by the MCASCI ansatz
for treating strongly exchange coupled systems efficiently.

Figure 3. Magnetic susceptibility based on 18 CASOCI states without shift (blue line) and with shift (black line) of the trinuclear CoIIVIICoII system. Experimental
values (black crosses) taken from Ref. [31], 3-centre Hamiltonian with gCo ¼ 2:19; gV ¼ 2:00; J ¼ � 75 cm� 1(magenta line).
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In contrast to Ganyushin and Neese in Ref. [14], our program
is based on Slater determinants, which has the advantage that
the corresponding algebra is ideally suited for modern com-
puters. The efficiency of the program for oligonuclear com-
plexes is further increased by the use of spin-orbit coupled
tensor product start vectors which solve the magnetically
uncoupled problem and are easily generated at the beginning
of the calculation, with the additional benefit of giving insight
into the zero-field splitting of the individual centres.

To arrive at a program valuable for application calculations,
the functionalities of the program were extended to compute
magnetic properties directly from the ab initio wave functions.
To demonstrate this, a trinuclear CoIIVIICoII complex was chosen
as example. Using the conventional two-step procedure would
require to couple more than 3000 scalar ligand-field states,
while the magnetic properties are well described by a much
smaller number of spin-orbit coupled states, a typical example
where the the one-step approach is well-suited. The D-tensor
and g-matrix of the lowest pseudo-quartet, as well as magnetic
powder data for a temperature up to 300 K was obtained based
on ab initio data using the new program.

Though we have shown only results for d-element com-
pounds, the program was successfully used on systems where
one of the magnetic centers is an organic radical ligand, and on
compounds with 4f centres.[40] For 4f -compounds, configura-
tion-averaged methods like restricted open shell Hartree Fock
(ROHF) are an excellent and cost-effective alternative to state-
averaged CASSCF for the optimisation of the molecular orbitals.
This opens the possibility for treating extended systems
containing weakly coupled lanthanide ions, that have recently
gained popularity in the single-molecule magnetism commun-
ity due to their potentially highly axial magnetic anisotropy.

Supporting Information

Supporting Information is available free of charge (PDF docu-
ment). Supporting information contains a detailed description
of the hybrid OpenMP and MPI parallelisation of the CASOCI
program including a performance measurement, as well as
computational details about molecular structures, active orbi-
tals, CASSCF and CASOCI total energies, and simulation of
magnetic properties of the CoIIVIICoII complex.
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