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Abstract

The nonlinear mechanical behavior of viscoelastic materials is modeled based

on the Schapery integral model containing internal variables. In this context, a new

approach for the strain-dependent material properties is introduced considering a

one-dimensional formulation with strain-dependent nonlinear functions for an oscil-

latory load case. In addition to the viscoelastic storage and loss modulus, the higher

order harmonic oscillations in the stress response are computed and compared to

experimental data from Fourier transform rheology of Polyamide 6 (PA6). The com-

parison reveals a good agreement between the predictions of the nonlinear model

and the experimental data for the higher harmonic intensity I2=1.
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1 | INTRODUCTION

The application of polymer-based material systems in the
automotive and aircraft sectors has increased significantly
in recent years due to their potential as low-weight mate-
rials, combining low weight with high specific stiffness and
strength, their processability, and their relatively low cost.
Discontinuous and continuous fiber reinforced composites,
for instance, allow to construct and design structural parts
that are tailored to specific industrial applications.1 In such
composites, thermosets and thermoplastics are often used
as polymeric matrix. In terms of thermoplastic polymers,
the solid material behavior is characterized by pronounced
thermo-viscoelastic material properties.2–4 Weidenmann
and co-workers investigated the influence of the strain-rate
on the elastic modulus for a long fiber reinforced compos-
ite.5 Extensive work was published to experimentally char-
acterize pure and reinforced polymers in terms of their

strength,6 damage,7 or crack behavior.8 Moreover, the influ-
ence of temperature,9 crystallization,10 and aging11 on the
material properties has been investigated. There are many
approaches to describe the thermomechanical behavior of
thermoplastic-based composites. Attempts have been
made to predict the effective viscoelastic properties of fiber
reinforced composites,12 the effective thermoelastic
properties,13 or the damage behavior.14

The material behavior of viscoelastic materials is in
general rate- and temperature-dependent. In linear viscoelas-
ticity, the Boltzmann-superposition that describes the stress–
strain relationship by a single integral is usually applied.15

Numerous approaches exist for modeling nonlinear viscoelas-
tic material behavior in the solid state. According to Brinson
and Brinson,15 common approaches are given by nonlinear
mechanical models that introduce nonlinear spring and
damper elements, or nonlinear creep power law approaches.
To fit experimental data obtained by one-step uniaxial creep
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tests or tests with a constant strain-rate, multiple- or single-
integral approaches were introduced. Since the Boltzmann-
superposition is no longer applicable in the nonlinear regime
in case of multiple step stress, varying stress, or multiaxial
stress loadings, the multiple- as well as the single-integral
approaches integrate modified superposition concepts. Green
and Rivlin16 developed an integral approach, in which the
stress–strain relation is expressed as a sum of multiple
integrals. Leaderman17 developed a nonlinear viscoelas-
tic single-integral model as an extension of the linear
Boltzmann-superposition. Applications of these models
can be found for different polymeric materials.18,19

However, there is no distinct standard approach for
modeling nonlinear viscoelasticity.

The time-dependent stress response of polymers under a
sinusoidal strain becomes nonlinear under sufficiently large
strain amplitudes.20 Nonlinearity here means that the stress
response contains beside sine and cosine terms at the funda-
mental angular frequency, ω, also higher order terms at
integer multiples of ω, the so-called higher harmonics.
Consequently, if the strain is a sine, the stress is not only
a sine shifted by the phase angle. The storage E0 and loss
E00 moduli lose in parts their physical meaning as charac-
teristic linear material properties.20,21 The nonlinear
contributions can be detected and quantified with high
precision via Fourier transform analysis of the stress.

In this work, we first motivate the necessity of nonlinear
viscoelastic modeling of thermoplastics based on isochronous
stress–strain curves for neat Polyamide 6 (PA6, Firestone,
CLM200-001). Following Section 2, the nonlinear viscoelastic
material model based on the Schapery model is introduced
and the nonlinear approach for the stress–strain relation and
the evolution equation are presented in Section 3. One-
dimensional elongational strains are considered. A compari-
son of the proposed nonlinear viscoelastic approach with
experimental results for the storage and loss modulus as well
as for higher harmonics is presented and discussed in
Section 4, followed by concluding remarks in Section 5.

2 | ISOCHRONOUS STRESS–
STRAIN CURVES

The question arises whether the material response of a poly-
mer under certain loads is linear or nonlinear. In terms of a
linear constitutive response, the material response is inde-
pendent of the applied strain load. If the viscoelastic mate-
rial response depends not only on time but also on the load
applied, the material behaves nonlinearly. The nonlinear
viscoelastic behavior of polymers can be determined by
creep (relaxation) tests at different stress (strain) levels.15

The stress is then depicted over the strain at different times.
When the so-called isochronous stress–strain curves at

different times are linear, the material behaves viscoelastic
linearly. In contrast, when the isochrones begin to deviate
from linearity at a certain stress level, the material shows a
nonlinear viscoelastic behavior.

In this work, creep tests at different stress levels are
performed for Polyamide 6 (PA6) using the dynamic-
mechanical analysis (DMA) testing device GABO
Eplexor® 500 N. In Figure 1, the isochrones for PA6 at
different times t¼ t0, t1, t2, t3, t4, t5f g with t0 ¼ 50s,
t1 ¼ 150s, t2 ¼ 250s, t3 ¼ 350s, t4 ¼ 450s, t5 ¼ 550s, and for
different stress levels σ¼ 3,5,8,10f gMPa are depicted.
From this diagram, the isochronous stress–strain curves
for a specific time leave the linear slopes for increasing
stresses indicating a nonlinear viscoelastic response.

3 | NONLINEAR VISCOELASTIC
MATERIAL MODEL

3.1 | Schapery model

For linear viscoelastic material behavior, the time-depen-
dent stress response σ tð Þ to a uniaxial strain excitation ε tð Þ
is given by a convolution integral over the viscoelastic
relaxation modulus and the derivative of the strain22

σ tð Þ¼E0ε tð Þþ
Zt

0�

ΔE t� τð Þdε τð Þ
dτ

dτ: ð1Þ

E0 denotes the equilibrium and ΔE tð Þ the non-
equilibrium part of the relaxation modulus. The stress
response consists of an instant elastic response and a

FIGURE 1 Isochronous stress–strain curves for different stress

levels. In this context, DMA creep tests at different stress levels,

σ¼ 3,5,8,10f gMPa, are performed. The stress–strain curves at

different times t0 to t5 begin to deviate from linear curves for

σ>8 MPa, revealing a nonlinear viscoelastic material response

[Color figure can be viewed at wileyonlinelibrary.com]
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time-dependent viscoelastic response. This relation is
known as the Boltzmann-superposition.

An extension of the Boltzmann-superposition for
nonlinear material behavior can be made using the
Schapery model that has been developed for solid visco-
elastic polymers. The Schapery model introduces strain-
dependent material properties,22 reading

σ tð Þ¼ h0 ε tð Þð ÞE0ε tð Þ

þh1 ε tð Þð Þ
Zt

0�

ΔE ξ tð Þ�ξ0 τð Þð Þdðh2 ε τð Þð Þε τð ÞÞ
dτ

dτ: ð2Þ

ξ tð Þ and ξ0 τð Þ are reduced times given by

ξ tð Þ¼
Zt

0

dt0

aε ε t0ð Þð Þ , ξ0 τð Þ¼
Zτ

0

dt0

aε ε t0ð Þð Þ : ð3Þ

The functions h0 ε tð Þð Þ and h1 ε tð Þð Þ affect the elastic and
viscoelastic parts of the stress response. The function
h2 ε tð Þð Þ modifies the strain excitation in the convolution
integral. The reduced time ξ tð Þ allows time-stress-
superposition with strain-dependent shift factors aε ε tð Þð Þ.
If all of the strain-dependent properties are equal to
unity, the linear Boltzmann-superposition in the form of
Equation (1) is regained. All of the above equations can
also be stated in a strain-explicit form with stress-
dependent properties.

An equivalent formulation of the Schapery model is
given by Banks et al.23 Instead of an integral equation,
time-dependent internal variables as a measure of stress
are used. The function ΔE tð Þ is assumed to be of the form

ΔE tð Þ¼
XN
α¼1

Eαe
� t

τα , ð4Þ

which is a frequent approach for the relaxation modulus
in linear viscoelasticity. Then, the stress–strain relation
can also be stated as

σ tð Þ¼ h0 ε tð Þð ÞE0ε tð Þþh1 ε tð Þð Þ
XN
α¼1

Eαεeα tð Þ, ð5Þ

1
τα
εeα tð Þþ _εeα tð Þ¼ d h2 ε tð Þð Þε tð Þð Þ

dt
: ð6Þ

The viscoelastic stress behavior is calculated from a number
of internal variables εeα. Every internal variable follows
an evolution equation, which in general is an ordinary differ-
ential equation with a nonlinear dependence on the strain

excitation. Like in Equation (2), nonlinearity is represented
by the strain-dependent functions h0 ε tð Þð Þ, h1 ε tð Þð Þ, and
h2 ε tð Þð Þ. Time-stress-superposition can be considered by
changing the relaxation times in the evolution equations
along with the strain. For further generalization, the
strain-dependent properties h1 ε tð Þð Þ, h2 ε tð Þð Þ, and the
shift factors aε ε tð Þð Þ can be set separately for each
internal variable as h1α ε tð Þð Þ, h2α ε tð Þð Þ, and aεα ε tð Þð Þ.
However, only in case of an equal choice of the strain-
dependent functions for all elements, the equivalence
between the integral and the differential formulation is
ensured. Setting all strain-dependent functions to unity
will lead to a linear model.

3.2 | Nonlinear approach

To describe the nonlinear viscoelastic behavior for a specific
material, the stress- or strain-dependent properties need to be
chosen appropriately. These properties are often described by
discrete values for a limited number of stress- or strain-levels,
for instance in creep tests.18 By choosing analytical functions
for the nonlinear properties instead, amodel for arbitrary load
cases can be obtained. In the following, only strain-dependent
properties will be considered and the model will later be com-
pared to DMA data for a single testing frequency. Conse-
quently, time-stress-superposition can be neglected and the
number of internal variables is set to one. Furthermore, the
function h1 ε tð Þð Þ is assumed to be unity. For the two
remaining strain-dependent properties h0 ε tð Þð Þ and
h2 ε tð Þð Þ, several requirements need to be fulfilled. First,
the functions need to reproduce the relevant nonlinear phe-
nomena, that is, higher harmonic oscillations in the stress
response for a DMA test. Next, both functions need to reach
the asymptotic limit of the linear case for small strain ampli-
tudes. The number of parameters for describing the non-
linearity should be kept as low as possible. Especially for the
function h2 ε tð Þð Þ, a simple expression is desirable. Then,
for some load cases such as relaxation, constant strain rate
tests, or harmonic strain excitation, the evolution equation
in Equation (6) can be solved analytically, which simplifies
the parameter identification. Considering these require-
ments, h0 ε tð Þð Þ and h2 ε tð Þð Þ are chosen as

h0 ε tð Þð Þ¼ 1þαε tð Þ2,
h2 ε tð Þð Þ¼ 1þβε tð Þþ γε tð Þ2, ð7Þ

with α,β,γ∈. The elastic part of the stress response con-
tains linear and cubic terms in the strain. The right hand
side of the differential evolution equation is a polynomial
of degree three. The stress–strain relation and the evolu-
tion equation follow as
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σ tð Þ¼E0ε tð Þ 1þαε tð Þ2� �þE1εe tð Þ, ð8Þ

1
τ1
εe tð Þþ _εe tð Þ¼ d ε tð Þ 1þβε tð Þþ γε tð Þ2� �� �

dt
¼ _ε tð Þþ2βε tð Þ_ε tð Þþ3γε tð Þ2 _ε tð Þ: ð9Þ

The stress can be calculated by inserting the respective
strain excitation into Equations (8) and (9) and solving the
differential equation with appropriate boundary conditions.

3.3 | Dynamic strain input

If the strain is a harmonic oscillation of the form

ε tð Þ¼ εm þ ε0sin ωtð Þ, ð10Þ

the stress response of the proposed nonlinear model is
composed of a mean stress, a phase-shifted oscillation of
the base frequency, and higher order harmonic oscilla-
tions. The stress response in steady state reads

σ tð Þ¼ σmþε0
XN
n¼1

E0
n ε0,ωð Þsin nωtð ÞþE00

n ε0,ωð Þcos nωtð Þ ð11Þ

¼ σmþ
XN
n¼1

In ε0,ωð Þsin nωtþδnð Þ ð12Þ

with E0
1 ¼E0 and E00

1 ¼E00. The nonlinear stress response
can be written as a sum of the mean stress and in- and out-of-
phase components or using intensities In and phase angles
δn.

20,24 Using the cubic polynomial approach for the
nonlinear properties, N ¼ 3 follows. Higher harmonics of
two or three times the fundamental angular frequency ω
occur. The coefficients for the oscillatory parts are obtained
from the solution of the evolution Equation (9) with the
strain input following Equation (10)

E0 ¼E1
3γε20þ12γε2mþ8βεmþ4
� �

ωτ1ð Þ2
4 ωτ1ð Þ2þ4

þE0 1þ3
4
αε20þ3αε2m

� �
,

E00 ¼E1
3γε20þ12γε2mþ8βεmþ4
� �

ωτ1ð Þ
4 ωτ1ð Þ2þ4

,

E0
2 ¼E1

3γεmþβð Þε0 ωτ1ð Þ
4 ωτ1ð Þ2þ1

,

E00
2 ¼�E1

2βþ6γεmð Þε0 ωτ1ð Þ2
4 ωτ1ð Þ2þ1

þ3
2
E0αε0εm,

E0
3 ¼�E1

9γε20 ωτ1ð Þ2
36 ωτ1ð Þ2þ4

�1
4
E0αε

2
0,

E00
3 ¼�E1

3γε20 ωτ1ð Þ
36 ωτ1ð Þ2þ4

:

ð13Þ

The coefficients contain strain-independent contributions
from the linear part of the model as well as strain-
dependent nonlinear contributions. Additionally, the
coefficients can be subdivided into contributions with or
without a dependence on the loading frequency. The
mean stress can be calculated directly. A mean elastic
modulus Em is defined as the ratio of mean stress to
mean strain

Em ¼ σm
εm

¼E0 1þαε2mþ3
2
αε20

� �
: ð14Þ

For small mean strains, Em transitions to E0. If both
mean strain and strain amplitude are small, the whole
model reduces to the linear formulation.

Considering cyclic strain loads with controlled ten-
sion/tension (T=T) mode, the constant static strain εm is
larger than the strain amplitude ε0 of the dynamic load.
The ratio between the minimum εmin and the maximum
εmax strain is described by the deformation ratio R. The
oscillatory time-dependent elongational strain ε follows
Equation (10). The complete stress response is represen-
ted by a Fourier series with N !∞. The magnitude of
the generated higher harmonics (In, n>1) is typically
normalized by the fundamental (I1) and reported as In=I1
= In=1. Experimental data reveal, that the contributions
I2=1 and I3=1 strongly predominate.25 The normalized
intensities of the higher harmonics should scale as
power-law functions of ε0 with exponents of n�1. For
example, I2=1 and I3=1 are expected to scale linearly and
quadratically with respect to ε0, as observed and mathe-
matically derived for suspensions, polymer melts, and
solids under shear/torsion loads.26,27 Experimentally, the
higher harmonics can be detected with high sensitivity
using high data acquisition rates and oversampling28 as
well as Fourier transform for the data analysis, resulting
in the decomposition of a nonlinear stress waveform in
the time domain into a Fourier series in the frequency
domain.20,21,24

4 | APPLICATION OF NONLINEAR
VISCOELASTIC APPROACH TO
EXPERIMENTAL DATA

The mechanical nonlinear behavior of PA6 under T=T
mode was experimentally investigated in a previous
publication,25 revealing the detection and quantification of
nonlinear contributions in the stress via Fourier transform.
These experimental data are compared with the theoretical
predictions of the developed model. For the model, R, ε0,
and εm are chosen according to the experiments. To
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identify an optimal set of parameters, a gradient-based
nonlinear optimization with the experimental data and
the coefficients from Equations (13) and (14) is con-
ducted. The mean elastic modulus Em, the storage modu-
lus E0, the loss modulus E00, and the intensities of the
second and third order higher harmonics, I2=1 and I3=1 ,
are compared. The results are shown in Figures 2 and 3.

For small strain amplitudes up to approximately
0:3%, the material behavior is predominantly character-
ized by the linear viscoelastic properties E0 and E00. In the
experimental data, the loss modulus E00 is constant, but
the storage modulus E0 significantly decreases for small
strain amplitudes. As in the model both E0 and E00 have
slightly decreasing values for β<0 and small strain
amplitudes, ε0 ! 0, the predictions differ from the experi-
ment. The nonlinear higher harmonics at those strain
amplitudes are below the noise level of the machine and
cannot be quantified, resulting in noisy experimental
data, whereas very small In=1 values < 10�3ð Þ are
predicted by the model. For medium strain amplitudes,
the nonlinear higher harmonic contributions increase

above the noise threshold of the machine, so they can be
measured and quantified. The intensity I2=1 increases lin-
early with the strain amplitude and the intensity I3=1
scales quadratically with the strain amplitude, both in
the model and the experimental data. The model predicts
the increase of I2=1 well, although there are several out-
liers in the experimental data causing a fluctuating error.
However, I3=1 is estimated to be too small by a factor of
10 approximately. Similar I2=1 and I3=1 trends were found
for the analysis of hyperelastic material models, such as
the Neo-Hooke, Mooney Rivlin, Ogden, or Arruda-Boyce
model, where the predicted I2=1 fits well to experimental
data and to the prediction of the here presented model,
but underestimates I3=1 by over a factor of 10.29 The stor-
age modulus E0 decreases and the loss modulus E00

increases in the experiments. Both trends are predicted
by the model with an relative error of less than 25% for
E0 and E00, and an average error of approximately 11%,
respectively. The mean strain increases proportionally
with the strain amplitude. The mean elastic modulus Em

over the entire strain range behaves similar to E0 in the

FIGURE 2 Experimental

data of PA6 in T=T with R¼ 0:3

and model prediction for the

storage modulus, loss modulus

and the intensities of the higher

harmonics as a function of the

strain amplitude. The decrease

of E0 and the increase of E00 and
the higher harmonics are

captured in the model [Color

figure can be viewed at

wileyonlinelibrary.com]

FIGURE 3 Relative error

ϵ¼jEsim=Eexp�1 j �100% for the

oscillatory stress. E0 and especially E00

are predicted well by the model. For

I3=1 , no relative error is shown because

of the large deviations [Color figure can

be viewed at wileyonlinelibrary.com]

ZINK ET AL. 5 of 7

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


experimental data. The model predicts an initially con-
stant values for Em and a decrease for larger strains. The
maximum relative error is also at approximately 20%.

5 | CONCLUSIONS

For comparing a viscoelastic material model with experi-
mental data, typically only moduli and/or the complete
signal are available and nonlinear effects can hardly be
determined. Simply fitting the theoretical stress curves
into experimental data is a low-sensitive and low-key
approach to detect and compare nonlinear contributions.
Advances in experimental techniques allow to fully quan-
tify with high sensitivity (signal to noise ratio in the
range of 104 : 1 to 105 : 1)20,24 a nonlinear stress response
via Fourier transform, such that even small nonlinear
contributions can be quantified and compared to theoret-
ical predictions. Thus, the approach to Fourier transform
the stress response of experimental and theoretically cal-
culated data closes this gap.

In the work at hand, the nonlinear mechanical behav-
ior of viscoelastic materials is addressed. Experimental
data from creep tests reveal nonlinear effects for stresses
greater than approximately 8MPa. A mechanical model
based on Schapery's theory in a stress-explicit formula-
tion by Banks et al.23 with a new approach for the
strain-dependent material properties is proposed and
formulated for the one-dimensional case. The model is com-
pared with experimental data of the Fourier-transformed
stress response for sinusoidal strains. Due to the simplicity
of the approach, the model equations can be solved analyti-
cally for this loadcase. The resulting nonlinear stress
response contains all experimentally identified contributions
and correctly predicts their qualitative strain dependencies
for strains up to 3%. With the optimal parameters set, the
model can well-describe I2=1 , but highly underestimates
I3=1 . A different, more complex, approach for the strain-
dependent material properties could enhance the quality of
the model predictions. This would also make solving the
equations and identifying parameters more difficult, though.
The applicability of the model and the transferability of
its parameters considering other load cases has not yet
been investigated, here. Nevertheless, to consider other load
cases, such as relaxation or creep, the strain-dependent func-
tions in the nonlinear approach can be adapted if needed.
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