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Battery materials, pharmaceuticals, solar cells, coffee powder, 3D printed components, etc., all these products have in com-

mon that they are predominantly made of particles. Ensuring high product quality with optimal raw material and energy

utilization is only possible with extensive and many years of experience in the operation of such processes. This unsatisfac-

tory situation is due to the complexity of particulate products, which still hinders extensive automation and autonomous

process control. The challenge is to couple the respective basic operations with characterization devices, process dynamics

and modern control algorithms to form a closed loop for process control. As a result, some day it should be possible to set

the desired property profiles of particulate products with the most energy- and raw material-efficient operation possible

with a ‘‘push of a button’’.
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1 Background

Particulate systems are the basis for many products from
the chemical, energy conversion and storage, materials
technology, pharmaceutical and food industries, among
others. Due to their importance, the fundamentals of parti-
cle process technology have also been the subject of exten-
sive research projects to date. Among other things, exten-
sive models have been developed for the processes, detailed
measurement techniques for characterizing the specific
properties are now available, and process strategies for the
most efficient operations of particle-producing and particle-
processing plants have been explored. A particular chal-
lenge is that the properties of particulate systems can only
be described by distributed functions according to the mate-
rial behavior. As a result, the product properties as well as
the process behavior are difficult to predict when process
conditions change.

The measurement of the previously mentioned particle
properties is usually carried out in a time-consuming and
offline manner using special characterization methods,
which only allow a determination with a certain statistical
uncertainty. In addition, the properties are always distribut-
ed, i.e., they cannot be described with a single measurement
value. However, with the help of soft sensors, which are
methods for reconstructing property distributions from
easily accessible measurement information, the particle
properties can be reconstructed and correlated with the
product properties. With a view to flexible and robust pro-
cess control, online or, even better, in situ characterization
methods are therefore necessary, where the measurement
signals permit the fastest possible process response. ‘In situ’

here means that the measurement directly takes place in the
process, without any sampling. In the meantime, there are
methods that can be used as an in situ characterization
technique, but these are rarely used to interfere directly in
the process in the sense of an autonomous process control.

Another important development for particle production
and processing in recent years has been the extensive devel-
opment of simulation tools on different time and length
scales. Extensive progress has been made as a result of the
rapid development in computer technology. These have
only made it possible to understand the often very complex
processes in machines and plants and thus form the basis
for optimized and more efficient processes.

However, the results of simulations are not used to exert
a direct influence on the process. It seems to be conceivable
to derive so-called short-cut or surrogate models from the
simulations for process control and to use these for a per-
manent comparison with the measured values. If this can be
done in real time or even predictively, it would ensure
robust and safe process control while maintaining the pro-
cess and product properties. However, short-cut models are
not only obtained by means of complex simulations. Also,
on the basis of physical balance equations and, under cer-
tain circumstances, empirical relationships, many proven
process models are available in relatively simple, analytical
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relationships (so-called parametric models). Due to the
extraordinary development in learning algorithms and GPU
(Graphics Processing Unit) hardware in recent years,
machine learning or artificial intelligence methods have led
to breakthroughs in various technological areas. It is even
conceivable that machine learning methods could be used
to map product or process properties from data (non-para-
metric models) that cannot be described directly with phys-
ical relationships. Combining methods in the form of semi-
parametric models, e.g., analytically existing, physically
based correlations in conjunction with data-driven methods
(e.g., using an artificial neural network or multivariate data
analysis) appears attractive.

Ultimately, the determined correlation between the mea-
sured particle or product properties and the parametrically
or non-parametrically existing process model can be used
via the control or automation technology to directly influ-
ence the process. The basis for the development of autono-
mous, particle-based processes and thus for far-reaching
digitization in the process industry is the feedback of the
measured variables to the model-based process control.

Finally, the overall objective is to develop the basis for set-
ting defined property spectra of particulate products by
autonomous process control with optimum utilization of
resources. In this context, autonomous process control is
understood to mean processes that, ideally, only require
observation by a human being and are capable of setting
defined property distributions themselves without external
intervention. This requires basic developments with respect
to process models capable of being controlled, in situ char-
acterization techniques for determining the particle proper-
ties in the process and new process control strategies.

The vision is that in the future a digital image of the pro-
cess will interfere in process control in such a way that com-
pliance with the quality of the product, process and product
safety and resource efficiency is achieved independently.
The proposed approach therefore provides the basis for
autonomous processes by stringently combining modern
control technology with particle technology, incorporating
information technology, and thus lays the foundation for
far-reaching digitization of the particle manufacturing and
processing industry.

The raw materials, the final product, and the individual
products after each process step are characterized using
appropriate measurement techniques, if possible in situ.
Controllable process models for robust process control are
to be provided based on physical relationships and data-
driven methods (see Fig. 1). In process control, these models
are used to exert a direct intervention on the manipulated
variables of the particle technology process via control algo-
rithms or under knowledge of the process dynamics to be
studied. The modeling, the measurement technology and
the process control interact directly with each other on the
physical and information technology level and thus form
the basis for an autonomous process.

2 Mathematical Modeling

Mathematical modeling is a powerful method to quantify
the relationships between process variables and particle
properties, as well as between these and the product proper-
ties. The resulting models are an important basis for process
modeling, optimization, and process control. Basically, they
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Figure 1. Interaction between modeling, measurement technology and process control for the autono-
mous operation of a particle technological process.
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can be obtained by theoretical and empirical modeling
approaches and classified according to various criteria. A
particularly important criterion is whether the parameters of
a mathematical model can be associated with a physical or
empirical meaning in the real world. In this context, we often
speak of white, black and gray box models. However, these
terms are also used to describe the transparency of models
to an end user. Due to this the classification proposed by
von Stosch [1] will be used in the following as follows
– parametric models (white box),
– non-parametric models (black box),
– semi-parametric models (gray box).

Parametric models (white box models) are developed
based on prior knowledge and have a fixed number of
parameters with physical or also empirical significance.
Essentially, these are based on empirical correlations or on
ordinary or partial differential equations. The main advant-
age of this type of modeling is the profound understanding
of the process, which results in a high transparency of the
model. Nevertheless, such models often tend to be very
complex. The consequence is high costs in model creation
and calculation, which sometimes makes them unattractive
for process control tasks. A large number of parametric
models already exist for predicting particle size distributions
from process parameters [2, 3]. However, it should be noted
that although parametric models are sometimes very com-
plex and computationally expensive, their predictive power
is limited. While, e.g., the particle size distribution can often
still be predicted with corresponding approaches, product
properties with rather imprecise causality, such as the sticki-
ness, electrochemical properties or taste, cannot be deter-
mined directly in the process.

An alternative is offered by non-parametric models (black
box models), which are developed based explicitly on data.
In this context, ’non-parametric’ does not mean that these
models have no parameters at all; rather, the type and num-
ber of these parameters is flexible [1]. The advantage of
data-driven models is the low computational effort, but they
are mainly only applicable in the trained domain and can
only extrapolate beyond this to a limited extent. Forms of
such models that establish a connection between the rele-
vant process variables in a purely data-driven manner are,
e.g., multivariate data analyses, hidden Markov models
(HMM) and machine learning (ML). A particularly promi-
nent example of machine learning models are artificial neu-
ral networks (ANN), which undergo an iterative model dis-
crimination and parameter identification process [4–12].

Semi-parametric models are a combination of parametric
and non-parametric models. These hybrid models are fre-
quently called gray box models. This approach allows pro-
cess knowledge, such as the material and energy balances,
to be combined with process data. Polynomial approaches,
ANNs, support vector machines (SVM), etc. find their
application as non-parametric models [13–15]. The model-
ing effort is reduced if the different information spaces are
efficiently linked. In principle, the parametric and non-

parametric sub-models can be interconnected in series or in
parallel. This results in different application possibilities for
the non-parametric models. In a serial structure, they can
reproduce unknown reaction kinetics or mass transfer coef-
ficients, while in a parallel structure, e.g., the deviation of a
simple model from the measured data can be corrected
additively. In current research, work is being done on sta-
tionary models for the design of processes, on dynamic
models for process control and on the life-cycle-spanning
use of the different models [16].

As an example, the stationary gray box modeling for the
optimization of processes using dewatering of calcium car-
bonate water slurries in decanter centrifuges is described
here. The mineral typically occurs during processing as
finely dispersed calcium carbonate water slurry, which is
often dewatered using decanter centrifuges to increase the
solids content. The suspension is fed into the continuously
operating centrifuge, pre-accelerated and directed into the
rotating liquid pool within the machine. Due to centrifugal
forces, the particles settle towards the wall of the drum,
where sediment builds up. The clarifying slurry flows
towards the weir, where it is drawn-off as centrate. Inside
the centrifuge, a so-called screw rotates with a slightly dif-
ferent rotational speed compared to the actual rotational
speed of the drum. This causes shear forces on the consoli-
dating sediment and transports it out of the centrifuge via
the conical section. Settling, sediment consolidation and
sediment transport occur parallel. Additionally, the geome-
try parameters, process variables and material parameters
influence each other and partly with contrary effects on the
separation results. Both makes modeling of this apparatus
complex.

Menesklou et al. [17] described a dynamic process model
to simulate a decanter centrifuge considering settling, sedi-
ment consolidation and sediment transport. The simulation
tool links the material with the machine behavior and
reduces the complexity by reasonable assumptions, which
enables real time simulations. The authors have shown that
the model is indeed valid and usable for scale-up if the ma-
terial characterization is successful [18]. However, this is
coupled with some limitations. For example, the shortcut
model assumes a plug flow through the entire pool and
therefore does not calculate the flow via momentum equa-
tions. This would require detailed CFD simulations, which
would increase the computational effort enormously. Espe-
cially for relative deep pools, deviations from this ideal
behavior may occur due to local flow effects, which is not
included in the mechanistic model currently. Often the pre-
cision of the white box model is sufficient, e.g., in process
design, and it is very useful to have a simulation tool like
that. However, in some industrial applications, a high accu-
racy specifically is required. The aim is to increase the accu-
racy of the actual model without losing the advantages of
the dynamic simulation tool. Therefore, a stationary, paral-
lel gray box model has been developed, whose structure is
illustrated in Fig. 2.
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The input vector ~xin contains the relevant process vari-
ables: the rotational speed, the differential speed, the volu-
metric flow rate of the feed, the solids mass fraction of the
feed and the pool depth. These variables serve as input for
the white and black box model. On the one side, the mecha-
nistic model calculates (among other output variables) the
solids mass fraction of the cake and centrate. On the other
side, the artificial neural network corrects the results from
the mechanistic model, if it is necessary. This is possible be-
cause the ANN was trained with representative experiments
in this range to model the deviations between the white box
model and the experimental data due to effects that are not
considered in the white box model. However, this does not
mean that the white box model is not valid over a wide
range. The point here is to combine experimental experi-
ence with a mechanistic model to increase the accuracy for
specific practical applications. Fig. 3 demonstrates the valid-
ity of the presented gray box model for one exemplary case.
The solids mass fraction of the sediment is plotted against
the rotational speed at a constant volumetric flow rate and
pool depth hp.

Here, the experimental results, the simulation results of
the pure white box model and the simulation results of the
gray box model for different confidence intervals are com-
pared. The confidence interval is used to avoid over-model-
ing. Both, simulation data and experimental data that are
used to train the neural network include inaccuracies. In
the case of experimental data, these are typically measure-

ment errors of the used devices or statistical errors due to
imperfectly representative sampling. For example, the entire
cross-section of sediment is ejected from the decanter cen-
trifuge as cake. Thus, the sample is only an average of the
actual solids mass fraction distribution in the cake and
therefore not exactly reproducible. For simulation data,
assumptions of the ideal model lead to deviations from real-
ity. The overall aim is to model effects with the gray box
that actually occur and not to model measurement errors.
Therefore, a confidence interval is used to describe how
large the deviation between white box model and experi-
mental observation has to be that it is considered for train-
ing by the neural network. Deviations between the white
box model and experiments that are within the confidence
interval are therefore not considered for training the artifi-
cial neural network, because the result of the white box
model is sufficiently accurate here.

In Fig. 3, the solids mass fraction of the sediment in-
creases with higher rotational speeds. This is caused by the
higher centrifugal acceleration, which compacts the sedi-
ment more and leads to a higher solids mass fraction of the
sediment. The white box model reflects this trend but lies
above the experimental data. If the gray box model is
trained with a confidence interval of ±0 wt %, i.e., every
deviation is modeled, it can reproduce the experimental
data very well. However, this is not realistic and gives a mis-
leading illusion of accuracy, as it would require perfectly
reproducible measurements, which is not the case in reality
as explained previously. With a confidence interval of
±2 wt % or ±4 wt %, the deviations at smaller solids mass
fraction are modeled. For higher ones, the gray box model
with ±4 wt % switches back to the white box model. For a
confidence interval of ±6 wt %, the deviations lie in this
interval and the gray box model does not model any devia-
tions. In this case, a confidence interval of ±2 wt % or
±4 wt % is realistic and conceivable. Based on the reproduc-
ibility of the sampling, a confidence interval of ±2 wt % is
recommended here. However, it is difficult to determine
this mathematically, because it depends on the required
modeling accuracy and the accuracy with which the sam-
ples can be measured. Generally, more measurement data in
this range lead to a better statement about the reliability of
the experimental results, so that the confidence interval can
be determined more precisely and ideally becomes smaller.
Furthermore, the black box model assists only in parameter
ranges within the range of training data of the neural net-
work. Thus, the neural network is just used to interpolate,
because extrapolation of a neural network may lead to
incorrect results. For these cases, the white box model is
used as it is described in Menesklou et al. [17].

Thus, the neural network has learned to model additional
effects and the gray box model can reflect the trend cor-
rectly. This shows that a gray box model is indeed a useful
extension of existing mechanistic models. Of course, this
single case represents only one example from the process
industry. However, the training data set can be extended as
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Figure 2. Parallel, stationary gray box model structure as used
for decanter centrifuge.
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Figure 3. Solids mass fraction of the sediment at a constant
flow rate for different rotational speeds: comparison of experi-
mental data with the white and gray box model.
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required and the neural network retrained. So, gray box
modeling is a very useful tool to couple process data with
existing physical models to receive a better estimation for
the reality.

3 Particle Characterization

An essential prerequisite for effective process control and
thus process management is the characterization of particle
properties. The measurement of particle properties (e.g.,
mean particle size, particle size distribution, specific surface
area, structure of agglomerates etc.) should be carried out
directly at the process, either online or, if possible, in situ.

Extensive research has been conducted in this area in
recent years, and a number of landmark publications can be
found in the literature [19–25]. Crystallization, as an exem-
plary process involving phase transfer, often lies in the cen-
ter of online image analysis. Ferreira [19] uses image analy-
sis to understand crystallization phenomena of different
sugar crystals in the presence of different impurity levels.
Wang [20] relies on ultrasound emission and correlates it
not only to crystallization phenomena but can also relate it
to physicochemical crystallization conditions. Much can be
expected from deep learning in the future, especially for fast
and reliable image analysis [26]. Deep learning is a modern
variant of a neural network that involves a large number of
hidden layers, which allows practical application and opti-
mized implementation. For example, the article by Scherr
[27] shows how deep learning can be used in a high-
throughput analysis to detect marker molecules on bacterial
cells via rapid image analysis.

The monitoring of a time-sensitive separation process is
studied here as an example for an efficient evaluation of the
product properties. Concentration data of individual species

and their particle size distribution can be defined as target
variables representing the quality of the product. In a best-
case scenario, this valuable information is obtained in situ
from easily measurable process data enabling operators to
avoid frequent, expensive, and time-consuming laboratory
analyses.

The advantageous integration of soft sensors in separation
technology was already demonstrated by Konrath [28], who
determined the product loss of nanosized particles at the
overflow of a tube centrifuge by in situ light scattering mea-
surements. The tracked increase in product concentration
was linked to the progressive sediment buildup inside the
centrifuge. This led to a negative impact on the desired parti-
cle size distribution during prolonged nanoparticle classifica-
tion. With in situ monitoring and signal processing, the grade
efficiency of the isolated fine fraction was kept constant via a
controlled and responsive increase of the rotor speed during
the semi-continuous separation process.

However, the determination of multidimensional product
properties, such as the composition of a suspension con-
taining several species, requires a more adequate measuring
principle, which can also function as a hardware compo-
nent of the soft sensor. Here, the literature lists numerous
evidence that UV/vis multi-wavelength spectroscopy is suit-
able for offline [29–31] and in situ [32, 33] monitoring of
multiple physical properties in finely dispersed suspensions.
Furthermore, in [34] UV/vis spectroscopy is applied for in
situ monitoring of zinc oxide (ZnO) quantum dots pro-
cessed continuously. Fig. 4 shows a schematic flow sheet of
density fractionation in tubular centrifuges, in which a mix-
ture of light polymethylmethacrylate (PMMA) and heavy
ZnO nanoparticles are sorted according to their particle size
and material density.

The separation outcome is set by the operating parame-
ters of the centrifuge, the volumetric flow rate and the rotor
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speed. After sampling and time-consuming, invasive labora-
tory analyses by means of inductively coupled plasma opti-
cal emission spectrometry (ICP-OES), a specific product
loss

Pn ¼
fn;overflow

fn;feed
(1)

of the n-th component can be determined. Its value
describes the ratio of the specific solids volume fraction fn

of one component at the overflow to the initial particle con-
centration in the feed.

Alternatively, a soft sensor allows the translation of in situ
recorded UV/vis spectra into a prediction of the specific
solids volume fraction of both dispersed substances. Multi-
ple linear regression (MLR), as one of many applicable
machine learning model structures, evaluates the relation-
ship between multi-wavelength extinction data and the
bivariate information of relative solid volume fractions. The
resulting Black Box Model is then used to evaluate process
data in real time as outlined in Fig. 4.

Exemplary results of this setup are shown in Fig. 5 where
the sensor output (solid lines) is compared to the real prod-
uct loss of PMMA and ZnO determined by the offline
ICP-OES analysis (markers). In this example, the sensor
reacts to changes in rotor speed. During a gradual increase,
the nanoparticles are separated more effectively resulting in
a decrease of product loss P. Simultaneously, the fine frac-
tion composition can be monitored in real time, giving
access to an important aspect of product quality. More
information on the experimental setup, modeling and effec-
tiveness of this UV/vis soft sensor can be found in Winkler
et al. [35].

Regarding measurement methods for the characterization
of particulate materials, it can be summarized that in some
cases adequate methods are available for in situ use. How-
ever, for the measurement of specific particle or product
properties, the setup is very complex or not possible, so that
model-based measurement methodologies must be incorpo-
rated. This is a necessity when no measurement informa-

tion is available for direct intervention on the process. In
addition, the methods also explicitly serve to determine the
relationship between particle and product properties. For
the process control envisaged in this application, measure-
ment methods are to be used in which the time for mea-
surement acquisition, evaluation and, if necessary, modeling
is considerably shorter than the characteristic process time.

4 Model-Based Control

Examinations concerning model-based control for process-
es with particles mainly concentrate on a limited selection
of few examples. One of them which is to be mentioned
here is the mechanical separation of Li-ion battery materials
for their direct recycling.

Without doubt, battery recycling is imperative and
urgent. Sensible and sustainable recycling processes are still
rather lacking, though, since batteries are complex com-
pounds of a variety of materials challenging to actually
recycle, especially the electrode composites. The most effi-
cient, but also most complex approach is direct recycling,
which makes use of different physical properties of the
materials in order to separate them, like density, allowing
for a specific recycling treatment afterwards. After opening
the case and sorting, the remaining black mass (basically a
slurry of electrode material) must be subdivided into its
components, i.e., active materials, additives enhancing the
electrical conductivity, as well as binders [36, 37].

In the exemplary process presented here, the cathode
active material lithium iron phosphate (LiFePO4, LFP) is to
be separated from conductive carbon black (CB). The also
present binders carboxymethylcellulose (CMC) and styrene
butadiene rubber (SBR) may be neglected in the following.
The separation mechanism is based on their unequal den-
sities, whereby LFP has the higher one, and carried out in a
tubular centrifuge. In this specific case, the centrifugal pro-
cess shall result in the separation of LFP particles exclu-
sively (obtained as sediment at the end of the process) and
the centrate containing all CB particles, i.e., complete frac-

tionation. A tubular centrifuge can only be run
semi-continuously but has been chosen due to
the small particle sizes partly down to 300 nm,
which require very high centrifugal forces to be
separated. During the separation process, sedi-
ment accumulates inside the rotor, reducing the
free cross-section and consequently separation
efficiency over time if no countermeasures are
taken. Therefore, tubular centrifuge processes
always show a strong time dependency. If a cer-
tain outcome like complete fractionation of LFP
and CB is desired, such countermeasures are
inevitable. Generally, adjustments can be made
via the operational parameters, i.e., rotational
speed and feed flow rate, whereby the model-
based increase of rotational speed has been
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Figure 5. Product loss for both PMMA and ZnO nanoparticles after prolonged
centrifugation with a gradual increase of rotor speed. Markers indicate the off-
line determined product loss measured by an ICP-OES analysis. Solid lines are
drawn based on the real-time soft sensor output.
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examined in the experiments elucidated below. More
detailed information can be found in [38]. It is worth noting
that the properties of LFP particles require strong centrifu-
gal forces and a tubular centrifuge was the first choice, justi-
fied under research conditions. Other centrifuge types for
continuous processing and large throughput of active mate-
rials are subject of actual research. In order to separate CB
from the process water in a second (cleaning) stage, the very
high forces in a tubular centrifuge are necessary yet.

The separation process inside the centrifuge rotor
depends on the actual operational settings, materials used,
and previous settings in the specific process run, i.e., time
and the spatial distribution of particles in the rotor: All
these influencing factors are also interlinked in their effects.
It is evident that with this number of concatenated factors,
a valuable description of the process with one small inverti-
ble set of equations is not possible. Therefore, a short-cut
model has been developed according to [39], closely follow-
ing the principles mentioned in Sect. 3 describing the
behavior of LFP and CB in the tubular centrifuge. Evaluable
faster than in real-time, it is appropriate to serve in a non-
linear model-based predictive control (NMPC) approach
[40] in order to set sensible rotational speed values yielding
the desired fractionation outcome.

The MPC (model predictive control) concept generally
relies on a process model depicting well the state and devel-
opment of the process variables. NMPC is a variant of MPC
with the feature to use a nonlinear process model, which is
the case for the herein used tubular centrifuge model. The
fundamental idea behind MPC is to use such a model to
predict prospective values of the regarded process variables,
given time and actual manipulated variable values, and uti-
lize it to find the optimal settings for the manipulated vari-
able (one or several operational parameters) to proceed
close to the desired set point. For this purpose, the model
calculations run short time intervals into the future while
the outcome is evaluated in a dynamic optimization loop.
Of course, the process variables have to be measured, too,
in order to give feedback to the controller about the actual
state of the process and thus the control quality. Deviations
between model predictions and measured reality are taken
into account as bias, so that model imperfections and
unforeseen disturbances are detected and compensated
[41]. Thus, MPC is a convenient option to control processes
that are generally complex but can be modeled with

adequate correctness. A principal scheme of model predic-
tive control loop is outlined in Fig. 6. Compared to classic
control approaches, mainly the controller is simply replaced
by an MPC controller (or generally any model-based con-
troller for another model-based control concept). It has to
be mentioned that the MPC controller only gives recom-
mendations, but still requires the process control system as
an interlayer with simpler, cheaper controllers, e.g., PID,
actually putting the setting into practice.

The mentioned model for fractionation of LFP and CB in a
tubular centrifuge was correspondingly applied to design a
model-based feed forward control for first examinations
within a feasibility study for the intended adjustment of
rotational speed. The entire study and more background
information is accessible in [38]. The aim of the study was to
prove that the model-based rotational speed increase results
in the desired output over the entire operational time, namely
a constant particle size distribution in centrate. Some results
are shown in Fig. 7. Three operational cases are compared,
one setting with constantly weak forces (20 000 rpm, i.e., a
centrifugal acceleration about 94 000 m s–2), one with con-
stantly strong forces (40 000 rpm, equivalent to an accelera-
tion of approximately 377 000 m s–2) and the model-based
increase. The overall separation efficiency indicated in Fig. 7a
is defined as the ratio of solid mass in centrate to solid mass
in feed and runs horizontally if the desired constant output is
achieved. The same applies to the particle size distribution
characteristics shown in Fig. 7b. This is obviously not the case
for the scenario with weak forces (blue), which shows rather
the undesirable impact of the rotor filling up over time. The
scenario with strong forces (red) performs better, but still not
constant over time as desired. Especially the characteristic
particle sizes indicate that too many particles are separated
most of the time, including CB particles entering sediment,
which is only slightly acceptable in the posterior LFP regener-
ation process. Finally, the rotational speed adaption based on
the real-time model yields good results as desired, the charac-
teristic particle sizes remain particularly constant.

Overall, these experiments show that model-based pre-
diction yields the desired permanent output, which is neces-
sary in order to allow for proper treatment of the distinct
electrode materials before they are used in new batteries.
NMPC here provides the opportunity to treat materials
with complex behavior in an interlinked process adequately,
paving the way to direct battery recycling utilizing con-
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Figure 6. Schematic representation of a model predictive control loop, here containing examples for
the application to centrifugal classification.
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trolled centrifuges for the key step, which is clean fractiona-
tion. In the exemplary process shown, naturally online mea-
surement is necessary in order to provide feedback signals.
Besides, e.g., UV/vis spectroscopy for the composition
(cf. Sect. 4), particle size distribution measurement is
required to completely monitor the fractionation of the
mixture. Both will ultimately be combined in a soft sensor,
finalizing the fractionation setup to run fully automatically.

The potential of model-based optimization and process
control is already visible today in rare process examples but
is far from being exhausted. An indispensable prerequisite
for the development of future autonomous particle process-
es is a well-coordinated management of entire process
chains, which represents absolutely new territory in particle
technology. This requires targeted investigations on the
dynamics of coupled particle processes as well as the devel-
opment of suitable modularization and/or hierarchization
concepts to control complex multi-stage systems.

5 Outlook

To achieve these goals, control-capable process models, in
situ measurement techniques and suitable methods of pro-
cess control are essential. The described challenges are part
of the newly started DFG Priority Program 2364 ‘‘Autono-
mous processes in particle technology – Research and test-
ing of concepts for model-based control of particulate pro-
cesses’’. In close cooperation between scientists from the
fields of mechanical process engineering and particle tech-
nology, control and systems process engineering, as well as
computer science and mathematics, new strategies for
autonomous processing of particles will be developed. Exist-
ing approaches are to be taken up and further developed in
a targeted manner. However, these must be supplemented
by the development of completely new methods. In addition
to individual process types, which have hardly been investi-
gated so far, the focus is now on entire process chains and

their targeted interaction with regard to the above-men-
tioned objectives.

The authors want to thank Prof. Dr. Doris Segets,
Prof. Dr. Andreas Bück, Prof. Dr. Achim Kienle and
Prof. Dr. Marius Kloft for setting up the initiative for the
DFG Priority Program 2364 ‘‘Autonomous processes in
particle technology – Research and testing of concepts
for model-based control of particulate processes’’. Open
access funding enabled and organized by Projekt DEAL.
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a) b)

Figure 7. Experimental results for centrate over time. Blue: 20 000 rpm, red: 40 000 rpm, black: rota-
tional speed curve. Symbols: mean values. Dashed lines are intended to guide the eye. a) Overall separa-
tion efficiency. Bars represent minimal/maximal values of the three repetitions. b) Characteristic particle
sizes. Squares: x10, triangles: x50, stars: x90. Bars represent standard deviations.
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Symbols used

hp [m] pool depth
n [min–1] rotational speed
Pn [–] product loss
t [min] time
f [–] solids volume fraction

Abbreviations

ANN Artificial neural network
CB Carbon Black
CMC Carboxymethylcellulose
ICP-OES Inductively coupled plasma – optical emission

spectrometry
LFP LiFePO4, lithium iron phosphate
MLR Multiple linear regression
MPC Model(-based) predictive control
NMPC Nonlinear model(-based) predictive control
PMMA Polymethylmethacrylate
SBR Styrene butadiene rubber
UV/vis Ultraviolet visible
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