KIT | KIT-Bibliothek | Impressum | Datenschutz

On the privacy-utility trade-off in differentially private hierarchical text classification

Wunderlich, Dominik; Bernau, Daniel; Aldà, Francesco; Parra-Arnau, Javier 1; Strufe, Thorsten ORCID iD icon 2
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

Hierarchical text classification consists in classifying text documents into a hierarchy of classes and sub-classes. Although artificial neural networks have proved useful to perform this task, unfortunately they can leak training data information to adversaries due to training data memorization. Using differential privacy during model training can mitigate leakage attacks against trained models, enabling the models to be shared safely at the cost of reduced model accuracy. This work investigates the privacy-utility trade-off in hierarchical text classification with differential privacy guarantees, and identifies neural network architectures that offer superior trade-offs. To this end, we use a white-box membership inference attack to empirically assess the information leakage of three widely used neural network architectures. We show that large differential privacy parameters already suffice to completely mitigate membership inference attacks, thus resulting only in a moderate decrease in model utility. More specifically, for large datasets with long texts we observed Transformer-based models to achieve an overall favorable privacy-utility trade-off, while for smaller datasets with shorter texts convolutional neural networks are preferable.

Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Institut für Telematik (TM)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2021
Sprache Englisch
Identifikator KITopen-ID: 1000141596
Umfang 19 S.
Vorab online veröffentlicht am 04.03.2021
Externe Relationen Siehe auch
Schlagwörter classification, neural network architectures
Nachgewiesen in arXiv
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page