KIT | KIT-Bibliothek | Impressum | Datenschutz

Breaking and (Partially) Fixing Provably Secure Onion Routing

Kuhn, Christiane 1; Beck, Martin; Strufe, Thorsten ORCID iD icon 2
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Institut für Informationssicherheit und Verlässlichkeit (KASTEL), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

After several years of research on onion routing, Camenisch and Lysyanskaya, in an attempt at rigorous analysis, defined an ideal functionality in the universal composability model, together with properties that protocols have to meet to achieve provable security. A whole family of systems based their security proofs on this work. However, analyzing HORNET and Sphinx, two instances from this family, we show that this proof strategy is broken. We discover a previously unknown vulnerability that breaks anonymity completely, and explain a known one. Both should not exist if privacy is proven correctly. In this work, we analyze and fix the proof strategy used for this family of systems. After proving the efficacy of the ideal functionality, we show how the original properties are flawed and suggest improved, effective properties in their place. Finally, we discover another common mistake in the proofs. We demonstrate how to avoid it by showing our improved properties for one protocol, thus partially fixing the family of provably secure onion routing protocols.


Download
Originalveröffentlichung
DOI: 10.48550/arXiv.1910.13772
Zugehörige Institution(en) am KIT Institut für Informationssicherheit und Verlässlichkeit (KASTEL)
Institut für Telematik (TM)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Forschungsbericht/Preprint
Publikationsjahr 2019
Sprache Englisch
Identifikator KITopen-ID: 1000141599
Verlag arxiv
Umfang 28 S.
Externe Relationen Abstract/Volltext
Schlagwörter onion routing, security
Nachgewiesen in arXiv
Relationen in KITopen
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page