KIT | KIT-Bibliothek | Impressum | Datenschutz

Challenges of applying knowledge graph and their embeddings to a real-world use-case

Petzold, Rick; Gesese, Genet Asefa ORCID iD icon; Bogdanova, Viktoria; Zylowski, Thorsten; Sack, Harald; Alam, Mehwish


Different Knowledge Graph Embedding (KGE) models have been proposed so far which are trained on some specific KG completion tasks such as link prediction and evaluated on datasets which are mainly created for such purpose. Mostly, the embeddings learnt on link prediction tasks are not applied for downstream tasks in real-world use-cases such as data available in different companies/organizations. In this paper, the challenges with enriching a KG which is generated from a real-world relational database (RDB) about companies, with information from external sources such as Wikidata and learning representations for the KG are presented. Moreover, a comparative analysis is presented between the KGEs and various text embeddings on some downstream clustering tasks. The results of experiments indicate that in use-cases like the one used in this paper, where the KG is highly skewed, it is beneficial to use text embeddings or language models instead of KGEs.

Verlagsausgabe §
DOI: 10.5445/IR/1000141603
Veröffentlicht am 30.12.2021
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Informatik und Formale Beschreibungsverfahren (AIFB)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 1613-0073
KITopen-ID: 1000141603
Erschienen in Proceedings of the Workshop on Deep Learning for Knowledge Graphs (DL4KG 2021), co-located with the 20th International Semantic Web Conference (ISWC 2021): Virtual Conference, online, October 25, 2021. Ed.: M. Alam
Veranstaltung International​ Workshop on Deep Learning for Knowledge Graphs (DL4KG 2021), Online, 25.10.2021
Serie CEUR Workshop Proceedings ; 3034
Schlagwörter Knowledge Graph Embedding, Language Models, Clustering
Nachgewiesen in Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page