
ETHTID: Deployable Threshold Information
Disclosure on Ethereum

Oliver Stengele, Markus Raiber, Jörn Müller-Quade, Hannes Hartenstein
Institute of Information Security and Dependability (KASTEL)

Karlsruhe Institute of Technology
Karlsruhe, Germany

{oliver.stengele, markus.raiber, joern.mueller-quade, hannes.hartenstein}@kit.edu

Abstract—We address the Threshold Information Disclosure
(TID) problem on Ethereum: An arbitrary number of users
commit to the scheduled disclosure of their individual messages
recorded on the Ethereum blockchain if and only if all such
messages are disclosed. Before a disclosure, only the original
sender of each message should know its contents. To accomplish
this, we task a small council with executing a distributed
generation and threshold sharing of an asymmetric key pair.
The public key can be used to encrypt messages which only
become readable once the threshold-shared decryption key is
reconstructed at a predefined point in time and recorded on-
chain. With blockchains like Ethereum, it is possible to coordinate
such procedures and attach economic stakes to the actions of
participating individuals. In this paper, we present ETHTID, an
Ethereum smart contract application to coordinate Threshold
Information Disclosure. We base our implementation on an
existing smart contract, ETHDKG, and optimise functionality
and costs to fit the TID use case. While optimising for cost savings,
we show that the security of the underlying cryptographic scheme
is still maintained. We evaluate how the execution costs depend
on the size of the council and the threshold and show that the
presented protocol is deployable with a council of more than 200
members with gas savings of 20–40% compared to ETHDKG.

Index Terms—distributed key generation, threshold encryp-
tion, smart contract, time-lock cryptography

I. INTRODUCTION

In this paper, we make use of threshold cryptography to
achieve Threshold Information Disclosure (TID) on Ethereum
where mutual trust cannot be assumed and protocol violations
need to be discouraged. Threshold Information Disclosure
provides a way for arbitrarily many users to coordinate the
disclosure of individually-held pieces of information: Each
user commits to the disclosure of their information if and only
if the information of all other users is disclosed as well. Before
such a disclosure, each user should only be privy to their own
piece of information. Such a functionality is useful to allow
users to generate and record their submissions independently
from each other with the assurance that no user can prevent the
disclosure of any particular submission. Applications where
independent submissions are useful include scientific evalua-
tion of experimental raw data, security audits of software by
independent groups, and sealed-bid auctions where the secrecy
of losing bids is not required.

This work was supported by funding of the Helmholtz Association (HGF)
through the Competence Center for Applied Security Technology (KASTEL).

To accomplish such a coordinated information disclosure, an
asymmetric key pair should be generated in such a way that
a public encryption key becomes available immediately, but
the corresponding decryption key is threshold-shared among
a council that is tasked with recovering and publishing said
key at a predefined point in the future. Submissions can then
be encrypted and published in the present but only become
collectively readable once the decryption key is published. In
the meantime, neither submitters nor individual members of
the council can decrypt any submissions.

The functionality described above is challenging to achieve
on public blockchain systems like Ethereum due to a core
aspect of their functionality: It is vital that user-generated
information spreads quickly through their global peer-to-peer
networks in order to be recorded on their corresponding
blockchains. This very requirement makes it difficult for mul-
tiple parties to coordinate the release of information: One party
has to go first without knowledge of subsequent submissions
and other parties can wait, observe the submissions of others,
and potentially change their submission accordingly. Individ-
ual “commit and reveal” schemes exist, e.g. based on a crypto-
graphic hash function, to nullify any ordering advantages, but
they introduce the possibility of a party refusing to reveal their
commitment, which may be unacceptable depending on the use
case. In order to enable an arbitrarily large number of parties
to commit to the coordinated public release of submissions to a
blockchain, delegation mechanisms for both, keeping a secret
as well as coordination of key management, are therefore
needed. To preserve the notion of decentralisation inherent in
public blockchain systems, such mechanisms can not rely on
any trusted third party or centralised coordinator.

With ETHDKG, Schindler et al. [1], [2] demonstrated that a
distributed key pair generation for the BLS signature scheme
[3] can be coordinated and recorded with an Ethereum smart
contract. The core of their construction is the well-known
distributed key generation by Feldman [4]. The TID use case
differs in two significant ways: First, the asymmetric key pair
is only intended for the encryption of user-defined information
to keep it secret until disclosure; and second, one explicitly
requires a scheduled reconstruction of the threshold-shared
secret key to facilitate this disclosure. Based on the TID use
case and the corresponding cryptographic schemes, our goal
is to optimise ETHDKG to save on deployment and execution

costs while extending it with the functionality necessary to
orchestrate the scheduled key reconstruction. In particular, we
show that biasing attacks as described by Gennaro et al. [5],
[6], against which ETHDKG employs a countermeasure by
Neji et al. [7], are of no concern in our case and we can
therefore simplify the overall protocol to save costs.

The main contributions of this paper are as follows:
• An analysis of the coordination efforts for distributed key

generation, verifiable secret sharing, and scheduled recon-
struction to achieve Threshold Information Disclosure.

• A use-case oriented examination of cryptographic
schemes with the goal of minimising deployment and
execution costs of the implementation.

• An argumentation that our main optimisation maintains
the security of the underlying cryptographic scheme.

• ETHTID, an Ethereum smart contract implementation to
achieve Threshold Information Disclosure.

• An evaluation of ETHTID with regard to deployment and
execution costs to determine its deployability and limits.

An extended version of this paper is available on arXiv [8].
The remainder of this paper is structured as follows: We derive
general requirements for a decentralised TID coordinator and
give a system overview in Section II before we address related
work in Section III. In Section IV, we review the essential
building blocks we make use of and give a brief rationale
for their selection before we describe our implementation
in Section V. We thoroughly evaluate the implementation
in Section VI and discuss the results and open issues in
Section VII. With Section VIII, we conclude the paper.

II. OVERVIEW AND PROBLEM STATEMENT

For keeping a secret in a decentralised fashion, we assume
a council of n members tasked with generating a master
public key mpk such that the corresponding secret key msk
can be recovered after a predefined point in time r through the
cooperation of council members. In particular, the following
conditions need to be fulfilled: The master secret key msk is
not available to any party before time r but eventually becomes
available to all parties (after time r). Note that both conditions
refer to parties both actively participating in the generation,
sharing, and reconstruction phases (i.e. council members) as
well as user parties that use mpk and msk. Whether or not these
conditions hold, however, depends entirely on the behaviour of
council members. Thus, the trust assumption of TID is that the
council does not reconstruct the master secret key msk before
time r. An incentive scheme like the one presented by Yakira
et al. [9], coupled with the assumption that council members
act rationally, can encourage correct behaviour.

In broad strokes, TID proceeds as follows: The council
performs a distributed key generation of msk with each council
member contributing an individual secret, making mpk avail-
able in the process. At the predefined time for disclosure,
council members cooperate to recover and publish msk. Users
of TID can publish their submissions after encrypting them
with mpk and they will become readable once msk is published.
To avoid single points of failure, we require each council

Smart Contract

mpk msk

Data

Users

Initiator

Council

1

2

3

4 6

5

7

Figure 1. System overview. (1) Initiator deploys smart contract with pa-
rameters and incentives. (2) Council members register with the contract by
submitting data and a deposit. (3) Council members communicate through
the smart contract to generate the public encryption key mpk and establish a
sharing of the secret decryption key msk. In case of misbehaviour, members
submit a dispute to the contract to enforce punishments. (4) Users can obtain
mpk. (5) At a codified time, council members submit data to the contract to
enable the reconstruction of msk. (6) Users and the general public can obtain
the decryption key msk. (7) Based on their behaviour, council members receive
a reward in addition to their collateral and are released from their obligation.

member to share their individual secret through a verifiable
secret sharing scheme (VSS) [4], [10] based on threshold
cryptography, so the secret can be recovered by fewer than n
council members. Therefore, council members have to broad-
cast and store certain pieces of information to hold each other
accountable. Thus, in addition to performing any necessary
verification to arbitrate disputes, a coordination functionality
is needed to fulfil the following requirements:

1) The coordination functionality stores and provides data
from council members, enabling them to execute the
VSS protocol and detect misbehaviour.

2) The coordination functionality performs verification
given previously stored data and submitted evidence.

3) The coordination functionality receives, holds, and redis-
tributes assets according to the outcome of verification.

4) The coordination functionality has access to a public
form of timekeeping to enforce a schedule.

The coordination functionality of TID should be implemented
in a decentralised fashion, i.e. as a blockchain-based smart
contract. In addition to the ability to perform verification and
distribute assets accordingly, these blockchain-based systems
include a timekeeping mechanism in the form of block height.

With the general structure and requirements in mind, we can
now outline a system overview as well as the corresponding
workflow. Figure 1 shows the parties and their interactions.

Setup and registration phase: An initiator triggers the entire
procedure. While instantiating the smart contract, the initiator
sets parameters, provides a financial incentive for participation,
and sets a schedule for the remaining phases. Council members
register with the smart contract (selection of council member
is discussed in Section VII).

Share distribution and dispute phase: Once authorised, the
council members perform a distributed key generation and
submit data to the contract for mutual accountability. This data
simultaneously protects members against false accusations

and convicts them in conjunction with submitted evidence in
case of misbehaviour. Alongside this verification data, council
members may also need to send a security deposit to the
contract that can be destroyed or redistributed in case they
misbehave. Once all council members are registered with the
contract, they can privately exchange data through the smart
contract to establish a sharing of msk. Council members that
remain inactive after their registration can be disqualified
based on the codified schedule. Similarly, members who
perform an invalid sharing of their secret are caught by the
VSS scheme and can be disqualified after the smart contract
verifies submitted evidence on-demand.

Reconstruction phase: Once the predefined time for recon-
struction r has come, members of the council are incentivised
to submit data necessary for the reconstruction of msk to the
contract. If enough members cooperate, msk can be recovered
via the previously established secret sharing. A member can
then post msk to the contract and both users and the gen-
eral public can obtain it to decrypt all previously published
messages, thus achieving a coordinated disclosure. Lastly, the
members of the council can reclaim their deposit in addition
to their share of the reward for their service.

The problem addressed in this paper is the selection and
implementation of cryptographic primitives as well as the
implementation of the coordination functionality in Ethereum
such that TID becomes actually deployable with respect to
costs and block sizes.

III. RELATED WORK

Coordinating the release of information has previously been
tackled in two distinct ways, either through time-lock puzzles
or with trusted third party custodians in either centralised or
decentralised fashion. When comparing the work presented
here with previous approaches, it is helpful to consider the
number of “sending” parties that can commit to the timed
release of information without disclosing it to each other
and to how many other “receiving” parties the information
is disclosed to.

Time-lock puzzles [11]–[13] bear similarities to the TID
use case in that they can “send information into the future”.
The receiver of a puzzle is required to do some inefficient but
feasible computation that is expected to take at least a certain
amount of time to solve it. The time it takes a recipient to
solve the puzzle and recover the decryption key can only be
estimated by the sender. Additionally, the recipient must exert
computational effort to eventually receive the encrypted in-
formation. These schemes generally constitute a “one-sender-
to-one-recipient” timed release functionality with low timing
accuracy but without a trusted third party.

Another solution to timed-release encryption makes use of
a trusted party that releases decryption keys at the right time
[11], [14]–[16]. To circumvent a single point of failure that
a trusted party poses, it is possible to securely distribute the
task to multiple parties, such that it is sufficient that some
amount of them behave honestly. Some of these works allow
for multiple recipients with more or less favourable scalability

or setup procedures, but lacking a distributed key setup they
only support a timed release for individual senders.

Benhamouda et al. [17] present a concept that allows the
Algorand blockchain itself to act as a long-term secret keeper
through a randomised sequence of anonymous committees.
They list functionalities like the one we present here as future
achievable goals of their concept. While their approach is
more general and possibly covers the TID functionality, our
approach is practically feasible on an established blockchain.
However, their “cryptographic sortition” approach to forming
committees may be transferable to the TID concept as a
countermeasure to Sybil attacks. It will be interesting to see
the future developments of Algorand and its capabilities.

In 2018, two projects appeared independently of each other
within the Ethereum ecosystem that combined threshold se-
cret sharing with Ethereum smart contracts: Kill Cord1 and
Kimono2. Both use Shamir’s secret sharing [18] to fragment
a decryption key and entrust the shares to Ethereum nodes
which are incentivised via smart contracts to only post their
shares at a certain time. In both cases, the initiator of the
protocol generates the key and acts as a trusted dealer, making
both systems “one-to-many” compared to the TID construction
which achieves a coordinated “many-to-many” release.

IV. ESSENTIAL BUILDING BLOCKS

When implementing the coordination functionality as a
smart contract on a public blockchain, it is important to min-
imise operational costs. These are (1) broadcast information
which may be stored on the blockchain entirely or partially and
(2) computations performed by the smart contract, mostly dur-
ing optional verification. The obvious candidates for encryp-
tion schemes are the ElGamal and RSA cryptosystems. We
chose ElGamal since it can be used over elliptic curves, thus
achieving short public and secret keys and more importantly, it
is easy to generate a distributed public key for it. Accordingly,
we base our work on the distributed key generation protocol
for ElGamal due to Feldman [4], which itself is based on
the threshold secret sharing scheme by Shamir [18]. It is
important to note that, while we actually employ this primitive
on an elliptic curve, we will use the more common notation
of multiplicative groups here.

A. Distributed Key Generation and Threshold Secret Sharing

Our goal is for the council to generate an ElGamal public
key for which the corresponding secret key is (t+1, n)-secret
shared among them. We first briefly recall Shamir’s threshold
secret sharing scheme [18]: To share a secret s, a random
polynomial p of degree t with p(0) = s is drawn and each
party i is given p(i) as its share. Since p has degree t, it is
possible to uniquely reconstruct p, and thus find s, given t+1
such shares, but t shares reveal no information at all about s.
Handling data related to these polynomials is at the very core
of the TID coordinator.

1https://github.com/nomasters/killcord
2https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-

locks-on-ethereum-8e7e696494d

https://github.com/nomasters/killcord
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d
https://medium.com/@pfh/kimono-trustless-secret-sharing-using-time-locks-on-ethereum-8e7e696494d

To generate a threshold shared ElGamal key, we make use
of a variant of the Joint-Feldman DKG [4] similar to the
one by Pedersen [19], which we briefly recall. One important
difference between these VSS protocols in theory and our
practical implementation is the use of private communication
channels between members. In order for the TID coordinator
to efficiently arbitrate disputes, all communication between
members must flow through it. We therefore adopt from
ETHDKG [1] a symmetrical encryption scheme for the confi-
dential exchange of information between members and a non-
interactive zero-knowledge proof and verification scheme as a
part of dispute resolution. The end result is that a dispute can
be completed non-interactively in a single transaction.

We can now review the cryptographic procedures at the
core of the TID implementation. Let G be a cyclic group
of prime order p with generator g for which the decisional
Diffie-Hellman problem is hard. It is easy to generate an
ElGamal public key where each member holds an additive
share of the secret key and all n council members have to
cooperate to reconstruct it: Each party i chooses ski ∈ Zp,
calculates pki := gski and broadcasts pki. The master public
key is then mpk :=

∏n
i=1 pki = g

∑n
i=1 ski and the secret key

msk :=
∑n

i=1 ski is (n, n)-secret shared among all members.
This is quite beneficial as it allows executing the distributed
key generation and threshold sharing simultaneously. With this
construction, it is also possible to disqualify members for
misbehaviour and simply discard their pieces of msk and mpk
as outlined below.

To achieve a (t + 1, n)-threshold secret sharing of the
(not yet reconstructed) master secret key msk, each member
individually (t + 1, n)-shares its contribution ski among all
n council members using Shamir secret sharing. We will use
the term shadow for shares of ski, while reserving the term
share for shares of the master secret key msk. Since Shamir
secret sharing is additively homomorphic, each member can
combine all valid shadows that they received into a single share
of the master secret key. To prevent malicious members from
sending inconsistent shadows during this phase, Joint-Feldman
[4] employs the following consistency checks: When members
pick a random polynomial pi = ski +

∑t
k=1 ai,kX

k, they
also compute verification values Ai,k = gai,k and broadcast
{Ai,k}tk=1 in addition to pki. They privately send to member
j the shadow ui,j = pi(j) and treat pi(i) as their own shadow.
When member j receives a shadow ui,j from member i, they
check whether it agrees with the broadcast polynomial:

gui,j
?
= pki

t∏
k=1

Ajk

i,k = gski+
∑t

k=1 ai,kj
k

= gpi(j) (1)

If this check fails, member j reveals the invalid shadow ui,j

to the coordinator and member i is excluded if the complaint
is valid. Notice that the coordinator needs access to the
verification values pki and {Ai,k}tk=1 of the accused member
i in order to evaluate Equation (1) as part of a dispute. Rather
than storing these values on-chain, we adopt the strategy of
ETHDKG to store a hash of the previous broadcast and let the

accusing member resubmit it. Since all valid shadows lie on
the same degree t polynomial, reconstruction from any t+ 1
shadows will yield ski.

Finally, each party i adds up all n shadows ui,j it has,
where n − 1 shadows were received from other parties and
one comes from evaluating its own polynomial, to get a share
si of the polynomial p =

∑n
i=1 pi, for which it holds that

p(0) =
∑n

i=1 pi(0) =
∑n

i=1 ski = msk. Since polynomial
p is of degree t, msk can be recovered by a group of
t + 1 cooperating members through Lagrange interpolation.
With any fewer shares, no useful information of msk can be
derived. Note that a council member can submit msk and the
coordinator can verify it against the master public key mpk
rather than performing any interpolation on-chain.

To transmit shadows confidentially over the coordinator,
Schindler et al. [1] employ a symmetric key encryption
scheme inspired by the Diffie-Hellman key exchange [20] and
ElGamal encryption [21]. As part of their registration, every
council member i submits a public encryption key p̂ki = gŝki

to the coordinator while keeping ŝki to themselves. Note that
ŝki is distinct from ski, the contribution of member i to the
master secret key. Every council member i can then compute
a symmetric encryption key for another council member j as

kij = p̂k
ŝki
j = p̂k

ŝkj
i = gŝki ŝkj . With this key, shadows can then

be encrypted before being broadcast via the coordinator.
In order to file a dispute, a council member j reveals to the

coordinator the symmetric encryption key kij used by member
i whom he accuses of sending an incorrect shadow. To prove
the correctness of this key without revealing ŝkj , Schindler
et al. [1] employ a non-interactive zero knowledge proof and
verification scheme that we adopt without any changes. For
the purpose of this paper, it suffices to know that unfounded
disputes with an incorrect decryption key are not accepted
by the coordinator. By resubmitting the broadcast message of
the accused member as part of the dispute, the coordinator
can decrypt the shadow in question, check its validity against
the verification values of the sender i with Equation (1), and
disqualify member i if the shadow is found invalid.

B. Ethereum

We assume general familiarity with Ethereum [22] including
transactions, the gas cost mechanism, and the underlying
blockchain and peer-to-peer infrastructure. The components
of Ethereum that are most crucial for our implementation are
precompiled contracts for the elliptic curve operations that
we rely on. The term is rather misleading since they are
not actually smart contracts that were compiled and stored
at specific addresses on the blockchain, but rather optimised
implementations of certain functions external to the EVM
that are called as if they were contracts. We rely on two
precompiled contracts for addition and scalar multiplication on
the Barreto-Naehrig (BN) [23] curve as defined by EIP-1963,
which were deployed with the Byzantium hardfork in 2017.
At the end of 2019, the gas costs for both of these contracts

3https://eips.ethereum.org/EIPS/eip-196

https://eips.ethereum.org/EIPS/eip-196

were substantially reduced per EIP-11084, which was deployed
as part of the Istanbul hardfork. At the time of writing, the
amount of gas that can be spent within a single block is
approximately 15 000 000, any transaction that exceeds this
limit is practically impossible to execute. This gas limit per
block can be influenced by miners and changes over time.

V. ETHTID
In this section, we describe ETHTID, an Ethereum smart

contract for a decentralised Threshold Information Disclosure.
We base our work on ETHDKG [1], [2] but optimise (simplify)
and extend the implementation for the TID use case.

The goal of ETHDKG was to establish a group BLS
signature [3], whereas we only need an ElGamal key pair for
encryption and eventual decryption. The first optimisation is
rather straightforward: We can do without the bilinearity of the
BN curve. The main benefit is that the ETHTID contract does
not need to perform any pairing checks, thus saving costs. The
reason we still use the BN curve is that it is currently the only
elliptic curve available on Ethereum. Implementing a simpler
curve in Solidity, in lieu of a precompiled contract, would be
prohibitively expensive.

The second optimisation is more intricate but also more
significant in terms of cost savings. Gennaro et al. [5], [6]
thoroughly examined how an attacker can bias the result
of a distributed key generation by entering under the guise
of multiple identities and then selectively denouncing some
of them. The core issue is that all information necessary
to compute the result of the protocol, mpk in our case, is
known before the last opportunity to disqualify participants. In
ETHDKG [1], Schindler et al. employed a countermeasure by
Neji et al. [7] that involved an additional round of broadcasts
and an optional reconstruction in case any party did not
perform this broadcast. Instead of preventing biasing attacks
in this way, we can simply accept them. This is because
they do not impact the security of the ElGamal encryption
scheme: Assume an attacker waits and observes all pki from
honest parties, computing m̃pk =

∏
pki. The attacker may

then choose any value b and force the resulting public key
of the protocol to be mpk = m̃pk · gb. Whatever attack an
adversary can perform against this biased public key mpk can
also be performed against the unbiased public key m̃pk. Given
m̃pk and a cipher text c̃ = (c̃1, c̃2) := (gr, m̃pkr ·m), and given
b, this cipher text can be transformed to the biased public key
mpk: c = (c1, c2) := (c̃1, c̃2 · c̃b1) = (gr, m̃pkr · grb · m) =
(gr, (m̃pk · gb)r · m) which is a valid cipher text under
mpk = m̃pk · gb. Simply put, an attacker gains no advantage
from biasing the ElGamal key pair, so we can simplify the TID
protocol to save costs. It is crucial to note that this optimisation
is only viable because the key pair in question is meant to be
used solely for ElGamal encryption.

With these optimisations and the extension of a scheduled
key recovery, ETHTID proceeds in five phases: Setup, Reg-
istration, Share Distribution, Dispute (if needed), and Recon-
struction. We first consider an execution without misbehaving

4https://eips.ethereum.org/EIPS/eip-1108

parties before examining different cases of misbehaviour and
the contract’s ability to handle them.

A. Execution without Misbehaviour

First, the initiator deploys the ETHTID contract by sub-
mitting a corresponding transaction to the Ethereum peer-to-
peer network. As a part of the deployment transaction, the
initiator also sets the threshold t as a fraction of the council
members registered by the end of the next phase. The initiator
also sets the schedule for the subsequent phases at this point,
most crucially the time for the coordinated recovery r, via
block heights of the Ethereum blockchain. All of these settings
are write-once and cannot be changed afterwards. In practice,
the initiator would also supply the contract with a reward to
incentivise correct participation.

During the Registration phase, council members call REG-
ISTER() and submit a public key to be used for the confidential
exchange of shadows. For the sake of simplicity, we use a first-
come-first-served method here, but more intricate approaches
could be used in practice, notably to defend against Sybil
attacks. Depending on the incentive scheme, council members
would also submit a deposit as part of their registration.

With the beginning of the Share Distribution phase, regis-
tration is no longer possible. Each registered council member
i draws a random individual secret ski, embeds it into their
random individual polynomial pi = ski +

∑t
k=1 ai,kX

k of
degree t, and generates verification values as described in
Section IV-A: pki = gski , {Ai,k = gai,k}k∈{1,...,t}. Member
i encrypts the shadow uij = pi(j) via a one-time pad
based on the symmetric encryption key kij (see Section IV-A)
using a cryptographic hash function H(kij ||j). This way, the
shadows uij and uji are not encrypted with the same one-time
pad but both recipients are still able to decrypt them. Each
member then calls DISTRIBUTE SHARES() to broadcast both
the encrypted shadows for other members {uij}j 6=i as well as
the verification values from above. The smart contract stores
a hash of the encrypted shadows and verification values for a
possible dispute. In this way both the (n, n) and (t + 1, n)-
sharing of msk, as described in Section IV-A, are performed
in a single step. Note, however, that council members who
broadcast invalid shadows can still be disqualified via the
Dispute phase that we examine closer in the next section.

With the end of the Dispute phase, all remaining council
members can combine their shadows to generate their thresh-
old share si of the master secret key msk. Council members
are meant to keep both si and their individual secret ski private
until the scheduled time for disclosure and only then broadcast
both via SUBMIT SECRET(). As soon as t+1 members do this,
anyone can compute the master secret key msk via Lagrange
interpolation and submit it to the contract via SUBMIT MSK()
to conclude the functional part of the protocol. It is worth
noting that the smart contract performs no checks on ski or
si as part of SUBMIT SECRET(). We argue that neither of
these checks are necessary in practice, since the council is
collectively under pressure to produce the master secret key
in order to earn their reward and reclaim their security deposit.

https://eips.ethereum.org/EIPS/eip-1108

B. Misbehaviour Detection and Dispute Handling

The first general class of misbehaviour that smart contracts
handle rather easily is inactivity. If a member is expected to
call a function but fails to do so within a certain amount
of time, designated by block height in Ethereum, a smart
contract can notice the passing of a predefined deadline during
a transaction and act accordingly. There are two opportunities
for a council member to be inactive in ETHTID: during the
Share Distribution and the Reconstruction phase. If a council
member registers but fails to call DISTRIBUTE SHARES(), they
would lose their security deposit and the protocol proceeds
without them. In the case that too many council members
remain inactive in this way, the entire protocol would have
to be restarted with a new council. Due to the established
threshold sharing of msk, up to n− t−1 council members can
refrain from calling SUBMIT SECRET() without consequence,
as the remaining members are still able to complete the recon-
struction. Consequently, if one more member remains inactive
during this phase, msk cannot be recovered. In practice, this
outcome would be discouraged via an incentive scheme [9].

The more interesting case of misbehaviour revolves around
the validity of shadows broadcast via DISTRIBUTE SHARES(),
which ETHTID inherits from ETHDKG [1]. Based on the
verification values that a council member must broadcast
alongside the encrypted shadows, other members can verify
the correctness of all received and decrypted shadows via
Equation (1). If a member j detects an invalid shadow, they
should call SUBMIT DISPUTE() and resubmit the broadcast of
the accused member i along with the corresponding symmetric
encryption key kij and a zero-knowledge correctness proof.
The ETHTID contract verifies the integrity of the broadcast
via the previously stored hash, verifies the correctness proof,
decrypts the shadow in question and checks its validity via
Equation (1). If the shadow is indeed invalid, the accused
member is disqualified from the remaining protocol and their
security deposit could be destroyed or redistributed. It is worth
noting that unfounded disputes have no consequences other
than the execution costs for the accusing member. Similarly,
a single valid dispute suffices to disqualify a misbehaving
member, regardless of how many invalid shadows they may
have sent. In such a case, only the first dispute would involve
the costly verification of a shadow, whereas any subsequent
disputes against the same offending member would be recog-
nised as moot and not incur any significant cost.

VI. EVALUATION

We now examine the deployment and execution costs of
the proposed construction. We performed this evaluation with
Ganache5 (v2.13.2) and compiled the smart contract with solc
(v0.5.17). At the time of writing, the active Ethereum hard fork
was Muir Glacier, so we set our local development blockchain
accordingly. Recall that the Istanbul hard fork, which preceded
Muir Glacier, included gas cost reductions for the precompiled
contracts that we use for elliptic curve operations. We adapted

5https://www.trufflesuite.com/ganache

Table I
COST OF FUNCTIONS INDEPENDENT OF THRESHOLD t AND NUMBER OF
COUNCIL MEMBERS n. CONVERSION RATES: USD2109.29 PER ETH,

ETH25.13×10−9 PER GAS.

Function Gas USD

Contract Deployment 1 881 722 99.74
REGISTER() 106 407 5.64
SUBMIT SECRET() 25 196 1.34
SUBMIT MSK() 52 225 2.77

64 128 192 256
0

0.5

1

1.5

0

20

40

60

80

·106

Size of Council n

G
as

U
SD

Gen mpk

Dist Share t = n/2

Dist Share t = 2n/3

Figure 2. Execution costs of GENERATE MPK() (independent of t) and DIS-
TRIBUTE SHARES() with thresholds of t = dn/2e− 1 and t = d2n/3e− 1.
Conversion rates: USD2109.29 per ETH, ETH25.13×10−9 per gas.

the accompanying Python application of ETHDKG [1] in
conjunction with its smart contract. The Python application
serves to check the smart contract operations for correctness
and automate the gas cost evaluation.

Using the above setup, we compiled and deployed our
contract with thresholds of t = dn/2e−1 and t = d2n/3e−1
before executing the protocol described in Section V with
a varying number of council members and recording the
gas costs for individual transactions. Since we observed very
regular costs, we capped the evaluation at n = 256.

While gas costs are constant, barring any improvements to
the contract or gas price altering hard forks like Istanbul,
monetary costs are subject to market forces and network
utilisation and, thus, fluctuate over time. For a better intuition,
we report costs in both gas and USD, using the daily average
exchange rates of 1st July 2021 as reported by Etherscan6:
USD2109.29 per Ether and a gas price of ETH25.13×10−9.

Table I shows the execution costs of functions that are
independent of the threshold t and council size n. Recall
that SUBMIT SECRET() is merely a broadcast of two values
without any checks and SUBMIT MSK() only verifies that the
submitted master secret key is consistent with the previously
generated master public key.

Figure 2 shows the execution costs for the DIS-
TRIBUTE SHARES() broadcast per council member as well
as the execution cost of GENERATE MPK(). These costs of
DISTRIBUTE SHARES() scale in both the size of the council
n and the threshold t since the broadcast consists of n − 1
encrypted shadows and t+1 verification values. Even though
only one verification value and a hash over the broadcast
payload is persistently stored on-chain, sending all this data

6https://etherscan.io

https://www.trufflesuite.com/ganache
https://etherscan.io

64 128 192 256
0

0.5

1

1.5

2

0

50

100

·106

Size of Council n

G
as

U
SD

t = n/2

t = 2n/3

Figure 3. Execution costs of SUBMIT DISPUTE() with threshold ratios of
t = dn/2e − 1 and t = d2n/3e − 1. Conversion rates: USD2109.29 per
ETH, ETH25.13×10−9 per gas.

with a transaction still incurs costs. The costs for GENER-
ATE MPK() are independent of the threshold since it only
involves combining the pki of all n qualified council members.

Figure 3 shows the execution costs for a valid SUB-
MIT DISPUTE() transaction. The brunt of these costs are
caused by the evaluation of Equation (1), which scales with
threshold t as it determines the degree of the sharing poly-
nomials. Since the DISTRIBUTE SHARES() broadcast of an
offending council member must be resubmitted as part of the
dispute, the council size n has a very slight influence as well.
To see this, compare the costs of n = 192, t = d2n/3e − 1 =
127 of 1 465 837 gas and n = 256, t = dn/2e − 1 = 127
of 1 504 658 gas. Since the dispute mechanism is unchanged
compared to ETHDKG [1], this evaluation incidentally also
shows the effect of the cost reductions to the elliptic curve
operations that were part of the Istanbul hard fork.

Based on our measurements, we can determine lower
bounds for the deployment and execution costs as depicted
in Figure 4 for t = dn/2e − 1 with the costs for t =
d2n/3e − 1 being 1–14% higher. Note that these bounds
represent a happy case without any disputes and where each
phase is completed with the minimally necessary transactions:
One contract deployment, n calls of REGISTER() and DIS-
TRIBUTE SHARES(), one call of GENERATE MPK(), t+1 calls
of SUBMIT SECRET(), and one call of SUBMIT MSK().

To demonstrate the amount of gas saved by our adaptations,
we evaluated both ETHDKG and ETHTID on the Muir
Glacier hard fork in two scenarios: A happy case where
everything goes as planned and no council member misbe-
haves or becomes inactive, similar to the description in the
previous paragraph; and a sad case where one council member
distributes invalid shares and all but the minimally required
t + 1 council members become inactive after the distribution
of shares. It is important to note that ETHDKG lacks the
functionality necessary for a scheduled reconstruction of msk.
However, the added deployment costs should be minimal and
our measurements of Table I show that the added execution
costs are very low as well. The costs for SUBMIT MSK()
would be higher by a constant amount for ETHDKG since
an additional pairing check would be necessary but it would
still not present a significant increase to the overall costs.

Figure 4 shows a direct comparison of the total costs of
ETHDKG and ETHTID and Figure 5 illustrates the relative

64 128 192 256
0

1

2

3

0

0.5

1

1.5

·108

Size of Council n

G
as

·104

U
SD

ETHDKG Happy
ETHDKG Sad

ETHTID Happy
ETHTID Sad

Figure 4. Total execution costs of ETHDKG and ETHTID with t = dn/2e−
1. Happy case: No misbehaviour. Sad case: One incorrect share distribution
and dispute and only t+1 members complete each protocol. Conversion rates:
USD2109.29 per ETH, ETH25.13×10−9 per gas.

8 16 32 64 128 192 256
0

20

40

Size of Council n

G
as

Sa
vi

ng
s

(%
)

Happy Case

Sad Case

Figure 5. Relative cost savings of ETHTID compared to ETHDKG. Happy
case: No misbehaviour. Sad case: One incorrect share distribution and dispute
and only t+ 1 members complete each protocol.

gas savings. It is very clear that the additional broadcast and
optional reconstruction phases of ETHDKG for the biasing
countermeasure due to Neji et al. [7] are the main sources
for gas savings, as demonstrated by the difference between
happy and sad case. Nevertheless, even in the happy case, we
observe gas savings of 20–40%. It is also noteworthy how the
happy and sad cases for ETHTID show very similar costs.
This is due to the only difference in execution being a call of
SUBMIT DISPUTE() to disqualify a member who performed
an invalid share distribution.

VII. DISCUSSION AND FUTURE WORK

First and foremost, we can deduce from the results of Sec-
tion VI that ETHTID is indeed deployable on Ethereum and
able to execute the distributed key generation and threshold
sharing by Feldman [4] as well as a coordinated reconstruc-
tion. With up to 256 council members, all transactions stay far
below the current block gas limit of 15 000 000. Currently, the
ETHTID contract is only able to run the TID protocol once.
With adjustments, it could be made reusable, which would
allow an amortisation of deployment costs. However, in order
to reuse prior council member registrations, the one-time pad
construction for the distribution of shadows would have to be
altered, as it would currently weaken with every reuse.

It is important to discuss both the assumptions we base our
constructions on as well as the freedoms it provides in its
applications. Mainly, the selection of council members is a
linchpin that can render all efforts meaningless if not done
with the utmost care. Recently, proof-of-work-based Sybil
defences that could be applicable to the TID concept have been

developed [24] that are currently being refined and improved
[25]. An alternative to the first-come-first-served selection
method we used for simplicity would be a manual preselection
of council members by the initiator. Similarly, a form of
“reputation and collateral” system that spans across multiple
instantiations of the TID protocol could be used to build trust
in participants over time. When scheduling a TID execution, it
is important to account for network congestion and be lenient
with deadlines. After the setup and share distribution, the most
crucial and time-sensitive transaction is the publication of the
master secret key. We described the exchange of shares for
reconstructing the secret key as on-chain transactions, but the
council can in fact use any communication channel to recover
the secret key and then publish it on-chain and on time.

Intertwining cryptography and economics presents opportu-
nities to expand existing attacker models, where participants
either adhere to the protocol completely or are under the
full control of an attacker. Similarly, the goal of an attacker
is usually quite singular in these models, be it extracting a
secret or distinguishing between two messages, to name two
examples. With economic incentives in a practical setting, both
the states of participants and the goals of attackers become
more varied. For example, council members could follow the
protocol but look to sell their secrets and shares to an attacker
to maximise their profit. Attackers could also look to cause
as much disruption as possible for a given budget they are
willing to lose. Handling such scenarios without giving council
members or users perverse incentives is the main challenge
when adapting an incentive scheme for the presented protocol.

Lastly, we look towards future developments in Ethereum
and possible improvements to our implementation they could
present. Currently, only the Barreto-Naehrig curve [23] is sup-
ported via precompiled contracts, which would not have been
our first choice if more suitable alternatives were available.
More precompiled contracts for elliptic curve cryptography are
currently being discussed7, which would include curves that
are more suitable to our use case like secp256k1 or Ed25519.

VIII. CONCLUSION

In this paper, we presented ETHTID, an Ethereum smart
contract that acts as a coordinator and arbiter of conflict for a
distributed key generation, threshold sharing, and coordinated
reconstruction to facilitate Threshold Information Disclosure
in a context of mutual distrust. We demonstrated the de-
ployability of the construction experimentally and provided
measurements to estimate the overall execution costs based
on council size and threshold for disclosure. With ETHTID
providing a functionality that Ethereum does not offer in-
nately, namely the coordinated disclosure of arbitrary data
by mutually distrustful parties, new applications may become
possible, particularly when it comes to publishing records from
multiple parties independently. While our results are generally
positive, we also highlight areas where both the tools available
in Ethereum as well as their application can be improved.

7https://eips.ethereum.org/EIPS/eip-1962

REFERENCES

[1] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “ETHDKG: Dis-
tributed key generation with Ethereum smart contracts.” IACR Cryptol.
ePrint Arch., vol. 2019, p. 985, 2019.

[2] ——, “Distributed key generation with Ethereum smart contracts,” in
CIW’19: Cryptocurrency Implementers’ Workshop, 2019.

[3] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Int. Conf. Theory
and Appl. of Cryptographic Techn. Springer, 2003, pp. 416–432.

[4] P. Feldman, “A practical scheme for non-interactive verifiable secret
sharing,” in 28th Annu. Symp. Found. of Comput. Sci., 1987, pp. 427–
438.

[5] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed
key generation for discrete-log based cryptosystems,” in Int. Conf.
Theory and Appl. of Cryptographic Techn. Springer, 1999, pp. 295–310.

[6] ——, “Secure applications of Pedersen’s distributed key generation
protocol,” in Cryptographers’ Track at the RSA Conf. Springer, 2003,
pp. 373–390.

[7] W. Neji, K. Blibech, and N. Ben Rajeb, “Distributed key generation pro-
tocol with a new complaint management strategy,” Secur. and Commun.
Networks, vol. 9, no. 17, pp. 4585–4595, 2016.

[8] O. Stengele, M. Raiber, J. Müller-Quade, and H. Hartenstein, “ETHTID:
Deployable threshold information disclosure on Ethereum,” arXiv
preprint arXiv:2107.01600, 2021.

[9] D. Yakira, I. Grayevsky, and A. Asayag, “Rational threshold cryptosys-
tems,” arXiv preprint arXiv:1901.01148, 2019.

[10] T. P. Pedersen, “Non-interactive and information-theoretic secure veri-
fiable secret sharing,” in Annu. Int. Cryptology Conf. Springer, 1991,
pp. 129–140.

[11] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and
timed-release crypto,” MIT, USA, Tech. Rep., 1996.

[12] W. Mao, “Timed-release cryptography,” in Sel. Areas in Cryptography,
ser. LNCS, S. Vaudenay and A. M. Youssef, Eds. Berlin, Heidelberg:
Springer, 2001, pp. 342–357.

[13] M. Mahmoody, T. Moran, and S. Vadhan, “Time-lock puzzles in the ran-
dom oracle model,” in Annu. Cryptology Conf., ser. LNCS, P. Rogaway,
Ed. Berlin, Heidelberg: Springer, 2011, pp. 39–50.

[14] M. Bellare and S. Goldwasser, “Verifiable partial key escrow,” in Proc.
4th ACM Conf. Comput. and Commun. Secur., ser. CCS ’97. Zurich,
Switzerland: ACM, 1997, pp. 78–91.

[15] G. Di Crescenzo, R. Ostrovsky, and S. Rajagopalan, “Conditional
oblivious transfer and timed-release encryption,” in Int. Conf. Theory
and Appl. of Cryptographic Techn., ser. LNCS, J. Stern, Ed. Berlin,
Heidelberg: Springer, 1999, pp. 74–89.

[16] J. Cathalo, B. Libert, and J.-J. Quisquater, “Efficient and non-interactive
timed-release encryption,” in Int. Conf. Inf. and Commun. Secur., ser.
LNCS, S. Qing, W. Mao, J. López, and G. Wang, Eds. Berlin,
Heidelberg: Springer, 2005, pp. 291–303.

[17] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk,
C. Lin, T. Rabin, and L. Reyzin, “Can a public blockchain keep a
secret?” in Theory of Cryptography Conf. Springer, 2020, pp. 260–
290.

[18] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, 1979.

[19] T. P. Pedersen, “A threshold cryptosystem without a trusted party,” in
Workshop Theory and Application of Cryptographic Techn., ser. LNCS,
D. W. Davies, Ed. Berlin, Heidelberg: Springer, 1991, pp. 522–526.

[20] E. Rescorla, “RFC2631: Diffie-Hellman key agreement method,” IETF,
Tech. Rep., 1999.

[21] T. Elgamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” IEEE Trans. Inf. Theory, vol. 31, no. 4, pp.
469–472, 1985.

[22] V. Buterin, “A next-generation smart contract and decentralized appli-
cation platform,” white paper, 2014.

[23] P. S. L. M. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of
prime order,” in Sel. Areas in Cryptography, B. Preneel and S. Tavares,
Eds. Berlin, Heidelberg: Springer, 2006, pp. 319–331.

[24] D. Gupta, J. Saia, and M. Young, “Peace through superior puzzling: an
asymmetric Sybil defense,” in IEEE Int. Parallel and Distrib. Process.
Symp. IEEE, 2019, pp. 1083–1094.

[25] ——, “ToGCom: an asymmetric Sybil defense,” arXiv preprint
arXiv:2006.02893, 2020.

https://eips.ethereum.org/EIPS/eip-1962

	Introduction
	Overview and Problem Statement
	Related Work
	Essential Building Blocks
	Distributed Key Generation and Threshold Secret Sharing
	Ethereum

	ETHTID
	Execution without Misbehaviour
	Misbehaviour Detection and Dispute Handling

	Evaluation
	Discussion and Future Work
	Conclusion
	References

