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A SCATTERING PROBLEM FOR A LOCAL PERTURBATION OF AN
OPEN PERIODIC WAVEGUIDE

ANDREAS KIRSCH

ABSTRACT. In this paper we consider the propagation of waves in an open waveguide in
R? where the index of refraction is a local perturbation of a function which is periodic
along the axis of the waveguide (which we choose to be the z;—axis) and equal to
one for |xa| > ho for some hy > 0. Motivated by the limiting absorption principle
(proven in [17] for the case of an open waveguide in the half space R x (0,00)) we
formulate a radiation condition which allows the existence of propagating modes and
prove uniqueness, existence, and stability of a solution under the assumption that no
bound states exist. In the second part we determine the order of decay of the radiating
part of the solution in the direction of the layer and in the direction orthogonal to it.
Finally, we show that it satisfies the classical Sommerfeld radiation condition and allows
the definition of a far field pattern.

1. INTRODUCTION

Let k£ > 0 be the wavenumber which is fixed throughout the paper and n € L*(R?) the
real valued index of refraction which is assumed to be 2r—periodic with respect to x; and
equals to 1 for |zg| > hg for some hy > 0. Furthermore, let ¢ € L>°(R?) and f € L?(R?)
have compact support in @ := (0,27) X (—hg, hg). It is the aim to solve

(1) Au+k*(n+qu = —f inR?
subject to a suitable radiating condition stated below.
The solution of (1) is understood in the variational sense; that is,

(2) /[vu~w—k2(n+q)u¢} dr = /fwdx
R2 Q

for all v» € H'(R?) with compact support. By standard regularity theorems it is known
that for |z3| > hg the solution w is a classical solution of the Helmholtz equation and thus
analytic.

As mentioned above, a further condition is needed to assure uniqueness (see Definition 2.5
below). In contrast to the closed waveguide; that is, where R? is replaced by R x (a_,a,)
and where boundary conditions for x5 = a4 are added, not only a radiation condition in
the direction of periodicity; that is, x1, is needed but also one in direction of x5. The
radiation condition should be in accordance with the limiting absorption principle; that
is, the solution u should be the limit (as € > 0 tends to zero) of the solutions u. € H'(R?)
corresponding to wave numbers k + ic instead of k.
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Candidates are the Sommerfeld radiation condition (see, e.g., [7] for bounded scatterers
in free space or [1] for periodic open waveguides) or the “upward propagating radiation
condition” which is popular for scattering problems by rough surfaces (see, e.g. [4]).
However, one of the basic differences between the scattering by bounded (penetrable or
impenetrable) obstacles in free space and (unbounded) layers is the existence of guided
(or propagating) modes in the latter case which don’t exist for the scattering by bounded
obstacles in free space. Therefore, Sommerfeld’s radiation condition is too restrictive
while the upward propagating radiation condition is not sufficient for uniqueness; that is,
not restrictive enough. The special case of layered media; that is, where n is constant
with respect to z1, is well studied in the literature, see, e.g. [21, 22, 8, 5, 6, 14] for differ-
ent types of radiation conditions based on spectral representations of the scattered field
(or the radiating part of the scattered field) with respect to the (point oder continuous)
spectrum of the transverse contribution of the Helmholtz operator. In any case, this leads
to a decomposition of the scattered field into a radiating part and a guided part. The
radiating part decays in all directions while the components of the guided part do not
decay with respect to z;. Since they decay exponentially with respect to x5 they are also
called surface waves.

In [17, 18, 15, 16] we introduced a new kind of radiation condition which has been derived
rigorously from the limiting absorption principle for unperturbed (i.e. ¢ = 0) problems.
For closed waveguides this radiation condition is equivalent to the condition based on
the dispersion curves (see, e.g., [9] and also Remark 2.4 below). In Sections 3 and 5 we
investigate uniqueness, existence and continuous dependence on f of equation (1) com-
plemented by this radiation condition. This seems to be new for this kind of problems.
For the proof of uniqueness in Section 3 we were inspired by [10]. We had, however, to
modify his proof considerably because of the full-space waveguide instead of the half-space
waveguide considered in [10]. The Floquet-Bloch transform is a basic tool in the analysis
of periodic problems and replaces the role of the Fourier transform for layered media. It
transforms the problem in R? into a class of quasi-periodic (with respect to x;) problems
in Q> := (0,27) x R. Section 4 is devoted to the analysis of quasi-periodic problems,
in particular smoothness with respect to the Floquet-parameter. The results obtained in
this section (Theorems 4.1, 4.2, and 4.3) are not surprising, and one can skip this section
if one is only interested in the main arguments.

In Section 6 we will investigate the asymptotic behavior of the radiating part of the solu-
tion in the direction of the waveguide and orthogonal to it. While for closed waveguides
the radiating part decays exponentially along the waveguide we will show that the radiat-
ing part for open waveguides behaves only as O(|z;|~%/?) in the direction of the waveguide
and as O(|xa|7Y2) orthogonal to it. We will show Sommerfeld’s radiation condition for
the radiating part and introduce its far field pattern. These results seem to be new as
well.

2. THE OPEN WAVEGUIDE RADIATION CONDITION AND FIRST CONSEQUENCES

As mentioned above the field will have a decomposition into a propagating and a radiating
part. The loss of exponential decay of the radiating part is a consequence of the existence
of cut-off values while the propagative wave numbers determine the behavior of the guided
part along the waveguide. These quantities are defined as follows.
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Definition 2.1. «a € [-1/2,1/2] is called a cut-off value if there exists { € Z such that
lo+ ] = k.
a € [—1/2,1/2] is called a propagative wave number if there exists a non-trivial u €

H. 1,.(R?) := {u € H. (R?) : u(-, 22) is a—quasi-periodic} such that
(3a) Au+k*nu = 0 inR?,

and u satisfies the Rayleigh expansion

(Sb) Zue i(l+a)xy 2\/k2 (b+a)2(Ez2—ho) fOT’ + ooy > hO

LeZ

for some u}t € C where the convergence is uniform for |xs| > hg + € for every e > 0.
Here, and in all of the paper, we choose the square root function to be holomorphic in the
cutted plane C \ (iR<g). In particular, \/t = i+/|t| for t € Reo. We recall that a function
u(+, T2) is a—quasi-periodic if u(xy + 27, 19) = e*™ (w1, 29) for all v = (x1,79) € R
The functions u are called quided (or propagating or Flogquet) modes.

Throughout this paper we make the following assumption.

Assumption 2.2. Let |[{ + «| # k for every propagative wave number o € [—1/2,1/2]
and every ¢ € Z; that is, no cut-off value is a propagative wave number.

Under Assumption 2.2 it can be shown (see, e.g. [17]) that at most a finite number
of propagative wave numbers exists in the interval [—1/2,1/2]. Furthermore, if « is a
propagative wave number with mode u then —« is a propagative wave number with mode
u. Therefore, we can number the propagative wave numbers in [—1/2,1/2] such they
are given by {a] j € J} where J C Z is finite and symmetric with respect to 0 and
G_; = —a&; for j € J. Furthermore, it is known that (under Assumption 2.2) every
mode u is evanescent; that is, exponentlally decaying as |zs| tends to infinity; that is,
satisfies |u(x)| < 06*‘5':’52' for |x2| > hp and some ¢, > 0 which are independent of z. The
corresponding space

(4) X; = {ue H;

aj,loc

(R?) : u satisfies (3a) and (3b) for a = &;}

of modes is finite dimensional with some dimension m; > 0. We construct a special
orthonormal basis in X; by considering the following finite dimensional self-adjoint eigen-
value problem in Xj.

Let j € J be fixed. Determine A;; € R, £ =1,...,m;, and non-trivial quJ € Xj such that

(5a) ;;f’ﬂ vdr = Nk / noe;de forall € X
Qe Qe

where Q> := (0,27) x R. Let the eigenfunctions be normalized such that

<5b) 2k / n(m) QZB&J‘(I‘) (ZSE’,j(x) de = (Sg’g/ s g, = 1, ey MMy
Qoo

We note that @J € H*(Q>) and even analytic for |zs| > hy. They decay exponentially

as |xs| tends to infinity. We make a further assumption.
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Assumption 2.3. Let &; be regular for all j € J; that is, let \p; # 0 foralll =1,...,m;
and j € J; that is, for every j € J there is no non-trivial ¢ € X; with fQOO 29 3 dy =
for ally € X;.

Remark 2.4. This condition is equivalent to the requirement that the group velocity does
not vanish. Indeed, assume that for all « there exists eigenvalues p, (o) € R and corre-
sponding eigenfunctions u,(a) € H(Q™) that satisfy Au, () + p, (o) nu,(a) = 0 in Q.
Then & is a propagative wave number if p, (&) = k* for some v. We transform u,, to its
periodic form by setting U, (x) := e **®1u,(z). Then ,(a) is 2w —periodic with respect to
x1 and satisfies At («) + 2ia 0u, () /0xy + (1, (a)n — a?)a, (o) = 0 in Q. Assuming
that U, () 1s differentiable with respect to o we differentiate this equation and set o = G.
This yields

9, (@) 2 oy ay o Oln()
e + (k*n—a%)a,(a) = —2i o,

in Q. We multiply this equation by u,(&), integrate over Q>°, and use Green’s second
theorem. This yields

zi/a,,(d) [aqg(a) +z‘day(@)] dx + u,’,(@)/n|ﬁy(d)\2da: = 0.
i
Q> Q>

Al (G) + 2i6 + (26— 1 (&) n) 4, (&)

1

Formulated with u, instead of u, this reads as

Qi/uy(d) Ouy(4) dr + u;(d)/n|uy(&)]2d:ﬁ = 0.
691:1
Q> Q>

Therefore, the condition of Assumption 2.3 (for m; = 1) is equivalent to i.,(¢&) # 0.

Now we are able to formulate the radiation condition. In all of the paper we make
Assumptions 2.2 and 2.3 without mentioning this always.

Definition 2.5. Let ¢, € C®(R) be any functions with ¥(z1) = 1 for £x; > oy
(for some o9 > 27w + 1) and ¥y (x1) =0 for £, < o9 — 1.

A solution u € H. (R?) of (1); that is,

loc
(6) Au+KEn+qu = —f inR?,
satisfies the open wavequide radiation condition if

(a) u has a decomposition into u = Upqq + Uprop Where the propagating part wyye, has
the form

0 tpepla) = Z[wxl) S anbiye) + () Y ary cﬁe,jm}

jeJ £:0g;>0 £:0g,;<0
for x € R? and some ag; € C, and where the radiating part u,qq € HY (W) for all
H > hy. Here, Wg :=R x (—H,H) C R?.
(b) The Fourier transform (Fiaq)(s,x2) of Uraa(-, T2) with respect to x1 satisfies the
generalized angular spectrum radiation condition

% 2
(8) / (sign x2) 8(.7:urg;)(w,x2) —iVEk? — w2 (Fyed)(w, z2)| dw — 0, |za| = 00,
2
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Here the Fourier transform is defined as

(Fo)(w) - m/qﬁ s weR,

considered as an unitary operator from L*(R) onto itself.

This radiation condition has a natural extension to the scattering by an infinitely long
penetrable cylinder with periodic (with respect to the axis of the cylinder) refractive
index, see [15, 16]. In this case, the one-dimensional Fourier transform in the angular
spectrum radiation condition (8) has to be replaced by the cylindrical Fourier transform.

It has been shown in [17] for the case of a half plane problem that this open waveguide
radiation condition is a consequence of the limiting absorption principle. A second moti-
vation is the following result on the direction of the energy flow which will play a central
role in the proof of uniqueness.

Lemma 2.6. Let uy,., be given by (7). With I, == {r} xR and r+ Q> = (r,r+27) xR
for |r| > oo we have

Z Z Aejlaes?, r> o0,

ou ou i€ Ao ;>0
4 Im / Uprop P”’Pd = 2Im Uprop —— 2 da AR
Z Z 2
a )\gj’agj’ , < —o0yp.
7‘+Qoo i 9
JjeJ )\Z,j<0

Proof: We only consider r > og. Then uyp(2) = >, ZAM>0 ae; du () for z; > op.
First we fix j € J and define v} () := Z/\z o Qe Qgg] Since we fix j in the first part

we drop the index j and erte ut for uf Furthermore we define v(z) := (1 — r)ut(z).

Then (%’1 =ut+ (3 — 1) § and Av + k*nv = 26“ Therefore,
out Sut L
2 / ut 8L961 dr = 2 / ut a_xl dr = / ut (Av + k2nv) dz
Qoo T+Qoo T_;,_Qoo
— — — Ov out
= / v (Au+ + anqu) dr + / (u+ - ) E) ds
r4+Q> r+0Q>®

_ + ut
= —/\u+|2d5+/ ut u+—|—27rai —27ru+ai ds
8:151 81’1
I

7‘+27r

ou™ L Out — out
- - p— ) + [—
27?/ ( e U ax1> ds 474 Im/u ozt ds

I I




Furthermore, with L} := {¢: \,; > 0},

— out 8@

_ YYe.g

/ ut a— dr = CLgJ ag/,] ng] dx
T
Q> ZK’ELJF
- . 1
2
= ik Y gass ey, /nﬁ% Pojdr = 5 > Aegla,
eeert teLf

by the orthonormalization of b0 j- Therefore, we have shown
47rIm/ ] ds = QIm/ ] da: = Z Mg lag;?
teLt

where we indicated the dependence on j. In the second part we take j,j' € J, apply
Green’s theorem in 7 + Q>, and use the quasi-periodicities of u; and u;.

— au p 8u+ — Ouf, ouT
= — + —ut +_ 0+
— /(uj aﬁ (O 8x1> ds + / (uj e (O 8x1> ds
I

I’r' 427

LA N —_— 6’u y 8u+
— i(Qr—aj)2m + o+ j
— (e ( J ) 1) / (Uj Exl Uj/ al’l ) ds .

I

Therefore, the last integral vanishes for j # j’. Thus we have

Opyrop

47y Im / Uprop 3 ds
4o
I

— out out
_ 27r/ {upmp % — Uprop agif‘lop} ds = QWZ/ [u;L % - Uj aile] ds

I i€,
_ J _ 2
= 4mi g Im/ u; I ds = i E E Ao lae |”
jeJ J€J teLf

O

As the next step we prove a first result on the asymptotic behavior of u,,q which will be
needed in the proof of uniqueness.

Because ¢4 vanishes identically by our choice of )4 we observe that the radiating part
Upaq Satisfies

(9a) Atpgg + K (n+q)tyag = —f — ZZ%’W,J’ in R

jeJ =1
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where

0 n .
(9b) (1) = { 204 (1) 252 4 1 (21) Bey(x) i ey >0,
) - N .
207 (21) 22 + 0 (1) duyx) i Aoy < 0.
We note that f has compact support in ) and ¢y ; vanish for |z1]| > ¢, and are evanescent;
that is, there exist ¢,6 > 0 with |¢,;(2)| < ¢exp(—d|z2|) for all z € R%

Using the result of Lemma 7.1 of the Appendix we are able to show the following asymp-
totic behavior! for u,.qy. We set

o = D D jagpe; and 6 = e € H'X(T)

jeJ e=1
for abbreviation where I' := I';, UT'_p, with I'yp,, := R x {£ho} and note that u,.q €
H'(Wpg) for all H > hy satisfies
(10) AUpaq + K tpag = — for |zo] > ho,  Upag = ¢ on T,

and the generalized angular spectrum radiation condition (8).

Lemma 2.7. Let Assumptions 2.2 and 2.3 hold, and let u € H}. (R?) be a solution of (6)

satisfying the radiation condition of Definition 2.5. Then the radiating part u,.q has the
form

0
(1) el / / )G iy + 5 [ o) 5 -H (bl = o) ds(o)
Th,

—oo hog

for x4 > ho where the Green’s function G*(x,y) is defined as G*(x,y) = +[H 1)(1{:|$
yl) = Hy" (klz —y*|)] for v,y € R with z3,y0 > ho and x #y. Here, y* = (y1,2ho — 1)

is the reflected point at the line I'y, :== R x {ho}, and H(gl) denotes the Hankel function of
the first kind and order zero. An analogous representation holds for xo < —hyg.

Uraq Satisfies a stronger form of the radiation condition (8), namely,

. a(-Furad)(wv x?) . ¢ —|z2]
(12)  |(signzy) s —iVE? — W (Fyaa) (w, 22)| < T \/m e

for almost all w € R and |xs| > hy where ¢ > 0 is independent of w and x.

Furthermore, there exists ¢ > 0 with

(13)

urad(x)’ + |Vurad(x)’ < C(l + |J/’2Dp($1)
for all x € R? with |w5| > ho + 1, where p € L*(R) N L>°(R) is given by

(14) plar) = ) / el y1,0h0>)3|/2 dy: +

oce{+, } 1 + ‘371

—1—|—‘;C1’3/27 $1€R.

IWe will sharpen this result in Section 6.



Proof: First we note that p € L*(R) because the first term can be expressed as the
convolution of the L2—function |t,qq(-, £ho)| and the L'—function y; — (1+ |y |)~%/2. Tt
is also bounded by the inequality of Cauchy-Schwarz.

We restrict ourselves to the upper half plane R} = {z € R* : z; > hy}. In Lemma 7.1
of the Appendix uniqueness of (10), (8) has been shown and that the volume potential
in (11) satisfies (10) for ¢ = 0 and the estimates (12) and (13). It remains to study the
line integral in (11) which we denote by v(z). (Again, we consider only the upper half
plane.) The function v(-, x5) is a convolution of the L?—function (-, hy) and the function
X(y1) = %%Hgl)(/ﬁ\/y% + (z2 — y2)2)‘y2:h0 (for fixed w9 > hg). It is x € WHL(R) by the
asymptotic behavior of the Hankel functions (see [23]). Indeed, for all @ > 0 there exists
¢ = c(a) > 0 with

(15) iH(l)(k|m—y|)‘ + 'v 9 gD Rz —y))| < e

dyy ° "oy, N

for all z,y € R? with |z — y| > a. Taking the Fourier transform with respect to z; we
get first (Fv)(-, 2) = v2m(F¢)(Fx) by our normalization of the Fourier transform and

thus, using (Fx)(w) = \/%76“1“2’”2(“2%0) (differentiate the formulas 3. and 4. in [11],

Section 6.677, with respect to z), (Fv)(w,zs) = (Fb)(w, h) eV =< (@2=h0) for 15 > hy
which satisfies the radiation condition (12) trivially. Furthermore, from Parseval’s identity
we get

2] + lye] + 1
o= g7

77“@(x)!2+\Vv(a:)}Q}dxlde ~ 77(1+w2+|k2—w2|)\(fv)(w,x2>\2dwdx2

h() —00 ho -

H oo
= / /(1 + w?® + [k — w?]) |(Fo)(w, h0)|26_21m Vk?—w@2=ho) gy daz,

hg —o0

IN

2(1 +k2)/ / (1+ w?) ‘(]:gb)(w,ho)fdwdxg

ho |w|<k

H
+ 201+ k) / (142 |(F)(w, o) / e VTR @R )
ho

|w|>k
< ey / VIT R |(Fo)w. h)de = culldlyung, -

This shows that v € H(W}}) for all H > hy where W, := R x (hg, H).
Finally, using (15), v(z) is estimated by

[ lsaalys, o))
< ho +1 d
ol S clortho+t) [ i
for x5 > ho + 1 which proves the desired estimate (13). O
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3. UNIQUENESS

In this section we follow the proof of uniqueness given by T. Furuya in [10] for the half-
plane case. We have to modify his approach, however because the free space Green’s
function; that is, the fundamental solution ’H (/f\:r; —9|), does not decay as fast as the

Green’s function G*(x,y) for the half- plane as |x1| tends to infinity. Therefore, we can’t
use his integral representations.

We begin with the following technical result.

Lemma 3.1. Let Assumptions 2.2 and 2.3 hold, and let u € H} (R) be a solution of (1)
satisfying the open waveguide radiation condition of Definition 2.5. Analogously to p(z1)
of (14) (see Lemma 2.7) we define

|Uraa(y1, oho)| 1
16 1) = E dy, + ———==, x1€R, NeN.
(16)  pn(21) e }/ (1+ [z — y1])3/2 n 1+ |z 32 1

Then there ezists ¢ > 0 and a sequence (Ny,) in N converging to infinity such that

C c

[ oemafdn < = [ e pe)Pdn <

|z1|>Nm |z1|<Nm

C

VNn

and / plx)dr; <

N <|z1|<Nm+1
for all m € N.

Proof: We define the sets Jy := (=N —v/N,—N ++v/N) U (N —v/N,N ++/N). A
in [2] we first note that for every m € N there exists N, > m with |[u,aa(-, ho)||z2(sy,,) +

traa(-; —ho)llz2(sy,,) < # Indeed, otherwise there exists m € N such that

[ttraa (-, ho)ll2y) + [traa(-, —Po) |l L2(sy) > w7 for all N > m. Since Jy2 N Jyp2 = 0 for
N # M we would have

Z / Uraa(z1, oho)|* dzy > Z Z /|Umd x1, 0ho)|? dzy

‘76{_1’+1}|x1|>m2—m oe{—1,+1} N=m; e

ZZN:

a contradiction to wu,qq(-, £ho) € L*(R).



We set N~ := N,, — /N, for abbreviation and estimate for |z1| > N,,:

Ta ) h
/ <|U d(yl o 0)| dy,

L+ |21 — )32

|y1|<Nm
h h
_ / |Umd(y1, o 0)3|/2 dy1 i / |U7~ad(y17 o 0)3|/2 dy1
(14 |z1 — 1)) (14 |z1 — 1))
[y1|<Nm N <|y1|<Nm
diy diy
< Nitradll o / T el o /
® (1 + [z1] = [pa])? (ain) (1 + [1] = [y])?
ly1|<Np Np<|y1|<Nm
c n 1 c
1+ |z — N, NY* 1+ |z1] — Ny,
and thus

8 dx
2 d < / 1
PNm(.’Bl) AT —<1 T Nm>2 + c (1 n ’fﬁ’ — Nnﬁ)2

|z1|>Nm |1|>Nm,

1

n c / dx
\/Nm <1+’x1|_Nm)2

|z1|>Nm

8 c c
< .
— (14 Np)? * 1+ +/N,, * v N,,

Analogously, with N} := N,, + /N, we estimate for |z1| < N,,:

p(r1) — pn,, (1) = / ( |trad(y1, oho)|

1+ |21 — g )22
[y1|>Nm

. / ’umd(yl,aho)’ dy, + / ‘Urad(ylao'ho)l dy
= 1
(14 [zy — )32 (L4 |z — g ])3/2
ly1]|> N4, N <[|y1|<N.5,

IN

dy dy
||Umd||L2(R) / - 3 T ||Umd||L2(JNm) / : 3
(L+ || — |z1]) (L4 o] = fa1l)

ly1|>Noh N <l|y1|<Ni;
c 1 c

<
S TAN: Ja] NI N o]
10




and thus [\ |p(z1) = p,, (21)[Pdzy < ¢/V/N,, as before. Finally, for Ny, < |ay| <

N,, + 1 we estimate

. |Umd(y170'h0>|
p(ml) - / (1 + ’xl _ y1|)3/2 dyl

TN

|urad(y170-h0)| / |urad(y170-h0)|
+ dy, + d
/ (Lt |21 — )2 (U + |21 — )2

ly1|<Np ly1|>N%
dy,
S c Hurad”L2 J + HuradHL2 R /
Hoon) ” T+ 2] = )?
[y1|<Nm
dy
Tt e /
" (L[| — [ ])?
ly1|>Ny,

c N c N c < c

N4 1+ |z = N, 14+ Nt — |2 NLA
Integration with respect to z; yields the last assertion. ([

After these preparations we turn to the proof of uniqueness. From the following theorem
f = 0 implies that already the propagating part u,,,, has to vanish.

Theorem 3.2. Let again f € L*(R?) and ¢ € L™®(R?) have support in Q = (0,27) X
(—ho, ho) and u € H} (R?) a solution of Au+ k*(n+ q)u = —f in R? satisfying the open
wavequide radiation condition of Definition 2.5. Then

Im/fudx < ——Z Z )\gj|ag]| + —Z Z /\g]|ag]| < 0.

JEJ £:Xg ;>0 JEJ :0g ;<0

Proof: Choose ¢y € C®°(R) with ¥n(z1) = 1 for |z1] < N and ¢y (x1) = 0 for |z1| >
N+1. For N > 09+ 1 and H > ho+ 1 we define the regions Dy g := (=N, N) x (—H, H)
and Wy = (=N—1,=N)x(=H, H) and Wy ,; := (N, N+1)x(—H, H) and the vertical
and horizontal segments I,y g := {£N} x (—H,H) and I'n 1y == (—N, N) x {xH}. We
apply Green’s theorem in Dy g to v(x) := ¢n(x1) u(z) (note that Q C Dy g):

_ Z /v—dSZ /Uvu|2+@Av]dx

oe{+~} I'ni1,0H Dny1,H
= /[\Vu\ +aAu]dr + /HW|2+6AU}dm + /HW|2+@Av}dx;
Dn.u W]J\?,H Wy m
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that is, with Au = —k*(n + q)u — f,
(18) Im/fﬂda: = Im / [|Vv‘2+UAU] dr + Im / HVU}Q-F@AU} dz
Wi Wy

— olm / @Du—ds

U€{+’ I'Nt1,0H

We note that Av = —1/)Nk2(n+q)u+2@/}§vg—; + % u and Vo = Y Vu+u e in ng'H
where e(V) = (1,0)". The decomposition u = Upqq + Uprop yields 4 terms in each of the
three integrals on the right hand side of (18).

(a) First, we look at the first two integrals on the right hand side of (18). We define
v = Pnpaq and v = Yy, and estimate the terms

a]:I\:f,H(jag) = / [VU Vol 400 Apt }d
Wi
for j,¢ € {1,2}. Then, with (13),

‘CL;’H(l,l)‘ < CHuradHip(W;\;,hO_H) + CHuradH?—Il(W;;’H\WF\;

N+1
< CHUT“C‘HZWWMOH) + C/ / wy p(w1)? day da,

N  ho+1<|z2|<H

,h0+1)

(19) < CYNH with
(20) YN.H = ||UT@d||%-Il(QN) + H3 / ,0(5(]1)2 diL’l
N<|z1|<N+1
and Qn := Wy, UWy 0 ={z € R?: N < |z1| < N+1, |22] < ho+1}. Analogously,

since || Uprop|| 1 Wik ) and {|Vuprop|| 1 (W) are bounded with respect to N and H,

)]1/2 S C\/FVN,H-

2
|aNH(1 2)|—|—|aNH(2 1)| <c [||Umd||H1(W+ hot + ||urad||H1(vaL,H\WJJ\F,hO+1

For aﬁ 1(2,2) we apply Green’s theorem:

ou 70 ou 70,
aJ_‘\_f,H(272) - _/UPTOP ap — - ds + Z o / 7plzvupfrop 817 —ds
Ing oe{+ -} N<x1<11\17r+1

To=0
Qpro
= /upmp%d + BNH

In

with Iy := {N} x R and

[ e

UG{J“ }N<a <N+1 IN\In. 11
ro=0cH

|51J\7H| <

ou
Uprop PP s < ce 20
3x1

12



The same estimates hold for ay, (7, €); that is, the integrals over Wy ;. Therefore, using
Lemma 2.6 we have shown that

(21) Im / HVU‘Z—F@AU] dr + Im / HVUF—FEAU}da:

+ —
WNH WNH

< —Im/upmp apmp ds + Im / Uprop apmp ds + ce ™" + clynyyg + /AN

< __Z Z Arj |a€,J| + _Z Z )‘M|am| + ce M 4 ¢lyvm + Na] -

jeJ )\g]>0 jedJ )\gj<0

(b) Now we look at the third integral on the right hand side of (18), and decompose again
u into U = Upqq + Uprep. Using Cauchy-Schwarz and (13) we estimate for o € {—1,1}

2 aup?"op aU'rad _ auprop
wN Urad —7 Uprop —3 Uprop =7 ds
8[E2 8902 8
I'ni1,0H
auprop aurad

< clluraall 2oy i1 0m) H HL2(FN+1 oH) +[tprop L2y, "H)H ”L (TNt1,0m)

8 o _
teltropll 2o | el i < € [H llollzey VA +N}e "

8’[1,7 ad

Finally, we consider fFN+1 . V3 Urad ds. We approximate u,,q by functions umd

which satisfy the homogeneous Helmholtz equation for |xs| > H. To do this we restrict
ourselves to the region xy > hg and set v = uf, + w}; for x5 > hy where uj; is the
unique radiating solution of Auj; + k*ul; = 0 for zy > hg and u} (21, ho) = Upaq(1, ho)
for |z1] < N and u};(x1,ho) = 0 for |z1] > N, while the function w}; is defined as the
unique radiating solution of

+ SR D D St agg ey for hg <y < H,
Awy + Ky { 0 for xo > H ,

and wj; = 0 for x5 = hy. Then u}; and wj; are given by (compare with (11))

N
) 0
U’JJ\F/'<I> = 5 / urad(yh hO) a_yQH(gl)(k\/(Il — y1)2 + (5132 — h0)2) dyl s To > ho,
—-N
H o9
wi(z) = ZZ%;//GJF z,Y) ¢e;(y) dyidya,  x2 > ho,
jeJ £=1 ho —0o0

and it is easy to show by modifying the proof of Lemma 2.7 that

)| + Vg (@) < cazpn(),

|“Tad(95) - Umd ’ + |V(umd( ) — Uiif(x))! < cxg[p(zr) — pn(1)] + |$C|—$332 e

‘ urad

for all x € R? with x5 > hg + 1, where p, py € L*(R) N L*°(R) are given by (14) and

(16), respectively. The functions w2 for z, < —hg are defined analogously. With
13



Foo+m :=R x {xH} we decompose
8um
/ 1/}]\/' Urad —(7—— d

INy1,+H
N.H
N,H 8u’rad 2 | — au’rad N,H au’rad
= U ds + Uy |Urad ——— — u,., ds
/ rad ax N ra 81‘2 rad 01‘2
Poo,+H Pny1,+H
N,H
N,H 8urad N,H 8urad
— U ds + @D —Tre (s
/ rad 8 To ( N — ) rad 81‘2
Poo,+H\I'N41,+H Pny1,+8\I'n+H
N,.H
N,H aurad
= u ds + Nn+H
/ rad axQ
I‘oo,:i:H
where
< N,H OUyad
nvem| < cltraa = Upgy |2y in) e
2 1L2(TNny1,+m)
N.H
+ c ||UN,H|| 5 aU/Tad aurad
L2(T
rad (CNy1,4+H) Oy Oy
L2(UN1,+H)
N.H
+elulid] P
CllUad IL2(T oo, 2 \['N, £ 1) 05
L2(Poo,+H\I'N,+H)
2 2 2
(22) < cH”||pllr2w) / Ip(x1) — pn(x1)[?dzy + cH / pn (1) dzy .
lz1|<N |z1|>N
. . H 8umd
Now we show that the imaginary part of o fr o Urad o ds is non-negative. Indeed,

we take the Fourier transform dy g(w, z2) = (]:umd )(w, x2) for oxe > H. Then

[e.9]

0 -
(23) / e Ry / iin 1 (w, 0 H) iy g (w, 0 H) dw

1—‘oo,o'H —0o0

Furthermore, @ ;(w, z2) + (k* — w?)ing = 0 for |z5| > H and satisfies the radiation
condition (12). Therefore, @y 5 has the form

U g (w, H) eV =@t for py > H |

(0, 22) = { Unpg(w,—H) VI =W (—a2=H)  for g < —H

and thus oty g(w, o H) Uy y(w,0H) =i [y, (w, 0 H)[*VE? — w?, and its imaginary part
is therefore non-negative.
At this point we set N := N, where (N,,) is the sequence from Lemma 3.1. Then
from (20) and (22) in combination with the estimates of Lemma 3.1 we conclude that
3
YN H < C”ude?ﬂ(QNm) +c ﬁm and |nn,, +n| < ¢ N7 . We choose H = H,, such that
14



the reminders converge to zero, for example, H,, := Ny, Y10 Then
aum
Z o lim sup {Im / UN,, Urad ——— 4a } >0
se{—1,+1} m—oo

and, from (21),

TNp+1,0Hm

liminf[lm / [|Vol* + 5 Av] dz + Im / HVUF—l—EAU}d:U}

m—r00
< E X T el + 3 Y Alank
J€J A ;>0 JE€J A ;<0
Estimate (17) follows now from (18). O

We are now able to prove (partial) uniqueness.

Theorem 3.3. Let Assumptions 2.2 and 2.3 hold, and let u € H}, (R?) solve the problem
(1) for f =0 and the open wavequide radiation condition of Definition 2.5. Then u is a
bound state; that is, u € H'(R?). In other words, k* is in the point spectrum of — n+qA.
In the unperturbed case g = 0 there are no bound states; that is, u = 0 follows.

Proof: From (17) of the previous theorem we conclude that the coefficients a,; vanish.
Therefore, u = Uyqq € H*(Wpg) for all H > hy where again Wy := R x (—=H, H). We
now show that u = wu,.q is a bound state under a smoothness assumption on its Fourier
transform. The latter property is shown in Corollary 4.5 below.

From Green’s theorem applied in Wy we conclude (compare with (18)) that

Im Z / xl,aH)del = Im/ ’VU| — k*(n+ q) |uf?] dz 0.

UE{+ } —00 812

Transforming this equation to the Fourier space we observe just as in (23) that (Fu)(w, +H)
vanishes for all |w| < k. For |w| > k we conclude again that

(24) (Fu)(w,25) = (Fu)(w, £H) eV HE= D for 0, > H,
and thus for |w| > k:

oo

/ |(Fu)(w,22) dwy = |(Fu)(w, H)J? / e ey %

The integrand vanishes for |w| < k. The analogous formula holds for the integral

f__olo{ |(Fu)(w, z2)|* dre. Now we use the fact that (Fu)(-,£H) is continuous in a neigh-
borhood of w = 4k which we will prove in Corollary 4.5 below (set g := k*qu in this
corollary). Therefore, the integral is integrable with respect to w € R and, by Parseval’s
theorem, u € H'(R?). This implies that u is a bound state.

In the case ¢ = 0 we recall that u satisfies the differential equation Au + k?nu = 0 in
R? and, because of (24), the generalized angular spectral radiation condition (8). The-
orem 4.1 below implies that almost all & € (—1/2,1/2) are propagative wave numbers

which contradicts the fact that there exist only finitely many of them. 0
15

H



Remark 3.4. In the case of general q we call this a partial uniqueness result in contrast
to the complete uniqueness result where in addition the absence of bound states has to be
shown. For general q such a complete uniqueness result is not known to the author. For
the unperturbed case ¢ = 0, however, we have shown above the absence of bound states
under Assumptions 2.2. However, this assumption is not needed as proven in [12].

4. THE FLOQUET-BLOCH TRANSFORM AND QUASI-PERIODIC PROBLEMS

In this section we collect properties of the Floquet-Bloch transform and quasi-periodic
scattering problems. These results are essential for proving existence of a solution and
the asymptotics of the radiating part u,.q. As a standard reference for the Floquet-Bloch
transform we recommend Kuchment’s monograph [19]. For ¢ € C3°(R) the Floquet-Bloch
transform F' is defined by

(Fo)(x1,0) = qu(xl +2nl) e g a € R.
LeZ
Then (F¢)(-, o) is a—quasi-periodic and (F'¢)(z1, -) is periodic with period 1. Therefore,
we can restrict ourselves to z; € [0,27] and a € [—1/2,1/2]. Setting R := (0,27) X
(—1/2,1/2) for abbreviation, F' has an extension to an unitary operator from L?*(R) into
L?(R); that is,

00 1/2 or
(25) / o) Blan) day = / /(Fv)(:vl,a)<F¢><x?,a>dx1da, v, € L(R).
—00 -1/2 0

The inverse transform is given by
1/2

(26) ow) = [ (Fo)wia)da, ek,

~1/2
where (F'¢)(-,«) has to be extended a—quasi-periodically into R. We note the following
connection between the Fourier transtorm F¢ of ¢ € L*(R) and the Fourier coefficients
¢o(a) of the a—quasi-periodic function (F¢)(-, «):

@) (F)l+a) = % / (Fé)(x1,0) e oy — y(a), LE T,

which is easily seen by decomposing R in the definition of the Fourier transform into
R = Uyey (27, 270 (€ + 1)).

With a slight abuse of notation we use the symbol of F also for functions u of two variables.
Therefore, let

(28> (FU)(Il, T2, Oé) = Z u(xl + 27-‘-& Ig) €—i27r£a
Lel

for z € R? and o € R denote the Floquet-Bloch transform of u(-, zo) with respect to z;.
Then it is well known (see, e.g., [20]) that F maps H*(Wpy) onto

s . o+, a) € H(QM) for almost all « and
LQ((_l/Q, 1/2),qu(QH)) = {U eL?: a = [lv(-, )|l geom is in L%(—1/2,1/2) }
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for all s € R. Here, Wy := R x (—=H,H) and Q¥ := (0,27) x (—H, H) and H:(Q™)
denotes the subspace of H*(Q) consisting of a—quasi-periodic functions. It can be
characterized by the decay of the Fourier coefficients; that is, v € H:(R?) if, and only

if [°0 3 ep (14 2 + w?)*|¢h(w)]?dw < oo where ¢y (w) are the Fourier coefficients of the

Fourier transform 121(931, w) with respect to x5 which is itself «—quasi-periodic with respect
to x1.

From (9a) we note that w,.q satisfies Atqq + k*ntt;qg = —g in R? where g = f + k*quyqq +
ZjeJ Zzn:]l Qg iP5 and thus A(Fumd)('7a) + k2n(Fumd)('aa) = —(Fg)(-,a) in Q% =
(0,27) x R. The right hand side (Fg)(-, ) is not compactly supported with respect to .
Nevertheless, we can rewrite the problem as a variational equation in a bounded domain
by well known techniques using the Dirichlet-Neumann operator. This is done in the
following theorem where we write u for wu,.q. In Theorem 4.2 we will prove existence and
in Theorem 4.3 smoothness of the solution with respect to the parameter a.

First, analogously to QY := (0,27) x (—H, H) define the regions Q¥ := (0, 27) x (H, o)
and Qf := (0,27) x (—o0, —H), recall Wy := R x (—H, H) and let T := ((0,27) x
{H})U ((0,27) x {—H?}) denote the horizontal part of 0Q¥.

Theorem 4.1. Let g € L*(R?) with g(x) = 0 for |z1| > ¢ and |g(z)| < ée~%=2l in R? for
some g, ¢, 0 > 0.

(a) For every a € [—1/2,1/2] there exists a unique a—quasi-periodic solution wt €
aloc(Q:l:) Of Aw;t + k2w(§¢t = —(Fg)<,0£) n QI:E; w;t =0 fO?" Ty = iH; which
satzsﬁes the generalized Rayleigh condition

. dwié('xé) . 4 ?
Z (sign ) d— — ik = ({+a)?wy(r2)] — 0, x9— *o0,
= T2
where wi m f w( W)z dy) are the Fourier coefficients of w (-, x).

(b) Let u € Hlloc(]R2) with u € HI(WH) for every H > hq satisfy Au + k*nu = —g in

R? and the generalized angular spectrum radiation condition (8). Then, for almost
all a € (=1/2,1/2), the transform iy = (Fu)(-,a) € H},,.(Q™) satisfies

(29a) Adig + k*nil, = —(Fg)(-,a) in Q™
i the variational sense and the generalized Rayleigh condition; that is,

(29b) Z‘(Sign L) Uy, o(22) —in/k? — (0 + a)? fbmg(l'g)‘z — 0, |za = 0.

tez.
(c) For fired o € [~1/2,1/2] the problem (29a), (29b) is equivalent to the variational
equation
_ _ B B S
30 [Vt V0 - #niTlde — (i) Tds = [(Fo).a)Tar+ [ S Tds
QH rH O FH

for all ¢ € HL(Q") where A, : HY*(TH) — Hy'*(TH) is the a— quasi-periodic
Dirichlet-to-Neumann opemtor given by

(31)  (Aud)(xy, £H) =

k2 — (04 a)? ¢p(£H) &2 g e (0,2n),

€eZ
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for ¢ € Hol/2(FH), and where Ow,/Ov = +0wZ/0xy for xo = +H with the
solutions w= from part (a).
(d) For fized o € [—1/2,1/2] the variational equation (30) can be written as

(32) (I — Ko)tia = 1o in H:(QY)

where ro, € HL(Q™) and K, is a compact linear operator from HL(QH) into itself.
The operator I — K, is invertible if, and only if, o 1s not a propagative wave
number.

Proof: (a) We show that wF is given by wi(z) = >, wie(azg)ei(”a)“ for v € QY
where the Fourier coefficients are given by

woslaz) = zm/

B ei\/m(i(zﬁyﬂQH)} dy,, F+xo>H, (7.

(33) o(Fy2, { AR

Indeed, to show the radiation condition for w we split the integral from H to z, and
from x5 to oo and compute

o0

/(Fg)g(y%a) o k2—(f+a)2(y2—x2)dy2‘

Z2

d . 1
d—@w%(m) — ik — ({+ a)2w§7g(x2) = -3

For |¢ + a| > k we use the Cauchy-Schwarz inequality and estimate

2

d
T Wae(2) = iVEE = (E+ a)Pug (w2)
T2

IN

/| Fg)e(yo. )|’ dyz/ 2V (Rl =k =) gy,
x2

! 2
8\/m/|(179)4(y2,a)] dy

and thus

2

d
Z d_w;r,h,z(@) — ik — (0 + a)?wg, (22)
T2

[0+a|>k
2w oo
< cZ/|Fg ya, )| dys = C//|Fg y1, 92, )| dys dyy
KGZ
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and this tends to zero as x5 tends to infinity. For [{ + a| < k we estimate

Lt (w) — iV = (% @)Put(22)

dZL‘Q

oo 2w

/\ Fg)e(yz, )| dys < 2\/—//\ Fg)(y1,y2, )| dyy dys

and this tends to zero as x, tends to infinity because (Fg)(-,a) € L'(Q%). In the same
way it is shown that

)

Le

for +x5 > H and thus wi € H) ,,.(QY) with

(34) il gmeny < e [IIF9)( )2y + 1(F) (- a)ll i)

for H' > H. We omit the proofs of uniqueness and the fact that w= satisfies the differential
equation.

dwiz(@)

VITE \wf;f(mz)\] < c[I(Fa)(-0)llusr + I1(Fg) ) o]

dlCQ

b) The variational form of Au + k*>nu = —g¢ is given b
gisg Yy

/[Vu VY — E*nud)de = /g@dw
R2 Q
for all » € H'(R?) which vanish for |z5| > H for some H > hy. From (25) and the fact
that F' commutes with differentiation yields the equivalent form
1/2
/ / Vo (Fu)(z, ) - Vo (z,a) — k*n(z) (Fu)(z, a) ¥(z, a)] do de
Q> —1/2
1/2

[ [ o)) o
Q —-1/2

for all ¢ € L*((—1/2,1/2), H.,(Q>)) which vanish for |z3| > H for some H > hy. For any
Y1 € L*(—1/2,1/2) and any ¢y € H},.(Q) := {¢ € H Q™) : (-, x2) is 2m—periodic}
which vanishes for |zo| > H for some H > hy we set (z, ) := € “4);(a)hy(z). Sub-
stituting this ¢ € L?((—1/2,1/2), HL (Q>)) into the variational equation and the fact

that f152x Y1 (a)da = 0 for all wl € L*(—1/2,1/2) implies that x vanishes almost
everywhere yields

/ [Vo(Fu)(z, a) - Vo(emips(x)) — K*n(z) (Fu)(@, a) (em11)y(2))] dx
Goo

= [(Fo)(a,0) ) da

Q
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for almost all a and thus

[ VaF @, 0) - VO - Knle) (Fu)(a.0) )l de = [ (F)(a.a) Bl do
Q> Q
for all ¢y € H:(Q>) which vanish for |z5| > H for some H > hg. This is the variational

form of (29a). We leave it to the reader to show that the application of (27) to (8) implies
the generalized Rayleigh condition (29b).

(c) We define v, by v, = G, in Q7 and v, = 1, + wE in QY. Then v, solves (in a
variational form) Av, + k?v, = 0 in Q* \ Q¥ and Av, + k*nv, = —(Fg)(-, @) in Q7 and
Val- = valy on TH and v, /Ov|_ = Ov,/Ov|; — Ow,/dv on TH. The reduction of this
problem to the variational equation (30) is standard and omitted.

(d) Using

/ M) Bds = i S S VA= (0 F o) deloho) de(oho)

H oce{+,—} LeZ

we write (30) in the form

[V Vot wtlde + Y 3 |l aloho) Taloho)

0 oc{+,—} [f=k+1

- / Wn+Daadlde — i S Y A=+ P usoho) bulohy)

oe{+,—} [¢|<k+1

Q
_ Z Z (1] = /(€ + a)2 = k2] @i e(oho) Ye(oho)

oe{+,—} [{|=k+1

- /(Fg)(-,a)adx—k/a;;aads for all » € HL(Q).

Q r#
Since the two terms in the first line describe a coercive sesqui-linear form we can write these
two terms as (Ata, V)1 (@) for some isomorphism A from H_(Q) onto itself (Theorem of
Lax-Milgram). By the representation theorem of Riesz and the compact embedding of
HY(Q") in L*(Q") the remaining parts can be written as (Bata, ¥) () for some compact
operator B,. (Note that |¢| — /(¢ + «)? — k? is bounded!) Application of the theorem of

Riesz to the right hand side yields an equation of the type (A — B, ), = R, which has
the form (32) with K, = A™'B, and r, = A™'R,,. O

The following result answers the question of existence of solutions of quasi-periodic prob-
lems of the form (29a), (29b).

Theorem 4.2. Let Assumptions 2.2 and 2.3 hold and let g, € L*(Q™) such that there
exist ¢,0 > 0 with |go(7)| + [0ga(x)/0al < ée™02l for almost all x € Q™ and all o €
(—1/2,1/2]. Furthermore, for any propagative wave number &; € [—1/2,1/2] let the
orthogonality condition

(35) [ ga@)d()dz = 0

Qoo
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hold for all modes gzg € X corresponding to the propagative wave number &;.

Then for every o € [—=1/2,1/2] there exists a a—quasi-periodic solution vy € H},.(Q™)
of the equation

(36) Avy + E*nvg = —go  in Q%
satisfying the generalized Rayleigh radiation condition (29b)

Proof: From parts (c) and (d) of the previous theorem we know that (36) is equivalent
to the variational equation (30) (with ¢, replacing (F'g)(+,«)) and

(37) Love = R, in HL(QM),

where R, € H!(Qf) and the linear and bounded operator L, from H!(Q) into itself
are defined as

(chU; w)Hl(QH) - /[VU ’ V@ - kZHUE] dr — /(Aav) ECLS?

Q rH
_ Ow,, —
(Bast)iqu, = [savde + [ HeGas
Q H

for all v,v € HL(Q®). Then L, is Fredholm with index zero and « is a propagative wave
number if, and only if, L, fails to be invertible. For propagative wave numbers « this
form (37) allows the application of Fredholm’s theorem; that is, L,v, = R, is solvable if,
and only if R, is orthogonal to the null space of the adjoint L} of L,. This is indeed the
case for this particular form of the right hand side and follows directly from the following
properties of the operators L, and the right hand side R,. Let a = & be a propagative
wave number.
(i) The null spaces N'(Lg) and N(L%) of Ls and L%, respectively, coincide and are
given by the restrictions to Q' of the space of corresponding modes.
(ii) The Riesz number of L, is one; that is, the geometric and algebraic multiplicities
of the eigenvalue zero coincide.
(iii) For every mode g% corresponding to & we have

(Ra6) gy = [ 9a(0) 30 o

Qoo

where g4 is again the right hand side of (36).
Proof of (i): Lj¢ = 0 is equivalent to (Lo, @)1 (ry = 0 for all 1; that is,

/[V¢~Vg_b—k2mp5]d:c — /(Aaw)ads = 0; that is,

QH l"H
/[w.va—k?nwa] dr — i Y Y VK = ((+a)2(cH) ¢(cH) = 0
QH oce{—1,+1} ¢cZ

for all ¢ € HL(QM). If a = & this yields, by taking ¢ = ¢ and the imaginary part, that
¢o(£H) =0 for |[{ + &| < k; that is, ¢ is evanescent and also L,¢ = 0.
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Proof of (ii): Let ¢ with L2¢ = 0. Then w := Lsp € N(Ls) = N(L%) and thus

Proof of (iii): We compute (note that wg vanishes on I'7):

. = dws = 06
(R&a¢)H1(QH) - /g&¢dx + /|: Ov ¢_$wéz:| ds

QH Q>\QH
= /gagdx — / g[Aw&—l—ka&] dr = /gdg_gdx.
QF Q==\QH Q=

This ends the proof of (i)—(iii) and, in particular, existence of a solution for every o €
[—1/2,1/2] under the assumption (35). O

Smoothness with respect to « is shown in the following theorem.

Theorem 4.3. Let all of the assumptions of the previous theorem hold and, in addition,
let, for some open bounded neighborhood U C C of [-1/2,1/2], the mapping o — gq
be holomorphic from U into L*(Q), thus analytic (see [7]). Furthermore, let there exist
¢,6 > 0 with |ga(z)] + |094(x)/0a) < ce™1#2l for almost all v € Q™ and all a € U.
Furthermore, for any propagative wave number &; € [—1/2,1/2] let the orthogonality
condition (35) hold. Then we have:

(a) The solution v, of (36), (29b) (which exists by the previous theorem) can be chosen
such that the mapping a — v, is continuous as a mapping from [—1/2,1/2] into
HY QM) for every H > hy. Again, Q" := (0,27) x (—H, H).

(b) Let & be no cut-off value. Then the mapping o — v, has an extension to an
analytic mapping from a neighborhood W C C of & to HY(QH) for every H > hy.

(¢) In a neighborhood (&—4d,a+0) C R of a cut-off value & € [—1/2,1/2] the function
Vo has the form

(38) Ve = v +Va—av® +Va—av® +|a—alv

(67

with analytic functions o véj), j=1,2,3,4, from a neighborhood W C C of &
into H*(Q™M).

Proof: We transform the equation L,v, = R,, into the 2m—periodic form and define the
operator J, : H}, (Q") — HL(QY) by (Jov)(x) := e v(z) and set Lo = J, ' Lo Jo :
H H N H H :
H),.(Q") — H),.(Q") and 7 := JJ'Ry € H,,(Q") where H, (Q") denotes again
the space of periodic (with respect to x;) functions. Then L,v, = R, is equivalent to
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iaf;a =1, where ia and 7, are given by the forms

~ Ov

(Lav,¥) jpomy = /[W Vi — Ziog ) - U —(Kn—a*)vy]|de
QH

(39a) —i Y > VK= ((+a)v(cH)(cH),

oe{—-1,+1} LeZ

oty = [ € gale) B + [ eon P2 yya,
QH rH
(39Db) = /e‘ia“ga(x)gb(m)d:v
QH

+ Z Z/ga€ oy) eV W ) Gy o)y (0 H)

oc{-1,+1} L€Z ¥

for v, € H,,,(Q") where we used the form (33) of the Fourier coefficients of w,. Then
Ly and 7, depend continuously on real o € [—1/2,1/2] and, for any & € [—1/2,1/2]
which is not a cut-off value, analytically on « in some neighborhood W; C U of &. We
prove only the latter property. First we note that the integral terms in the definitions of

L, and 7, are analytic with respect to a. Furthermore, there exist ¢, > c_. > 0 and a
neighborhood V' C U of [—1/2,1/2] with

(40) cill] > |WVE2 =+ a)?| >Imk2—({+a)? > c |/

for all &« € V and |[¢| > k4 1 and thus |-L\/k? — (( + a)?| = |\/%‘ < ¢ for all

o € V and |¢| > k+ 1. From this we observe that the operator A} corresponding to

the series ;1 VK* — ((+ a)?vi(0H) tpe(0 H) is analytic as a mapping from V' into
L(H},,(Q™)). The remaining part corresponding to the finite sum

> pg<kir VK — (0 + a)?vi(o H) the(0 H) is obviously continuous for a € VN [-1/2,1/2].

If & is not a cut-off value then k* — (¢ + @) ¢ iR« for a in some neighborhood W, C V

of & and thus the remaining parts — and thus also L, — depend analytically on a in W5.
Next, we 1ook at the right hand side 7, and use similar arguments. With the product rule

applied to &~ [ga (o) eVF () (2=l )] we have to estimate the series

3 / [m o) VR 02— gy, (o )

(e gy

for ¢a,€(y2) = ga,f(ng)u ¢a,€(y2) = ga,f(ayQ) (yQ - H) { % kQ - (g + a)za and ¢a,€(y2) =

%ga,g(ayg). We restrict ourselves to ¢no(y2) = Garloy2) (y2 — H) i % k2 — (0 + «)?.
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Using the estimate |-+ /k2 — (¢ + «)2| < ¢ for |¢| > k + 1 it remains to estimate
g do

2
{ > /{ ys = H)|gae(oyo)|[eVF 01 gy, Iwz(aﬂ)\]

)>k+1 vy

2
< Y /(yz—H)lga,e(0y2)||6W’“2 (=] dy| " (o H)P?
k411 | >k+1
< > /Igae oyn)|? dyz/(yz H)? e =By, " Jgsy (o H)?
>k 41 > k1
< cloBpom 3 / nslom)Pdre < [0l [ loa)Pdy
e|>k+1 5y o

where again Q¥ := (0,27) x (H, 00) and Q¥ := (0, 27) x (—oo, —H). For the finite series

over [(| < k+ 1 we use that [gae(oys)] < ée~%% and |e?VF~(H* W= < 1 for real
values of a which shows continuity of a +— 7,. In the case that & is not a cut-off value
we use for complex values o that there exists a neighborhood W3 C W5 of & such that

Im/k? — ((+a)? > -2 forall |{| <k+1andall @« € W. Then

/(y2 o H)’ga,g(Uyg)’lei‘/kQ_(“_a)z(yQ_H)‘ dy2 < C/(y2 _ H)e—é(yz-i-H)/Q dyg.
H H

This shows the desired smoothness properties of A, and 7.

Standard arguments on the perturbation of an invertible operator imply the continuous
dependence of the solution v, of f/aﬁa = ', on « in a neighborhood of & provided & is not
a propagative wave number and analytic dependence provided & is neither a propagative
wave number nor a cut-off value. It remains to study the case where & is a propagative
wave number. Note that in this case & is not a cut-off value by assumption. Therefore,
A, and 7, depend analytically on « in a neighborhood of &. In this case Ly fails to be
invertible but (by the analytic Fredholm theory, see [7]) L, is invertible in a neighborhood
of a.

Let P be the projection from H}, (Q) into the null space A := N(L;) along the direct
decomposition H},.(Q") = N'& R with range space R := R(Ls) (note that the Riesz
number of Ly is one) and set @ := [ — P. Then we project the equation Loty = Ty
onto the subspaces. With the ansatz o, = v +v® € N+ R we arrive at the equivalent
equations

PL (0N +0%) = Pro, QLy(vN +0%) = Qry .

Since Qf}d\n = E@]R is an isomorphism from R onto itself the operators B, := [QEQIR} -
exist for all & in a neighborhood W C Wj of & by a perturbation argument. Solving for
v from the second equation and substituting this into the first equation yields

PLo(I — B.QL)vY = Piy— PLyBaQFq in N
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which we write as C, U = sa. We note that C4 = 0 and also s = 0. Therefore,
C’av = S, 18 equlvalent to — [C’ —Cas ] aid [Sa — Sal. Also, C, and s, are analytic
in the neighborhood W of & Wlth derlvatlves C! and s, respectively. We will show below
that CY, is invertible in the finite dimensional space A/. Then elementary arguments yield
that o + v/ has an extension to an analytic function in all of W and v’ is the unique
solution of C4vd" = s4. This implies that also @, depends analytically on a.

It remains to show that C, is one-to-one. By the chain rule (note that PLs = LaP =0)

we compute Chv = PLLv for v € N. Therefore, C,v = 0 is equivalent to

v l
(41) /[ Z%¢+2av¢]dzx + Z Z g + « o (oH) Voo =0
QH ' c€{—1,+1} [t+a|>k m

for all v» € N'. We extend v by
1 )
v(x) = — Z v (£H) e~V ek (el =H)gitrr 400 5 |

and analogously . Then we observe that the second term on the left hand side of (41)

is just [ [ 2 5~ 8” w + 2av w] dx. Therefore, C,v = 0 is equivalent to
Q=\QH

ov
/[ 2@—¢+2am/1] 0
8351
QOO
for all modes v corresponding to &. In terms of the quasi-periodic modes ¢ := Jzv and
w = Ja1 this is written as

for all modes Q/AJ Therefore, ¢ vanishes because & is regular. This ends the proof of
parts (a) and (b).

(¢) We go back to the periodic equation Lo, = 7y where L, and 7, are given by (39a),
(39b), respectively. The decomposition k = ¢ + x with £ € NU {0} and x € (—1/2,1/2]
shows that the propagative wave numbers in [—1/2,1/2] are given by & = k or & = —k.
We consider first the case & = k and assume first that © < 1/2.

We look again at the second term in the definition (39a) of L, which contains the square
roots y/k? — (¢ + «)?. We split the series into the series over ¢ # ¢ and the term with
¢ = (. This term defines the two-dimensional operator E(«) from H! (Q) into itself by

per

(B(@)$, %) g gy = 1V k + L+ a [¢(H) by (H) + dy(—H) b(=H)]| , 6,9 € Hy, (Q"),
and the operator L, has a decomposition in the form
L, = B(a) — Vk—aE(a)

where E and B depend analytically on « in a neighborhood of o = k.
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Now we look at the right hand 7,, given by (39b). We split the series again as above and

decompose ¢V k>~ (+a)?(v2—H) into

~

o k2—(l+a)2(y2—H) _ COS[ k2 — (04 a)?(y2 —

\/ ﬁ—l—oz (y2 —

(€+a)

K—Q kz+€+a

= a1(y2, ) + VK — aas(ys, @)

with analytic functions a;, as in a neighborhood of o = k which satisfy

(2, )] < cem VIRt < Sua—H)/2

for j =1,2and y» > H and « in a neighborhood W1 C U of Ii From this we observe

that [ |ga,e(oyo)] a;(ye, )| dys exist and 7, = i + k= il where 7§ is analytic
with respect to a € Wy for j =1,2.

Therefore, Lo, = 7o 18 equivalent to
(42) [B(a) — vk —a E(a)] v, = 7V 4+ vk — ai?

Since the cut-off value & = k is not a propagative wave number by Assumption 2.2 we
conclude that L, = B(k) is invertible and thus also B(a) in a neighborhood W C W, of
k. Since the operator on the left hand side of (42) is a small perturbation of B(k) = L,
the solution is given by the Neumann series as

[\/ff—aB( ) E(a)]"B(a) ) + Vi — ).

m=0

Therefore, sorting this series with respect to even and odd powers of VE—a=+Va—a,
we conclude the form v, = & + Va — a9? and ¢ depend analytically on « in a
neighborhood of a = k = a.

The case @ = —k > —1/2 is treated in the same way and leads to the singularity vk + a =
v a — & in a neighborhood of & = —k.

The cases k = 0 or k = 1/2 are more complicated. For example, if xk = 0 then k = {eN
and one has to split the series in L, into the series over £ ¢ {+€ €} and into the terms
with £/. This leads to the splittings

Lo=B(a)—vV—=aE.(a) —vVaE_(a), fo=7Y+vV=ai® + /ar®

In the Neumann series also powers of \/ay/—a = i|a| appear which gives the forth term
n (38). The case k = 1/2 and & = £1/2 is treated analogously. O

By the proof we observe that all of the four terms in (38) appear only in the cases k = 0
or k =1/2; that is, if k € N,
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Remark 4.4. During the proof we have shown the existence of dp,cp,cy > 0 (indepen-
dent of go) such that

lvallzrriomy < cr[sup IFsllm @) + sup 1075/08]|m om)]
pel Bel

(43a) <y [Sup HQBHL(L?)(QOO) -+ sup ||agﬂ/aﬁHL(172)(Q°°)]
Bel Bel

forall o € I :=J,c,[&; — m,&; + 0] CR and

(43b) loallion < calfallmn < chllgallzanigs

for all o € [—1/2,1/2] \ I where T, is defined in (39b). For the second estimates we use
(39b) and (34). Here, |9 o2 g=) = [19]lL1 @) + l9ll2@)-

For the proof of Theorem 3.3 we needed the following implication of Theorem 4.3.

Corollary 4.5. Let Assumptions 2.2 and 2.3 hold and let uw € H} (R?) withu € H'(Wg)
for all H > hy satisfy Au + k*nu = —g in R? where g € L*(Q). Then the Fourier

transform (Fu)(-,x2) of u(-,xe) with respect to xy is continuous in a neighborhood of
w =tk for all |xy| > ho and, even more, (Fu)(-,x3) € WH (=R, R) for all R > 0.

Proof: We decompose k again as k = {4+ x with { € NU {0} and x € (=1/2,1/2]. Then
+x are the cut-off values and, by (27),

(Fu)(£k, z2) = (Fu)(£(l + k), 22) = \/LQ_W /(Fu)(xl,@, ) eFilltm)ay g

where F'u denotes the Floquet-Bloch transform, defined in (28). Therefore, it suffices
to prove continuity of a — (Fu)(-,«) in a neighborhood of +x. By Theorem 4.1 Fu
satisfies (36) with g, = (F¢g)(-, «). Furthermore, +x are no propagative wave numbers by
Assumption 2.2. Application of Theorem 4.3 yields the desired continuity. Differentiation
of the decomposition (38) yields that J(Fu)(-, )/« is integrable. O

5. EXISTENCE

In this section we will prove existence of a solution under the Assumptions 2.2, 2.3, and,
in the case that ¢ does not vanish identically, under the additional assumption that no
bound states exist. The main part deals with the unperturbed case ¢ = 0 in which
complete uniqueness has been shown in Theorem 3.3. The general case will follow by a
compactness argument. Therefore, for given f € L?(Q) we consider first the problem to
determine u € H}. (R?) which satisfies

(44) Au+k*nu = —f in R?

and the open waveguide radiation condition of Definition 2.5. We note that existence has
been shown (for the half-plane problem or the case of scattering by an inhomogeneous
cylinder in R3) in [17, 15] by the limiting absorption principle. In this section we will
give a direct proof, see also [16]. With the propagative wave numbers &; for j € J and

their modes @J, ¢=1,....,m;, j € J, determined in (5a), (5b), we define the coefficients
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ap; € C as

2
(45) ag; = 7”/f 0=1,....mj, j€J.
’ |/\€J|

Therefore, we have to solve the equation (9a) for ¢ = 0; that is,

(46)  Ateg + Fnus = —g mR* with g:=f+) ¥ e

jeJ =1

where ¢, ; are given by (9b). Furthermore, u,.q has to satisfy the generalized angular
spectrum radiation condition (8). The plan is to take the Floquet-Bloch transform of this
equation, show solvability for all & € [—1/2,1/2] (without exception) with Theorem 4.2
and continuity with respect to o with Theorem 4.3 and apply the inverse transform.

We note that the right hand side g of (46) is in L?(R?) N L'(R?) (and has even compact
support with respect to x;). Therefore, for every a € [—1/2,1/2] we try to solve the
Floquet-Bloch transformed equation; that is, find v, € H} loc(Qoo) with

(47) Avy + Env, = —(Fg)(-,a) in Q> = (0,27) xR

satisfying the radiating condition (29b). Here, F'g denotes the Flochet-Bloch transform of
g, defined in (28). The right hand side F'g has no compact support but decays exponen-
tially to zero as |xs| tends to infinity. Furthermore, Fg is analytic with respect to o € C
(because the right hand side g of (46) vanishes for |z1| > 0y), and there exists ¢, > 0
such that |(Fg)(z, )| + |0(Fg)(z,a)/0a| < ée~%12! for almost all x € Q> and all a € C
with |a| < 1. Therefore, to apply Theorem 4.2 of the previous section we only have to
show the orthogonality condition (35). This holds for the particular choice (45) of ay; as
we show now.

Lemma 5.1. For every propagative wave number &; the right hand side ga, = (Fg)(-, &;)
of (47) is orthogonal to the eigenspace X; (see (4)) in L*(Q>). Therefore, by Theo-
rem 4.2 the problems (47), (29b) are solvable for all o € [—1/2,1/2] without exception.
Furthermore, by Theorem 4.3 for every H > hgy the mapping a — v, 1S continuous from
[—1/2,1/2] into HY(Q®), and there exists cy > 0 which is independent of f such that

vallrrmy < cullfllrz) for all o € [=1/2,1/2].
Proof: Recall the definition of g and thus Fg = Ff+>_.; S agFeoej where @ are

defined in (9b). Since ggg,j is &;—quasi-periodic it follows easily from the properties of the
Floquet-Bloch transform that

Do j(x ’
(For)(e,0) = 2(Fu)(ona— ) S 4 (Pt a0 - a,) s (o)
for ¢ with \,; = 0. (Note that ¢, € L*(R) in contrast to ¢ itself.) Since (F¢,)(-, 3) is
B—quasi-periodic its Fourier series is given by

/ i(0+5)x
(Fyl) (21, B) mzz FYL)(L+B)e

where we used (27) for the relationship between the Fourier transform F7/. and the

Fourier coefficients of the Floquet-Bloch transform (F/,)(-, 8).
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With (F/)(0 f 7 0L () j:\/%? we can write

V2r 01 o P Y, BEZ,

Fl) (2, 8) = DO
(Fl) (21, B) +1 +mamz<m§xz>ezm’ BeZ.
040

which we abbreviate as (Fy/)(z1,8) = +5- 05 + a%lpi(xl,ﬁ) where dg := 0 for § ¢ Z
and dg := 1 for B € Z and obvious meaning of p,. This allows us to write

. 1 0u(x)
(Foe)(z,a) = :t% B, 5a—aj
5, -\ 0¢p;(x) 0 AN A
+ 2 a—xlpi(% o — &) 8;51 + ax%Pi(l'l? o — &) grj(x)
1 8@,‘(37) ~+ 2 ~+
= j:;a—;l(sa_&j + AI'UZJ-(.CE,O{) + k ’n,(.’L')'U&j(.fE,O{)

for ¢ with A\,; 2 0 where @’tj(x, ) = pe(xy, o — &)y () is a—quasi-periodic.

Now the proof of orthogonality is not difficult anymore. Let o = &, for some j, € J and
b1yjo € Xjo. Then fQOO [A{)Zj(" &j,) + k*n ﬁj(-, )] ¢, j, dz vanishes by Green’s second
theorem and therefore

/ (Fg) (&, &) day o) iz

Qoo
= [T+ Y s [ (Feu) 05 ) d
Q> JjeJ =1 Qoo
N ST 1 9
= /(Ff)(a:,ajo)@wo(x) dr + ZZ@&jSlgn)\e’j;5&j0&j/ ¢£g( )wwo( ) dz
Q> jed (=1 Q=
R _ mMjo ) 1 6& o ) =
= [N dun@ e + 3 asigni, - [ 220G G ar
Q> =1 oo
A n . 0 0,J0
= N6 B e+ st [ PG g
Qe Qe

by the properties of ¢y, from (5a), (5b), the definition (45) of ay; and the fact that
Ff = f because f has support in ). Application of Theorem 4.2 yields existence. In
(43a), (43b) of Remark 4.4 the norm ||v, || g1 (gny is estimated by ||ga ||z (@) + [|9all22(@)
and its derivative with respect to a. We observe that g, = (Fg)(-, «), defined in (46),
depends linearly on (F'f)(-,a) = f and (Fyg;)(-, o). Therefore,

mj
lgallre) < c{nfnm(@ ; ZD%@ < Nl

jeJ =1
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for all &« where p = 1 or p = 2. The same estimate holds also for the derivative with
respect to a. This proves boundedness of f +— v, from L?*(Q) into H'(Q*) uniformly
with respect to a € [—1/2,1/2]. O

Now we are able to prove the main result of this section.

Theorem 5.2. Let Assumptions 2.2 and 2.3 hold. Furthermore, in the case q # 0, we
assume that no bound states exist, that is, there is no non-trivial solution u € H'(R?) of
Au+k*(n+q)u =0 in R% Then there exists a unique solution u € H} (R?) of the source
problem (6) satisfying the open waveguide radiation condition of Definition 2.5 for every
f € L*(Q). Furthermore, for every H > hy the mapping f + u is bounded from L?*(Q)
into H'(Wy).

Proof: For ¢ = 0 the solution u is given by the inverse Floquet-Bloch transform
1/2

u(z) = /Ua(x)doz, z € R?,
~1/2

where v, denotes the solution of (47), (29b) which depends continuously on « and is
extended as an a—quasi-periodic function into R?. By the uniform boundedness of f + v,
from L?(Q) into H*(Q¥) we conclude that (x,a) — v, (z) belongs to
L2((—1/2,1/2), H} (Q")) and thus u € H(Wg) with |[ul|g1w,) < cullflli2@) by the
mapping property of the inverse Floquet-Bloch transform.

It remains to study the case of a general ¢. Let S : L*(Q) — H'(Q) be the linear and
bounded operator which maps f € L*(Q) into u|g where where u solves (6) for ¢ = 0 and
the radiation condition. For arbitrary ¢ the solution of (6) is equivalent to the fixpoint
equation u = S(f + k?qu) for v € L?(Q). Since S is compact from L*(Q) into itself
uniqueness implies existence. ([l

6. THE ASYMPTOTIC BEHAVIOR OF THE RADIATING PART

It is well known (see, e.g. [9]) that for closed waveguides the radiating part of the solution
decays exponentially as |z1| tends to infinity. This follows also from the analog of Theo-
rem 4.3. Indeed, in this case no cut-off values exist and Theorem 4.3 implies analyticity
of a — (F'tuyaq) (-, @) in a neighborhood W C C of [—1/2,1/2]. Then we can modify the
path [—1/2,1/2] of integration for the inverse transform

1/2
Urag(T1 + 270, 09) = / (Fyag) (21, T2, 0) €*™da, z€Q>, (€L,
~1/2
depending on the sign of £. We choose the path to be v = t + (sign ¢)7i for t € [—1/2,1/2]
where 7 > 0 is chosen such that Fu,.q is analytic in the strip | Im «| < 7. Then it follows

that |upeq(z1 + 270, 29)| < ce 2 for |¢| > 1; that is, u,qq¢ decays exponentially with
respect to x1.2
The situation is different in the case of an open waveguide because of the existence of
cut-off values.

2Actually, such an estimate holds only in the H'—norm and not pointwise, see below.
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Theorem 6.1. Let Assumptions 2.2 and 2.3 hold. For all H > hq there exists ¢ > 0 such
that ||uraall g1 qrry < e for all ¢ #0. Here, QI := (2ml,2n((+1)) x (—H, H) for { € Z.

In particular, uyqq € W (Wy) for all H > hy and x — (14 23)??u,eq(z) is in H*(Wg)
for all p <1 and H > hy where again Wy :=R x (—H, H).

Proof: Let again k = ¢+ s with { € NU{0} and & € (—=1/2,1/2]. For the different cases
of k we define open sets I, I, and/or I3 and corresponding functions ¢y, 19, 13 € C*(R)
with supp¢; C I; as follows.

Case I: If |k| < § we define I := [-1/2,1/2], I} := (=1/2 —¢,1/2 + &) \ {£x}, L, :==
(k—e,k+¢€), and I3 := (—k — e, —k +¢) for some small € > 0. (The latter only if x # 0.)
The functions v; are chosen such that > 1;(a) =1 for all a € I (partition of unity).
Case II: If k = 1/2 we define [ := [0,1], I} := (—¢, 1+¢)\{1/2}, and I := (1/2—¢,1/2+¢).
The functions 1)y, 19 are chosen such that ¢ (a) + ¥o(a) = 1 for all & € I. In any case
the inverse Floquet-Bloch transform is given by

Upad (1 + 270, 23) = /(Fumd)(x,a) pi2rle g, Z/w(@ (Fiyaa) (2, a) €2 da
T

I

for € Q and ¢ € Z. (Note that we can choose any interval of length one as domain
of integration because of the periodicity of (Fuqq)(z,+).) In the following we restrict
ourselves to the first case. The second case is treated as the case k = 0.

The integrand of the term containing v); vanishes in a neighborhood of the cut-off values
+k and is therefore smooth by Theorem 4.3, part (b). Furthermore, since ¢y = 1 in
neighborhoods of +£1/2 and since (Fu,qq)(x,-) is 1—periodic, partial integration (two
times) yields

1/2

"/‘¢aa>uwaxwa>a%wda

—-1/2

<

C
mem P

Next, we consider the case containing 1; for j € {2, 3}; that is by part (c) of Theorem 4.3
for vy, = (Fuaa) (-, @),

1/2
[ 440 (P ) e
—1/2
1/2 12
= / () Ugl) e2mlagn 4 / V;(a) o —a| Ug) pi2mla g,
—1/2 i
1/2
+ / ¥j(a) [\/ a— OZU((XQ) + ng”)} ei2rle g
~1/2
where & = Kk or & = —k if j = 2 or j = 3, respectively. Two times partial integration

of the first term gives O(1/£?) (note that ¢; vanishes near £1/2). Also the second term

can be partially integrated twice and gives O(1/¢%). Partial integration of the third term
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yields

1/2
/ V() [\/& - ogvg) +Vo— @U(S)} pi2mla g,
~1/2
1/2
1 .
= _12776 / a% [\/ o — Oéwj(a) ngl?) +Va— OAW(/}](O‘) Ua3):| e'LQﬂ@ada
_1/2
1 G+e ) X
= ; C) (3) ) giznta
i47r£A/ (‘/—@_awﬂ(a)% T (e >e a
1 G+e 3 )
- v — ~ i (2) - — . (3) 2mlo
mg/ (VO‘ Y9 [¥i(a) ve] + Ve G o [40() v§ ]> el oy

The second term on the right hand side is again of order O(1/¢?). For the first integral
we write
G+e

1 1 ,
/ (m vile) ! = s () ”5“3)) o

a—e
a+e 1 a+e ] a+e
— U((f) / . eiZWZO{dOé _ ,U((S?) / . ei27r€ada + / ,17(05) €i27r€ada
R oa— - oa— o
with
- 1 2 1 3
Ba) = [5(@)v@ — o] - (i) o — o]

vVa— o Voa—a

We show that o € W' ((—=1/2,1/2), H(Q™)). Indeed, for the first term, which we denote
by vy () we compute

ui(a) 1 N2 (2) L 0 o
da  2(a— ) [Wila) vy —vs'] + % — o O [¥5(e) vs?]
We estimate (note that ¢;(&) = 1)
1 @)
la — & Wj(o‘)vg)_% HHl(QH)
1 /aa @) 0 2
= — —|;(B) vy | dp < max|| = |[¢;(B)v :
[ ‘a 35[ 1B ] H1(QH) g 85[ i(8)vs] HI(QH)

This shows that dv; /Ja satisfies an estimate of the form ||0vy(a) /Oc| g1(guy < ¢/+/|a — @]

The second integral is estimated in the same way. Therefore, the integral f _1{32 o(a) 2™ da
32



is of order O(1/|¢|) by partial integration. Finally, we compute

G+te

. N 1 .
—i2ml& 2mla
e V2m|{| / ——— """
R Vo — o

€ i | i
27r|£\/76_22”£0‘d04 — { (1 ZO) Vam, £— o0,
(6] 3

{— —00,

by Lemma 7.3 of the Appendix, and analogously
a+e

o 1 . 0 { — 00
—i2ml& 2mla 9 )
e V2m|{| /——a—de do —> { (1—i)vZr, - —o0.

Therefore, we conclude that

1/2
ot : 1+i | 39, 15
li /¢ 3/2 —i2nléx F . zQTréad _ Vs > )
f—&rzl?oo |:| | € ( u?"ad)( 70'/) € aQ A ~(2) : ! — o0 :
~1/2 Ya
in H1(Q™), and thus |[t,aall g1 (g HII{% Ftpaa) (-, @) €2™da| gy quy < cf [(2.
To show that u,qq € W (Wy) we estimate
/ |:|u7‘ad| + |VU7~adH dr = Z/ |urad| + |Vurad|]
Wit (ez;
< \/47r H (Iluradll 2oy + 1 Vitraall z2gi))
ez
< Z ||u7°ad||H1(QL, <c {HudeHl(QH) + Z ’ |3/2} < 00.
ez 1¢]>1

Analogously, for p € [0, 1),

/(1+[E1) ’urad|2dx — Z/ 1+l’1 |u7‘ad| dx

Wu EeZ

IN

Z[l (161 + 14771 traal 32 g

Lel

e 4720 g + 311+ 1+ PPl

le|>1
< {1—1— Z |€|2p—3} < o0

/=1

IN

because p < 1. The proof for the derivative follows the same lines. OJ
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We note that by the trace theorem w,q4|r, € L2(T's,) for all p < 1 where I'y, := R x {ho}
and

(15) N |

—00

[e.e]

u+mwwm%ww<m}

equipped with its canonical norm || - ||zz(r, )-

After the investigation of the asymptotic behavior in x;—direction we turn to the study of
the behavior in xo—direction. We will prove the Sommerfeld radiation condition for t,.qq
in the upper and lower half planes {z € R? : 9 > hg+ 7} and {z € R?* : zy < —hy — 7},
respectively, for every 7 > 0. We note again that in R? \ W, = {z € R? : |25 > ho} the
part u,.q satisfies the inhomogeneous Helmholtz equation

m;
Atpog + KUy = — Z Zamapg,j for |z5] > hog,

jeJ =1

where ¢, ; are given by (9b), and the radiation condition (8).

Theorem 6.2. Let Assumptions 2.2 and 2.3 hold. Furthermore, in the case ¢ # 0, we
assume that no bound states exist. Let u € H. (R?) be the unique solution of the source

problem (6) satisfying the open waveguide radiation condition of Definition 2.5.

(a) Then u,qq satisfies the Sommerfeld radiation condition

a Ta
(49a) sup  V/|zl|uraa(2)] + sup  /|z] uroalz) | 00,
2€R?, |z2|>ho+7 2€R?, |za|>ho+T or
for all >0, and
aurad($) .
(49b) \/T sup —a ik Upgqa(z)] — 0, 7r— 00,
x€ST r

for all 7 > 0 where ST :={x € R* : |xo| > ho + 7, |2] =71},
(b) There exists a unique function u> € C(S") with

(50) sup [e /1 tyeq(z) — u™(z/r)| — 0, 71— o0,
x€ST

for all 7 >0 where 8" ={z € R?: |z| = 1, xy # 0}.

Proof: We restrict ourselves to the upper half plane {x € R? : 5 > hg}. Recall from (11)

that u,qq(x) is explicitly given as the sum of a volume potential vy (x) on (=0, 09) X (hg, 00)

and a double layer potential vy(z) on I'y, := R x {ho}. We show the assertions separately

for v; and vy. Estimate (49a) for vy(x) follows directly from (54) of Lemma 7.1 of the

Appendix for h = hy. To show (49b) let € > 0 be arbitrary. (54) implies the existence of
3’0;17(":6) < - forallz €R} ,

h > hy with
kVlllon(@)] + Vel — 5

where 0y, is defined in (53) of Lemma 7.1 of the Appendix. The function v; — 7y, is a
volume potential on the compact rectangle (—og, 09) X (hg, h) and therefore satisfies the
classical Sommerfeld radiation condition (49b); that is, there exists R > 0 with

VEI (x)a; P ik fon(e) - (o)

3

< % forall 2 € RZ, | |a| > R.
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The triangle inequality yields
Ovy ()
r

|| —ikv(z)] < e forallz €R; , |z >R,

which shows that v; satisfies (49b) even for 7 = 0.

Defining v$°(Z) by

op o0
v?@)::v/:/wwwa%M—m%“fymywh Bl =1,

—oo hg
with v := %, one shows estimate (50) in exactly the same way using the asymptotics
i ezk\x|

—HM(klz—y)) = 7

1 ety 4 (’)(|m|_3/2), |z] — oo,

V7l
uniformly with respect to & = x/|z| and y from compact sets (see [7]), and the obvious
estimate

sup
|2[=1

oo h
V(&) — / / py) [V — eV T dyy dyy | < ce”™.

—0oo ho

Now we turn to the double layer potential vy(x). This function has been investigated
in [13]. We recall and simplify their arguments for the convenience of the reader. First

we recall the asymptotic behavior (15) of the Hankel function Hél)(k;|x — y|) and their
derivatives. Let ¢ € L2(T,) be any function for some p < 1 where L2(I', ) is the weighted
space from (48). We obtain for x5 > hg + 7:

0

[ 16|18k = s
Y2
yEFhO
ly1[>1
1
< 1 h d
= C(:EQ + ) / |¢(y1 0)| [(xl —_ y1)2 + (33'2 _ h0)2]3/4 n
ly1|>1
= c(z2+1) / (1+479)"6 (1, ho)| ! dy,
o (T 27 (o1 — 907 + (22 — o) 27
Y
< clmtDlolgm, | [ : d
C 2 .
- OO PTGy =) (e — B

ly1[>1

Now we apply Lemma 7.2 from the Appendix with ¢ = 3/2. Let first |z1]| < 23 — hy. By
the first estimate of Lemma 7.2 we have

0 1 1—|—3§'2 1
L/‘|¢@o|5@;£é><Mx-—yD A9 < eWllzmn) =g < ¢ Iolwn
y€lp,
ly1]>1
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where we used x5 — ho > 379 and thus (z — ho)® > 5(2] + (22 — ho)?) > 5z |22
in the last estimate.

Second, let |x1| > xo — hg. Then by the second estimate of Lemma 7.2 (note that z; # 0
because xo > ho + T)

[ 16| ke = ) st

yerho
ly1|>1

< cllgllam (1+2) Vo= + o2 — hol 2|72 < ¢ dllze) Vel + |2] 2.

because 23 > 2(23 4 (22— ho)?) > %(WM Since 2p > 1 we have shown the existence

of a constant ¢ which is independent of ¢ (but depends on 7 > 0) such that

(51) v@?/‘wwﬂgim@@u—m>

y€lp,
ly1|>1

ds(y) < ell@llzw,)

for all + € R? with 2o > hy + 7. The same estimate holds also for the gradient
Va 83 H(l)(k;|;1: —y|) by the same arguments.

Now we specify the function ¢. First we set ¢ = u,.qq. The estimate (51) and the bound-
edness of Sup,, >, 4 \/Wﬁyl|<1 |traa(y)] ‘32/2 HY (k|z = y)) )| ds(y) for the double layer po-
tential on the compact line segment {y € Ty, : |y1| < 1} 1mphes the first estimate of
(49a). The same argument holds also for the derivative.

Second, for any a > 1 we set ¢o(y) = uraa(y) for y € Ty, |y1] > a, and ¢,(y) = 0 for
y € Ihyy |11] < a, and define v, by

i 0
wle) = 5 [ wal) 5 H ke =y ds(y), @ € R,

yel'p,
ly1]<a

Then, by (51),
9, (9 ol .
\/|x|‘ U;i ?) — ik vo(x ‘ V| ’ Y —zk:va(x)‘ +
8 1) 1
VR [ 16001 |1V H<@u—mw+Ma sz — o) | dsto)

yerho
ly1|>1

0vy(x)

(52) < Visl|—5

for all x € R? with x5 > hy + 7. Let now € > 0 be arbitrary. We choose a > 1 such that

—ikva(z)| + (14 k)él|all Lz,

(1 + e allizrny = (1+ k) t/lwmeﬂ+ﬁV%@)§

ly1]>a

DN ™

For this fixed a we note that v, is a double layer potential on a compact line segment.

Therefore, v, satisfies the classical Sommerfeld radiation condition, and we can find R > 0
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such that
0v, ()

\/m or ik va()

By (52) this proves that v, satisfies Sommerfelds’s radiation condition.

< % for all |z| > R.

In the same way ones proves (50) for vy with

. 0 i .
(@) = 7 / taaly) eV ds(y) 3] =1,

Chyg

(see also [13]). We omit this part. O

Remark 6.3. Finally we note that we can weaken the assumption with respect to the
source f. Indeed, a careful inspection shows that we can take f € H~'(R?) with support
in K (as a distribution) where K is any compact subset of Q). For example, we can
think of f = Ox/0z; for some x € L*(R?) with support in Q. We sketch the necessary
modifications. In (2) the right hand side has to be replaced by the dual form (f, ).
The Floquet-Bloch transform of f still coincides with f. In Theorems 4.1, 4.2, 4.3 the
functions g and g, have to be replaced by f+ g and f+ §a, respectively, where g € L*(R?)
and g, € L*(Q>) decay exponentially with respect to xo. The orthogonality condition

(35) and the form (45) of as; have to be replaced by (f,$> + fQoo Ga, () d(z)dr = 0
and ag; = %(f, qgg,j), respectively. Then Theorem 5.2 holds and the mapping f +— u

is bounded as a mapping from the closed subspace {f € H ' (R?) : supp f C K} into
HY(Wyg) for all H > hy.

7. APPENDIX

In the first lemma properties of the volume potential with certain non-compactly sup-
ported densities are shown. We set again Ry = {z € R* : x5 > ho} and Wj; = Rx (ho, H).

Lemma 7.1. Let ¢ € LQ(R%O) with o(x) = 0 for |v1| > o9 and |p(z)| < ée 2 for
x9 > hg for some 0¢,¢,0 > 0 (independent of x). Define

(53) / / )Gz, y)dyady, z€R]
—oo h
for h > hg, with the Green’s functzon G*(z,y) == L[H, (1)(k5|x yl) — (k|x —y*|)] for

T,y € ]R20 with x # y. Here, y* := (y1,2ho—12) " is the reflected pomt at the line xo = hy.
Then vy, and it gradient satisfy the estimate

I+zx
(54) lon(2)] + [Vu(z)] < ¢ W

where ¢ is independent of x € ]R and h > hg. In particular, v, € H' (W) for all H > hyg
and h > hy. Furthermore, vy, E H} (R} ) is the unique solution of the boundary value
problem

(1+h> 76}1/2, To > hg,

0 forhyg <z <h,

2 —
Avy, + kv, = {—90 foray > h,

v, = 0 for xo = hy,

satisfying the generalized angular spectrum radiation condition (8).
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Proof: First we show (54). We know from [3] that for all a > 0 there exists ¢ > 0 with

(1 +25) (1 +2)

(55a) ‘G+ (z, y)‘

IN

for all z,y € R} with |z —y| > a,

|z — y[32
1 1
V.G (z,y)| < (1+22) (1 £ 1) for all z,y € R? with |z —y| > a,
|z — y[3/? ho
(55¢) ‘G+(x,y)‘ < c|ln|x—y|‘ for all z,y € Ry with 0 < |z —y| <a,
‘VIG”L(:E,y)‘ < | ¢ | for all z,y € R} with 0 < [z —y| < a.
r—y

First we consider |z1| < 200 and x5 < 2 (if hy < 2, otherwise drop this case). In the
definition of vy, we split the region of integration with respect to y, into {yo > h : |ya—x2| <
1} U{y2 > h : |y2 — 3] > 1} and use the estimates of G is each of the regions. (Note
that |y;| < 0g.) Therefore,

on(z)| < / / 2 |l fo — ]| dys dys

ya>h —oo
|z2—y2|<1
)
_ 14y
C(l+$2) / /6 6y2mdy1 dy2
y2>h  —oo
|z2—y2|>1
1 3oo [e%¢}
< ce_éh/ / |ln|z|‘d2’1d2’2 + 6000/6_5y2(1+y2)dy2 < c’(1+h)e_5h.
—1 —30¢ h

Let now |z1] < 209 and 25 > 2. We split {yo > h : |Jyo — 2] > 1} ={ya > h: 1 <
Y2 — @2 < @2/2} U{ya > h: [y2 — 22| > x2/2}. Then

on(@)| < / / 502 |l fo — | dys iy

y2>h  —oo
|z —y2|<1

_ 1+
4+ c(1+ .1'2 / / 0y2 W dy1 dy2

y2>h
1<|ze—y2|<z2/2

1+
4+ c(l+ .'172 / / —0y2 —y2 dyl dyg

y2>h -
|z2—y2|>z2/2
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1 3oo

< ce“sh/Qe_‘s(m_l)ﬂ/ / |ln|z||d21d22
—1 =309
i _ 14+ T -~
Ferm) el [ ey, + ot [ e a
2
h h

where we used the estimate yo = y2/2 + y2/2 > h/2 + (22 — 1)/2 in the first integral and
Y2 > Yo/2 + wo/4 in the second integral. Combining this with the estimate for xy < 2

implies
1 —f- T
(56&) |Uh($)‘ S C W

for all o > hy and |z1| < 209 and h > hy.
Now we consider |z1| > 20¢. Then |y; — x1| > |x1| — 09 > |21]/2 > 00 and thus

(14 h)e9"/2

0o 09

- L+
o) < etsay) [ [ e S dyan.

h —oo

We split the integral with respect to yo into {ya > h : |y — 22| > 22/2} U {y2 > h :
lya — xa] < :UQ/Q}. For |ys — xa| > x2/2 we have |z — y[* > 1|z|* and thus

20
f5y —dy __ 270

y2>h - y2>h
|z2—y2[>z2/2 |2 —ya|>z2/2
(56b) < L/(Hy)e—éwy < % (14n)e
S fapr [ e S T
h
Finally, since |ya| > |xa| — |y2 — 22| > 22/2 for |ys — 29| < x2/2 we have by estimating

Yo > y2/2+l'2/4

[4s)
sy L2 _ - diny
6y2 6332/4 592/2 - g
/ / ’3/2 dypdys < e /(1 +y2)e dys / 21 — 132

ya2>h - h —00
[z2—y2|<z2/2
1 T c
—dxa/4 —dy2/2 —6h/2
(56¢) < ce PR /(l—l-yQ)e dys < T2 (1+h)e
h

(note that |x1| > 200 and z5 > hg).

The proofs for the derivatives follow exactly the same lines. (Only the integral over
In |x — y| has to be replaced by the integral over 1/|z — y|.) Combining (56a), (56b), and
(56¢) yields (54).

From this estimates it follows directly that v, € H'(W}}) for all H > hq. By truncating
the domain with respect to ys and using classical results on volume integrals on bounded

domains it is easily seen that v, satisfies the differential equation.
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To show the radiation condition (8) we take the Fourier transform with respect to x; and
note that the integral with respect to y; is a convolution. By our normalization of the
Fourier transform and the formulas 3. and 4. in [11], Section 6.677, this yields

(Fon)(w, x3) = Yo

i iVk2—w?|zo—y2| iVk2—w2(z2+y2—2ho)
———— | (F)(w, ) [e 2l —e | d
2V k? — w? /

v h

and thus for z9 > h

[e.9]

W — iV k2 — 2 (th)(w, x2> — /(Fg&)(w, y2> eim(mﬂm) dys .
2

z2

For |w| < k we just estimate

[e.9]

C
< C/€6y2 dy2 — 5676:1:2_

z2

’% — iV = (Fun)(w, 2)

For |w| > k we estimate

I Fuon)(w,x2) . 1 5
‘T—Z\/k — w? (Fop)(w, x2)

o

< c/e—5y2—vw2—k2(y2—x2)d

—dxo

C
= 28
b2 0+ Vw? — k2

2

Together we have shown

8(fvh)(w,x2) X 5 D) c
ot IVE? — w? (Fuop)(w, 22)| < = \/me
for almost all w € R and x5 > h where ¢ > 0 is independent of w and z. Squaring and
integrating with respect to w yields the generalized angular spectrum radiation condi-
tion (8).
Finally, we show uniqueness of the boundary value problem. Therefore, let v € H, (R} )
with v € HY(W}) for all H > hgy be a solution for ¢ = 0 and ¢ = 0. The Fourier
transform v(w, z2) 1= (Fv)(w, x2) satisfies

—dxo

(57)

V" (w, z2) + (k2 —whd(w,23) = 0, 33> hy, (w,hy) =0,

for almost all w and the radiation condition (8). The general solution of the differential
equation and the initial condition is given by

@(w,xg) = )

a(w) |i€i\/k:2w2(x2h0) _ e*i\/ k27w2(a¢27h0) 1_2 > h/[),

for some a(w) € C and thus ¢/ (w, 22)—ivVk2 — W2 (W, 23) = 2a(w)ivk? — w2e Vk ~w (@2=ho)
Therefore,

2 2 _ 2
|0/ (w, 22) — iVE® — @2 i(w, 25)|° = Ala(w)PVE? = w?, w| <k,

{ 4a(w)|PVw? — kZeVe R 2=ho) |y > k.
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The radiation condition (8) implies a(w) = 0 for almost all w; that is, v vanishes identically
which proves uniqueness. O

We recall the following auxiliary result from [13].

Lemma 7.2. For given 1/2 < p <1 and q > 1/2 define I(x) by

1
I@) = / @ — ) + 2

ly1][>1

dyl, ZL‘GRQ,.’L'Q#O.

Then there exists ¢ > 0 with I(x) < cloy|™ for all x € R? with 3 # 0 and also
I(z) < cf|wi] 72 + |ao| 720 2 |72] for x € R? with x5 # 0 and z1 # 0.

Proof: (a) Obviously, for all x € R? with x5 # 0 we have

Ia) < /—d _ / _ .
(@) el T e ) P T 20— 1 [aal

ly1|>1 ly1[>1

(b) We split the region of integration into y; with |y; —x1| > |z1|/2 and |y; — 21| < |21]/2.
For x1 # 0 we have

/ 1 Qi < / 1 d 2 1
< Y = o T
[(yr — 21)2 + a2 [y (zal/2)2 i e ™~ 2p— 1 |ay 20

[y1]>1 ly1[>1
ly1—z1[>|z1]/2

For y; with |y; — x| < |21]/2 we conclude that |y,| > |z;|/2, thus

/ : d
(1 — 1) + 22)e [y 20

ly1]>1

ly1—z1|<x1/2
1 1 4r 1
< dy, = ——— / d
/ (1 — 202 + a3 (/2% T TP ) Jeemy? e
ly1|>1 ly1|>1 |2
47 | 24| / 1 5 — c

ol ) (24 1)0 T JaafPar o[

where we have used the substitution ¢ = % Therefore,
I(x) < cflm] ™7 + foo] 7 2| 7]

which ends the proof. O

The following lemma is a simple consequence of the improper integrals fooo Cf/szt dt =
0 sint _ T
s LLdt = V3
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Lemma 7.3. For every a >0 and o € {+1,—1}

lim \/|T /—e_ZTadoz = (1—io) \/z,
oT—o0 | | 2

: [ 1 —iTa ] _ (1_i>\/2ﬂ-a oc=1,
lim \/]T|/\/ae da_ = { 0, 1

Q
Il

oT— o0

Proof: Using the substitution ¢t = |T'|a = o7« the first formula follows from

alT| alT| alT|

/Le_iTa = / e td —1 /—COStdt — ia—l /Sl—ntdt
/ Va \/|T VI Vi VI Vi

and

For the second formula we note that

1 L F1
/_e—zTa dO{ — /—6 1T dOé 4 _./_61Ta dOé
Va 1 «
—a 0

1 1
— ].—R _—zTad — (1=91I _—zTad
(1 —1i)Re / =€ a — (1—14)Im / \/ae «
0 0
which yields the second assertion. 0
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