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Kurzfassung

Um die Lichtausbreitung innerhalb optoelektronischer Bauelemente gezielt zu manipulieren greift
Lichtmanagement zunehmend auf ungeordnete Strukturen undMaterialien zurück. Die quantitative
Beschreibung dieser ungeordneten Teilchensysteme wird jedoch maßgeblich durch das Fehlen von
Symmetrien erschwert. Hierdurch verlangt insbesondere die Diskrepanz der einzelnen Größenord-
nungen innerhalb eines Systems Modellierungswerkzeuge mit einem breiten Anwendungsbereich.
Um die Streuprobleme in den typischen Dünnschichtsystemen optoelektronischer Bauelemente
abzubilden, wird in dieser Arbeit eine Simulationsmethode genutzt, welche die gestreuten elek-
tromagnetischen Felder in Kugelwellen abbildet und mit einem Formalismus für ebene Wellen
kombiniert. Im Vergleich zu den etablierten differentiellen Methoden und Integralansätzen prof-
itiert der gewählte Reihenansatz maßgeblich von einer stark reduzierten Anzahl an Unbekannten,
erweist sich allerdings im Falle komplexer Streugeometrien bisher als nicht ausreichend flexibel.
Bei Streuanordnungen aus nichtkugelförmigen Partikeln erfordert die T-Matrix-Methode beispiel-
sweise einen Mindestabstand zwischen benachbarten Partikeln, um die Mehrfachstreuung richtig
auflösen zu können und erweist sich daher ungeeignet für das Modellieren von dichten Partikelan-
häufungen. In der Praxis kann die Methode zur optischen Modellierung somit nicht immer ihrem
Ziel der Optimierung und Unterstützung der Bauelementeherstellung gerecht werden.

In dieser Arbeit wird ein alternatives Verfahren zur Berücksichtigung direkter Wechselwirkungen
zwischen nichtkugelförmigen Teilchen vorgestellt. Der Formalismus basiert auf einer zwischen-
zeitlichen Umwandlung des Translationsoperators für Kugelwellen in ein System ebener Wellen.
Hierdurch können die sich ausbreitenden Felder vom evaneszenten Feld getrennt und die direkten
Wechselwirkungen zwischen nichtsphärischen, konvexen Partikeln für beliebige Abstände ermittelt
werden.
Um den Rechenaufwand weiter zu reduzieren, werden periodische Randbedingungen für die T-
matrix-Methode auf Basis von Ewald-Summen in das bestehende Modell integriert. Neben der
Modellierung streng periodische Systeme kann der Reihenansatz somit ebenfalls auf die Unter-
suchung großer, periodischer Einheitszellen erweitert werden. Es wird untersucht, inwieweit sich
eine weitreichende Periodizität auf die lokale Unordnung innerhalb der Einheitszellen auswirkt und
unter welchen Bedingungen solch eine Periodizität geeignet ist um ungeordnete Partikelsysteme zu
beschreiben.
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Kurzfassung

Die numerischen Herausforderungen der vorgestellten Techniken zur optischen Modellierung un-
geordneter Partikelsysteme werden erörtert und anschließend anhand zweier praxisrelevanter Fall-
beispiele illustriert. Zunächst wird ein Vergleich zwischen planarisierten Extraktionsschichten mit
niedrigem und hohen Brechungsindex zur Auskopplung von Licht aus einer organischen Leucht-
diode für unterschiedliche Dichten der Streutextur gezogen. Anschließendwerden poröse Polymere
in eine Perowskit-Solarzelle integriert um eine diffuse und breitbandige Reflexion zu ermöglichen,
wie sie für die Gebäudeintegration von Photovoltaikanlagen wünschenswert sein kann.
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Abstract

Light management in optoelectronics increasingly relies on disordered textures and materials to
manipulate the propagation of light to one’s desires. The lack of symmetry in such disordered
particle arrangements renders their quantitative description highly challenging. In particular, the
discrepancy of the involved length scales demands for simulation tools with a wide range of appli-
cability.
The presented work builds on a simulation framework that combines the spherical wave represen-
tation of a particle’s scattered electromagnetic field with a plane wave formalism to account for
light propagation in thin-film environments of optoelectronic devices. The series approach thrives
from a severe reduction of unknowns compared to the more established differential or integral
approaches, but so far lacks in flexibility when it comes to complex scattering geometries. In
particle arrangements consisting of nonspherical scatterers for example, the superposition T-matrix
method requires a minimal particle separation to account for the multiple scattering response and
hereby prohibits the aggregation of nonspherical scatterers. In practice, such restrictions do not
satisfy the incentive of optical modeling to optimize and support the device fabrication.

In this thesis, an alternative procedure to account for direct particle interactions between nonspher-
ical scatterers in close vicinity is presented. The formalism is based on an intermediate plane wave
expansion of the translation operator for spherical vector wave functions that allows to separate
the propagating and evanescent field contributions from each other. Hereby, the direct interactions
between nonspherical, convex scatterers can be obtained for arbitrary particle separations.
To further lower the computation cost and time necessary to derive information from the optical
models, periodic boundary conditions are formulated, based on Ewald lattice sums. Besides open-
ing up the series approach to strictly periodic systems, the boundary conditions allow to investigate
light scattering in large, periodic super cells. It is discussed, to which extent a long range periodicity
influences the short range disorder within one unit cell and under which conditions disorder can be
mimicked.

Numerical challenges of the developed modeling techniques are discussed and finally two light
management applications are presented. First, a comparison is drawn between low and high
index planarized extraction layers in an organic light emitting diode for various texture densities.
Secondly, porous polymer networks are integrated in a Perovskite solar cell to tailor a diffuse and
broadband reflectance that facilitates the photovoltaics’ building integration.
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1 Modeling of disordered light
management structures

This chapter familiarizes the reader with the challenge of optical modeling of disordered light man-
agement structures. After a comparison of the various numerical techniques available to address
these challenges, the state-of-the-art of a superposition T-matrix framework and the therewith
arising open questions are summarized. At the end of this chapter the outline of this work is given.

In optoelectronics light management comprises all efforts possibly made to manipulate the prop-
agation of light in order to serve a certain goal. Ultimately, most of these goals can be narrowed
down to efficiency optimization of a specific device, but can also revolve around safety concerns
or more subjective desires like visual appearance.
With optical components in a size range similar to the wavelength of radiation, light management
tools often have to bridge a scale-discrepancy between the macroscopic device and optical effects
that take place on a microscopic level. Considering the example of organic light emitting diodes
(OLEDs) that constitute surface emitters with a size of multiple square centimeters, light extraction
can be significantly enhanced by incorporating nanophotonic grids [18] that break the transverse
translation symmetry of the otherwise planar, layered device architecture.1

It is the objective of a quantitative description of such a device to derive design rules that sup-
port its experimental optimization and herewith save material and time. However, the described
multi-scale nature of optical components and optoelectronic devices complicates a proper choice of
simulation techniques as any available method is somewhat limited in its applicability to a specific
range of dimensions. In the example above, the periodicity of the nanophotonic grid fortunately
lowers the computational cost as tools can come into play that explicitly exploit the periodicity in
their solution strategy. With the emergence of disordered light management structures, periodic
constraints have gone missing, rendering their optical modeling even more complex.

1 The trapped light problem in thin-film light emitting devices and possible extraction strategies will be reviewed in
chapter 5.
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1 Modeling of disordered light management structures

1.1 Structural disorder

Compared to their periodic counterparts, disordered textures andmaterials gain in popularity as they
are perceived to provide outstanding spectral- and angular-independent performance characteristics
[19]. More robust against fabrication defects, the large scale processing of disordered nanostructures
becomes especially interesting for light harvesting [20, 21] and other applications that operate over
a broad spectral or angular range, like white light emission [22] or biosensing [23].
Inspired by the disorder of natural, photonic structures found in animal [24, 25] or plant epidermal
cells [26], a lot of research has been driven by the question of how to replicate such natural
structures [27, 28] and whether disorder can even be tailored to overcome the properties found in
nature [29, 30].

Before one dives into the optical modeling of disordered particle arrangements, it is worth to further
specify the here considered degrees of structural disorder that denote different types of positional
uncertainty of the individual scatterers. Being enclose by the two extremes of perfect periodicity
and absolute randomness, structural disorder can be more inclined to one or the other, promoting
various optical properties and hereby enable different applications.
The different degrees of structural disorder are illustrated in figure 1.1 bymeans of two-dimensional
point patterns of constant filling fraction. Originating from a strict periodicity, a random, local
distortion of the periodic pattern creates a short range disorder, but maintains the periodicity on
a large scale. Applied, e.g., to photonic crystals, the local distortion can significantly increase the
number of modes that couple to the quasi-crystal structure, which enables the design of highly
efficient and angular robust broadband absorber materials for photovoltaics [19, 31].
In the opposing case, enforcing a short range correlation between neighboring particles of an
otherwise random pattern creates materials with a long range disorder. Such structures can be
obtained from highly controlled techniques like electron beam lithography, but also from fast and
scalable self-assembly techniques like the deposition of charged nanoparticles [32] or polymer blend
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Figure 1.1: Two-dimensional point patterns with varying degrees of structural disorder, but constant filling fraction.
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1.2 Optical modeling of disordered materials

lithography [33]. The resulting structures can promote, e.g., the localization of light in surface
enhanced Raman spectroscopy textures [34] or facilitate new optical properties of metasurfaces
[35]. When the disordered structures do not exhibit any density fluctuations on a large scale, a state
of hyperuniform disorder is reached that allows further control of the scattering response [36].
Finally, the largest degree of disorder is observed in fully random structures. Obtained, e.g.,
from a solution-processed particle dispersion, arbitrary scattering events allow the suppression of
waveguide modes [37] or enable broadband diffuse reflection [38].

1.2 Optical modeling of disordered materials

The different degrees of disorder in mind, flexible simulation tools are required that provide
insights into the different aspects of disorder and their effect on the optical properties of scattering
materials. Whether or not a simulation method is suitable for a specific question initially depends
on the central quantity of interest. Therefore, one must ask oneself whether it is the electromagnetic
field distribution or the intensity distribution that is primarily of interest. The former case demands
for a wave optics approach as a coherent description of scattering events becomes necessary. In
the latter case however, an incoherent ray optics scheme may be sufficient to derive the statistical
properties that map the probabilistic nature of a scattering arrangement.

1.2.1 Ray optics approach

With a focus on material characteristics of volumetric scattering media, Monte-Carlo ray optics
schemes allow to estimate quantities like the scattering mean free path, the scattering asymmetry
or the effective refractive index that can fully describe the transport of radiation in such media.
Hereby, the ray optics scheme provides a stochastic solution of the radiative transfer equation
(RTE) [39] for which closed-form solutions only exist in simple cases. Originally postulated on
the basis of heuristic observations like energy balance and geometric trajectories of light rays, its
derivation based on Maxwell’s equations has been realized in recent years [40, 41].
To describe scattering by individual nanoparticles, the ray optics scheme allows to assign a proba-
bility distribution to each particle that resembles the angular dependence of a scattering event [42]
and thus is not only applicable to micro-sized textures or particles. Independent of the considered
geometry, ray-tracing can be deployed to almost any optoelectronic design.

Considering very dense particle arrangements however, coherent multiple scattering effects are
expected to become significant, leading to a deviating prediction of transmittance and reflectance
by the RTE compared to a full wave analysis [43].

3



1 Modeling of disordered light management structures

1.2.2 Wave optics approach

The electromagnetic field distribution, which is expressed within a distinct arrangement of particles
as the direct result of an explicit source of excitation, is a unique solution to the scattering problem
and can only be obtained from a full wave analysis.
In literature, a variety of different optical modeling approaches have been suggested to approximate
such a unique solution. An average of different random particle arrangements and possibly of
different excitation sources2 is then necessary to obtain statistically reliable quantities of observa-
tion. The different wave optics methods can be classified as the differential approach, the integral
approach and the series approach [44]. With a specific problem in mind, a proper choice of the
simulation technique can be crucial, as it is determined by the problem’s complexity, the involved
geometries, the targeted accuracy and the availability and usability of a specific computer program.

Differential approach

Targeting a direct, numerical solution of Maxwell’s equations, differential equation methods are
based on a discretization of the entire domain of simulation. The most common techniques are:

• The Finite-Difference Time-Domain (FDTD) Method [45] that is based on an interlocked
cubic grid of electric and magnetic field points. Each magnetic grid point is characterized by
the unknown surrounding edges of electric field and vice versa. Applying a time marching
scheme that evaluates the time and space derivatives of the electric and magnetic fields
between each neighboring nodes and time steps, allows to obtain a steady-state-solution
[46].

• The Finite Element Method (FEM) that allows to split the global task into smaller, accessible
problems. This is achieved by a spatial discretization of the simulation domain into grids
of various shapes, e.g., tetrahedral or triangular prisms, that are best suited to approximate
the given geometries. Now, basis functions are formulated to approximate the solution of
the vector wave equation at each node of the finite elements [47]. From this, a linear set of
equations is formulated to obtain the solution of the entire simulation domain.

With the ability to assign arbitrary material properties to each node of the discretization, differential
approaches are well suited to model highly inhomogeneous materials and arbitrary geometries. To
limit the simulation domain, and herewith the total number of unknowns, boundary conditions are
needed that shield the domain of interest from reflections at the outer interfaces. Limited simulation
domains imply that only the near-field can be directly obtained. Hence, transformation procedures
are required that also provide far-field properties [48]. Although the set of equations is highly

2 In case of statistically isotropic dipole excitation, the explicit dipole moment of an individual source contributes to
the stochastic uncertainty.
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1.2 Optical modeling of disordered materials

sparse allowing an efficient memory usage, the overall effort to obtain results of certain accuracy
can be magnitudes larger than those of the integral or series approaches [44].
A significant number of different commercial and freely accessible solvers is available.

Integral approach

In contrast to the differential approach, integral equation methods rely on an integral formulation of
Maxwell’s equations. Based on an analytic Green’s function representation of the electric field that
arises from a given distribution of point current sources, integral approaches only need to discretize
the scatterer but not the surrounding homogeneous media. In general, one can distinguish between
two classes of integral approaches:

• TheVolume Integral Equation (VIE)Methods. Themost common volume-based approach is
the Discrete Dipole Approximation (DDA), which relies on a discretization of each scatterer
into a three-dimensional cubic grid. By assigning a complex polarizability to each cell, the
scatterer is replaced by local point dipole sources [49]. Accounting for the initial incoming
field and the interactions between each pair of dipoles, the localized sources in sum radiate
each particle’s scattered field.

• The Surface Integral Equation (SIE) Methods. If a Green’s function representation of the
electric field is also feasible within a scatterer, the complexity of the integral approach can
be reduced to its surface currents, significantly lowering the number of unknowns [50].

In contrast to the differential approaches, the integral equation methods rely on a much smaller
number of unknowns. However, the resulting matrix equations are fully-populated, leading to an
expensive evaluation. In combination with a spectral acceleration technique like the fast Fourier
transform, the efficient evaluation allows to study the optical response of large, disordered and
densely packed particle arrangements [51, 52]. Similar to the previous methods, the particle
discretization allows to deal with particle’s of arbitrary shape, providing good flexibility in use
cases.
A number of DDA codes is freely available, one of which (ADDA, reference [53]) will be used in
chapter 5 as a reference for dense, cylindrical particles located directly on a substrate.

Series approach

In the series approach, the entire simulation domain is divided into domains of constant refractive
index. This segmentation allows to define the electric field in each domain as a series of basis
functions that solve the homogeneous Helmholtz equation (cf. section 2.2). The solution in each
domain is then obtained via a linear set of equations that relies on the continuity of the solution
across each domain boundary. Hence, the total number of unknowns depends on the domain
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1 Modeling of disordered light management structures

count and the number of basis functions necessary to construct the field to a demanded accuracy.
Depending on the choice of basis functions, the different series approaches thrive in the description
of varying geometries and can be distinguished into:

• Techniques that expand the scattered field in plane waves. Often denoted as the Rigorous
Coupled Wave Analysis (RCWA) [54], these methods allow an effective description of
rectangular and often periodic geometries.

• Methods based on a spherical wave expansion. With the commonly applied assumption
of spherical scatterers and particles of near-spherical shape, the T-matrix method [55, 56]
provides a commonly applied framework for single and multiple particle scattering.

• Methods relying on cylindrical [33] or spheroidal wave expansions [57]. Less common, these
two basis sets provide a specialized framework for geometries of cylindrical and spheroidal
shape, forwhich they can draw severe advantages over themore frequently applied techniques.

Bypassing the discretization of space, methods following the series approach can build up the
electromagnetic field distribution in complex scattering geometries with a much lower number of
unknowns. Hereby, the series approach becomes especially interesting for large, random particle
arrangements that cannot be reproduced by the differential approach. However, relying on a certain
set of basis functions can be insufficient to describe highly nonspherical particles or anisotropic
media.

1.3 State-of-the-art of a T-matrix framework

The T-matrix method is one of the most powerful tools to describe electromagnetic scattering by
single particles and discrete, random particle arrangements, comprising up to tens of thousands
of individual scatterers [58, 59]. Although available for a long time, and in many applications
surpassing other frequently applied techniques in terms of efficiency, the T-matrix method has seen
relatively little use in the nanophotonics community. This however has changed considerably in
the most recent years.
In a previous work3 [60], the superposition T-matrix method to account for multiple particle
scattering in conjunction with a plane-wave-based description of light propagation in planar, layered
environments has been identified as a suitable simulation framework for the accurate and time-
efficient description of light extraction from thin-film organic light emitting diodes.
For this specific application, the approach draws a major advantage over the more established
differential and integral equation methods from a severe reduction of unknowns that are necessary
to describe the involved scattering arrangements. Instead of a rapidly growing number of unknowns

3 Work that was done by Amos Egel, partly in parallel with my work.
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that arises from a discretization of space, the linear set of equations in a series approach only grows
linearly with the particle count4, but independent of the populated volume. Due to the available
transformation properties between spherical and plane wave expansions, the suggested framework
allows to embed the particle arrangements within a planar, layered environment, making use of the
geometrical accordance between basis wave functions and space. In addition, the series approach
does not require boundary conditions to limit the domain of simulation and hence allows the direct
evaluation of far-field quantities.
With the described properties in mind, the framework is well suited not only for the description
of light extraction from thin-film OLEDs, but for many scenarios that include particle-based light
scattering in planar layer-environments.

Despite these advantages, the series approach also suffers from a clear disadvantage compared
to the differential or integral approaches. The latter both rely on a discretization of a particle’s
volume, which allows to consider arbitrary and inhomogeneous scatterers in the same way perfectly
regular-shaped particles are. The T-matrix approach however can struggle with particles of arbitrary
shape. While it is in principle possible to construct the T-matrix of any scatterer, a series expansion
of spherical wave functions is not always able to resemble such a particle’s near-field correctly
at every point in space. This invalidity of the so-called Rayleigh hypothesis (cf. section 4.1)
requires a minimal separation between nonspherical particles in the superposition T-matrix scheme.
Enforcing a minimal inter-particle distance in the optical model does not cope well with the
fabrication of most commonly solution-processed scattering layers in optoelectronic devices.
Another drawback of the monochromatic series approach, compared to time-domain methods, is
the large number of simulations that are necessary to evaluate wavelength dependencies, which can
be critical for many applications like photovoltaics or white light emission.
In addition, a lack of simulation domain boundaries in the series approach implies that light can
escape the domain of interest and therefore cannot be correctly attributed to the observed quantities.
This becomes especially critical in thick, volumetric scattering samples for which a sufficiently
wide lateral extent of the particle arrangement cannot be easily ensured.

With these disadvantages in mind, a number of questions can be posed, the answer to which can
be decisive for the further application of the T-matrix approach:

Can the superposition T-matrix framework be suitable for dense, nonspherical particle
systems and particle aggregates?

Is it possible to reduce the computational cost of a single simulation to a level that allows
for efficient wavelength or angular sweeps?

How does one impose periodic boundary conditions to the T-matrix framework?

4 This naive scaling relation is in fact also affected by the number of multipoles necessary to accurately describe each
individual scatterer.
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1 Modeling of disordered light management structures

It is the main objective of this work to address these questions and thereby extend the applicability
of the superposition T-matrix framework for the optical modeling of light management structures
in optoelectronic devices.

1.4 Outline

With the focus set on the numerical challenges in optical modeling that arise from different light
management tools and their integration in various device architectures, I forgo the typical upfront
introduction of one or more specific devices and their respective working principles. Instead, the
reader can directly familiarize themselves with the mathematical and physical foundations applied
in the T-matrix simulation framework in chapters 2 and 3. With this foundation set, this work’s
main theoretical contributions and their numerical implications are presented in chapters 4 and
6. Readers from the OLED or solar cell community that might not be too concerned with the
numerical details can directly dive into chapters 5 and 7, where the respective devices and working
principles emphasize the application of the developed simulation tools.

To this end, I have organized this thesis as follows:
Chapter 2 introduces some concepts of electromagnetic theory, including two basis sets of solutions
to Maxwell’s equations in homogeneous space. With these wave functions available, namely the
plane and spherical vector waves, the basis for the simulation framework is set, which is described
in detail in chapter 3.
Chapter 4 deals with the separation restriction for nonspherical particles that prevents the use of
the superposition T-matrix method for dense particle arrangements of nonspherical scatterers. An
alternative formulation of the translation addition operator for spherical vector wave functions is
presented that allows to model light scattering in such systems. Equipped with this tool, the trapped
light problem in organic light emitting diodes is reviewed in chapter 5 and the effect of different
filling fractions of internal outcoupling structures on the extraction efficiency is investigated.
In chapter 6, periodic boundary conditions on the basis of Ewald lattice sums are incorporated
into the existing simulation framework that prevent edge effects from the otherwise finite particle
arrangements. The effect of an artificial long-range periodicity on disordered particle arrangements
is investigated and conditions are formulated that prevent the excitation of artificial lattice reso-
nances. Provided with the necessary tools to efficiently derive the spectral and angular dependence
of thick volumetric scattering layers, the integration of porous polymer films in Perovskite solar
cells is studied in chapter 7 that can provide a diffuse, broadband reflectance and facilitate building
integration of solar cells.
In chapter 8, I draw conclusions from this work and give an outlook of possible developments and
extensions of the current simulation framework.
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2 Description of electromagnetic
waves

This chapter will briefly introduce the Helmholtz wave equation, describing electromagnetic wave
propagation in piecewise homogeneous media, as we will later deal with light scattering in planar,
layered environments. Depending on the geometry at hand, a proper choice of the coordinate system
and therewith the set of basis solutions to the wave equation will strongly benefit the description of
fields. To freely switch between one another, translation, rotation and transformation properties
of plane and spherical vector wave functions are summarized.
As this work revolves around a simulation framework (see chapter 3) originally published by Amos
Egel, the here found notations of basis functions and quantities largely match the notations in
reference [60], which should simplify the comparability and readability of the different available
sources.

2.1 Maxwell equations

The response of electric andmagnetic fieldsE andH on the presence of electric currents and electric
charges can be described by the macroscopic Maxwell equations. Their spectral representation
reads [61]

∇×E(r, ω) = iωB(r, ω), (2.1)
∇×H(r, ω) = −iωD(r, ω) + j(r, ω), (2.2)
∇ ·D(r, ω) = ρ(r, ω), (2.3)
∇ ·B(r, ω) = 0, (2.4)

with the electric displacement D, the magnetic induction B, the current density j and the charge
density ρ being functions of the position vector r and the angular frequency ω.
In combination with the constitutive relations, defining the material response to the respective fields

D(r, ω) = ε0εrE(r, ω), (2.5)
B(r, ω) = µ0µrH(r, ω), (2.6)
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E(r),H(r)

E′(r),H′(r) n̂

Figure 2.1: A particle embedded in an homogeneous ambient medium. Each solution of the wave equation is valid in
its respective sub-domain. At the domain boundaries, the fields’ tangential components are continuous.

a self-consistent set of equations is formed. ε0 denotes the vacuum permittivity, µ0 the vacuum
permeability, εr the relative permittivity and µr the relative permeability.
The time-dependent electric field can be obtained from its spectral components via the inverse
Fourier transform

E(r, t) =

∫ ∞

−∞
E(r, ω)e−iωtdω. (2.7)

This implies, that the Maxwell equations can be solved for each spectral component individually.
Hence, time-harmonic electric and magnetic fields can be obtained from the monochromatic fields

E(r, t) = E(r, ω)e−iωt, (2.8)
H(r, t) = H(r, ω)e−iωt. (2.9)

In the following, I will neglect the frequency dependence of the electric E(r) = E(r, ω) and
magnetic fields H(r) = H(r, ω) to allow for a more condensed notation. The opportunity arises,
as we will only consider time-harmonic fields. But keep in mind that almost all quantities show
wavelength dependence.

2.2 The Helmholtz equation

Inserting equation (2.6) into (2.1) and making use of (2.2) and (2.5) one obtains the system of
inhomogeneous Helmholtz equations [61]

∇×∇×E(r)− k2E(r) = iωµ0µrj(r) (2.10)

∇ ·E(r) =
ρ(r)

εrε0
(2.11)

and
H(r) =

1

iωµ0µr
∇×E(r). (2.12)
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z
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r

θ

ϕ
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ky
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β

α
κ

Figure 2.2: Cartesian, cylindrical and spherical coordinate systems of the real-space position vector r: (x, y, z),
(ρ, ϕ, z), (r, θ, ϕ) and of the reciprocal-space wave vector k: (kx, ky, kz), (κ, α, kz), (k, β, α).

The wavenumber k
k =

ω

c0
n, (2.13)

is a function of the complex refractive index n

n(ω) =

√
εr +

iσ

ωε0
. (2.14)

c0 denotes the vacuum speed of light and σ(ω) a medium’s conductivity.
All problems considered throughout this work revolve around particles embedded in non-magnetic,
linear, isotropic and locally homogeneous media. Such piecewise homogeneous environments
allow to solve the wave equations in each homogeneous domain separately. However, as the
material properties are discontinuous along the domain boundaries, boundary conditions need to
be met. In the absence of surface current densities, the fields’ tangential components have to satisfy

n̂× (E(r)−E′(r)) = 0,

n̂× (H(r)−H′(r)) = 0,
(2.15)

with E(r), H(r), E′(r) and H′(r) denoting the electric and magnetic fields on either side of a
boundary (cf. figure 2.1).
In a source-free domain, the wave equations simplify to the homogeneous Helmholtz equations

(∇2 + k2)E(r) = 0,

∇ ·E(r) = 0.
(2.16)
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D D

z1

z2
r2

r1

(a) (b)

Figure 2.3: In a homogeneous domain D that is: (a) bounded in z direction by two planes, any electromagnetic field
can be expanded in plane waves. (b) bounded by two spherical surfaces, any electromagnetic field can be
expanded in spherical waves.

2.3 Vector wave functions

To construct the electric andmagnetic field in a domain of constant refractive index, I will apply two
basis sets of solutions that solve the homogeneous Helmholtz equation. Those are the plane vector
wave functions and the spherical vector wave functions, which can be derived from a separation of
variables in their respective coordinate system.

2.3.1 Plane vector wave functions

In cylindrical coordinates (κ, α,±kz) of wave vector k±, the plane vector wave functions (PVWFs)
are defined as

Φ±j (κ, α; r) = eik±rê±j . (2.17)

Denoting the orientation of propagation, the plus andminus sign correspond towaves oriented along
the positive (+) and negative (−) z-direction. Index j distinguishes between a wave’s transversal
electric (TE: j = 1) and transversal magnetic (TM: j = 2) polarizations that are defined by the
unit vectors ê1 = êα of the azimuthal and ê2 = êβ of the polar angle of k±

ê±1 = ê±α =




− sinα

cosα

0


 , ê±2 = ê±β =

1

k




±kz cosα

±kz sinα

κ


 . (2.18)

To ensure that |k| = k the z-component kz of wave vector k is a function of it’s in-plane component
κ = |k‖|

kz =
√
k2 − κ2, (2.19)
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with positive square root convention.
In a medium of a real-valued refractive index (Imn = 0) PVWFs of κ ≤ k do not undergo any
damping and are called propagating waves. In contrast, for κ > k the complex kz results in an
oscillation of decaying amplitude along the z-direction. In the latter case, one refers to evanescent
waves.
Let us assume a homogeneous, source-free domain D ⊂ R3 that is bounded in z-direction by two
planes z = z1 and z = z2, D = {r| −∞ ≤ z1 ≤ z ≤ z2 ≤ ∞}. In such a domain (illustrated in
figure 2.3 (a)), the PVWFs form a complete set of equations that fulfill the homogeneous Helmholtz
equation (2.16) in a sense, that there exist functions g+

j (κ, α) and g−j (κ, α) that allow to construct
any divergence-free field

E(r) =
2∑

j=1

∫

R2

d2k‖
(
g+
j (κ, α)Φ+

j (κ, α; r) + g−j (κ, α)Φ−j (κ, α; r)
)
, (2.20)

with d2k‖ = dxdy = dκκdα denoting integration over all in-plane wave vectors k‖ = (κ, α). A
proof of the completeness of PVWFs can be found, e.g., in reference [62].

In analogy to the electric field, the magnetic field can be constructed via

H(r) =
1

iωµ0
∇×E(r) (2.21)

=
1

ωµ0

2∑

j=1

∫

R2

d2k‖
(
g+
j (κ, α)k+ ×Φ+

j (κ, α; r) + g−j (κ, α)k− ×Φ−j (κ, α; r)
)
.

With
k± × ê±1 = −kê±2 (2.22)

and
k± × ê±2 = kê±1 , (2.23)

the magnetic field takes the form

H(r) =
1

ωµ0

∫

R2

d2k‖
(
k
(
g+

2 (κ, α)Φ+
1 (κ, α; r)− g+

1 (κ, α)Φ+
2 (κ, α; r) (2.24)

+g−2 (κ, α)Φ−1 (κ, α; r)− g−1 (κ, α)Φ−2 (κ, α; r)
))
.

2.3.2 Spherical vector wave functions

In a spherical domain D ⊂ R3 that is bound by two spherical surfaces r = r1 and r = r2,
D = {r|0 ≤ r1 ≤ r ≤ r2 ≤ ∞}, the spherical vector wave functions (SVWFs) M

(ν)
lmτ form a

characteristic set of solutions of the homogeneous Helmholtz equation. A graphical illustration of
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D can be found in figure 2.3(b).
In the spherical coordinates θ, ϕ, r of position vector r, the SVWFs read [63]

M
(ν)
lm1(r) =

1√
2l(l + 1)

∇×
[
rz

(ν)
l (kr)Ylm(θ, ϕ)

]
, (2.25)

M
(ν)
lm2(r) =

1

k
∇×M

(ν)
lm1(r). (2.26)

Denoted by indices l, m and τ , one distinguishes between a spherical wave’s multipole degree l,
multipole order m and polarization τ . τ = 1 refers to spherically transverse electric and τ = 2

to spherically transverse magnetic polarized waves. Which means, that in the spherical wave’s
coordinate system, either the electric or magnetic field is perpendicular to any position vector r.
Similar to the upgoing and downgoing plane waves, the SVWFs exist in two kinds. Spherical waves
of regular kind (ν = 1) involve the spherical Bessel function z(1)

l = jl, while outgoing SVWFs
(ν = 3) make use of the spherical Hankel function of first kind z(1)

l = h
(1)
l .

The spherical harmonics
Ylm(θ, ϕ) = P

|m|
l (cos θ)eimϕ, (2.27)

involve the normalized associated Legendre functions

Pml (x) =

√
2l + 1

2

(l −m)!

(l +m)!
P̃ml (x), (2.28)

based on the associate Legendre functions P̃ml (x) and the Legendre polynomials Pl(x)

P̃ml (x) =
(
1− x2

)m/2 dmPl(x)

dxm
. (2.29)

Given that the electric field in the homogeneous domain D is divergence-free, any field can be
expanded in spherical waves

E(r) =

2∑

τ=1

∞∑

l=1

l∑

m=−l
almτM

(1)
lmτ (r) + blmτM

(3)
lmτ (r). (2.30)

The magnetic field takes the form [56, 63]

H(r) =
k

iωµ0

2∑

τ=1

∞∑

l=1

l∑

m=−l
blmτM

(1)
lmτ (r) + almτM

(3)
lmτ (r). (2.31)
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2.3.3 Translations, rotations and transformations

To provide the reader with the necessary tools, I will summarize some translation, rotation and
transformation properties of plane and spherical vector wave functions that will be utilized through-
out this work.

Translations

The translation of PVWFs by a displacement vector d can be expressed by a simple phase shift

Φ±j (r + d) = eik±dΦ±j (r). (2.32)

For a translation of SVWFs one can make use of the translation addition theorem [64]

M(3)
n (r + d) =

∑

n′
Ann′(d)M

(1)
n′ (r), |r| < |d|, (2.33)

with
Ann′(d) = δττ ′Alml′m′(d) + (1− δττ ′)Blml′m′(d). (2.34)

To allow for a more condensed notation, I have introduced the multi-index n, which subsumes the
spherical waves multipole degree l, multipole orderm and polarization τ , (l,m, τ)→ n.
The translation operator A(d) can be build by recurrence formulas presented in references [63, 65]
or by making use of the Wigner-3j symbols [56, 63, 66]. In the latter case, the Kronecker delta
δττ ′ indicates whether the translation operator reads [56]

Alml′m′(d) = ei(m−m′)ϕd

|l+l′|∑

λ=|l−l′|
a5(l,m|l′,m′|λ)h

(1)
λ (kd)P

|m−m′|
λ (cos θd), (2.35)

or

Blml′m′(d) = ei(m−m′)ϕd

|l+l′|∑

λ=|l−l′|
b5(l,m|l′,m′|λ)h

(1)
λ (kd)P

|m−m′|
λ (cos θd). (2.36)

At this point, I omit the lengthy derivation of a5 and b5 that contain theWigner-3j symbols. Explicit
formulas that apply to the here used normalization conventions can be found, e.g., in reference
[58].
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Figure 2.4: With Euler angles α, β and γ, the laboratory coordinate system (Oxyz) can be rotated into coordinate
system (OXY Z). This is achieved by successive rotations around the z-, y′- and z′-axis. The figure has
been adapted from reference [63].

Rotations

To display the SVWFs in a rotated coordinate system, one can make use of the rotation addition
theorem [66].
I define the laboratory coordinate system (L) with the Cartesian coordinates (Oxyz) and a rotated
coordinate system (R) with Cartesian coordinates (OXY Z). Now a series of three successive
rotations by Euler angles α, β and γ allow to rotate the laboratory coordinate system into the
rotated coordinate system. The here applied rotations follow the z, y′, z′-convention:

• rotation of α around the z-axis: Oxyz → Ox′y′z with α ∈ [0, 2π),

• rotation of β around the y′-axis: Ox′y′z → Ox′′y′z′ with β ∈ [0, π],

• rotation of γ around the z′-axis: Ox′′y′z′ → OXY Z with γ ∈ [0, 2π).

A graphical illustration of the different coordinate systems can be found in figure 2.4.
With the above rotation convention, SVWFs M̃

(1,3)
n (r) in coordinate system (R) can be displayed

as a sum of SVWFs M
(1,3)
n′ (r) in coordinate system (L)

M̃(1,3)
n (r) =

l∑

m′=−l
Dl
mm′(α, β, γ)M

(1,3)
n′ (r), (2.37)
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and vice versa

M(1,3)
n (r) =

l∑

m′=−l
Dl
mm′(−γ,−β,−α)M̃

(1,3)
n′ (r), (2.38)

whereD(α, β, γ) denotes the WignerD-functions. A recurrence formula for evaluation of Wigner
D-functions can be found in Appendix A.

Transformations

Depending on the configuration at hand, it can be advantageous to express PVWFs in terms of
SVWFs and vice versa. A comprehensive description of transformation properties of plane and
spherical vector wave functions can be found in reference [67].
In this work, I will make use of plane waves expanded in terms of regular spherical waves

Φ±j (κ, α; r) = 4
∑

n

e−imαB†nj

(
±kz
k

)
M(1)

n (r), (2.39)

and outgoing spherical waves expressed in plane waves

M(3)
n (r) =

1

2π

2∑

j=1

∫

R2

d2k‖
kzk

eimαBnj

(
±kz
k

)
Φ±j (κ, α; r), for z ≷ 0. (2.40)

The transformation operator B reads [63]

Bnj(x) = − 1

il+1

1√
2l(l + 1)

(iδj1 + δj2)
(
δτjτ

|m|
l (x) + (1− δτj)mπ|m|l (x)

)
(2.41)

with the angular functions

τml (cos θ) = ∂θP
m
l (cos θ), (2.42)

πml (cos θ) =
Pml (cos θ)

sin θ
. (2.43)

For B† all explicit i in equation (2.41) have to be set to −i.
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3 Simulation framework

In the previous work of Amos Egel [60], a simulation framework to describe multiple scattering
in a planar, layered environment has been presented. At the beginning of my work, a Matlab
based prototype of this framework already existed and later the free Python package SMUTHI was
published [3]. SMUTHI stands for "scattering by multiple particles in thin-film systems". From its
launch on, SMUTHI allowed the user to investigate the scattering of light by spherical particles,
distributed in a layer environment that are excited by either an external plane wave, a Gaussian
beam or an internal point dipole distribution.
Throughout this thesis, I have worked on the development of the Matlab prototype and later on
the continuous extension of functionality provided by SMUTHI. Since its publication in 2018, a
number of different researchers joined this project and contributed to its growth.
To provide the reader with the necessary insights and notations, I will describe the simulation
framework in detail. Even though many of these aspects have been published elsewhere, I consider
them necessary to follow the here presented work. However, I will omit a comprehensive descrip-
tion of aspects that are not strictly necessary, but rather refer to the original publications.

To approach the optical modeling of light scattering in disordered particle arrangements that
are embedded in planar, layered media, one has to specify the individual scattering events, their
influence on each other, and how these interactions are affected by the presence of the layered
medium.

3.1 Planar, layered media

A planar, layered medium consists ofN + 1 homogeneous layers Λi ⊂ R3, i = 0 ... N . Each layer
is fully characterized by a refractive index ni, a thickness di and its bounding planes zi and zi+1

that are parallel to the xy-plane, with zi < zi+1. The outer layers Λ0 and ΛN are semi-infinite,
i.e., d0 = dN =∞ and therefore only have a single bounding plane.

19



3 Simulation framework

r0 = r1

r2

rsl

rsl+1

rN

rN−1

z1

z2

zsl

zsl+1

zN

zN−1

Λ0

Λ1

Λsl

ΛN

ΛN−1

Figure 3.1: A scattering layer in a planar, layered environment.

In each layer that is free of sources, the electric field can be expanded in terms of plane waves
according to equation (2.20). In a vector notation, the field expansion reads

E(r) =
2∑

j=1

∫

R2

d2k‖
[
Φ+
j (κ, α; r− ri),Φ

−
j (κ, α; r− ri)

]

g

+
i,j(κ, α)

g−i,j(κ, α)


 (3.1)

for r ∈ Λi.
As index i denotes the layer number, the amplitudes g±i,j(κ, α) of upwards and downwards oriented
PVWFs are defined at anchor point ri = (0, 0, zi). Only layer Λ0 has no lower bound (cf. figure
3.1). Its anchor point is set to r0 = r1.

3.1.1 Transfer matrix method

Plane waves propagating in a layered environment are partially transmitted and reflected at each
interface. The electromagnetic fields formed on each side of an interface have to meet the boundary
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conditions (2.15). Describing the amplitudes of partially transmitted and reflected plane waves at
interface i, the Fresnel coefficients read

ti,i+1,1(κ) =
2kz,i

kz,i + kz,i+1
, (3.2)

ri,i+1,1(κ) =
kz,i − kz,i+1

kz,i + kz,i+1
, (3.3)

ti,i+1,2(κ) =
2nini+1kz,i

n2
i+1kz,i + n2

i kz,i+1
, (3.4)

ri,i+1,2(κ) =
n2
i+1kz,i − n2

i kz,i+1

n2
i+1kz,i + n2

i kz,i+1
, (3.5)

with the non-negative, complex kz,i =
√
k2
i − κ2 denoting the z-component of wavenumber

ki = niω/c0 in layer Λi.
As the transmission and reflection only couples to plane waves of identical polarization and
incident angle, the boundary conditions can be met for each component of the plane-wave spectrum
individually. The transfer matrix [68, 69]

Ii,i+1
j (κ) =




Di,i+1
j (κ) for i = 0

P i(κ)Di,i+1
j (κ) else

(3.6)

connects the plane wave amplitudes in layers Λi and Λi+1


g

+
i,j(κ, α)

g−i,j(κ, α)


 = Ii,i+1

j (κ)


g

+
i+1,j(κ, α)

g−i+1,j(κ, α)


 . (3.7)

Where the interface matrix

Di,i+1
j (κ) =

1

ti,i+1,j(κ)


 1 ri,i+1,j(κ)

ri,i+1,j(κ) 1


 (3.8)

accounts for the partial transmission and reflection and the propagation matrix

P i(κ) =


e−ikz,idi 0

0 eikz,idi


 (3.9)
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3 Simulation framework

for the phase shift each plane wave accumulates by passing through layer Λi.
In case of multiple interfaces, the upwards and downwards propagating wave amplitudes of any
layers Λi1 and Λi2 , with i1 < i2, can be connected via


g

+
i1,j

(κ, α)

g−i1,j(κ, α)


 = Ii1,i2j (κ)


g

+
i2,j

(κ, α)

g−i2,j(κ, α)


 (3.10)

with
Ii1,i2j (κ) = Ii1,i1+1

j (κ)Ii1+1,i1+2
j (κ) ... Ii2−2,i2−1

j (κ)Ii2−1,i2
j (κ). (3.11)

3.1.2 Scattering matrix method

The transfer matrix allows to connect the upwards and downwards propagating plane-wave spectra
of two layers. However, in case of evanescent waves with strongly decaying field amplitudes, the
transfer matrix scheme is known to be unstable [70]. In our case of light scattering in planar, layered
environments, these evanescent wave spectra play a crucial role, since most plane-wave expansions
arise from a transformation of scattered spherical waves (cf. equation (2.40)). To achieve a better
stability for evanescent waves, one can make use of the scattering matrix scheme.
In contrast to the transfer matrix, the scattering matrix connects the incoming field amplitudes of
layers Λi1 and Λi2 , i.e. of waves oriented towards the interfaces, with the amplitudes of outgoing
waves 

g
+
i2,j

(κ, α)

g−i1,j(κ, α)


 = Si1,i2j (κ)


g

+
i1,j

(κ, α)

g−i2,j(κ, α)


 . (3.12)

The scattering matrix can be constructed iteratively [70] from one layer to another. Starting with

Si1,i1j (κ) =


1 0

0 1


 , (3.13)

the scattering matrix S′ = Si1,i+1
j (κ) is constructed form the scattering matrix S = Si1,ij (κ) of

the previous layer and the transfer matrix I = Ii,i+1(κ) into the next layer

S′ =


S
′
11 S′12

S′21 S′22


 , I =


I11 I12

I21 I22


 , (3.14)
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3.1 Planar, layered media

with

S′11 =
S11

I11 − S12I21
, (3.15)

S′12 =
S12I22 − I12

I11 − S12I21
, (3.16)

S′21 = S22I21S
′
11 + S21, (3.17)

S′22 = S22I21S
′
12 + S22I22. (3.18)

3.1.3 The layer system response

The goal of the simulation framework is to investigate light scattering by particles that are distributed
in a layered environment (see figure 3.1). In that sense, a plane wave impinging onto a layer stack
from one side, as can be described by the transfer matrix or the scattering matrix, is only a special
case. More commonly we face the question of how the electric field of an internal source distributes
throughout the layered medium. The source of such an electric field can be a point dipole, radiating
power into its environment, but also a particle emitting a scattered field.
In the excitation layer Λexc the "source-free" condition for the completeness of PVWFs is not
fulfilled. Hence, no plane-wave expansion of the electric field exists that holds everywhere in Λexc.
However, to make use of the transfer matrix or the scattering matrix, a plane-wave representation

z−

z+

[
g+j
g−j

]
=

[
gR+
exc,iexc+1,j

gR−
exc,iexc+1,j

]

[
g+j
g−j

]
=

[
gR+
exc,iexc−1,j

gR−
exc,iexc−1,j

]

[
g+j
g−j

]
=

[
g+exc,j
0

]
+

[
gR+
exc,iexc,j

gR−
exc,iexc,j

]

[
g+j
g−j

]
=

[
0

g−exc,j

]
+

[
gR+
exc,iexc,j

gR−
exc,iexc,j

]

Figure 3.2: An electric field emitted from an excitation source within a planar, layered medium, causes a layer system
response. Illustration of the domains of validity of the respective field expansions. The figure is adapted
from reference [60].
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3 Simulation framework

of the field is only necessary at the interfaces. Egel et al. suggest to split the electric field into an
excitation field Eexc and its layer system response ER

exc [60, 71] on top and below of the excitation
source

E(r) = δiiexcEexc(r) + ER
exc(r). (3.19)

The excitation field, only validwithin the layer of excitation and specified by amplitudes g±exc,j(κ, α),
then reads

Eexc(r) =
2∑

j=1

∫

R2

d2k‖





Φ+
j (κ, α; r− riexc)g

+
exc,j(κ, α) for z ≥ z+

Φ−j (κ, α; r− riexc)g
−
exc,j(κ, α) for z ≤ z−,

(3.20)

with r ∈ Λexc and z± bounding the excitation source from atop and from below. The layer system
response, piecewise valid throughout the layer system, is specified by amplitudes gR±

exc,i,j(κ, α) via

ER
exc(r) =

2∑

j=1

∫

R2

d2k‖
[
Φ+
j (κ, α; r− ri),Φ

−
j (κ, α; r− ri)

]

g

R+
exc,i,j(κ, α)

gR−
exc,i,j(κ, α)


 , (3.21)

with r ∈ Λi.
To get an overview of the different domains of validity, the composition of fields is illustrated in
figure 3.2.
Finally, the layer system response matrix Li,iexc

j (κ) connects the layer system response in layer Λi

with its excitation in layer Λiexc


g

R+
exc,i,j(κ, α)

gR−
exc,i,j(κ, α)


 = Li,iexc

j (κ)


g

+
exc,j(κ, α)

g−exc,j(κ, α)


 . (3.22)

Hereby, it becomes possible to observe how the source of an electric field acts onto another source,
e.g., another particle or another point dipole, but also how it effects itself by means of layer interface
reflections and interference. A comprehensive derivation of the layer system response matrix and
its explicit formulation can be found in references [60, 71].

3.2 The scattering problem

The task of the here presented simulation framework is to determine the electromagnetic field
distribution in a planar, layered environment, populated with a distinct distribution ofNS particles
that are excited by an initial field.
Within layer ΛiS , particle S of refractive index nS occupies the domainDS ⊂ R3, centered around
position rS . DS is fully bound by the particle’s circumscribing sphere of radius rcirc,S . For
now, I assume that no other particle S′ nor its circumscribing sphere intersects with one another,
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3.3 Single particle scattering

|dSS′ | > rcirc,S + rcirc,S′ .
With the definition of the planar, layered environment (cf. section 3.1) and the relation between
a field’s excitation and its layer response (equation (3.19)), the total electric field can be split into
four constituents

E(r) = δiiinitEinit(r) + ER
init(r) +

∑

S

(
δiiSES

sca(r) + ER,S
sca (r)

)
, for r ∈ Λi. (3.23)

The initial field Einit(r) represents the field that the initial excitation source would radiate into an
infinite homogeneous environment of refractive index niinit . From the four constituents it is the
only quantity that is known a priori. Specified by the layer system response matrix, ER

init(r) is the
initial field’s layer system response. In analogy, ES

sca(r) denotes the scattered field that particle S
emits in layer ΛiS and ER,S

sca (r) its respective layer system response.

3.3 Single particle scattering

Outside a particle’s circumscribing sphere, the electric field can be expanded in terms of SVWFs
(2.30)

E(r) =
∑

n

aSnM(1)
n (r) + bSnM(3)

n (r), (3.24)

at any position r ∈ D̃S that fulfills the requirements for the completeness of SVWFs (cf. section
2.3.2 or figure 2.3(b)). The total field consists of the incoming field at particle S,

ES
inc(r) =

∑

n

aSnM(1)
n (r) (3.25)

and the particle’s direct scattered field

ES
sca(r) =

∑

n

bSnM(3)
n (r). (3.26)

Now the question arises, how a single particle’s outgoing field coefficients bSn are related to the
incoming field coefficients aSn .
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3 Simulation framework

3.3.1 Transition matrix

Introduced by Peter C. Waterman [55] for a single, perfectly-conducting particle of arbitrary shape,
embedded in a homogeneous background medium, the transition matrix (T-matrix) denotes the
linear operator that connects a particle’s incoming field amplitudes to its scattered field

bSn =

∞∑

n′
TSnn′a

S
n′ . (3.27)

Due to the convergence of the electric field expanded in spherical waves (cf. equation (2.30)), the
T-matrix represents a complete description of the single scattering event. For practical reasons,
the infinite sum in (2.30) has to be limited to a finite number of contributions. Hence, one has
to truncate the T-matrix at a sufficiently large index nmax that contains the multipole degrees
l = 1 ... lmax, the multipole ordersm = −mmax ...mmax and the polarizations τ = 1, 2.

In this work, I will consider particles of regular shape only and assume that each particle’s T-
matrix is precisely known. However, fostered by the wide range of possible particle geometries and
materials, the computation of the T-matrix can be a challenging task on its own. Various techniques
have been applied for its construction and I will here outline some of them. A comprehensive
and continuously updated collection of publications about the T-matrix method can be found in
references [72–80].

Extended boundary condition method

Known as the Extended boundary condition method (EBCM), Waterman [55] formulated a set
of linear relations that exploit the boundary conditions (2.15) to connect a particle’s internal field
with its incoming and scattered field. The central assumption of the approach is, that the surface
currents induced on a particle by an external field must result in an internal field that cancels
itself at a position within the scatterer by interference. From here, the boundary conditions can be
formulated and it can be shown that the field vanishes everywhere inside the particle [81]. Due to
these vanishing fields, the method is also refereed to as the Null field method (NFM).
Initially introduced for perfectly-conduction particles, Waterman and others continuously applied
the approach to different types of scatterers [81, 82] like dielectric particles or scatterers of cylin-
drical shape. For spherical particles, the T-matrix reduces to its principle diagonal, for which the
elements are identical with the Mie coefficients [83].

Null field method with discrete sources

Based on the expansion in SVWFs, the EBCM faces poor convergence for particles that strongly
deviate from a spherical shape. To improve its stability, the Null field method with discrete sources
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3.3 Single particle scattering

(NFMDS) [63] utilizes a finite set of equivalent sources for the field construction. Especially
helpful for flat or strongly elongated particles, the multipole sources can be distributed along a
particle’s axis of symmetry and can even be positioned on the axis’ extend in the complex plane
[84].
For the here presented work, the NFMDS is especially important as it provides the T-matrix for
all nonspherical particles. Doicu et al. have published a Fortran code for different homogeneous,
axis-symmetric, dielectric and metallic particles but also for inhomogeneous and layered particles
[63]. A copy of which is directly distributed within SMUTHI.
Please note that the order of variation of the here applied multi-index n follows a different logic
compared to the index arrangement of the T-matrix provided by Doicu’s Fortran code. In general,
the T-matrix’ element arrangement is not unique. A careful rearrangement between different
notations can be necessary.

Further techniques

Besides the null field methods, a variety of different numerical techniques have been applied to
construct the T-matrix of different particle geometries. In fact, the linear operator can be constructed
from any numerical method that is applied to solve the Maxwell equations. Examples span from
the discrete dipole approximation [85] to the FEM [86] and volume integral equation methods [59].
For more complex scattering geometries it can even be desirable to combine different methods like
the FEM and the surface integral equation method [87].

3.3.2 T-matrix of nonspherical particles

With the introduction of nonspherical particles, a scatterer’s T-matrix becomes dependent on its
orientation in space with respect to the laboratory coordinate system. Hence, one has to take
the particle’s orientation into account when computing its T-matrix. For particle arrangements
consisting of a multitude of identical particles but different orientations, it is beneficial to construct
each particle’s T-matrix from one specified orientation, making use of the rotation addition theorem
for SVWFs (cf. section 2.3.3), rather than a construction for each individual particle orientation.
In a matrix-vector notation, the T-matrix T provides the linear relation between the incoming field
amplitudes a and the particle’s scattered field coefficients b,

b = Ta. (3.28)

This relation remains true in any rotated coordinate system

b̃ = T̃ã, (3.29)
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3 Simulation framework

with tilded symbols denoting the respective quantities in that coordinate system. With the rotation
addition theorem (2.37) and (2.38) relating the SVWFs between both, the laboratory coordinate
system and the rotated coordinate system, one finds

a = DT(α, β, γ)ã,

b̃ = DT(−γ,−β,−α)b.
(3.30)

The elements of rotation matrix D(α, β, γ) are specified by the Wigner D-functions (cf. equation
(A.1))

Dnn′(α, β, γ) = Dl
mm′(α, β, γ)δll′ . (3.31)

Inserting (3.30) into (3.28) yields

T̃(α, β, γ) = DT(−γ,−β,−α)TDT(α, β, γ) (3.32)

and for the single elements of the rotated particle’s T-matrix one obtains [63]

T̃lmτl′m′τ ′(α, β, γ) =

l∑

m1=−l

l′∑

m′1=−l′
Dl
m1m(−γ,−β,−α)Tlm1τl′m′1τ

′Dl′
m′m′1

(α, β, γ). (3.33)

3.4 The incoming field

The T-matrix equation (3.27) allows to describe the scattered field of a single particle, given that its
incoming field is known in terms of SVWFs. However, in a system containing multiple particles,
this incoming field does not only depend on the initial field and its layer system response, but also
on the scattered field of any other particle S′ and their respective layer system responses.
In analogy to equation (3.23), the incoming field of particle S can be split into four constituents

ES
inc(r) = δiSiinitEinit(r) + ER

init(r) +
∑

S′ 6=S
δiSiS′E

S′
sca(r) +

∑

S′
ER,S′

sca (r) (3.34)

with field coefficients

aSn = aS,init
n + aS,R,init

n +
∑

S′

(
aS,S

′
n + aS,R,S

′
n

)
. (3.35)

In this notation, the superscript has to be read from left to right in a sense that it specifies the
receiver of an incoming field and its respective source. Hence, aS,init

n denotes the incoming field
amplitudes at particle S directly originating from the initial field source, aS,R,init

n the initial field’s
layer system response at particle S, aS,S

′
n the direct field stemming from particle S′ and aS,R,S

′
n the

field coefficients at particle S that have been transferred through the layer system and indirectly
originate from particle S′.
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3.4 The incoming field

Please note that the sum over particles S′ includes the particle S itself. Although aS,Sn = 0, the
particles scattered field can contribute to its incoming field via the layer system response.

3.4.1 The initial field

Within the SMUTHI simulation framework, currently three different types of excitation sources
are available:

• a propagating plane wave,

• a focused beam,

• a finite number of dipole sources.

In case of the former two source types, the initial field originates from afar in terms of a plane-wave
expansion that is impinging onto the layered environment from one side of the layer stack. In the
latter case, the excitation is given by a set of spherical-wave expansions that originate from within
the layered environment.
In the present work, I have not applied any changes to the initial field sources that are available in
this simulation framework. Explicit formulas for the computation of the initial field coefficients
aS,init
n and its layer system response aS,R,init

n exciting particle S for the different types of excitation
can be found in reference [60].

3.4.2 Particle coupling

Besides the initial field, any particle can be excited by the scattered field of other particles or by
the layer system response of its own scattered field. To yield a particle’s incoming field coefficients

Sexc

SrecSrec

Sexc

(a) (b)

Figure 3.3: Two particles in a layered environment. The scattered field of particle Sexc affects the incoming field of
particle Srec (a) directly and (b) indirectly by means of a layer system response.
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that originate from such a scattered (outgoing) spherical-wave expansion, we distinguish between
the direct coupling matrixWnn′ and the indirect coupling matrixWR

nn′ that accounts for the layer
system response

arec,exc
n + arec,R,exc

n =
∑

n′

(
Wnn′(rrec, rexc) +WR

nn′(rrec, rexc)
)
bexc
n′ . (3.36)

An illustration of two different contributions can be found in figure 3.3.

3.4.2.1 Direct particle coupling

According to equation (3.34), the direct coupling between two particles is only defined for particles
within the same layer. In this layer, a spherical-wave expansion originating from a position rexc

reads (cf. equation (3.26))

Eexc(r) =
∑

n′
bexc
n′ M

(3)
n′ (r− rexc). (3.37)

Utilizing the translation addition theorem (2.33), the same electric field can be expanded in terms
of an incoming field expansion centered at position rrec

Eexc(r) =
∑

n′
bexc
n′
∑

n

An′n(rrec − rexc)M
(1)
n (r− rrec) (3.38)

=
∑

n

arec,exc
n M(1)

n (r− rrec),

for |r− rrec| < |rexc − rrec|.
Hereby, one obtains the field coefficients arec,exc

n that directly originate from an outgoing excitation
field

arec,exc
n =

∑

n′
An′n(rrec − rexc)b

exc
n′ , (3.39)

and the direct coupling matrix elements

Wnn′(rrec, rexc) = An′n(rrec − rexc). (3.40)
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3.4 The incoming field

3.4.2.2 Indirect particle coupling

To find the layer system response at a position rrec that originates from an outgoing spherical-wave
expansion centered around rexc, we again start with equation (3.37). With a transformation into
PVWFs (2.40) and a translation to the layer anchor point riexc , the electric field takes the form

Eexc(r) =
∑

n′
bexc
n′ M

(3)
n′ (r− rexc)

=
1

2π

2∑

j=1

∑

n′
bexc
n′

∫

R2

d2k‖
kz,iexckiexc

eim′αBn′j

(
±kz,iexc

kiexc

)
(3.41)

× e−ik±iexc
(rexc−riexc )Φ±j (κ, α; r− riexc) for z ≷ zexc.

Introducing

β±exc,n,j(κ) = e∓kz,iexc (zexc−ziexc )Bnj

(
±kz,iexc

kiexc

)
(3.42)

to split the translation into its vertical and horizontal components, yields

Eexc(r) =
1

2π

2∑

j=1

∑

n′
bexc
n′

∫

R2

d2k‖
kz,iexckiexc

eim′αe−ik‖(rexc,‖−riexc,‖) (3.43)

× β±exc,n′,j(κ)Φ±j (κ, α; r− riexc).

Now, equation (3.43) has the form of (3.20) with the plane wave amplitudes

g±exc,j(κ, α) =
1

2π

e−ik‖rexc,‖

kz,iexckiexc

∑

n′
bexc
n′ eim′αβ±exc,n′,j(κ). (3.44)

With the definition of the layer system response (equations (3.21) and (3.22)), one finds the electric
field in layer Λirec that results from the layer system response of the outgoing spherical-wave
expansion in layer Λiexc

ER
exc(r) =

2∑

j=1

∫

R2

d2k‖
[
Φ+
j (κ, α; r− rirec),Φ

−
j (κ, α; r− rirec)

]

g

R+
exc,irec,j

(κ, α)

gR−
exc,irec,j

(κ, α)


 (3.45)

with

g

R+
exc,irec,j

(κ, α)

gR−
exc,irec,j

(κ, α)


 =

1

2π

e−ik‖rexc,‖

kz,iexckiexc

∑

n′
bexc
n′ eim′αLirec,iexc

j (κ)


β

+
exc,n′,j(κ)

β−exc,n′,j(κ)


 . (3.46)
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Next, the layer system response is translated to the desired position rrec

ER
exc(r) =

2∑

j=1

∫

R2

d2k‖
[
eik+

irec
(rrec−rirec )Φ+

j (κ, α; r− rirec), (3.47)

eik−irec
(rrec−rirec )Φ−j (κ, α; r− rirec)

]

g

R+
exc,irec,j

(κ, α)

gR−
exc,irec,j

(κ, α)


 .

Utilizing equation (2.39) to retransform the PVWFs into SVWFs and introducing

β±,†rec,n,j(κ) = e±kz,irec (zrec−zirec )B†nj

(
±kz,irec

kirec

)
(3.48)

yields

ER
exc(r) = 4

2∑

j=1

∑

n

∫

R2

d2k‖e
−imαeik‖rrec,‖ (3.49)

×
[
β+,†

rec,n,j(κ), β−,†rec,n,j(κ)
]

g

R+
exc,irec,j

(κ, α)

gR−
exc,irec,j

(κ, α)


M

(1)
n′ (r− rrec)

=
∑

n

arec,R,exc
n M(1)

n (r− rrec).

Inserting (3.46), one finally obtains the incoming field coefficients at a position rrec that result from
the layer system response of an outgoing spherical-wave expansion centered around rexc (cf. figure
3.3(b))

arec,R,exc
n =

2

π

2∑

j=1

∑

n′
bexc
n′

∫

R2

d2k‖
kz,iexckiexc

ei(m′−m)αeik‖(rrec,‖−rexc,‖) (3.50)

×
[
β+,†

rec,n,j(κ), β−,†rec,n,j(κ)
]
Lirec,iexc

j (κ)


β

+
exc,n′,j(κ)

β−exc,n′,j(κ)




=
∑

n′
WR
nn′(rrec, rexc)b

exc
n′ ,

and the elements of the response coupling matrix

WR
nn′(rrec, rexc) =

2

π

2∑

j=1

∫

R2

d2k‖
kz,iexckiexc

ei(m′−m)αeik‖(rrec,‖−rexc,‖) (3.51)

×
[
β+,†

rec,n,j(κ), β−,†rec,n,j(κ)
]
Lirec,iexc

j (κ)


β

+
exc,n′,j(κ)

β−exc,n′,j(κ)


 .
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3.5 Multiple scattering

3.5 Multiple scattering

With the incoming field amplitudes aSn and the scattered field amplitudes bSn of the series expansion
(2.30) an infinite number of coefficients are unknown that describe the electric field in the vicinity
of each individual particle. However, as noted in section 3.3.1, the series expansion converges,
rendering a truncation at a maximal multipole degree lmax sufficient to describe the electric field
up to a desired accuracy

∞∑

l=1

→
lmax∑

l=1

. (3.52)

As a result, each particle can be described by the coefficients aS1 . . . aSnmax
and bS1 . . . bSnmax

, with
nmax = 2lmax(lmax + 2). Assuming an identical number of multipoles necessary to construct
each particle’s incoming and scattered fields, one seeks a total of 4NSlmax(lmax + 2) unknowns.
In some cases, one can obtain results of identical accuracy also if the maximal multipole order
is already truncated at mmax < lmax. Doing so, the number of unknowns per particle reduce to
nmax = 2 (mmax(mmax + 2) + (lmax −mmax)(2mmax + 1)).
Combining the T-matrix equation (3.27)

bSn =

∞∑

n′
TSnn′a

S
n′

and the incoming field equation (3.35)

aSn = aS,init
n + aS,R,init

n +
∑

S′

∑

n′

(
Wnn′(rS , rS′) +WR

nn′(rS , rS′)
)
bS
′

n′

removes the incoming field coefficients that depend on the scattered field of other particles and
yields a self-consistent set of linear equations for the scattered field coefficients

∑

S′

∑

n′
MSS′
nn′ b

S′
n′ =

∑

n′
TSnn′

(
aS,init
n′ + aS,R,init

n′

)
, (3.53)

with
MSS′
nn′ = δSS′δnn′ −

∑

n′′
TSnn′′

(
Wn′′n′(rS , rS′) +WR

n′′n′(rS , rS′)
)
. (3.54)

Solving the linear set of equations (3.53) constitutes the core task of the presented simulation
framework. Its solution provides the scattered field coefficients of each individual particle that
fully describe the particle system and render it possible to derive a variety of near- and far-field
properties that can be used to characterize the light transport in large particle arrangements in a
planar, layered environment.
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3 Simulation framework

3.6 Automated multipole selection

Prior to any simulation, each particle requires the selection of an appropriate maximal multipole
degree lmax andmultipole ordermmax, that allows to obtained scattered fields of a desired accuracy.
To simplify the selection, an automatic selection procedure is desired, which becomes especially
useful in the case of arbitrary particle size distributions.
In the past, a number of such automated criterions have been used to decide at which point the series
expansion of spherical waves (2.30), describing the incoming and scattered fields of each particle,
can be safely truncated without endangering the respective accuracy constraints. Performing Mie
calculations of large, absorbing spheres, Jitendra V. Dave e.g. decided to stop the summation,
once the sum of squared Mie coefficients undergoes a value 10−14 [88]. Another popular example
is Wiscombe’s criterion [89] based on an empirical formula to predict the number of necessary
summands a prioir, without the need to actually compute those. A convergence test based on
Wiscombe’s criterion is also provided by the Fortan code [63] that is used in this work for the
evaluation of T-matrices of nonspherical particles. Seeking even higher accuracy, an extension of
this criterion can be found in reference [90]. Finally, specialized criterions for specific particle
shapes like spheroids have been developed [91]. All of these examples have in common that they
are mostly concerned with single particle scattering of highest precision with a residual in the
range of 10−10 to 10−100. However, the multipole degree necessary to achieve such precision, and
herewith the number of unknowns allocated to a single particle, are way beyond the quantities that
can be practically used in multiple particle scattering and are therefore not applicable.
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Figure 3.4: Automated selection of the maximal multipole degree lmax andmultipole ordermmax of a dielectric sphere,
cylinder and spheroid of constant volume.
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3.6 Automated multipole selection

In this work, I have set up an iterative scheme that successively compares the entries of a particle’s
T-matrixT(lmax−1,mmax−1)with a pendant of higher accuracyT(lmax,mmax). Once a desired
relative difference of matrix norm

ε(lmax,mmax) =
‖T(lmax,mmax)−T(lmax − 1,mmax − 1)‖

‖T(lmax,mmax)‖ (3.55)

is obtained, the maximal multipole order and degree is selected. Since SMUTHI allows to choose
multipole orders smaller than the multipole degree (mmax ≤ lmax), first the maximal multipole
degree is determined, setting mmax = lmax. Once lmax is selected, the multipole order is varied
until a further increase does not contribute to a better precision.
Figure 3.4 exemplarily shows the convergence of a particle’s T-matrix as a function of the maximal
multipole degree and order for a dielectric sphere, cylinder and spheroid of identical volume.
Unless stated otherwise, I have used the described automated selection procedure for any involved
scatterer, demanding a relative precision of 10−3.
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4 Plane-wave coupling

This chapter introduces an alternative formulation of the translation addition theorem for spherical
vector wave functions based on an intermediate transformation into plane waves. After briefly
describing the Rayleigh hypothesis and the therewith arising difficulty to describe the near-field
of nonspherical particles within a single set of vector wave functions, in section 4.2 the plane-
wave coupling (PWC) formalism is introduced for arbitrary constellations of nonspherical, convex
scatterers. To apply the PWC formalism to large particle clusters, a lookup table approach is
formulated for volumetric and planar scattering layers of nonspherical particles (section 4.4). In
sections 4.5 and 4.6 a validation of the approach is presented for near- and far-field quantities of
light scattering by nonspherical particles. To close the chapter, an overview of competing modeling
approaches is given.

The presented formalism has been developed in collaboration with Amos Egel. In part, it has
been published in the peer-reviewed journal article Phys. Rev. A 96, 033822 (2017) [6] and the
preceding articles J. Quant. Spectrosc. Radiat. Transf. 202, 279 (2017) [7] and Opt. Express
24, 25154 (2016) [8].

The vast majority of analytic and semi-analytic optical models considers nanoparticles to be
of perfect spherical shape, although such rarely exist in reality. One could argue that this is simply
done due to simplicity, but is often required by a lack of efficient alternatives.
To strengthen the applicability and flexibility of our simulation framework for various light man-
agement designs, its extension to nonspherical particles like spheroids and cylinders is inevitable.
In principle, the integration of these regular particle shapes is straight forward as a variety of
computer codes are publicly available that derive the respective T-matrices (section 3.3.1). How-
ever, for multiple scattering scenarios, i.e., two or more particles that couple with each other, the
superposition T-matrix scheme is perceived to be limited to spherical particle ensembles or sparse,
nonspherical particle distributions. True in general, this perception comes from the limited validity
of a long-standing problem known as the Rayleigh hypothesis.
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4 Plane-wave coupling

4.1 The Rayleigh hypothesis

In essence, the Rayleigh hypothesis [92] states that there exists a series expansion of a particle’s
scattered field (3.26) that does not only converge beyond the scatterer’s circumscribing sphere, but
everywhere outside the particle itself. The validity of this hypothesis has been subject of debate for
a long time and is still not fully resolved [56, 93]. Following the discussion of Burrows [94], Bates
[95] and Millar [96], the Rayleigh hypothesis is found to be valid without restriction, only if all
singularities of the interior analytic continuation of the exterior scattered field are located within
the largest sphere that is fully located within the particle. Millar finds this sufficient condition of
validity by considering an arbitrary nonspherical particle as illustrated in figure 4.1. Assuming the
validity of the Rayleigh hypothesis, the scattered field expansion does not only converge outside
the particle’s circumscribing sphere of radius rcirc but everywhere among the particle’s surface. If
so, this is also the case where the inner sphere of radius r0 touches the particle surface and as a
direct result, everywhere on the inner sphere. However, the particle’s interior field converges to the
analytic continuation of the exterior scattered field, which is in fact different to the scattered field’s
series expansion, unless all singularities are located within the inner sphere.
As a result, the applicability of the T-matrix approach has been in question whenever a point of
interest is located within the circumscribing sphere of a particle. This can be the case in multiple
scattering configurations [97], but also for nonspherical particles close to a surface [98] or near a
dipole emitter.

rcirc

r0

DS

Figure 4.1: A nonspherical particle occupying domain DS is located completely within the circumscribing sphere of
radius rcirc. Revolving around the particle center, the largest sphere fully inside the particle has the radius
r0.
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4.2 The plane-wave coupling formalism

In this section, I will present an alternative formulation of the translation addition operator for
SVWFs to account for particle-particle coupling between nonspherical scatterers in close vicinity.
The formulation is based on an intermediate plane-wave expansion of a particle’s scattered spherical
waves that becomes necessary, whenever the conventional translation addition operator (2.34)
cannot resolve the particle coupling correctly. This is the case, if a particle intersects the domain in
which the spherical-wave expansion of another particle’s scattered field is not valid. As discussed
in the previous section, this critical domain is determined by a sphere that revolves around the
particle’s center and encloses all singularities of the analytic continuation of the particle’s exterior
scattered field. Determining the locations of these singularities can be difficult. Therefore, I
will restrict the discussion to particles that intersect with another particle’s circumscribing sphere.
Yet, the reader should keep in mind that non-overlapping circumscribing spheres of two scatterers
are a sufficient but not a necessary condition to account for the correct particle coupling via the
translation addition theorem.

For now I will consider a simple two particle scenario, as illustrated in figure 4.2. Particle S is
located in close proximity to particle S′ and intersects with its circumscribing sphere of radius
rcirc. As a result, the translation addition operator for SVWFs is not expected to account for the
particle coupling correctly. However, particle S is located entirely below the lower bounding plane
(z = z−) of S′ and therefore in a domain, in which a plane-wave expansion exists that can resemble
any scattered field of particle S′.

z−

rcirc

S′

S

Figure 4.2: Two elongated particles in close vicinity. Particle S intersects the circumscribing sphere of particle S′ but is
located entirely below its lower bounding plane z = z−. The image has been adopted from reference [12].
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4 Plane-wave coupling

To find the coupling operator between the two particles in a close distance, I start with the outgoing
SVWF M

(3)
n (r− rS′) originating from particle S′ and expanded in downgoing plane waves (2.40)

M(3)
n (r− rS′) =

1

2π

2∑

j=1

∫

R2

d2k‖
kzk

eimαBnj

(
−kz
k

)
Φ−j (κ, α; r− rS′), for z < z−. (4.1)

Now, a translation to the center of particle S

M(3)
n (r− rS′) =

1

2π

2∑

j=1

∫

R2

d2k‖
kzk

eimαBnj

(
−kz
k

)
eik−(rS−rS′ )Φ−j (κ, α; r− rS) (4.2)

and a retransformation into regular spherical waves (2.39) yields

M(3)
n (r− rS′) =

2

π

2∑

j=1

∫

R2

d2k‖
kzk

eimαBnj

(
−kz
k

)
eik−(rS−rS′ ) (4.3)

×
∑

n′
e−im′αB†n′j

(
−kz
k

)
M

(1)
n′ (r− rS).

Assuming that one can interchange the order of summation and integration, equation (4.3) has the
form of the translation addition theorem (2.33) with A(rS − rS′). By comparison, I find

Ann′(rS − rS′) =
2

π

2∑

j=1

∫

R2

d2k‖
kzk

ei(m−m′)αBnj

(
−kz
k

)
B†n′j

(
−kz
k

)
eik−(rS−rS′ ). (4.4)

To allow for an efficient numerical evaluation, one can carry out k−(rS − rS′) = κρSS′ cos(α −
ϕSS′)− kzzSS′ with (ρSS′ , ϕSS′ , zSS′) being the cylindrical coordinates of (rS − rS′)

Ann′(rS − rS′) =
2

π

2∑

j=1

∫ ∞

0
dκ

κ

kzk
Bnj

(
−kz
k

)
B†n′j

(
−kz
k

)
e−ikzzSS′ (4.5)

×
∫ 2π

0
dα eiκρSS′ cos(α−ϕSS′ )ei(m−m′)α

and compare with the integral representation of the Bessel function Ja(x) [99]

J|a|(x) =
i−|a|

2π

∫ 2π

0
eix cosφeiaφdφ (4.6)
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4.2 The plane-wave coupling formalism

to find

Ann′(rS − rS′) = 4i|m−m
′|

2∑

j=1

∫ ∞

0
dκ

κ

kzk
Bnj

(
±kz
k

)
B†n′j

(
±kz
k

)
(4.7)

× e±ikzzSS′ eiϕSS′ (m−m′)J|m−m′|(κρSS′), zSS′ ≷ z± − zS′ .

With the analytic evaluation of the azimuthal integral in form of the Bessel function, the coupling
operator WSS′

nn′ = An′n(rS − rS′) reduces to an integration over all propagating and evanescent
waves of in-plane wave number κ.
Please note that at the start of this section I have assumed that particle S is located entirely below
the lower bounding plane of S′. To also cover the opposite case, I have inserted± signs in equation
(4.7).

4.2.1 Arbitrary orientations

So far, I have only considered two nonspherical particles in close vicinity that can be separated by
a plane that is parallel to the xy-plane. In a more general case it is not to be expected that such
a horizontal plane of separation can be found (illustrated in figure 4.3). Since the transformation
between spherical waves and plane waves is in principle possible along any plane, a horizontal
plane of separation is not strictly necessary. However, a horizontal plane drastically simplifies the
transformation procedure due to an integration over in-plane wave vectors that is independent of
the wave vector’s z-component.
To ensure a plane of separation that is parallel to the xy-plane, the PWC formalism can be

performed in a rotated coordinate system (R). Hence, I seek the direct coupling matrix WSS′ in
the laboratory coordinate system as a function of the direct coupling matrix W̃SS′ in a rotated
coordinate system and start with the matrix-vector notation

ãS = W̃SS′b̃S
′
. (4.8)

Utilizing the rotation addition theorem (cf. equations (2.37) and (2.38))

a = DT(α, β, γ)ã,

b̃ = DT(−γ,−β,−α)b.
(4.9)

with the rotation matrix elements specified by the Wigner D-functions (cf. equation (A.1))

Dnn′(α, β, γ) = Dl
mm′(α, β, γ)δll′ , (4.10)

one inserts equation (4.9) into (4.8) to find

aS = DT(α, β, γ)W̃SS′DT(−γ,−β,−α)bS
′
. (4.11)
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S′

S

(α, β, γ)
p′

p

XYZ

x
y

z

(R)

(L)

Figure 4.3: Two particles in close vicinity are separated by a plane that is perpendicular to the vectorp′p, connecting the
two closest points p and p′ on the particles’ surfaces. Rotating p′p by Euler angles (α, β, γ) into±|p′p|êz

of the laboratory coordinate system (L) ensures a plane of separation that is parallel to theXY -plane of the
rotated coordinate system (R). The image has been adopted from reference [12].

Finally, I compare equation (4.11) with

aS = WSS′bS
′
, (4.12)

to obtain
WSS′ = DT(α, β, γ)W̃SS′DT(−γ,−β,−α). (4.13)

As a result, one can perform the PWC formalism for any pair of particles that can be separated by
a plane. One strategy to find such a plane of separation is to determine the two locations p and
p′ on the surfaces of particles S and S′ that are located closest to each other. For scatterers with
a convex surface hull it is ensured that a plane of separation exists to which p′p is perpendicular.
Now, the Euler angles (α, β, γ) rotate p′p into ±|p′p|êz and (L) into (R). At first glance, finding
the positions p and p′ appears simple. But for arbitrarily oriented, three-dimensional particles,
this task can be more challenging than expected. Therefore, I provide the reader with one possible
strategy for pairs of spheroidal particles in Appendix B.
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4.3 Truncation of the plane-wave spectrum

4.3 Truncation of the plane-wave spectrum

Although spherical-wave expansions and plane-wave expansions do not exhibit identical domains
of validity, the PWC operator for nonspherical scatterers in close vicinity (introduced in section
4.2) and the conventional translation addition operator for SVWFs in fact yield identical results.
This comes as no surprise, since the applied transformations (2.39) and (2.40) guarantee the
equality of the spherical- and plane-wave expansions, where applicable, i.e., at any point outside
the circumscribing sphere that is beyond a scatterer’s bounding plane.
In such a domain, the integration over in-plane wave numbers

∫
dκ as well as the summation over

multipoles
∑

n′ both yield finite values and hence the interchange of summation and integration

∑

n′

∫
dκ→

∫
dκ
∑

n′
(4.14)

between equations (2.33) and (4.3) is in general credible.
Here however, I am interested in the scattered field expansion within the circumscribing sphere
of a scatterer, where the spherical-wave expansion diverges and the interchange of integration and
summation is in general not allowed. To justify the change in integration and summation, one has
to ensure that the sum of multipoles has converged for each value of the angular spectrum, rather
than a converging angular spectrum for each multipole [8]. In practice, this means that one has
to chose the maximal multipole degree lmax large enough that for each |k‖| < κmax the angular
spectrum has converged.
In other words, by choosing a small rather than a large cut-off in-plane wave number, one can
obtain a converged plane-wave expansion in a domain, where the original outgoing spherical-wave
expansion diverges.
At first glance, this seems contradictory. But the benefit of the plane-wave representation of the
coupling operator lies in the inherent separation of propagating and evanescent waves.
To clarify this, let us consider an outgoing, scattered spherical-wave expansion. By definition, this
expansion converges everywhere outside the scatterers circumscribing sphere, and hence contains
the correct information of the scattered far-field. From this, one can conclude that no erroneous
propagating field contributions are contained in the spherical-wave expansion. The same field
expansion, however, is in general not valid everywhere in the particles near-field, which implies
that any error terms must be contained in the evanescent field contributions. The plane-wave
expansion allows to cut off these erroneous terms, which can be beneficial, compared to a sum over
all in-plane wave numbers.

To illustrate the above, let us consider two oblate silver (Ag) spheroids in close vicinity that are
excited by a y-polarized plane wave propagating in negative z-direction at a vacuum wavelength of
λ0 = 500 nm. The spheroids’ semimajor axes measure a = b = 200 nm and their semiminor axes
c = 50 nm. Embedded in a homogeneous air ambient (namb = 1), the particles’ size corresponds
to the dimensionless size parameters of ka = kb = 2.51 and kc = 0.63 and have a refractive
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Figure 4.4: (a) Relative deviation of the differential scattering cross section of two oblate Ag spheroids between T-matrix
and FEM simulations for different maximal multipole degrees lmax: (left) T-matrix simulations based on
the plane-wave coupling (PWC) procedure for different truncation of the plane-wave spectrum; (right) based
on the conventional translation addition theorem (TAT). (b) Comparison of the differential scattering cross
sections along the xz-plane.

index of np = 0.13 + 2.918i [100]. The particles are centered at c1 = (−80, 25, 120 nm) and
c2 = (120,−20,−60 nm) and rotated by Euler angles (α1 = 8/9π, β1 = 1/3π, γ1 = 0) and
(α2 = 14/9π, β2 = 5/18π, γ1 = 0) with respect to a spheroid with its semiminor axis aligned
along the z-axis. The depicted configuration (inset of figure 4.4(b)) is identical to the example
presented in reference [6].
Figure 4.4(a) shows the relative deviation in the differential scattering cross section (DSCS) of the
two Ag spheroids between a reference FEM simulation, commercially available in the COMSOL
MULTIPHYSICS software [101], and STMM simulations based on both, the PWC procedure
(left) and the conventional translation addition theorem (right). T-matrix simulations are shown
for maximal multipole degrees lmax ≤ 20, and in case of PWC for different maximal effective
refractive indices

neff,max =
κmax

k
(4.15)

at which the plane-wave spectrum is truncated.
The depicted results support the previous statements. Given a maximal multipole degree, it
is beneficial to truncate the plane-wave spectrum at a lower in-plane wave number, rather than
integrating up to stronger decaying evanescent modes. Increasing lmax shifts the erroneous field
contributions of the particles’ scattered spherical-wave expansions into these stronger decaying
evanescent waves and hence allows the integration to a larger in-plane wave number, which is in
line with what has been observed for spheroids directly located on a substrate [8]. In contrast,
results from the conventional coupling scheme do not fully resemble the reference solution. In this
specific example, the relative deviation between the FEM and the conventional scheme does not
drop below 10 %, which is one magnitude larger than what is achieved by the PWC procedure.
To highlight the exceptional agreement between T-matrix simulations based on the PWC formalism
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(orange, lmax = 15, neff,max = 4) and FEM results (black, dashed), a cut through the DSCS along
the xz-plane is shown in figure 4.4(b), as well as results stemming from the translation addition
theorem (blue, dash-dotted, lmax = 15).

4.4 Numerical considerations

The alternative formulation of the translation addition operator for SVWFs, introduced in section
4.2, relies on an intermediate transformation into planewaves and vice versa. Computation-wise this
might seem unfavorable due to the numerical integration of the angular plane-wave spectrum that
becomes necessary. Nevertheless, the PWC scheme does not need to shy away from a performance
comparison with the conventional scheme.
To support this claim, figure 4.5(a) compares the computation time of the particle coupling matrix

WSS′ between two spheres, located in a clear distance of |rS − rS′ | = 5rsphere to each other,
for both coupling schemes and maximal multipole degrees lmax ≤ 20. Although both spheres
are located within one vertical plane (zSS′ = 0), and hence a coordinate system rotation becomes
necessary for PWC, the evaluation of the transformation operators B and B† (cf. equation (2.41))
only relies on Legendre polynomials, rather than Wigner-3j symbols that are requested for the
evaluation of the conventional translation addition operator. Especially in case of large multipole
degrees, the PWC formalism surpasses the performance of the conventional scheme, which remains
valid for different truncation values of the effective refractive index at neff,max = 3, 5 and 7.
Due to a clear particle separation in this exemplary configuration, one can expect both coupling
schemes to yield identical results. However, to account for high order multipoles one has to ensure
that the truncation of the Sommerfeld integral is not carried out at too low values of the effective
refractive index (see figure 4.5(b)) .
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Figure 4.5: (a) Time comparison of the evaluation of direct coupling operators for the plane-wave coupling (PWC)
formalism and the conventional translation addition theorem (TAT) based on the Wigner-3j symbols. (b)
Relative deviation of coupling matrices evaluated with both schemes.
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4 Plane-wave coupling

I would like to note that the here presented time comparison only considers a two-particle system.
However, the simulation framework described throughout this work is not built for single particle
or low particle-count simulations of highest precision, where large multipole degrees have to be
considered. It is likely that more efficient simulation frameworks exist that excel in the direct
evaluation of the translation addition operator for SVWFs, and hence outperform the shown
computation times. Furthermore, one has to keep in mind that both, result and computation time
of the numeric evaluation of the Sommerfeld integral rely on its discretization and upper limit.
Nonetheless, these results emphasize that it can be beneficial to choose the indirect route via plane
waves, rather than the conventional translation addition operator for SVWFs, to account for particle
coupling between nonspherical but also spherical particles in a clear distance.

4.4.1 Large particle arrangements

To model light propagation in optoelectronic devices, it is necessary to assess the collective scat-
tering response of large disordered particle collections. From a practical point of view, this task
comes with two main challenges regarding time and memory. Quadratically scaling with the parti-
cle count (or more precisely with the number of multipoles necessary to describe one particle), the
evaluation of an immense number of multipole-multipole interactions has to be handled, involving
the numerical evaluation of Sommerfeld integrals. In addition, the direct evaluation of the linear set
of equations at hand (namely equation (3.53)) rapidly allocates large amounts of the main memory.
To cope with both challenges, SMUTHI utilizes a lookup table approach that on one hand allows
the interpolation of particle coupling from a discretized set of particle displacements. And on the
other hand enables iterative solver schemes for the linear set of equations.
The lookup table approach applied in SMUTHI is based on the idea that the indirect particle
coupling (3.51) can be written as

WS,R,S′
nn′ = 4i|m

′−m|eiϕSS′ (m
′−m)

2∑

j=1

Ijnn′ (ρSS′ , zS , zS′) , (4.16)

with the Sommerfeld integral

Ijnn′ (ρSS′ , zS , zS′) =

∫ ∞

0
dκ

κ

kz,iS′kiS′
J|m′−m|(κρSS′) (4.17)

×
[
β+,†
S,n,j(κ), β−,†S,n,j(κ)

]
L
iS ,iS′
j (κ)


β

+
S′,n′,j(κ)

β−S′,n′,j(κ)


 .
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4.4 Numerical considerations

In the above, the azimuthal integral is expressed in terms of Bessel functions (cf. equation (4.6)).
Assuming that all particles are located within the same layer iS = iS′ , the Sommerfeld integral can
be split into two contributions, one depending on zS + zS′ and the other on zS − zS′ [60]

Ijnn′ (ρSS′ , zS , zS′) = I+
jnn′ (ρSS′ , zS + zS′) + I−jnn′ (ρSS′ , zS − zS′) (4.18)

with
I±jnn′ (ρ, z) =

∫ ∞

0
dκ

κ

kzk
J|m′−m|(κρ)f±jnn′(z). (4.19)

4.4.2 Volumetric lookup for plane-wave coupling

Conceptually, the PWC formalism, based on a transformation-translation-transformation scheme,
does not differ toomuch from the translation-transformation-layermediated translation-transformation
scheme that is applied for indirect particle coupling. Comparing the PWC operator

WSS′
nn′ = 4i|m

′−m|eiϕSS′ (m
′−m)

2∑

j=1

∫ ∞

0
dκ

κ

kzk
J|m′−m|(κρSS′) (4.20)

× e±ikzzSS′Bn′j

(
±kz
k

)
B†nj

(
±kz
k

)

= 4i|m
′−m|eiϕSS′ (m

′−m)
2∑

j=1

Ĩjnn′ (ρSS′ , zS , zS′)

with equation (4.16), it comes with no surprise that both have the same form, but this time with

Ĩjnn′ (ρSS′ , zS , zS′) = Ĩ±jnn′ (ρSS′ , zS − zS′) =

∫ ∞

0
dκ

κ

kzk
J|m′−m|(κρSS′)f̃

±
jnn′(zS − zS′)

(4.21)
and

f̃±jnn′(z) = e±ikzzBn′j

(
±kz
k

)
B†nj

(
±kz
k

)
. (4.22)

In comparison to the indirect coupling operator, the direct PWC only requires a single Sommerfeld
integral of either upwards or downwards oriented plane waves for zS − zS′ .
To assess the additional cost that comes with a lookup table for direct PWC, let us consider two
copies of the largest nonspherical particle within a particle arrangement (see figure 4.6). Assuming
intersecting circumscribing spheres as the necessary condition for PWC, one can possibly draw
an advantage from the alternative coupling formalism only, if the two particle centers are located
within a displacement of |rS − rS′ | ≤ 2rcirc,max. Independent of the exact direction of lateral
displacement ρ, the Sommerfeld integrals (4.21) stored in a lookup table, in general only need
to cover a point pattern of (ρi,∆zi) that discretizes a half circle of radius 2rcirc,max. By always
applying a coordinate system rotation, one can enforce that for all possible configurations particle S
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Figure 4.6: The plane-wave coupling formalism is beneficial for particles in close vicinity. Depending on the choice of
rotations, the particle coupling is precalculated and stored in a lookup table only for a point patter (ρi,∆zi)
in a small fraction of the scatterers surrounding.

is located below S′ in the rotated coordinate system 1. Finally, particles are not allowed to overlap,
which reduces possible vertical displacement by a minimal vertical separation of ∆zmin.
In comparison to the lookup tables of direct and indirect particle coupling, covering particle dis-
placements of the maximal lateral andmaximal vertical distances ρmax and∆zmax within a particle
arrangement, the additional lookup table only needs to discretize an area of 2rcirc,max(2rcirc,max−
∆zmin) 2. This area constitutes only a negligible fraction of what is necessary for the generally
applied lookup tables.
From here, I conclude that from a preparation and storage point of view, a lookup table to account
for particle coupling between nonspherical particles in close vicinity leads to comparably small
additional cost. However, such a lookup table can only cover the particle interaction in each
particle-particle-specific, rotated coordinate system. Once the interaction is interpolated from the
lookup table, the coordinate transformation (4.13) still needs to be applied.

1 Equally well, one could enforce S to be located above S′.
2 From a practical point of view one allocates a matrix of rectangular shape.
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ρ = ∆x
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Figure 4.7: The lateral displacement ρ = ∆x in the laboratory coordinate system (L) of two cylinders in close vicinity
translates into a vertical displacement ∆z in the rotated coordinate system (R).

4.4.3 Radial lookup

For particle arrangements distributed along a horizontal plane, the Sommerfeld integral becomes
independent of the particles’ vertical positions zS = zS′ = z. As a result, only a one dimensional
lookup needs to be applied, which strongly reduces memory allocation and allows for a one
dimensional interpolation scheme. Besides these advantages, the planar scattering layer allows
to integrate the coordinate system rotation already within the lookup table. For flat particle
arrangements, such a rotation is strictly necessary to ensure the horizontal plane of separation that
enables the formalism (cf. section 4.2.1).
Any lateral displacement ρ = |rS − rS′ | can be interpreted as a one dimensional displacement
along x. Then, a coordinate system rotation by Euler angles (α, β, γ) = (0,−π/2, 0) translates
the lateral displacement into a strictly vertical displacement ∆z (cf. figure 4.7). Hence, one has to
evaluate the Sommerfeld integral

Ĩjnn′ (ρSS′ , zS , zS′) = Ĩ±jnn′ (ρSS′) =

∫ ∞

0
dκ

κ

kzk
J|m′−m|(0)f̃±jnn′(ρSS′) (4.23)

and then apply the rotations according to equation (4.13)

WSS′ = DT(0,−π
2
, 0)W̃SS′DT(0,

π

2
, 0). (4.24)

4.5 A spheroidal particle cluster

To validate the implementation of the volumetric lookup table approach for PWC of nonspherical
particles, I compare the DSCS of a dense cluster of 100 prolate spheroids between a reference FEM
solution with T-matrix simulations relying on the conventional particle coupling scheme and the
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Figure 4.8: Comparison of the differential scattering cross sections along the xz-plane of a particle cluster, displayed
on (a) linear and (b) logarithmic scale, between an FEM reference solution and T-matrix simulations based
on the plane-wave coupling (PWC) procedure and the conventional translation addition theorem (TAT).
Inset: Illustration of the particle cluster consisting of 100 prolate TiO2 spheroids with semiminor axes of
a = b = 30 nm and a semimajor axis of c = 120 nm.

plane-wave-based approach.
The exemplary cluster is formed by identical prolate spheroids of semiminor axes of a = b = 30 nm

and a semimajor axis of c = 120 nm. Excited by a y-polarized plane wave propagating in negative
z-direction at a vacuum wavelength of λ0 = 500 nm, the in air embedded spheroids exhibit
dimensionless size parameters of ka = kb = 0.38 and kc = 1.51. The particles’ refractive index
is set to np = 2.5, which refers to titania nanoparticles in anatase phase [102]. An illustration of
the particle cluster is shown as an inset of figure 4.8(a). With inter-particle distances down to 1 nm

and a particle size parameter of 4, the example is chosen to pose an extreme challenge for the PWC
scheme and the lookup table approach.
The comparison of the DSCS in figure 4.8 shows an excellent agreement between both the FEM
reference solution (black, dashed) and the T-matrix results obtained via PWC (orange). Especially
on a logarithmic scale (figure 4.8(b)) it becomes evident how well the T-matrix approach can
resemble the reference result. The T-matrix simulations have been performed with a maximal
multipole degree lmax = 10 and a truncation of the in-plane wave vector at neff,max = 5. These
optimal values have been determined beforehand in the same way it is presented in section 4.3.
The conventional T-matrix scheme based on the translation addition theorem (blue, dash-dotted)
however, is not able to properly reproduce the cluster’s scattering cross section.

4.6 Near-field of nonspherical particles

Besides the evaluation of direct particle coupling, a transformation into plane waves along a
bounding plane of a nonspherical particle allows to derive near-field information from regions
inside a scatterer’s circumscribing sphere, where the spherical wave expansion of the particle’s
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Figure 4.9: Inside the circumscribing sphere, the near-field of a nonspherical particle can be obtained piece wise by
means of plane-wave expansions. To do so, a set of n rotations ensures that the particle’s upper and lower
bounding plane are parallel to the xy-plane of the respective rotated coordinate system.

scattered field diverges.
To obtain the near-field everywhere inside a particle’s circumscribing sphere however, a number
of n successive rotations is required to utilize the spherical-to-plane-wave transformation (2.40)
along a set of upper and lower bounding planes z±i that are parallel to the xy-plane of their rotated
coordinate systems, respectively (cf. figure 4.9). How many rotations are necessary strongly
depends on the actual shape of the scatterer and more importantly, on the point pattern for which
the near-field data is demanded. Once the near-field is obtained for each position of the point
pattern it can be "stitched" together, forming the full picture.
To investigate the potential of expanding a nonspherical particle’s near-field in terms of plane

waves, I compare the scattered field of an oblate spheroid with a reference FEM solution and
the spherical-wave expansion that arises from the T-matrix method. The exemplary spheroid of
semiminor axes a = b = 100 nm and a semimajor axis of c = 25 nm is excited by an x-polarized
plane wave, propagating in negative z-direction. The spheroid orientation is given by Euler angles
(α = 0, β = π/4, γ = 0) and its refractive index measures np = 2.4, which refers to titania
nanoparticles in anatase phase at a vacuum wavelength of λ0 = 550 nm [102]. The spheroids
dimensionless size parameters measure ka = kb = 1.14 and kc = 0.29 in a homogeneous air
environment (namb = 1).
In figure 4.10 the real part of the y-component of the spheroid’s scattered field of all three solutions,
as well as the relative deviation between the two different field expansions, compared to the FEM
solution, is displayed. As expected, the scattered field’s spherical wave expansion resembles the
correct field everywhere outside the particle’s circumscribing sphere, but strongly diverges from the
reference solution for locations inside. On the contrary, the plane-wave expansion that is originating
from the spherical wave expansion is able to match the FEM solution even at positions close to the
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Figure 4.10: Top: Real part of the electric field’s y-component in the xz-plane of an oblate spheroid for a reference
FEM solution as well as the spherical-wave expansion (SWE) and plane-wave expansion (PWE) of the
spheroid’s scattered field. Bottom: Relative deviation between the field expansions and the reference
solution.

particle surface. In this example, the maximal multipole degree was set to the rather large value of
lmax = 25. Hereby, the erroneous terms in the spherical wave expansion are pushed into strongly
decaying evanescent waves. As a result, it is possible to evaluate the plane-wave spectrum up to an
effective refractive index of neff,max = 9.2 without deviating from the correct solution.

To highlight that the plane-wave representation can benefit both, the particle coupling as well as
the near-field evaluation, I come back to the example of two oblate Ag spheroids from section
4.3. Figure 4.11 shows the comparison of the x-component of the dimer’s electric near-field for
lmax = 20 and neff,max = 4. In contrast to the previous example of a single particle, the near-field
resulting from a T-matrix simulation is not only limited by the domain in which the spherical-wave
expansions are valid, but also by the interaction between both scatterers. Therefore, it is no surprise
that the near-field of the conventional T-matrix approach does not only differ from the FEM solution
inside the particles’ circumscribing spheres, but also outside. Utilizing plane waves for both, the
particle coupling and the field representation, enables results that are in good agreement with the
reference.
Despite all benefits, the results visualize one drawback of the "field stitching approach". Wherever
a transition of different field representations takes place, be it from spherical waves to plane waves
at the circumscribing sphere boundaries or from plane waves to plane waves resulting from a
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Figure 4.11: Top: Real part of the electric field’s x-component in the yz-plane of two oblate Ag spheroids for an
reference FEM solution as well as the spherical-wave expansion (SWE) and plane-wave expansion (PWE)
of the spheroids’ scattered field. Bottom: Relative deviation between the field expansions and the reference
solution.

differently rotated coordinate system inside the circumscribing sphere, small artifacts can arise.
This is especially the case for low multipole degrees where the truncation of the Sommerfeld
integral prohibits to account for necessary parts of a particle’s evanescent near-field spectrum.

4.7 Related work and recent developments

Although the Rayleigh hypothesis and the therewith accompanying issue that no single field rep-
resentation is able to resemble the complete near-field of nonspherical particles is a long standing
problem, a surprisingly large number of different approaches to overcome this limitation have been
discussed within recent years.
To close this chapter, I would like to point the reader to some of these works that compete with the
here presented plane-wave coupling formalism and could be advantageous in terms of applicability
or precision.

• Rather than applying particle coupling in plane waves, the SVWFs can be transformed into
the more complicated spheroidal vector wave functions. It is likely that in the special case of
spheroidal scatterers, these spheroidal waves form a superior basis for the particle interaction.
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Following the work of Asano and Yamamoto [57] on light scattering by spheroidal particles,
Schulz et al. [103] derive the T-matrix of spheroidal particles directly in spheroidal waves,
which could make a transformation-translation-transformation scheme obsolete, as long as
only spheroidal particles are involved.

• In their work on highly accurate T-matrix calculations for spheroidal scatterers Somerville
et al. [91, 104–106] identify and prevent the cause of a severe loss in precision, enabling
numerical T-matrix calculations of quadruple-precision. Driven by highest precision, Auguie
et al. [107] investigate the extend of the Rayleigh hypothesis for spheroidal scatterers with
and without closeby particles [108]. Obtaining surprisingly accurate near-field and far-field
properties for two-particle configurations, the authors emphasize that a special treatment for
T-matrix simulations of nonspherical particles might not be necessary.

• To overcome the non-overlap restriction of nonspherical particles’ circumscribing spheres,
Torleif Martin [109] applies a translation of a particle’s SVWFs. Hereby, the position and
size of each circumscribing sphere is changed, preventing their intersection. This way, the
combined T-matrix of two scatterers can be derived even for scatterers in close proximity.
Successively combining the T-matrices of two scatterers, it is proposed that the T-matrix of
a particle cluster could be formed.

• Introducing the Global polarizability matrix, Bertrand et al. [110] distribute a set of numer-
ical dipoles throughout an arbitrary scatterer to construct its scattered near-field. In contrast
to ordinary electric and magnetic dipoles that can be described by a local polarizability,
the numerical dipoles are induced by the excitation field not only at their own position, but
also by the field at all other dipole positions. Resulting from this spatial non-locality, the
numerical dipoles provide a significantly larger amount of degrees of freedom per dipole
compared to their classical pendant. As a result, a much lower number of dipoles is necessary
to describe the scatterer compared to other distributed dipole approaches like, e.g., DDA.
To obtain the global polarizability matrix of a specific particle, a learning set is used which
comes from a secondary Maxwell solver. Therefore, a significant amount of computational
effort is needed for each individual particle size, shape, or material combination. However,
once obtained, the global polarizability matrix can be used for multiple scatterers located on
a surface or in dense clusters. For complex scattering geometries, it remains open how the
set of numerical dipoles has to be distributed within the scatterer.

• Questioning the ideal position of multiple distributed sources to resemble the scattered
near-field of arbitrary scatterers at any point in space, Lamprianidis et al. [111] suggest a
positioning of multipolar sources along the topological skeleton of a scatterer. Topological
skeletons, well known, e.g., from biological shape recognition or computer animations, are
the locus of all spheres that are tangent to the surface of an object in two or more points
but do not intersect it. Impressive accuracy has been presented for light scattering by single,
extremely complex objects.
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To conclude, all mentioned approaches tackle the particle coupling between nonspherical particles
in close vicinity. However, so far all of them lack evidence of their usability for large particle
ensembles, in which we are here especially interested in. With the lookup table approach described
in section 4.4, the PWC procedure does only add a minor additional work load to the conventional
STMM and therefore thrives in the optical modeling of light scattering by large disordered particle
arrangements. Recently, it has been picked up by different researchers and applied successfully
to describe mutual coupling in dense antenna arrays on a substrate with strongly overlapping
circumscribing spheres [112]. This example comes close to the optical modeling of dense surface
structures that are utilized for light management in OLEDs.
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5 Light extraction from OLEDs
with dense, internal scattering
structures

In this chapter, the application of the plane-wave coupling formalism (introduced in chapter 4)
to account for light scattering in dense, nonspherical particle arrangements is illustrated by the
example of organic light emitting diodes with compact internal scattering structures. After intro-
ducing the working principle of such devices, the trapped light problem and possible extraction
strategies are reviewed in section 5.2. Section 5.3 focuses on planarized internal outcoupling layers
of high and low refractive indices. The accuracy of the alternative coupling formalism for dense
scatterers on a substrate is estimated in section 5.4. The modeling procedure is specified in section
5.5 and finally, results for different filling fractions and scatterer heights are presented in section 5.6.

Based on the separation of conduction and valence band of semiconductors, a light emitting
diode (LED) transforms electrical energy into visible radiation by electroluminescence. Applying
a voltage to the semiconductor, electrically excited electron-hole-pairs form bound states, so called
excitions, that eventually decay to a state of lower energy and hereby emit photons.
Replacing the crystalline semiconductor with a carbon-based organic semiconductor, the organic
light emitting diode (OLED) has a variety of properties that deviate from the classical LED and
enable, e.g., homogeneous large area light emission.

5.1 Working principle of OLEDs

In contrast to the conduction and valence band of inorganic semiconductors, the molecular structure
of organic semiconductors does not form a crystallinity in which charge carriers can move freely
within the material compound, but rather discrete orbitals that belong to a distinct molecule or
polymer. Hence, to move charge carriers through the material, the charges have to transition from
one molecule to another called hopping, which results in much lower charge carriers mobilities
and herewith a lower conductivity, compared to their inorganic counterparts. To cope with this
limitation, OLEDs are typically fabricated as thin-film devices with an emitter material thickness
typically between 10 nm and 100 nm, but lateral dimensions often in the centimeter scale.
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Figure 5.1: Typical energy diagramof anOLEDstack consisting of an anode, a hole injection layer (HIL), a hole transport
layer (HTL), an emitter, an electron transport layer (ETL), an electron injection layer (EIL) and a cathode.
The HTL and ETL also function as an electron and a hole blocking layer (EBL and HBL) respectively. From
the cathode, electrons are injected and transported through the materials’ lowest unoccupied molecular
orbitals (LUMO) and holes from the anode through the opposing layers’ highest occupied molecular orbitals
(HOMO) towards the emitter, where they form excitons that can recombine and emit a photon.

The fundamental processes necessary to generate light in an OLED can be explained by means of a
energy diagram of the involved material layers. Such a typical energy diagram of a thin-film OLED
stack is shown in figure 5.1, assuming no applied external voltage. In a first step, charge carriers
need to be injected from the electrodes. Since the molecular orbitals of the emitter layer typically
do not align with the work function of the two electrodes, injection layers are deposited on each
electrode. On the anode’s side, a hole injection layer (HIL) bridges the gap towards the emitter’s
highest occupied molecular orbital (HOMO), while on the cathode’ side an electron injection layer
(EIL) lowers the energy gap towards the emitter’s lowest unoccupied molecular orbital (LUMO).
Once injected, the charge carriers have to be transported to the emitter material. For this purpose,
hole and electron transport layers (HTL/ETL) can be applied that exhibit much larger charge carrier
mobilities. To prevent charge carriers to reach the opposing electrode and to increase the probability
of an exciton formation, an electron blocking layer (EBL) and a hole blocking layer (HBL) provide
a strong mismatch between the their HOMO/LUMO and the respective orbitals of the emitter.
Finally, the bound electron-hole-pairs can recombine upon emission of light.
To simplify schematic 5.1, the transport and blocking layers are summarized in a single layer, which
in practice can be achieved by a careful choice of materials and doping concentration that combine
both functionalities.
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Figure 5.2: Jablonski diagram of optical transitions between the ground state S0 and the first exited singlet and triplet
states S1 and T1.

5.1.1 Optical transitions

In order to emit light, electrons in the organic molecule have to be raised from their ground state
into an energetically higher, excited state. Prior to excitation, the Pauli principle requires the two
electrons possibly populating a single orbital to exhibit alternating spinsms ∈ ±1

2 , which adds up
to a total spin of zero [113]. Upon excitation, e.g. via absorption of a photon, the excited electron
preserves its spin and is raised into the first excited singlet state S1. With the remaining hole in the
ground state, the excited electron can form a singlet exciton that emits a photon upon recombination,
which is called fluorescence. In contrast to the singlet exciton with a total spin of zero, the excited
electron can transfer into the energetic slightly favorable triplet state by switching its spin. The
radiative recombination of triplet excitons with a total spin of one is called phosphorescence.
These optical transitions are summarized in the Jablonski diagram [114] in figure 5.2. Besides
the direct transitions between the discrete energies of the ground state and the single/triplet states,
electrons can transition to slightly higher discrete levels, the so called vibronic states, that result
from rotations and vibrations of atoms within the molecule. The life time of theses vibronic states
however is short, leading to a rapid decay of electrons into the respective main state. Hereby, a shift
in absorption and emission spectra of organic semiconductors can be observed.
Phosphorescence does require a switch in spin of the excited electron upon relaxation, leading to a
much lower probability of the optical transition compared to the fluorescent decay. However, due
to the three times lower multiplicity of singlet excitons compared to triplet excitons, an OLED that
is solely based on fluorescence is limited to an internal quantum efficiency of 25 %. Therefore,
phosphorescent emitter materials have been developed based on heavy nuclei like platinum [115] or
iridium [116] that lead to a strong spin-orbit interaction. Hereby, the probability of phosphorescence
is strongly increased, which enables an internal quantum efficiency of up to one. Besides the highly
efficient phosphorescent emitters, materials with an especially low energy difference between the
singlet and triplet state promote the conversion of triplet states back into the singlet state under
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room temperature, called thermally activated delayed fluorescence (TADF) [117, 118], allowing
all excited electrons to contribute to the fluorescent decay.

5.2 Optical loss mechanisms and light extraction

Discussing the efficiency of an OLED, one usually refers to its internal and external quantum
efficiencies ηint and ηext. The former denotes the rate at which injected electrons Ne, induced by
a current I , contribute to the generation of optical power Pph,int in form of photons Nph,int

ηint =
Nph,int

Ne
=
Pph,int/(hν)

I/e
. (5.1)

Depending on the emitter design, various loss mechanisms can diminish the internal quantum
efficiency. As discussed in the previous section, OLEDs that for example do not harvest triplet
excitons, a priori have to expect a decreased efficiency of only 25 %. In addition, excitons may
recombine via non-radiative loss channels. However, addressing each of these loss mechanisms
by specific design rules [119, 120], devices with internal quantum efficiencies of up to 1 can be
achieved.
Assuming such an ideal emitter, the external efficiency ηext is essentially determined by the
outcoupling efficiency ηout

ηext = ηintηout. (5.2)

As depicted in figure 5.1, the generation of light in an OLED takes place within a thin-film stack
between two electrodes, at least one of which has to be transparent. In a bottom emitting OLED, the
transparent electrode, typically a transparent conductive oxide (TCO) like indium doped tin oxide
(ITO) or aluminum doped zinc oxide (AZO), is deposited on top of a transparent, mechanically
stable substrate like glass or flexible substrates like polyethylene terephthalate (PET) with an
additional barrier layer [121].
With a metal electrode on the top side, the organic layers of refractive index norganics ∼ 1.7,
the TCO (nTCO ∼ 1.9) and the substrate of nsub ∼ 1.5 inevitably form a thin-film wave guide.
Hence, the formation of wave-guided modes is supported. Those are solely propagating in lateral
direction, but cannot escape the thin-film structure. In figure 5.3 two types of wave-guided modes
are illustrated; the transversal-electric modes (red) expanding over the thin-film stack and the
transversal-magnetic modes (dark blue) excited at the dielectric-metal interface, called surface
plasmon polariton (SPP). In addition to wave guiding, a substantial fraction of light exhibits total
internal reflection due to the strong refractive index contrast between the substrate and air. Only
light propagating within the escape cone, i.e., propagation angles smaller than the critical angle,
has the chance to couple out into air. In case of a glass substrate (nsub = 1.5) the critical angle
measures 41.8°. For angles beyond the critical angle, light is confined within the device.
Although the ratio between light that can be coupled out and light that is confined in substrate
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Figure 5.3: Optical loss channels in a planar OLED. Only light emitted within the escape cone, i.e., below the critical
angle between substrate and air, contributes to the out-coupled light. Light propagating beyond the critical
angle is lost due to the excitation of wave guided modes, surface plasmon polaritons (SPP) or substrate
modes.

modes or wave-guided modes can vary depending on the specific choice of materials and layer
thicknesses, the combined loss mechanisms typically lead to outcoupling efficiencies around 20 %

[122]. The questions arises, to which extent each of the loss mechanisms hinder higher efficient
OLEDs. A precise answer however, can only be given for a specific OLED design.
To visually exemplify the composition of different loss mechanisms I consider an OLED stack
experimentally investigated in reference [5]. The planar OLED is summarized by the combined
organic layers with total thickness of dorg = 97.8 nm, sandwiched between an opaque aluminum
(Al) cathode and an ITO anode (dITO = 135 nm). Radiating around λ0 = 520 nm, the effective
refractive index of the organic layers reads norg = 1.7. The optical constant of aluminum has been
taken from reference [123] and the refractive index of ITO (nITO = 2 + 0.01i) has been obtained
via ellipsometry, performed by Adrian Mertens.
Assuming isotropic emission, the angular dependence of the dissipated power (shown in figure
5.4) allows to estimate the ratio of light contributing to the different loss mechanisms. Only
light dissipated at an in-plane wave number smaller than the emitted light’s wavenumber in air
is capable to be coupled out (neff = κ/k ≤ 1). Light emitted under a larger effective refractive
index will eventually exhibit total internal reflection at one or more layer interfaces, due to the
constant in-plane wave vector of light that is propagating through a planar, layered environment.
Depending on the refractive indices of the substrate, the transparent electrode and the organic
layers, further intervals of the angular dependent power dissipation can be specified, contributing
to either substrate modes, TE guided or TM guided modes.
The angular profile of a dipole emission depends on its specific layer environment, its position
and orientation. Hence it is a good indicator of a device’s performance. But it does not provide
information of how much light will be lost due to parasitic absorption. Therefore, the angular
dependence of dissipated power only provides an upper bound of the different optical loss channels
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Figure 5.4: Dissipated power of an isotropic dipole emitter radiating from within a bottom emitting OLED as a function
of its effective refractive index. Depending on its emission angle, light can be radiated into air modes, lost
to substrate modes or electric and magnetic waveguide modes.

as well as the outcoupling efficiency.
In example 5.4, the isotropic emission has been estimated by an incoherent average of two parallel
oriented dipoles with respect to the layer interfaces and a perpendicular dipole, which is common
practice for planar OLED devices [124]. Especially in case of a perpendicular oscillating dipole, a
large fraction of light is directly dissipated into SPPs.

5.2.1 Light extraction

To improve the external quantum efficiency ofOLEDs, numerous approaches have been investigated
that either focus on the extraction of substrate modes or the suppression of wave-guided modes. In
the former case one often refers to external, in the latter to internal outcoupling techniques.
The following examples, addressing the OLED stack design, micro- and nanotextures as well
as volumetric and planar scattering layers, only present an excerpt of the available literature.
Comprehensive overviews of light extraction approaches can be found, e.g., in references [125–
127].

Prior to any specific outcoupling structure the choice of materials and the careful tuning of layer
thicknesses can strongly benefit the dissipation of light that already propagates within the escape
cone and hence is directly eligible for the extraction into air.

• As illustrated in figure 5.4, the orientation of a point dipole source that is typically used
to describe the molecular luminescence upon recombination of an exciton has a major
influence on the possible outcoupling efficiency. Mainly radiating perpendicular to the
dipole moment, a parallel orientation of the dipole transition strongly benefits the dissipation
of light with a low effective refractive index. In contrast, perpendicular oriented dipoles
strongly dissipate into wave-guided modes and surface plasmon polaritons. Different emitter
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molecules generate a predominant dipole moment orientation [128, 129] and thus can be
specifically designed to benefit light extraction.

• The choice of materials and their respective layer thicknesses influence the interference
pattern within an OLED stack. Hereby, not only the exciton life time and hence the internal
quantum efficiency is influenced, but also the angular emission profile is altered [130, 131].
A careful optimization of the weak mircocavity, formed between the metallic and the
transparent electrode, ensures a favorable angular emission profile.

• In contrast to the microcavity approach, a high index substrate [132, 133] that matches the
optical constant of the transparent electrode prevents the formation of TE-guide modes. The
approach however worsens the refractive index mismatch at the substrate-air-interface and
therefore requires its combination with a external outcoupling structure.

External outcoupling approaches that focus on the extraction of substrate guided modes lower the
probability of TIR at the substrate-air-interface. Applied onto or within the substrate, the OLED
design and fabrication remain largely unaffected. The large distance towards the active OLED stack
however also prevents interaction with waveguide modes.

• Applying refractive-index-matchedmicrolens arrays on top of the substrate [134, 135], light
with arbitrary propagation angle can be extracted into air. Typically an external approach,
their internal integration at the TCO-substrate-interface allows to couple waveguide modes
into the substrate [136].

• While microlens arrays suppress reflections by a continuous curvature of the interface, ex-
ternal scattering layers can prevent TIR at the glass-air-interface upon random scattering
events. Light propagating outside the escape cone receives a new chance to change direction
any time it passes the scattering layer. To obtain the volumetric scattering layers, nanopar-
ticles are dispersed in the polymer substrate [137] prior to its deposition. Alternatively,
nanoparticle free porous networks can be introduced [138].

Internal outcoupling techniques focus on the extraction of waveguide modes by diffraction and
scattering. To allow for a significant overlap with the mode profiles, the planar or volumetric
textures have to be directly incorporated into the OLED stack or placed within close distance,
resulting in more complex fabrication procedures.

• Typically deposited by a lithography process, periodic, internal textures based on one-
dimensional gratings [18, 139] or two-dimensional photonic crystals [140, 141] allow to
extract waveguide modes that would otherwise be confined to the organic layers or the trans-
parent electrode. Angular color distortions arising from the periodicity can be suppressed
with an additional external microlens diffusor [142].
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5 Light extraction from OLEDs with dense, internal scattering structures

• Bypassing the drawbacks of periodic structures, disordered, internal textures made of
nanoholes/nanopillars or random nanowrinkles can be obtained, e.g., via phase separation
of polymer blend [23, 143], UV treatment of imprinted gratings [144] or etching procedures
[145, 146]. The nanotextures are often deposited between the substrate and the transparent
electrode. To prevent corrugation of the neighboring OLED layers, the textures can be
planarized. However, the textures’ overlap with electric surface modes typically is weak.

• To create a strong scattering effect and to allow the disturbance of surface waves at the
dielectric-metal electrode-interface, corrugated OLED stacks can be fabricated [147, 148].
With a corrugation traversing through the organic layers and the metal electrode, the OLED’s
electric properties are affected and special care has to be taken to circumvent electrical defects.

• Introducing a volumetric, internal scattering layer [37, 149–151] between the transparent
electrode and the substrate, the propagation of light can be efficiently randomized. To allow
for significant light scattering properties of the dispersed nanoparticles, their size has to be
comparable to the emission wavelength, resulting in layer thickness of multiple micrometers.
Hence, an overlap with wave-guided modes can only be ensured with a refractive index
matrix comparable to the transparent electrode.

5.3 Internal outcoupling structures with low and
high index planarization

In the following I will investigate light extraction from a green OLED with disordered, internal
outcoupling structures that are planarized with either low or high index materials. The goal is
to deduce differences in the extraction of both wave-guided and substrate modes, depending on
the scattering layer materials, the particles’ height and the influence of the nanotextures packing
density. The investigated nanopillar structures, deposited between the glass substrate and the planar
OLED stack, are inspired by the work of Yidenekachew Donie [5, 23, 152, 153] on phase separated
nanostructures obtained via polymer blend lithography (PBL).
An experimental investigation of the considered green OLED with a TiO2 nanostructure, pla-
narized by a low index epoxy resin (SU-8), can be found in reference [5]. For the planar OLED
stack, consisting of an aluminum cathode, the organic layers and an ITO anode, a maximal out-
coupling efficiency of 25 % can be expected for an isotropic dipole emission that is radiating in
proximity of the organic emitter layers’ center (compare figure 5.5). This maximal outcoupling
efficiency is approximately 3 % lower than the prediction based on the angular dissipation profile
(see figure 5.4), which can be attributed to absorption within the ITO and the aluminum electrode.
To promote light extraction, a planarized scattering layer will be deposited on top of the glass

substrate prior to the original OLED stack. The resulting layer sequence, the respective materials
and the layer thicknesses are summarized in figure 5.6. In this study, I will consider two different
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Figure 5.5: Substrate and outcoupling efficiency of the planar OLED stack as a function of the relative position of an
isotropic dipole emission.
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Figure 5.6: Investigated OLED stack with low or high index planarization of a disordered, internal nanotexture.

configurations of the scattering layer. First, a low index planarization of the transparent epoxy resin
SU-8, covering TiO2 nanopillars, which is identical to the configuration presented in reference
[5]. Second, a high index planarization consisting of titania nanoparticles, enclosing nanopillar air
voids.
These two opposing configurations raise the question whether one or the other is favorable to
extract waveguide and/or substrate modes, as the additional planarization layer alters the OLED’s
microcavity and deforms the profile of wave-guided modes. In the former case of a low refractive
index planarization, a good match with the optical constant of the glass substrate allows to bring the
scattering configuration close to the waveguide that is centered around the transparent electrode.
The resulting mode profiles of the fundamental electric and magnetic waveguide modes can be
seen on the left of figure 5.7 for a planarization layer thickness of 300 nm. Due to the low refractive
index contrast between planarization and substrate, the mode profiles remain almost identical to
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Figure 5.7: Illustration of the fundamental waveguide modes in OLEDs with low (left) and high index planarization
layers (right). Nanopillars are solely displayed to emphasize the difference in mode overlap Γ between the
respective waveguide modes and the planarization layer.

the planar OLED stack. In the second configuration however, the planarization material is chosen
to match the refractive index of the transparent electrode. Hereby, the waveguide deforms into the
planarization layer, allowing a much stronger overlap with possible scatterers (right hand side of
figure 5.7).

5.3.1 Phase-separated nanotextures

The fabrication of the considered disordered nanotextures follows a procedure that is based on the
self-assembly of two immiscible polymers [154, 155]. The necessary fabrication steps have been
identified by Yidenekachew Donie, who also prepared all analyzed samples and scanning electron
microscope (SEM) images.
To conduct the self-assembly, two polymers, typically polystyrene (PS) and poly(methyl methacry-
late) (PMMA), are dissolved individually in amutual solvent and are thenmixed together. Deposited
onto the glass substrate, e.g., via spin coating or inkjet printing [23], the two phases separate from
each other as the solvent dissipates. Depending on the mass ratio between the two polymers, PS or
PMMA pillars form within a host of the other. Selectively removing one or the other, nanoholes or
nanopillars remain, which can be directly used as a scattering layer or be transferred into different
materials.
The fabrication procedure of SU-8 planarized titania nanoparticles is described in detail in refer-
ence [5] and can be summarized in five steps: After deposition and self-assembly of the polymer
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5.3 Internal outcoupling structures with low and high index planarization

(a) (b)

Figure 5.8: SEM images of focused ion beam cuts through the planarized scattering structures: (a) TiO2 nanopillars
on a glass substrate, covered by SU-8. The scale bar represents 350 nm. (b) Air voids between a glass
substrate and a nanoporous TiO2 planarization layer. The scale bar represents 400 nm. Images have been
provided by Yidenekachew Donie.

blend (with a mass ratio of PMMA prevailing those of PS) the PS islands are selectively removed.
Next, a TiO2 layer is deposited via e-beam evaporation, covering up the nanoholes in the PMMA
film. A lift-off of the PMMA structure results in TiO2 nanopillars on a glass substrate. Finally,
the texture can be planarized with SU-8 prior to the deposition of ITO, the organic layers and the
aluminum electrode.
The second nanotexture of air voids, covered in TiO2, follows a similar procedure. Instead of
selectively removing the PS, the development of PMMA results in free standing PS nanopillars.
After deposition of titania nanoparticles, with a particle size in the range of a few tens of nanometer,
a baking step allows to vaporize the PS that escapes through the nanoporosity of the titania layer.
In figure 5.8 SEM images of focused ion beam (FIB)-cuts of both planarized scattering layers,

deposited onto a glass substrate, are shown. The observed nanoporosity of the nanoparticle based
TiO2 planarization results in a decreased optical constant of nTiO2 ≈ 1.93 compared to the e-
beam evaporated TiO2 nanopillars of nTiO2 ≈ 2.18.1 Depending on the fabrication parameters
and deposition techniques, the morphology of the nanostructures can be varied, allowing a good
control over resulting scattering properties. The lateral size distribution and surface coverage e.g.,
are affected by the rate of solvent evaporation [33], the polymer blend composition [5] or in case
of spin-coating deposition, the angular velocity of the sample holder [152, 156]. Utilizing inkjet
printing, the nanostructure height can be varied over a range of multiple hundred nanometer, largely
without affecting the average surface coverage [23].

5.3.2 Particle distributions

To reconstruct particle distributions of the experimental, self-assembled nanopillar structures, three
SEM images of samples with different fabrication parameters have been analyzed regarding the
nanotexture’s surface coverage and the particles’ lateral size distributions. The results are displayed
in figure 5.9. With an increasing filling fraction of nanopillars, an increase in the average particle
diameter is observed. In case of the second sample, with a filling fraction of 35 %, the radii of

1 In-house measured ellipsometry data of optical constants for spin-coated and evaporated TiO2 thin-films have been
provided by Adrian Mertens.
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Figure 5.9: Top row: SEM images of disordered nanostructures of different filling fractions (ff), fabricated via polymer
blend lithography. Bottom row: Respective particle size distributions.

the particle size distribution are in good agreement with a Gaussian distribution, centered around
µ = 225 nm and a standard deviation of σ = 30 nm. To generate particle distributions of arbitrary
size that are in good accordance with the experimental nanotextures, I have prepared random,
two-dimensional, mono-disperse disc arrangements with filling fractions between 40 % - 80 %,
using a freely available code provided by Monica Skoge [157] that is based on the Lubachevsky-
Stillinger algorithm. In a next step, the disc radii have been rescaled to match the filling fraction
of the original sample and to mimic the Gaussian size distribution. However, to later simplify the
use of the PWC formalism for nanopillars in close proximity, the Gaussian distribution has been
discretized in five steps with radii rdisc,i = µ ± xσ, x = 0, 1, 2. The resulting disc patterns are
displayed in figure 5.10, showing a constant filling fraction of 35 % and packing fractions between
40 % - 80 %. Comparing to the original sample, the artificial disc arrangement with a packing
fraction of 60 % is well suited to reconstruct the experimental long range disorder.

5.4 Cylindrical scatterers in close proximity

One goal of the present study is to compare light extraction from OLEDs with planar, internal
extraction layers of different filling fractions, namely 20 %, 30 % and 40 %, and nanoparticle
heights of 200 nm and 400 nm. By increasing one of them, it is to be expected that more and more
scatterers will be located in the vicinity of neighboring particles. To illustrate this, a top view of the
six different artificial disc patterns with a constant packing fraction of 60 % is displayed in figure
5.11. The left column shows that for a filling fraction of 20 % no intersections of the particles’
circumscribing spheres (black) with any neighboring particles are to be expected, independent of
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Figure 5.10: Artificial two-dimensional particle distributions of constant filling fractions (ff) but varying packing frac-
tions (pf) in comparison to an experimental arrangement (SEM image).

the two particle heights. Considering a filling fraction of 40 % and a scatterer height of 400 nm

however, almost all particles intersect with at least one neighbor’s circumscribing sphere (red).
Considering optical simulations of dense scatterers on a substrate by means of the superposition
T-matrix method is critical in twoways. On one side, all scatterers’ circumscribing spheres intersect
with the underlying glass substrate, which requires special care in the truncation of the Sommerfeld
integrals that are evaluated for the particle-substrate interactions [7, 8]. On the other side, the
intersections with neighboring particles are in general not correctly accounted for by the translation
addition theorem for SVWFs and are in fact prohibited by the STMM. The in chapter 4 introduced
alternative formulation of the translation addition theorem for SVWFs based on an intermediate
plane-wave expansion however allows to account for direct particle interactions even if the particles’
circumscribing spheres do intersect, and hence will be applied in all necessary cases.

5.4.1 Parameter selection

To obtain simulation results that meet a desirable accuracy without suffering from an inflated
computation time, a number of simulation parameters have to be chosen that allow a balance
between the two ambitions. These parametersmainly include quantities that influence the numerical
evaluation of direct and indirect particle coupling between individual pairs of scatterers (cf. section
3.4.2). To simplify its usage, SMUTHI provides the userwith several automated parameter selection
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Figure 5.11: Top view of artificial, two-dimensional particle distributions of 20 % (left), 30 % (center) and 40 % (right)
filling fraction and constant packing fraction of 60 % . The circumscribing spheres of nanopillars displayed
in red intersect with neighboring scatterers, depending on the pillar height (top: hcyl = 200 nm, bottom:
hcyl = 400 nm).

procedures and further a number of possible selection criteria have been suggested in reference [3].
Among all parameters, the number of multipoles (multipole order and degree) used to describe
each particle’s incoming and scattered field typically has the largest impact on both accuracy and
time. Their automated selection can follow, e.g., the procedure presented in section 3.6.
Considering dense nanoparticles on a substrate, another important parameter is the maximal
effective refractive index that determines the truncation of Sommerfeld integrals (see section 4.3)
involved in the evaluation of particle-substrate interactions as well as the direct coupling between
nonspherical particles in close vicinity. To distinguish between these two cases, I will from now
on refer to nR

eff,max if particle-substrate interactions are considered and to neff,max in case of direct
plane-wave coupling. In the former case of oblate scatterers on a substrate, an empirical formula
was suggested [7] and its successful use for dense antenna arrays has been reported [112]. In the
latter case however, an a priori criterion is missing so far.
In addition to a missing automated selection criterion, the present study considers dense particle
size distributions, rather than particle aggregates of identical scatterers. It is to be expected, that
the ideal truncation of the plane-wave spectra depends on the respective particle sizes involved.
This however does not cope well with the interpolation of particle interactions from a single lookup
table for the direct coupling and a single lookup for the indirect coupling (see section 4.4). To
prevent that a preparation of multiple lookup tables for each coupling type become necessary,
maximal effective refractive indices nR

eff,max and neff,max are sought that allow for accurate particle
interactions for all involved scatterer sizes.
To do so, I will make use of reference solutions obtained with the freely available DDA software
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5.4 Cylindrical scatterers in close proximity

Amsterdam DDA (ADDA) [53]. In comparison to the T-matrix method, the in DDA computations
applied discretization of the scatterer domain remains within the physical picture of localized,
excited dipoles that are responsible for a particle’s scattered field. Thereby, DDA allows to yield
accurate results for nonspherical scatterers on a substrate or multiple particles with overlapping
circumscribing spheres. A systematic comparison of T-matrix results based on the PWC scheme
and the reference solution allows to yield the optimal truncation criteria for both nR

eff,max and
neff,max. The procedure I follow can be summarized in five steps:

1. To select nR
eff,max, T-matrix and reference simulations are performed, describing light scat-

tering by a single scatterer on a glass substrate. Hereby, lmax,mmax and nR
eff,max are varied.

This step is done for each considered cylinder radius and height.

2. By comparison of the particle’s differential scattering cross section obtained from both
simulation techniques, a maximal multipole degree and multipole order is determined for
each particle size.

3. Given the chosen multipole order and multipole degree of each individual particle size, an
average relative difference between both simulation techniques is determined as a function
of the effective refractive index and the particles’ height. The obtained average, relative
difference functions as a decision criterion for nR

eff,max.

4. To select the on average optimal neff,max, a second particle scenario of two scatterers on a
substrate with a lateral separation of 5 nm is considered for each particle size.

5. Taking the chosen lmax, mmax and nR
eff,max for an accurate particle substrate interaction

into account, a comparison of the two-particle scenario between the PWC scheme and the
reference solution allows to yield neff,max.

The selection of themaximal multipole order lmax and themaximal multipole degreemmax (step 2)
is summarized in table 5.1 for all considered particle sizes and the two respective configurations of
TiO2 pillars embedded in the epoxy resin SU-8 and air voids embedded in TiO2.
With the multipole orders fixed, the average relative difference between ADDA reference solutions
and T-matrix computations of one (step 3, left) and two TiO2 cylinders (step 5, right), embedded
in SU-8 and directly located on a glass substrate, are displayed in figure 5.12 as a function of the
maximal effective refractive index. The fine lines in the background refer to the individual cylinder
radii between 165 nm and 285 nm. The blue (hcyl = 200 nm) and orange arrows (hcyl = 400 nm)
indicated a shift in relative difference that can be attributed to such a cylinder radius increase.
From these results two clear trends can be observed. For flat cylindrical scatterers the particle’s
circumscribing sphere mainly overlaps with the substrate (cf. inset of figure 5.12) and hence a
proper choice of nR

eff,max is more critical than the choice of neff,max. As the aspect ratio between
radius and height shifts towards larger radii, nR

eff,max gains further importance. In the opposing
case of increasing cylinder heights, possible overlaps with neighboring particles become more
pronounced and the proper selection of neff,max becomes significant.
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Figure 5.12: Light scattering by dielectric cylinders directly located on a substrate. Average relative difference between
T-matrix simulations and a reference solution as a function of the maximal effective refractive indices
nR

eff,max (particle-substrate interaction, left) and neff,max (particle-particle interaction, right). Arrows
indicate a shift in relative difference when altering the cylinder radius from 165 nm to 285 nm.

Finally, I would like to note that the results also indicate the relative error that can be expected
from the conventional T-matrix scheme for dense cylindrical particles on a substrate. This is
due to the fact that results from the PWC scheme converge towards the result of the conventional
scheme, as one increases neff,max. For the here presented specific case, the conventional scheme
would on average create a deviation of 4 % for each interaction of two cylinders in close vicinity
(hcyl = 400 nm) compared to the reference solutions. This is about one magnitude larger than
what can be achieved if the plane-wave spectrum is truncated at neff,max = 2.5. In case of oblate
cylinders however, no significant improvement in the direct particle coupling is to be expected.

lmax /mmax

rcyl (nm)
165 195 225 255 285

hcyl (nm)

TiO2 in SU-8
200 7 7 8 9 10

400 7 8 9 9 10

air in TiO2

200 6 7 8 9 10

400 7 8 10 12 12

Table 5.1: Selected maximal multipole degree and order, depending on the respecitve cylinder radius rcyl and height
hcyl.
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5.5 Modeling procedure

When modeling light extraction from an OLED, one inevitably has to deal with a multitude
of length scales. While the generation of light originates within a thin-film layer environment
characterized by dimensions in the nanometer range, the extraction takes place through a substrate
in the micrometer range and possibly spreads over an area in the square centimeter or even square
meter scale. As a result, neither a sole wave optics simulation, nor a ray optics scheme is able to
map all involved mechanisms.
Here, I will follow an established modeling procedure presented in reference [158] that combines
wave and ray optics simulations and is conducted in a three step process. At first, the angular
dependent initial radiation patternXsub,0

j (λ, βsub) of light emitted into the optically thick substrate
has to be determined. This initial substrate pattern can then be partially extracted into air (upon
transmission through the substrate-air-interface) or be reflected back towards its origin. The
same partial transmittance and reflectance takes place at the substrate-OLED-interface. This
time however, scattering at the internal particle structure comprises the possibility of light being
directed into different angles of propagation, presenting a new chance of its extraction. While
the reflectance at the substrate-air-interface Rair

j (λ, βsub) is simply determined by the Fresnel
coefficients, its pendant at the substrate-OLED-interface Roled

j (λ, βsub) presents a bidirectional
reflectivity distribution function (BRDF), which maps the directionality of incoming light to a
probability distribution describing the direction of reflected light. Hence, a set of wave optics
simulations becomes necessary that systematically draw the connection between light impinging
onto the OLED stack and the angular distribution of its reflectance.
Knowing the initial substrate pattern, the reflectance at the substrate-air-interface and the OLED
reflectivity, the substrate pattern

Xsub
j (λ, βsub) =

1

P0(λ)

d

dβsub
P sub
j (λ) (5.3)

=




Rair
j (λ, βsub)Xsub

j (λ, π − βsub) for 0 ≤ βsub ≤ π/2
Roled
j (λ, βsub)Xsub

j (λ, π − βsub) +Xsub,0
j (λ, βsub) for π/2 < βsub ≤ π

functions as the starting point of a ray optics scheme that determines the extraction pattern

Xair
j (λ, βair) =

1

P0(λ)

d

dβair
P air
j (λ) (5.4)

= T air
j (λ, βsub)Xsub

j (λ, βsub)
dβsub

dβair
.

In the above, P0(λ) denotes the emitted energy spectrum, P sub
j (λ) the intensity of light with polar-

ization j that propagates within the substrate, P air
j (λ) the outcoupled intensity and T air

j (λ, βsub)

the transmittance at the substrate air interface. In case of bottom-emitting OLEDs, the polar
propagation angle βair of light extracted into air only ranges between π/2 ≤ βair ≤ π, while the
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substrate pattern consists of upwards and downwards propagating polar angles 0 ≤ βair ≤ π.

5.5.1 Radiation into the substrate

A single simulation of a random dipole, dissipating power into a layer environment that incorporates
a random scattering layer, only covers a single realization of an infinite set of possibilities. These
realizations vary in the orientation of the dipole emitter and the arrangement of scatterers. To
gain an estimate of the statistical behavior of such a system, a number of simulations need to be
performed that allow for a sufficient averaging over all uncertainties. In this spirit, I perform a
set of ten simulations, each with its own random realizations of the particle distributions and an
incoherent set of 36 point dipoles. Hereby, the isotropic dipole emission is averaged over 360 dipole
orientations, drawn from a uniform random distribution. To ensure the incoherence between the
different dipole emitters in each simulation, the phase of each dipole oscillation is also drawn from
a uniform random distribution. The average substrate coupling efficiency is then obtained from the
individual simulations

ηsub =
1

Nsim

∑

i

ηsub,i. (5.5)

Since a single, random particle distribution already consists of a statistical distribution of possible
particle positions and sizes, a low variance in the substrate efficiency that is caused by the distinct
particle arrangements is to be expected and the relatively small number of simulations is sufficient
to obtain a small standard deviation between the individual simulations [60].

Due to limited computational resources, each simulation can only consider a finite-sized particle
arrangement. For light propagating within the wave guide this means that it only exhibits a relatively
small lateral distance of propagation during which the chance of a scattering event is present. Once
light has passed this "soft" simulation domain boundary, no further extraction of waveguide modes
is possible. Compared to the distance light can travel in wave-guided modes before it is eventually
lost to thermalization, the here considered finite particle arrangements are small. Hence, one
systematically underestimates the fraction of light that can be coupled out of waveguide modes.
To estimate the substrate coupling efficiency of an infinite particle distribution, an extrapolation
according to

ηsub(ρ) = ηsub − η̃ exp(−γρ) (5.6)

has been suggested [158, 159]. According to this formula, light is gradually scattered out of the
waveguide while propagating in lateral direction, leading to an extinction γ. Thus, considering only
finite sized particle arrangements of radius ρ, one underestimates the substrate coupling efficiency
ηsub by η̃ exp(−γρ).
In this study, I restrict myself to particle distributions with a lateral extend of 20µm. To provide
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an estimate of an unbound simulation domain, I fit equation (5.6) to substrate coupling efficiencies
obtained for various lateral dimensions between 10µm and 20µm.

The here considered OLED stacks of low and high index planarization, the different particle filling
fractions of 0.2, 0.3 and 0.4, the cylinder heights of 200 nm and 400 nm and the sample averaging
over ten random particle configurations, each containing 36 random dipole emitters, results in a
total number of 2 × 3 × 2 × 10 = 120 simulations for the evaluation of the substrate coupling
efficiency.

5.5.2 OLED reflectivity

To obtain the OLED’s BRDF Roledjj′ (λ, β, β′) that maps the polar angle β of incident light with
polarization j to the polar angle β′ of light reflected with polarization j′, the thin-film OLED stack
is excited by a series of Gaussian beams with incident angles between 0° and 80° and transversal
electric/magnetic polarization. By discretizing the polar angle of incident light into 10° steps, the
number of simulations can be limited to 2× 3× 2× 9× 2 = 216. Further reflectivity values have
been obtained via linear interpolation. The beam waist of the Gaussian beams was set to 10µm.
Hereby, a large number of scatterers is directly located within the beam of excitation, which is
assumed to provide a sufficient averaging over possible particle configurations [60].

5.6 Results

With all simulations performed, finally one can compare the influence of the different parameters
on the extraction of light from the thin-film OLED.
Figure 5.13(a) summarizes the substrate coupling efficiency of the different extraction layer designs,
i.e. the fraction of light that can escape the thin-film layer stack and is coupled into the glass
substrate. Comparing the light extraction layers with a low index planarization (LIP) and a high
index planarization (HIP) shows that in case of HIP the stronger overlap of wave-guided modes
with the scattering layer (cf. figure 5.7) allows to scatter more light into the substrate. Compared
to the planar OLED stack (but with a planarization layer), the substrate coupling efficiency is
increased on average by a factor of ≈ 1.27. In case of LIP only an average increase of ≈ 1.16

is observed. However, increasing the filling fraction of nanopillars covered by the HIP from 20 %

to 30 % results only in a minor increase in substrate coupling efficiency. A further increase even
seems to slightly harm the coupling of light into the substrate. These observations differ for the
LIP, where an increase in filling fraction directly translates into an increased substrate coupling
efficiency. Especially for larger nanopillars a stronger suppression of waveguide modes is observed.

OLEDs with an extraction layer of HIP scatter more light into the substrate and are hence set up
to extract more light into air. However, the simulations show (summarized in figure 5.13(b)) that
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Figure 5.13: Light extraction from OLEDs with planar internal scattering layers, planarized by a low index material
(LIP) and a high index material (HIP). (a) Fraction of light that is coupled into the substrate as a function
of the cylinders’ filling fraction and cylinder heights of 200 nm and 400 nm in comparison to the planar
OLED stack without scattering, but the respective planarization layers of 300 nm and 500 nm height. (b)
Fraction of light that can be coupled out of the substrate into air. (c) Extraction efficiency showing the
fraction of light emitted into air.

OLEDs with a HIP exhibit a lower reflectivity for light impinging onto the device from within
the substrate (compared to the LIP) and only allow to extract about 60 % to 65 % of light initially
coupled into the substrate. For a LIP and high nanopillars more than 70 % hereof can be extracted.
With these two trends counter-acting each other, comparable light extraction efficiencies, i.e.,
the fraction of light that can be coupled out into air, for both designs of low and a high index
planarization are observed (see figure 5.13(c)). While the average increase for the LIP of≈ 1.54 is
lower than the factor of≈ 1.66 for the HIP, the largest extraction efficiency of 35.6 % was obtained
for large and dense scatterers, planarized with a material of low refractive index.

The simulation results summarized in figure 5.13 indicate that no major difference in extraction
efficiency is to be expected from the two different designs of internal extraction layers made of
high and low refractive index nanoparticles, planarized by materials of strongly deviating refractive
indices. At first this might seem surprising, since the HIP is known to allow a strong leakage
of waveguide modes into the scattering layer, due to a decent refractive index match with the
transparent electrode. In addition, the refractive index contrast between the air voids and the
surrounding nanoporous TiO2 layer is even larger than in the opposite case of TiO2 nanopillars
embedded in SU-8.
To investigate whether or not the larger refractive index contrast directly translates into a stronger
scattering of light into the glass substrate, single cylindrical scatterers made of TiO2 and air are
excited by a plane wave with a vacuum wavelength of λ0 = 520 nm. The particles are embedded
in SU-8 and TiO2 respectively and located directly on a glass substrate. Figure 5.14 shows the
nanopillar’s scattering cross section as function of the polar angle θ for particles of various radii
and heights. Excited under normal incidence (figures 5.14(a) and (b)) the cylindrical particles
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polar angle (rad/ )

0.0 0.5 1.0 1.5 2.0

    
cy

lin
de

r ra
diu

s (
nm

)

165
195

225
255

285DS
CS

 (
m

2 )
0

1

2

3

(a) exc = 0
hcyl = 200 nm

polar angle (rad/ )

0.0 0.5 1.0 1.5 2.0

    
cy

lin
de

r ra
diu

s (
nm

)

165
195

225
255

285DS
CS

 (
m

2 )

0

1

2

3

(b) exc = 0
hcyl = 400 nm LIP

HIP

polar angle (rad/ )

0.0 0.5 1.0 1.5 2.0

    
cy

lin
de

r ra
diu

s (
nm

)

165
195

225
255

285DS
CS

 (
m

2 )

0

1

2

3

(c) exc = 0.25
hcyl = 200 nm
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Figure 5.14: Differential scattering cross section (DSCS) of cylindrical scatterers on a glass substrate, excited by plane
wave at λ0 = 520 nm. Comparison between cylindrical TiO2 scatterers embedded in a low index
planarization of SU-8 (LIP) and air voids in a high index planarization of TiO2 (HIP). (a) Cylinder heights
of 200 nm and of (b) 400 nm, excited under normal incidence. (c) Cylinder heights of 200 nm and of (d)
400 nm, excited under a polar angle of θexc = −0.25π.

mainly scatter light into the glass substrate, i.e., into polar angles of 0.5 < θ < 1.5. Especially in
case of large scatterers, the TiO2 nanopillars exhibit significantly larger scattering cross sections
compared to the air voids in a HIP layer.
However, light propagating in waveguide modes will typically excite the scattering layer under
oblique, rather than normal incidence. Figures 5.14(c) and (d) show the particles’ DSCS for a polar
excitation angle of θexc = −0.25π. Again, theTiO2 nanopillars scatter significantly more light into
the glass substrate. In contrast, the air voids mainly show a specular reflection at θ = 0.25π. These
strong reflections can be attributed to the much lower critical angle of θcrit ≈ 0.28π compared to
the LIP case with θcrit ≈ 0.4π.

In summary, the results show that OLEDs with planarized scattering layer of a high index material
do not necessarily outperform their counterparts of low index planarization. A HIP allows a good
leakage of waveguide modes into the light extraction layer and hence a strong scattering of wave-
guided modes. However, the strong refractive index mismatch between the HIP and the substrate
impairs a perfect coupling to the substrate. On the contrary, extraction layers with a LIP suffer
from a comparably small overlap with the thin-film stack’s waveguide modes. But they strongly
benefit from larger scatterers and high particle filling fractions, which allows a decent suppression
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5 Light extraction from OLEDs with dense, internal scattering structures

of wave-guided light.
Once light is coupled into the substrate, OLEDs with a LIP extract more light into air than OLEDs
with a HIP. Overall, comparable device efficiencies are observed for both extraction layer designs.
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6 T-matrix simulations of periodic
particle arrangements

This chapter introduces two-dimensional periodic boundary conditions on the basis of Ewald lat-
tice sums to enable T-matrix simulations of periodic particle arrangements. Although concerned
with aperiodic scattering ensembles, the boundary conditions allow to close the otherwise infinite
simulation space and herewith limit the computational cost. After introducing the periodic super-
position T-matrix formalism in section 6.2 and the Ewald lattice sums in section 6.3, near- and
far-field properties of periodic scattered fields are summarized in section 6.4. Utilizing the plane-
wave characteristics of periodic scattered fields, a plane-wave based approach to account for the
direct and layer mediated interactions between infinite periodic grids is formulated in sections 6.5
and 6.6. Finally, the use of periodic boundaries to mimic disorder and numerical considerations
for large unit cell dimensions are discussed.

The integration of Ewald lattice sums into the existing simulation framework has been realized in
collaboration with Dominik Beutel. The influence of long range periodicities onto disordered par-
ticle arrangements has been investigated in the peer-reviewed journal article J. Quant. Spectrosc.
Radiat. Transf. 272, 107802 (2021) [2].

6.1 Simulation domain boundaries

The optical modeling of optoelectronic devices often struggles with a disparity of the involved
length scales. Being concerned with light matter interaction that can play a crucial role on a
nanoscale does not cope well with device characteristics that often range from the centimeter- to
the meter-scale. To comprise both, the local field interactions as well as the practically endless
horizontal extend of light management structures in optoelectronic devices, the simulation model
has to prevent edge effects.
The problem of a limited simulation domain is illustrated in figure 6.1(a). Due to limited compu-
tational resources and time, the seemingly endless extend of a scattering layer has to be limited to
a finite domain. To prevent that any observable quantity is influenced by the domain boundaries, a
variety of different strategies can be applied. In finite element or FDTD simulations, e.g., a popular
approach to limit the simulation domain is to apply a perfectly matched layer (PML) [160] as an
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6 T-matrix simulations of periodic particle arrangements

(a)

(b) (c)

h

n× h P

Figure 6.1: Illustration of a thin film solar cell with a volumetric scattering layer on top that is excited by a plane wave
from afar. (a) The particle arrangement is limited to a certain simulation domain. To prevent edge effects:
(b) the infinite extension of the excitation source is reduced to a local excitation; (c) periodic boundaries are
applied to the simulation domain to mimic its virtually infinite extend.

artificial boundary condition. The goal of a PML is to absorb any electromagnetic wave that passes
the domain boundaries while preventing its reflection back into the system.
In the here utilized T-matrix simulation framework, the layered environment’s extend is in general
infinite in lateral direction as well as semi-infinite in vertical direction of the outer layers. Hence,
the simulation domain is unbounded in any direction. The particle arrangement however is limited
in size, leading to a "soft" simulation domain boundary.
Up to this point, the here utilized strategy to prevent edge effects has been to excite the particle
arrangement only locally in its lateral center (cf. figure 6.1(b)) rather than over its full extend. In
this case it is sufficient to consider only a finite-sized particle arrangement, given that it is chosen
large enough that only a negligible amount of light escapes at the arrangements vertical boundaries.
How large the diameter of such a finite particle arrangement has to be chosen mainly depends on
the system’s height. Only for diameters that measure a multitude of its height, the probability of
light leaving on the arrangement’s lateral boundaries becomes insignificant. A sufficient factor
between height and width however remains unknown, as it depends on the specific constellation at
hand. As it is practically impossible to assess the exact, minimal domain dimensions that provide
observable quantities independent of its size, one is forced to perform multiple simulations of
various sizes and try to minimize the error by extrapolation [158, 159].
The strategy of locally excited, finite-sized particle arrangements inevitably runs into challenges
regarding computational resources and time. This is especially the case for thick scattering layers,
where the rapidly growing particle count renders it impossible to preserve a sufficiently large radius
of the entire configuration. The same holds true, if the scattering layer is incorporated in a thick,
layered environment, in which light might propagate tens of micrometer in lateral direction in
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6.2 Periodic particle arrangements

between interactions with the scattering sample.
Another popular strategy to deal with virtually infinite systems is to apply periodic boundary
conditions (PBCs) where a finite-sized unit cell and its infinite periodic repetitions are regarded to
cover all phenomena of interest. In general applicable for all kinds of lattice configurations in one or
more dimensions, I will only consider two-dimensional, infinite cubic lattices of periodicity P that
close the scattering layer in lateral direction (illustrated in figure 6.1(c)). The general perception
I am following herewith is that the random nature of the particle arrangements can be preserved
by a close-range disorder within one unit cell, while the detrimental influence of the artificial
periodicity is kept low by applying super cells that comprise a large number of scatterers. Besides
closing the simulation domain, PBCs are one tool to drastically reduce the computational load of a
single simulation as they enable solution strategies to Maxwell’s equations that specifically exploit
the periodicity. Hereby, it becomes feasible to model and derive spectral information about wave-
optical phenomena from thick, volumetric scattering layers that would otherwise be out of reach [2].

6.2 Periodic particle arrangements

In this section, I will specify the here considered periodic particle arrangements and the therewith
associated notations that are necessary to reformulate the multiple scattering problem (introduced
in section 3) to account for its periodicity.

Two-dimensional Bravais lattice

To mimic light propagation in large, volumetric, disordered particle arrangements, I will from
now on consider particles that are periodically arranged in a two-dimensional Bravais lattice. To
distinguish between each individual particle, i.e., particles in one unit cell, but also their periodic
repetitions in every other unit cell, I introduce the q-th particle Spq within unit cell p. Besides
these individual particles, a particle collection Sq comprises all q-th particles that hence form a
two-dimensional grid. Any displacement between two particles Spq and Sp′q that belong to the
same collection

rSp′q − rSpq = n1a1 + n2a2 = Rp′ (6.1)

can be displayed by a linear combination of two-dimensional lattice vectors a1 and a2 (illustrated
in figure 6.2(a)). Here, n1 and n2 ∈ Z specify unit cell (n1, n2)→ p′ of lattice point Rp′ .
Besides the real space lattice vectors, I will make use of the reciprocal lattice vectors b1 and b2

that specify the reciprocal lattice points

Gp̃′ = ñ1b1 + ñ2b2, (6.2)
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6 T-matrix simulations of periodic particle arrangements

with ñ1, ñ2 ∈ Z denoting the reciprocal space unit cell (ñ1, ñ2)→ p̃′.
The reciprocal lattice vectors can be generated from the real space lattice vectors via

b1 =
2πRπ/2a2

a1 ·Rπ/2a2
, b2 =

2πRπ/2a1

a2 ·Rπ/2a1
, (6.3)

where rotation matrix Rπ/2 denotes an anti-clockwise rotation of 90°. Note that these lattice
vectors fulfill ai · bj = 2πδij and Rp′ ·Gp̃′ = 2πN for some integer N .

Periodic solutions of the multiple scattering problem

To assess the multiple scattering problem in periodic particle arrangements, let us for now assume
the absence of any indirect particle coupling. Then, the multiple scattering problem formulated in
section 3.5 reads

bSn −
∑

n′
TSnn′

∑

S′

∑

n′′
WSS′
n′n′′b

S′
n′′ =

∑

n′
TSnn′a

S,init
n′ . (6.4)

Exciting the periodic arrangement by a plane wave, the initial incoming field at each particle within
collection Sq resembles one another, but undergoes a phase shift that is based on the particle
displacement and the in-plane wave vector kin‖ of the initial field

a
Sp′q ,init
n = e

ikin‖(rSp′q−rS0q
)
a
S0q ,init
n = eikin‖Rp′a

S0q ,init
n . (6.5)

With the quasi-periodicity of the right-hand side of equation (6.5), the Bloch theorem [61, 161]
demands for the same quasi-periodicity in the solution of equation (6.4), which thus satisfies

b
Sp′q
n = eikin‖Rp′ b

S0q
n . (6.6)

Hence, the scattered field of particle collection Sq is fully described by the field coefficients bS0q
n

of the q-th particle in the arbitrary central unit cell (p = 0). Consequently, it is sufficient to only
derive the field amplitudes of particles within one single unit cell.
Replacing S and S′ with S0q and Sp′q and inserting equation (6.6) one can formulate the linear set
of equations (6.4) for the arbitrary central unit cell

b
S0q
n −

∑

n′
T
S0q

nn′
∑

p′

∑

q′

∑

n′′
W

S0qSp′q′
n′n′′ b

Sp′q′
n′′ =

∑

n′
T
S0q

nn′ a
S0q ,init
n′ . (6.7)
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6.3 Ewald summation

Although the number of unknowns in equation (6.7) is massively reduced compared to the linear
system of a non-periodic structure (cf. equation (3.53)), one now has to deal with an infinite
number of particle-particle interactions between each particle collection

∑

p′
W

S0qSp′q′
nn′ b

Sp′q′
n′ =

∑

p′
W

S0qSp′q′
nn′ eikin‖Rp′ b

S0q′
n′ . (6.8)

As a result, we have to shift our focus from the explicit particle-particle interaction to the question
of how particle collections couple to each other and how a collection couples with itself. Applying
the definition of the translation addition operator (equations (2.35) and (2.36)) to the interaction
between particles within collection Sq, the infinite sum takes the form

∑

p′
W

S0qSp′q
nn′ eikin‖Rp′ (6.9)

=
∑

p′ 6=0

An′n(−Rp′)e
ikin‖Rp′

=

|l+l′|∑

L=|l−l′|




a5(l′,m′|l,m|L)

b5(l′,m′|l,m|L)

∑

p′ 6=0

h
(1)
L (k|Rp′ |)YLM (−Rp′)e

ikin‖Rp′
τ = τ ′

τ 6= τ ′,

withM = m′ −m.
While the direct numerical evaluation of equation (6.9) can be successful in some cases, it can
be extremely time consuming due to a slow convergence of its inner sum over all unit cells. This
sum however, is identical to the quantity DLM that is used to derive a lattice’s structure constants
[162, 163] in low energy electron diffraction theory [164]

DLM (Rp′) =
∑

p′ 6=0

h
(1)
L (k|Rp′ |)YLM (−Rp′)e

ikin‖Rp′ . (6.10)

6.3 Ewald summation

To evaluate the particulate lattice sum (6.10), I will here make use of solutions provided by the
Ewald summation technique. Originally applied to describe long-range optical and electrostatic
interactions in crystal lattices [165], Ewald’s method became a widely used technique to apply
PBCs not only in strictly periodic crystals but also in large molecular structures [166] and dynamic
fluids [167].
The basic concept of the Ewald summation is to separate a semi-convergent series into a rapid and
a slowly converging part. Transforming the latter into reciprocal space by means of the Possion
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(a)

(b)

(c)

a1

a2

c

c

Figure 6.2: Three types of particulate lattice sums have to be evaluated: coupling between (a) particles within their own
grid (|c| = 0), (b) a particle grid and a particle of another displaced grid within the same horizontal plane
(cz = 0), (c) a particle grid and a particle from another particle collection at a different height (cz 6= 0).

summation formula, one obtains a second, fast converging sum [168]. Following this idea, the
Ewald type lattice sums are commonly written as

D∗LM = D
(1)
LM +D

(2)
LM + δL0δM0D

(3)
00 , (6.11)

with D(1)
LM denoting the long range interactions evaluated in reciprocal space and D(2)

LM the short
range contributions obtained from a real space sum. In addition, a correction termD

(3)
00 is added that

only takes effect in the special case of coupling within a single particle collection and L = M = 0.
For two-dimensional lattices the Ewald sum of periodic scattered fields in form of SVWFs has
been derived by Kambe [169, 170]. Hereby providing an Ewald sum formulation that is directly
applicable to the T-matrix formalism. Modeling the optical response of two-dimensional periodic
particle arrays, T-matrix simulations in conjunction with an Ewald sum approach have been applied
by Stefanou et al. [171, 172] and recently by Beutel et al. [173] as well as in three-dimensional
arrays by Nečada et al. [174].
To build complex three-dimensional unit cells of a two-dimensional periodicity, I will need to
determine the Ewald sum for three different kinds of lattice configurations (depicted in figure
6.2). Their explicit formulas can be traced back to Kambe [169, 170]. Here, I will stick to the
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6.3 Ewald summation

nomenclature presented in the supplementary material of reference [173], as my implementation
of the lattice sums was realized in collaboration with Dominik Beutel. However, it is necessary to
apply a normalization factor NM to satisfy the normalization conventions of the SVWFs that are
used throughout this work

DLM = NMD
∗
LM =

√
2π





(−1)−M

1
D∗LM

M > 0

M ≤ 0.
(6.12)

A short derivation of NM can be found in Appendix C.

Coupling within one particle collection To account for the interaction between particles within
the same particle collection Sq (illustrated in figure 6.2(a)), the long range contribution of lattice
sum (6.10) reads

D
(1)
LM =

iM

(2k)L

√
(2L+ 1)(L−M)!(L+M)!

Ak

∑

p̃

e
iMϕkin‖+Gp̃ (6.13)

×
L−|M|

2∑

λ=0

(Γkin‖+Gp̃
)2λ−1|kin‖ + Gp̃|L−2λ

λ!(L+M
2 − λ)!(L−M2 − λ)!

Γ

(
1

2
− λ,−

Γ2
kin‖+Gp̃

4η2

)
,

with the azimuthal angle ϕkin‖+Gp̃
of the linear combination of the initial field’s in-plane wave

vector kin‖ and the reciprocal lattice vector Gp̃, the positive complex square root of

Γkin‖+Gp̃
=
√
k2 − |kin‖ + Gp̃|2 (6.14)

and the upper incomplete Gamma function

Γ(s, x) =

∫ ∞

x
ts−1e−tdt. (6.15)

A recursion formula for the evaluation of upper incomplete Gamma functions of negative half
integers has been provided by Kambe [169].
The separation parameter η splits the lattice sum into its long range contribution and the short range
summand

D
(2)
LM = (−i)(−1)

L+M
2

√
(2L+ 1)(L−M)!(L+M)!

2L+1π(L−M2 )!(L+M
2 )!

(6.16)

×
∑

p′ 6=0

eikin‖Rp′ e
iMϕ−Rp′

1

k

(
2|Rp′ |
k

)L ∫ ∞

η2

uL−
1
2 e−|Rp′ |2u+ k2

4u du.
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As mentioned above, for L = M = 0 a central particle correction is necessary to prevent that the
particle couples with itself

D
(3)
00 =

1

4π
Γ

(
−1

2
,− k2

4η2

)
. (6.17)

Please note that for L + M odd, the entire Ewald sum cancels itself and therefore vanishes com-
pletely [169].

Coupling between different particle collections If a unit cell is populated with more than one
particle, one has to account for the interaction between different particle collections Sq and Sq′ .
Then, equation (6.9) that accounts for the contribution of collection Sq′’s scattered field to the
incoming field of particles in collection Sq reads

∑

p′
W

S0qSp′q′
nn′ eikin‖Rp′ (6.18)

=
∑

p′ 6=0

An′n(−Rp′ − cqq′)e
ikin‖Rp′

=

|l+l′|∑

L=|l−l′|




a5(l′,m′|l,m|L)

b5(l′,m′|l,m|L)
DLM (Rp′ + cqq′)

τ = τ ′

τ 6= τ ′.

In the above, a displacement vector cqq′ = r0q − r0q′ was introduced that connects particles within
one unit cell. The lattice sum then becomes

DLM (Rp′ + cqq′) =
∑

p′ 6=0

h
(1)
L (k|Rp′ + cqq′ |)YLM (−Rp′ − cqq′)e

ikin‖Rp′ . (6.19)

For its evaluation one has to distinguish between two cases. First, two particle collections that
are located within the same plane of periodicity (cf. figure 6.2(b)), and secondly, two particle
collections spanning over different planes (figure 6.2(c)).
In the former case (cz = 0), the long range contribution can be evaluated via

D
(1)
LM =

iM

(2k)L

√
(2L+ 1)(L−M)!(L+M)!

Ak

∑

p̃

e−i(kin‖+Gp̃)ce
iMϕkin‖+Gp̃ (6.20)

×
L−|M|

2∑

λ=0

(Γkin‖+Gp̃
)2λ−1|kin‖ + Gp̃|L−2λ

λ!(L+M
2 − λ)!(L−M2 − λ)!

Γ

(
1

2
− λ,−

Γ2
kin‖+Gp̃

4η2

)
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and in the latter (cz 6= 0) via,

D
(1)
LM =

(−i)M
(−2)L

√
(2L+ 1)(L−M)!(L+M)!

Ak2

∑

p̃

e−i(kin‖+Gp̃)ce
iMϕkin‖+Gp̃ (6.21)

×
L−|M |∑

n=0

(
Γkin‖+Gp̃

k

)2n−1

∆n

min(L−|M |,2n)∑

s=n

(−kcz)2n−s
( |kin‖+Gp̃|

k

)L−s

(2n− s)!(s− n)!
(
L+|M |−s

2

)
!
(
L−|M |−s

2

)
!
.

Independent of the particle displacement, the short range contribution reads

D
(2)
LM = −i

√
2

π

∑

p′
eikin‖Rp′ (k|Rp′ + c|)LYLM (−Rp′ − c)

NM
(6.22)

×
∫ ∞

η2

u2Le−
(k|Rp′+c|)2u2

2
+ 1

2u2 du.

Besides the upper incomplete Gamma function, Kambe also provides recursion formulas for the
evaluation of integral ∆n and the integrals in equations (6.16) and (6.22) [169, 170].
With the above defined lattice sums, I now have all the tools available to build and solve light
scattering in complex three-dimensional periodic particle arrangements of two dimensional peri-
odicity. But before doing so, we shall first consider how to evaluate the scattered near- and far-field
properties of periodic particle arrangements and incorporate the periodic structures into a planar,
layered environment.

6.4 Periodic scattered fields

In contrast to non-periodic particle arrangements where the scattered field can be evaluated by
superposition of each individual particle’s scattered field, the scattered field of periodic particle
arrangements is composed of an infinite number of source terms, rendering its direct evaluation
challenging. However, any arrangement consists of a finite number of particle collections that each
form a perfect lattice. Hence, the infinite periodic collections only scatter light into a finite number
of discrete propagating waves and an infinite number of discrete evanescent waves [175], favoring
a field representation in plane waves.
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6.4.1 Scattered near-field

To obtain the scattered near-field of particle collection Sq, I start with the spherical-wave expansion
of its individual particles

ESq(r) =
∑

p

∑

n

b
Spq
n M(3)

n

(
r− rSpq

)
(6.23)

=
∑

p′

∑

n

b
S0q
n eikin‖Rp′M(3)

n (r− rS0q −Rp′).

Transforming equation (6.23) into plane waves (cf. equation (2.40)), the infinite sum reads

ESq(r) =
1

2π

∑

p′

∑

n

b
S0q
n

2∑

j=1

∫
d2k‖
kzk

eimα (6.24)

×Bnj
(
±kz
k

)
e

ik±(r−rS0q
)
ei(kin‖−k±)Rp′ ê±j , for z ≷ zS0q .

Whether upwards or downwards propagating plane waves are taken into account depends on the
relative position of r with respect to the particle collection Sq.
Splitting

ei(kin‖−k±)Rp′ = e±ikzRp′ ei(kin‖−k‖)Rp′ (6.25)

into its in-plane and z-component allows us to use the Poisson summation formula

∑

p′
ei(kin‖−k‖)Rp′ =

(2π)2

Auc

∑

p̃

δ(k‖ − kin‖ + Gp̃), (6.26)

to "reduce" the infinite sum of plane-wave integral representations into an infinite sum of discrete
plane waves Φ±j

ESq(r) =

2∑

j=1

∑

p̃

g±S0q ,j
(κ, α)Φ±j (κ, α; r− rS0q)δ(k‖ − kin‖ + Gp̃). (6.27)

The amplitudes of each plane wave read

g±S0q ,j
(κ, α) =

2π

Auc

∑

n

b
S0q
n

kzk
eimαBnj

(
±kz
k

)
, (6.28)

where Auc specifies the base area of one unit cell.
The obtained formula shows that the infinite periodic lattice only scatters into an infinite number
of discrete angles, for which the in-plane wave vector k‖ coincides with the sum of the initial
field’s in-plane wave vector kin‖ and the reciprocal lattice points Gp̃. In practice, the infinite
sum (6.27) needs to be truncated at the finite order of unit cells p̃ < p̃max that add a meaningful
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contribute to the collection’s near-field. For positions r in great distance to the particle collection,
it can be sufficient to account for propagating waves only, i.e., in-plane wave vectors k‖ for which
|kin‖ −Gp̃| < k.

6.4.2 Scattered far-field

The plane-wave expansion (6.27) does not only contain information about the scattered near-field
of a periodic particle collection but also about far-field properties. Removing all evanescent waves
from the discrete plane-wave spectrum, the angle dependent transmittance and reflectance can be
determined.
The power flow of a plane wave into vertical direction per area

I±A =
dP

dA
=

k

2ωµ0
cosβ± |g±(κ, α)|2, (6.29)

depends on its polar angle of propagation β, with β+ = arcsin(κ/k) and β− = π − arcsin(κ/k).
To obtain the total transmitted and reflected power of a periodic arrangement, the sum over all
scattered, propagating waves yields

I± =
k

2ωµ0

∑

q

2∑

j=1

∑

p̃

cosβ |g±S0q ,j
(κ, α)|2δ(k‖ − kin‖ + Gp̃), κ ≤ k. (6.30)

Independent of the complexity of a unit cell, each particle collection scatters into the identical
discrete plane waves resulting from the one periodicity all particle collections have in common.
Hence, the scattered far-field of a periodic system does not exhibit a continuous angular field
distribution [176], which is in clear contrast to a finite, disordered particle arrangement. However,
the length of reciprocal lattice vectors decreases for larger unit cell sizes, allowing an increasing
number of propagating diffraction orders. In the limit of an infinite unit cell size, the periodic system
merges into an aperiodic system, causing the angular far-field distribution to become continuous.
To illustrate the discrete directionality of periodic scattered fields, the polar distribution of a simple
cubic lattice with a single particle per unit cell is displayed in figure 6.3(a). The period P of the
lattice measures two times the length of the excitation’s wavelength, allowing the scattered field
to propagate only under 0°, 30° and 45°. For comparison, the polar distributions of the scattered
far-field for various finite grid sizes are shown. As expected, the finite sized grids show side
maxima that diminish with increasing lattice size. Increasing the period-wavelength-ratio P/λ,
more and more propagating waves populate the angular distribution, leading to a typical far-field
pattern of a periodic particle arrangement with a large unit cell of P/λ = 7.5 (figure 6.3(b)). To
mimic the diffusive character of transmittance and reflectance by disordered media, the size of a
unit cell thus plays an important role in any periodic modeling approach.
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Figure 6.3: Scattered far-field polar distribution of a two-dimensional, periodic particle arrangement (a) for an infinite
grid and different finite grid sizes between 6 by 6 and 21 by 21 unit cells with a cubic period-wavelength-ratio
P/λ of 2. (b) Typical far-field distribution for an infinite periodic particle arrangement with a cubic unit
cell of P/λ = 7.5.

6.5 Periodic plane-wave coupling

Chapter 4 deals with a direct plane-wave coupling formalism to account for interactions between
particles with overlapping circumscribing spheres. For the periodic particle arrangements I do not
consider such dense, nonspherical particle collections. Nevertheless, it can be beneficial to account
for the direct coupling between periodic particle collections by means of a plane-wave expansion.
In the previous section, the scattered field of a periodic particle collection has been expressed by a
discrete set of plane waves (cf. equation (6.27)) that is valid everywhere above or below the particle
grid. Given that a vertical plane of separation between particle collections Sq and Sq′ can be found

zS0q − zS0q′ = ∆zSqSq′ > rS0q − rS0q′ , (6.31)

the plane-wave expansion can be used to account for the direct coupling between the two-
dimensional lattices.
I start with the scattered field of particle collection Sq′ and translate it to the center of Sq

ESq′ (r) =
2π

Auc

2∑

j=1

∑

p̃

∑

n′

b
S0q′
n′

kzk
eim′αBn′j

(
±kz
k

)
(6.32)

×Φ±j (κ, α; r− rS0q′ )δ(k‖ − kin|| + Gp̃)

=
2π

Auc

2∑

j=1

∑

p̃

∑

n′

b
S0q′
n′

kzk
eim′αBn′j

(
±kz
k

)
e

ik±(rS0q
−rS0q′ )

×Φ±j (κ, α; r− rS0q)δ(k‖ − kin|| + Gp̃).
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With the retransformation into regular SVWFs (cf. equation (2.39))

ESq′ (r) =
8π

Auc

∑

n

2∑

j=1

∑

p̃

∑

n′

b
S0q′
n′

kzk
ei(m′−m)αBn′j

(
±kz
k

)
B†nj

(
±kz
k

)
(6.33)

× e
ik±(rS0q

−rS0q′ )M(1)
n (r− rS0q)δ(k‖ − kin|| + Gp̃),

one obtains the incoming field at particle S0q that directly originates from the scattered field of
particle collection Sq′ . The spherical-wave amplitudes then read

a
S0qSq′
n =

8π

Auc

2∑

j=1

∑

p̃

∑

n′

b
S0q′
n′

kzk
ei(m′−m)αBn′j

(
±kz
k

)
B†nj

(
±kz
k

)
(6.34)

× e
ik±(rS0q

−rS0q′ )δ(k‖ − kin|| + Gp̃).

(6.35)

Compared with the definition of the coupling matrix (3.36)

a
S0qSq′
n =

∑

n′
W

S0qSq′
nn′ b

S0q′
n′ , (6.36)

I find

W
S0qSq′
nn′ =

8π

Auc

2∑

j=1

∑

p̃

1

kzk
ei(m′−m)αBn′j

(
±kz
k

)
B†nj

(
±kz
k

)
(6.37)

× e
ik±(rS0q

−rS0q′ )δ(k‖ − kin|| + Gp̃).

With this coupling operator, it is possible to evaluate the lattice sum (6.18) and to avoid the much
more complicated Ewald summation. However, the plane-wave formalism is in general only valid if
an infinite number of scattered wave vectors k± are taken into account for which k‖ = kin||+ Gp̃.
In comparison to the Ewald summation, the greatest reduction in computation time can be achieved
if ∆zSqSq′ � rS0q + rS0q′ , for which only propagating plane waves add a meaningful contribution
to the particle coupling.
In the simulation examples of chapter 7 thick scattering layers are treated. For these, I will often
make use of the alternative coupling operator, since most interactions between particle collections
have to bridge a large vertical displacement, ensuring a strong damping of evanescent contributions.

6.6 Layer mediated coupling

In section 6.2 I have excluded periodic particle arrangements that are located in a planar, layered
environment to simplify the introduction of the lattice sums and herewith the periodic solutions
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of the multiple scattering problem. Later, we have seen that the scattered field of a periodic
particle collection can be described by a discrete set of plane waves. These plane waves can
now be utilized to describe the indirect particle coupling between periodic particle collections
in a layered environment, following the transformation-translation-transformation scheme for the
indirect coupling between individual particles, presented in section 3.4.2.2.
Again, the formalism starts with the scattered field of particle collection Sq′ and its transformation
into plane waves (cf. equation (6.24))

ESq′ (r) =
∑

p

∑

n′
b
Spq′
n′ M

(3)
n′

(
r− rSpq′

)
(6.38)

=
2π

Auc

2∑

j=1

∑

p̃

∑

n′

b
S0q′
n′

kz,iSq′
kiSq′

eim′αBn′j

(
±
kz,iSq′

kiSq′

)

×Φ±j (κ, α; r− rS0q′ )δ(k‖ − kin‖ + Gp̃).

A translation to the layer anchor point riSq′
yields the plane-wave expansion

ESq′ (r) =
2π

Auc

2∑

j=1

∑

p̃

∑

n′

b
S0q′
n′

kz,iSq′
kiSq′

eim′αBn′j

(
±
kz,iSq′

kiSq′

)
e

ik±(riSq′
−rS0q′ ) (6.39)

×Φ±j (κ, α; r− riSq′
)δ(k‖ − kin‖ + Gp̃)

=
2∑

j=1

∑

p̃

g±S0q′ ,iSq′ ,j
(κ, α)Φ±j (κ, α; r− riSq′

)δ(k‖ − kin‖ + Gp̃),

with amplitudes

g±S0q′ ,iSq′ ,j
(κ, α) =

2π

Auc

e
−ik‖rS0q′ ,‖

kz,iSq′
kiSq′

∑

n′
b
S0q′
n′ eim′αβ±S0q′ ,n′,j

(κ). (6.40)

To match the formalism for individual particles, I have included β±(κ) (cf. equation 3.42) that
only contains the lateral translation between particle S0q′ and its layer anchor point.
In analogy to equations (3.21) and (3.22), the layer system response in layer iSq , in which collection
Sq is located, takes the form of

ER
Sq′

(r) =
2∑

j=1

∑

p̃

[
Φ+
j (κ, α; r− riSq

),Φ−j (κ, α; r− riSq
)
]

g

R+
S0q′ ,iSq ,j

(κ, α)

gR−
S0q′ ,iSq ,j

(κ, α)


 (6.41)

× δ(k‖ − kin‖ + Gp̃)
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with the plane wave amplitudes

g

R+
S0q′ ,iSq ,j

(κ, α)

gR−
S0q′ ,iSq ,j

(κ, α)


 =

2π

Auc

e
−ik‖rSq′ ,‖

kz,iSq′
kiSq′

∑

n′
b
S0q′
n′ eim′αL

iSq ,iSq′
j (κ)


β

+
S0q′ ,n′,j

(κ)

β−S0q′ ,n′,j
(κ)


 . (6.42)

Translating the layer system response from the layer anchor point riSq
to the central particle of

collection Sq and retransforming the plane-wave expansion into regular SVWFs (cf. equation
(2.39)) I find

ER
Sq′

(r) =
∑

n

a
Sq ,R,Sq′
n M(1)

n (r− rSq) (6.43)

with the spherical wave amplitudes

a
Sq ,R,Sq′
n = 4

2∑

j=1

∑

p̃

e−imαe
ik‖rS0q,‖ (6.44)

×
[
β+,†
S0q ,n,j

(κ), β−,†S0q ,n,j
(κ)
]

g

R+
S0q′ ,iSq ,j

(κ, α)

gR−
S0q′ ,iSq ,j

(κ, α)


 δ(k‖ − kin‖ + Gp̃)

=
∑

n′
W

Sq ,R,Sq′
nn′ b

S0q′
n′ .

Inserting equation (6.42), one obtains the elements of the layer system response coupling matrix

W
Sq ,R,Sq′
nn′ =

8π

Auc

2∑

j=1

∑

p̃

e
ik‖(rSq,‖−rSq′ ,‖

)

kz,iSq′
kiSq′

ei(m′−m)α (6.45)

×
[
β+,†
S0q ,n,j

(κ), β−,†S0q ,n,j
(κ)
]
L
iSq ,iSq′
j (κ)


β

+
S0q′ ,n′,j

(κ)

β−S0q′ ,n′,j
(κ)


 δ(k‖ − kin‖ + Gp̃)

that describes how the scattered field of particle collection Sq′ acts on the incoming field of
collection Sq mediated by the planar, layered environment.

6.7 Validation

To validate the implementation of the periodic T-matrix formalism and Ewald’s method to account
for infinite lattice sums, the transmittance of plane waves through periodic particle arrangements
is compared to a FEM reference solution.
In the here studied exemplary configuration, one cubic unit cell with a period of P = |a1| = |a2| =
1µm is randomly populated with 15 spheres of various sizes. Figure 6.4 shows the transmittance
for polar angles of excitation between 0° and 90°. Hereby, the downwards propagating, linear
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Figure 6.4: Transmittance of a plane wave through a periodic particle arrangement of 15 spheres per unit cell, for
polar angles of excitation between 0 and 0.5π, turning the x-polarized plane wave into z-polarization.
Comparison to an FEM reference solution for (a) particles embedded in a homogeneous air environment,
(b) particles embedded in a low refractive index material between a glass substrate and air.

polarized plane wave (λ0 = 500 nm) is varied from x-polarization (β = 0) to z-polarization
(β = π/2). Figure 6.4 (a) draws the comparison between the T-matrix solution (orange) and the
FEM reference (black, dashed) for particles in a homogeneous air environment. In figure 6.4 (b)
the particles of refractive index np = 2 are embedded in an ambient material of namb = 1.3 that
is surrounded by a glass substrate and air. An illustration of the configuration can be found as an
inset of figure 6.4 (b).
The two scenarios are chosen in a way that all previously introduced lattice sums for particle
configurations in and out of plane, the direct plane-wave coupling as well as the indirect layer
mediated coupling are applied. For both configurations, the T-matrix and FEM simulations show
excellent agreement, validating the implementation of the periodic T-matrix approach. However,
for highly oblique angles of excitation, a slight deviation between both techniques can be observed.
Its cause remains open, as I suspect numerical difficulties for both techniques under highly oblique
incidence. In case of finite element simulations, PMLs are known to reflect a considerable amount
of light back into the simulation domain for highly oblique incidence [177]. To improve their
performance, a variety of specialized techniques have been discussed [178], which are beyond
the scope of this work. In my example, I have applied a simple coordinate stretching within the
PML that adjusts the wavenumber kPML = k cos(β) by the polar angle of excitation. Without this
adjustment I have obtained non-physical results for β > π/4. In the other case, the evaluation
of the Ewald type lattice sums is numerically challenging once the second argument of the upper
incomplete Gamma function

Γ

(
1

2
− λ,−

Γ2
kin‖+Gp̃

4η2

)
= Γ

(
1

2
− λ,−

k2 − |kin‖ + Gp̃|2
4η2

)
(6.46)
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Figure 6.5: Absorbance of a plane wave exciting a periodic particle arrangement embedded in a waveguide, between a
glass substrate and air. The infinite particle extend prevents the formation of wave-guided modes.

approaches zero. For highly oblique incidence (|kin‖| ≈ k), the exponential growth in the upper
incomplete Gamma function can thus lead to numerical overflow [179, 180].

Besides the comparison with external software, a test of energy conservation can verify the
consistency of a simulation result and therefore is a powerful tool to rule out errors in complex
software. For this purpose, the far-field balance of any lossless, exemplary configuration can be
reviewed. The absence of loss, i.e., only non-absorbing material and a layer structure that does not
support wave guiding, is required to prevent a mismatch in the far-field balance.
The example discussed in figure 6.4 meets both these conditions and therefore would be a suitable
exemplary configuration. However, I would like to emphasize that for infinite periodic particle
arrangements incorporated into a wave guide structure, the formation of wave guided modes can
be prevented and hence, also allows to test the conservation of energy.
To illustrate the suppression of waveguide modes in a wave guide structure with an infinite periodic
particle arrangement, the exemplary configuration from figure 6.4 is altered, by replacing the
particles’ low refractive index ambient by a refractive index of namb = 1.7. In case of a finite
particle arrangement, light exciting this system, would in part be scattered into the waveguide,
leading to a mismatch in the far-field energy balance. In case of infinite periodic systems however,
the almost negligible absorbance of a plane wave (λ0 = 650 nm) exciting the structure under
various incident angles, shown in figure 6.5, confirms the suppression of waveguide modes and the
conservation of energy.

6.8 Mimicking disorder

As indicated at the beginning of this chapter, I have applied periodic boundary conditions to the
superposition T-matrix approach to mimic light scattering in large, disordered particle arrange-
ments. In doing so, I expect to reduce the computational effort to an acceptable level that allows
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to investigate light management structures in optoelectronic devices not only for a few distinct
wavelengths, but to derive a continuous wavelength dependency.
Applying artificial periodicities to disordered nanostructures has been widely practiced in the past.
In commonly applied effective medium approximations e.g., light scattering is taken into account
by a periodic, average scattering response of a heterogeneous medium’s sub-domain [181, 182].
Based on these coherent potential approximations [183], the medium’s disorder is packaged in a
cubic periodicity, allowing to utilize many of the available tools for crystalline band structures
[162, 163].
Aside from various effective medium approximations, many approaches to solve Maxwell’s equa-
tions have capitalized on artificial periodicities. With the possibility to comprise a particle en-
semble’s multiple scattering response in a single, collective T-matrix, the spherical-wave-based
formalism can be applied to approximate disorder in form of a two-dimensional lattice of an
average unit cell [184–186]. Comparable to this multipole approach, the optical response of het-
erogeneous media was also investigated [176, 187] on the basis of the periodic DDA [188, 189].
Independent of the method of choice, the goal of mimicking disorder raises two central questions:

To what extent does an artificial periodicity influence any observable quantity?

How does one minimize any detrimental effect of an artificial periodicity?

Considering a single simulation, these questions might be hard to assess as it is unclear how an
exact reference solution could be obtained. Therefore, it is in general necessary to perform a sample
averaging to rule out fluctuations in the scattering response of discrete particle arrangements.
Averaging the transmittance of plane waves impinging onto infinite, periodic porous polymer

layers, it has been shown that fluctuations between individual random realizations cannot explain
the severe wavelength dependency that was observed [2]. More likely, one can attribute the strong
wavelength dependency to lattice resonances that can be excited even if the periodicity measures a
multitude of the wavelength of interest. To visualize such lattice resonances, figure 6.6(a) shows the
L2-norm of the direct coupling operator between a particle and its own infinite periodic extent (cf.
equation (6.9)) as a function of periodicity and period-wavelength-ratio, for a lattice excited under
normal incidence. With an increasing particle separation, an exponential decay in the coupling
strength between individual particles is to be expected. Overall, such a decay can be observed for
two-particle configurations (black, dashed), as well as for finite (orange) and infinite grids (blue).
For distinct period-wavelength-ratios however, strong resonances in the particle coupling arise,
when the linear combination of the excitation’s in-plane wave vector and the reciprocal lattice
vector coincide with the wavenumber of excitation. Hereby, the radicand of the positive square root

Γkin||+Gp̃
=
√
k2 − |kin|| + Gp̃|2 (6.47)

causes singularities in the Ewald lattice sums. The formation of lattice resonances can also be
observed in finite particle grids (in this case 21 x 21 unit cells), for which the particle coupling is
computed as the direct sum of the translation addition operator, indicating that the singularities do
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Figure 6.6: (a) Comparison of the L2-norm of the coupling operator between particles within an infinite lattice, a
finite lattice of 21 times 21 unit cells and two distinct scatterers as a function of the particle displacement.
Embedded in vacuum, the particles (np = 2) have been excited by a perpendicular propagating plane wave
(λ0 = 550 nm) with respect to the particle displacement. Adapted from reference [2]. (b) Resonances in
the lattice coupling operator norm linearly shift with the wavelength of excitation.

not arise from a mathematical misfeature in the Ewald sum.
For a given angle of incidence, the linear relationship between wavenumber k and in-plane
wavenumber κ = |kin||| causes the lattice resonances to shift linearly with the wavelength of
excitation (see figure 6.6(b)). This opens up the possibility to fully circumvent the excitation of
lattice resonances throughout a wavelength sweep by linearly shifting the unit cell size with the
wavelength of excitation.
The effect of a constant period-wavelength-ratio P/λ on the average transmittance of plane waves
by a 2µm thick, periodic particle slab is shown in figure 6.7(a). The example compares a constant
period of 2µm with a constant period-wavelength-ratio of 9.65 and is taken from reference [2].
Varying the unit cell size to preserve P/λ clearly removes any strong variations in the measured
transmittance. The explicit ratio of P/λ has been chosen somewhat arbitrary but in clear distance
to the neighboring resonances at P/λ = 9.49 and 9.85. A comparison between wavelength sweeps
of different period-wavelength-ratios that are free of lattice resonances can be seen in figure 6.7(b).
Preserving the period-wavelength-ratio throughout a wavelength sweep requires to change the sim-
ulation model for each excitation wavelength. To ensure that the particle arrangements change
only slightly between the different wavelengths, I prepare the particle configuration only for the
largest unit cell needed. For different wavelengths of excitation only a sub-domain of this original
unit cell is considered. This process inevitably leads to small variations in particle density. To
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Figure 6.7: (a) Average transmittance of plane waves, impinging onto 2µm thick, periodic particle arrangements
of a constant period and a constant period-wavelength-ratio. (b) Comparison between various period-
wavelength-ratios. This figure was published in reference [2], © Elsevier.

minimize these, I randomly confirm or remove particles from the boundaries of the unit cell in each
simulation. The inset of figure 6.7(b) illustrates the largest and smallest wavelength-dependent unit
cell size of the exemplary simulation for P/λ = 7.5.

Angular dependence Besides the wavelength dependency, one is often interested in the scat-
tering response under various excitation angles. As the initial field’s polar angle of incidence
influences the square root (6.47) that allows us to detect lattice resonances, the questions arises,
whether their excitation can be avoided in a continuous angle sweep.
In the here discussed two-dimensional lattices, resonances arise for all possible linear combinations
of reciprocal lattice vectors Gp̃ that close the gap between the initial field’s wavenumber and its
in-plane wave vector. In a cubic lattice under normal incidence, this applies for every lattice point
(cf. equation (6.1)) for which

P

λ
=
√
n2

1 + n2
2 for n1, n2 ∈ Z. (6.48)

Altering the angle of incidence however, resonances of different lattice points intermix, leading to
a complex resonance pattern.
To illustrate the above, figure 6.8 shows the angular dependence of the coupling operator between a
particle and its own infinite periodic grid. The complex resonance pattern prevents the performance
of continuous angle sweeps that are free of lattice resonances, without making substantial and more
importantly uncontinuous modifications to the model’s periodicity between each polar angle of
excitation. However, for any period-wavelength-ratio a set of discrete polar angles can be found for
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Figure 6.8: (a) Comparison of the L2-norm of the coupling operator between particles within an infinite lattice and
two distinct scatterers as a function of the polar angle of excitation for period-wavelength-ratios of 1.5 and
7.5. Embedded in vacuum, the particles (np = 2) have been excited by a plane wave (λ0 = 550 nm). (b)
Dependence of the coupling operator norm over the polar angle of excitation and the period-wavelength-ratio.

which no resonances are excited. Hereby it can be possible to mimic light scattering by disordered
system for different angles of incidence via interpolation.

6.9 Numerical considerations

Choice of the separation parameter The separation parameter η splits the evaluation of the
infinite lattice sum into the short range particle interactions and the long range contributions,
evaluated in real and reciprocal space respectively. Its choice mainly determines the rate of
convergence of both sums, with low values favoring the evaluation of short range interactions
and vice versa. For two-dimensional lattices with unit cell sizes comparable to the wavelength of
excitation, the optimal choice for the convergence of both sums is η =

√
π/Auc [190, 191]. For

large unit cells however, the reciprocal lattice vectors decrease in size, leading to a negative real
part in the second argument of the upper incomplete Gamma function

Γ

(
1

2
− λ,

|kin|| + Gp̃|2 − k2

4η2

)
(6.49)

that is applied in the long range lattice sums (6.13) and (6.20). The exponential growth of the
upper incomplete Gamma function with respect to a negative second argument rapidly causes a
numerical overflow. To prevent such, only a different choice of the separation parameter can limit
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Figure 6.9: Real part of the second argument of the upper incomplete gamma function for three different choices of the
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causes an exponential decay leading to numerical overflow in the upper incomplete Gamma function.
Regularized by a different choice, the argument can be limited by a lower bound. The effect is displayed for
three different unit cells of the infinite lattice sums.

the second argument’s absolute value.
For large unit cells, I will here apply a separation parameter of

η =

√
k2 − |kin|| + Gp̃|2

2 logC
(6.50)

that was suggested by Nečada et al. [174]. Proposed for high frequencies, which is in fact identical
to large unit cells, the constant C creates a lower bound for the second argument of the Gamma
function of (logC)2. The effect on the second argument for two choices of C in comparison
to the conventional optimal choice of the separation parameter is displayed in figure 6.9 for the
contribution of three different unit cells. With an increasing constant C, the convergence rate of
the long range lattice sums decays, but ensures an accurate evaluation.
For large angles of excitation however, the effect of a large unit cell is counteracted, yielding a
regularization of the Gamma function’s second argument unnecessary.

Numba implementation The simulation framework SMUTHI is a Python software package
that in case of large particle arrangements relies on CUDA-acceleration for an efficient, iterative
solving of the linear system of equations. For the solution of periodic particle arrangements no
solver scheme for a graphical processing unit (GPU) is available so far.
For now, the need of an iterative solver scheme does not strictly arise, since in comparison to the
non-periodic scattering ensembles only particle counts of multiple hundreds to thousands per unit
cell have been considered. The number of multipoles to describe such particle arrangements of
"moderate" size is in the range of what can be stored in the currently available main memories of
common working stations.
To still provide a time efficient solver scheme for the use case of periodic particle arrangements, a
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parallelization of the time-consuming Ewald summation on the central processing unit (CPU) that
is based on the Python library Numba has been implemented. Numba is a just-in-time CPython
compiler that allows to remain within Python instead of switching to low-level languages for a
better performance [192].
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7 Diffuse, white reflectance from
solar cells

This chapter illustrates the application of periodic boundary conditions in superposition T-matrix
simulations, introduced in chapter 6, to model light propagation in thick, volumetric scattering
layers. The presented example covers the wavelength and angular dependent reflection and ab-
sorption of a thin-film lead halide Perovskite solar cell. At first, the working principle of solar
cells and the arsing optical loss mechanisms are summarized. Addressing such, an overview of
typical light management tools for an improved energy conversion is given. Aside efficiency, light
management can also serve different objectives. This is illustrated by applying a porous polymer
film to the Perovskite solar cell to shape its visual appearance and to facilitate the building integra-
tion of photovoltaics. In addition to the diffuse, white cover layer, a pigment based approach that
facilitates wavelength dependent scattering is emphasized to compensate for the intrinsic color
appearance of the planar solar cell.

To proceed with an increasing independence of fossil fuels and to retain hope in limiting global
warming, solar energy has to cover a substantial share of the renewable energy mix. The success of
photovoltaics has been and remains largely driven by a reduction in cost and increased efficiencies.
However, further aspects like visual appearance gain importance as the technology’s integration in
existing urban landscapes becomes pivotal.
To emphasize the use of light management in photovoltaics, I will start with its working principle
and the accompanying optical loss mechanisms. For this purpose, I refer to the comprehensive
description of various solar cell technologies and the involved physics that can be found in reference
[193].

7.1 Working principle of solar cells

Solar cells convert light directly into electrical power utilizing the internal photoelectric effect. In
this process, an incoming photon of energy Eph that exceeds the band gap Eg of a semiconductor
is absorbed. Photons that cannot insert enough energy to overcome the band gap are not absorbed
and hence, are transmitted through the absorber. In case of absorption, a bound electron-hole
pair is formed, called exciton. Before the bound electron-hole pair recombines, it needs to be
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Figure 7.1: Band diagram of a p-i-n junction in contact, close to open circuit conditions. Illuminated through the hole
transport layer, the splitting of quasi Fermi levels drives the separation of charges. Different band gaps of
the transport and absorber layers block the collection of minority charge carriers at the respective electrodes.

separated which allows the collection of charge carriers. To promote the separation of charges, the
basic active layers of a solar cell usually consist of a p-n homojunction, where two layers of the
same intrinsic semiconductor are doped with donator and acceptor atoms respectively. The n-type
material is overloaded with electrons, raising its Fermi energy EF towards the energy level of the
conduction band Ec. In contrast, a lack of electrons in the p-type material decreases the Fermi
level, moving it closer to the energy level of its valence band Ev.
In contact, the two materials form a space charge region with an electric field counteracting the
diffusion of majority carriers in the p- and n-type material towards the opposing side. As a result,
an equilibrium state is reached with a constant Fermi energy throughout the p-n junction.
Under illumination, the large number of generated negative charges requires the Fermi level to
be close to the conduction band. Simultaneously, the large number of generated positive charges
enforces a Fermi level close to the valence band. As a result, the Fermi level splits into quasi Fermi
levels for electronsEF,e and holesEF,h, driving the separation of charge carriers into the conduction
band and valence band that now can be collected at the respective electrodes. Once separated, all
absorbed energy that exceeds the absorber’s band gap is rapidly lost to thermalization.
Besides the basic p-n junction, p-i-n heterojunctions are commonly applied that prevent charge
carriers to flow towards the wrong electrodes. This is achieved by an intrinsic absorber that is
surrounded by an n-type electron transport layer (ETL) and a p-type hole transport layer (HTL)
(cf. figure 7.1). Due to a difference in band gap between the absorber and the charge transport
layers, p-n like membranes are formed on both sides of the absorber, blocking the minority charge
carriers [193].
A typical model to describe the electric characteristics of a solar cell is a two-diode model (figure
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Figure 7.2: (a) Two-diode model of a solar cell. The generated photo current Iph flowing into a load is limited by
internal recombination, material defects and ohmic losses. (b) Typical IV -characteristic of a solar cell
under illumination.

7.2(a)). Connecting the solar cell to an external load, the net current I resulting from the generated
photo current Iph is limited by internal recombination due to defects in the crystal lattice or dopants
as well as leakage currents caused by shunts in the solar cell stack and ohmic losses within the solar
cell and its connection with the load. Taking all these losses into account, the IV -characteristics
can be written as [193]

I = Iph + IS1

(
e

q(V−IRs)
kBT − 1

)
+ IS2

(
e

q(V−IRs)
2kBT − 1

)
+
V − IRs

Rp
. (7.1)

Here, IS1 and IS2 denote the saturation currents in diodes D1 and D2, q the elementary charge of
an electron, kB the Boltzmann constant and T the temperature. A typical solar cell IV -curve is
shown in figure 7.2(b). Under illumination, the diode-like behavior of a solar cell is shifted towards
negative photo currents. The shift results in a negative short circuit current ISC and a positive open
circuit voltage VOC and thus the maximum power point (MPP) of a solar cell is located in the fourth
quadrant of the IV -plot. At this working point, the maximal output power Pmax is generated with
a power conversion efficiency (PCE) of

PCE =
Pmax

Pin
=
VMPP IMPP

Pin
. (7.2)

With its MPP deviating from the ideal ISC and VOC, the efficiency of power conversion of a specific
solar cell is limited to a fraction of the incoming power. To maximize the photo current, thicker
absorber layers can yield larger short circuit currents until the diffusion length of the charge carriers
is reached, but limit the open circuit voltage. In addition, the choice of material, and herewith its
band gap, poses an upper limit of the spectrum that can be absorbed but determines the electric
potential between electrons and holes that can be harnessed. Assuming infinite mobility of charge
carriers and hereby a lossless extraction, the upper limit of a single-junction solar cell as a function
of the absorber band gap has been derived by Shockley and Queisser [194].
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7 Diffuse, white reflectance from solar cells

7.2 Optical loss mechanisms and light management

Besides the aforementioned electrical loss mechanisms and the intrinsic limit linked to the absorber
band gap, a significant amount of incoming light is not harvested in the absorber layer due to different
optical loss mechanisms.
The largest share of optical loss can be attributed to reflections that occur at any layer interface
within the solar cell stack, but most importantly at the glass-air-interface between the cell and its
environment. Under normal incidence, the Fresnel coefficients (cf. equations (3.3) and (3.5)) yield
a reflectance of 4 % at the outer interface for nair = 1 and nglass = 1.5. With increasing incident
angle these reflection losses drastically increase. Under realistic conditions, solar panels have to be
operated under a wide range of incident angels, yielding a reduction of reflection losses detrimental.
Aside reflection losses, parasitic absorption can take place in the transport layers and electrodes
which does not contribute to the power generation. While parasitic absorption mainly depends on
the choice of materials and cannot be fully prevented, a proper choice of layer thicknesses ensures
that the center of the absorption profile coincides with the center of the absorber layer [195].

To prevent optical losses, a variety of different light management techniques and structures have
been applied, taking the special needs into account that arise from the different available single-
and multi-junction solar cells based on silicon, as well as thin-film technologies like CIGS, organic
solar cells or Perovskites. A comprehensive overview can be found, e.g., in reference [196]. Here,
I would like to point the reader only to a few examples addressing antireflection coatings, external
micro- and nanotextures, as well as internal diffraction gratings and scattering layers.

• To suppress reflections at the air-substrate-interface, a layer with an optical thickness of
one quarter wavelength can be coated on top of the substrate. If the refractive index of the
antireflection coating matches

nARC =
√
nair nsub, (7.3)

zero reflection is enabled by destructive interference. Due to a lack of materials that match
the necessary refractive index around 1.23, with respect to most common substrates, the
deposition of nanoporous layers can decrease the effective refractive index. Applying a
porous layer of magnesium fluoride (MgF2) onto a silica (SiO2) substrate, a reflectance of
1 % was achieved between 500 nm and 800 nm under normal incidence [197].

• Inspired by nocturnal insects, arrays of tapered sub-wavelength pillars, as they are found
in moth eyes, have been replicated [198] to obtain an effective medium with a continuous
refractive index gradient between substrate and air. The optical impedancematching allows
to suppress reflections over a broad visible range and up to highly oblique incident angles
[199].

106



7.3 Building integrated photovoltaics

• Besides the suppression of reflection losses, light management micro-textures can also
increase the average optical path length within the active layers, promoting absorption. For
this purpose, the substrate surface is textured with micrometer-sized pyramidal [200] or
conical structures [27] that change the direction of propagation of incident light. In addition,
the retro-reflective properties of these structures trap light within the solar cell, which is the
case due to an increase in propagation angle upon transmission into the substrate.

• Adapting the growth conditions or by chemical etching, the transparent conductive oxides,
e.g., doped zinc oxide (ZnO), functioning as a top electrode, can be textured with a random
nanostructure to scatter light into wave guided modes of thin-film solar cells [201]. To
prevent the modification of the actual solar cell stack, the random nanotextures can also be
replicated onto the glass substrate [202].

• In combination with antireflection coatings, the optical path length within silicon thin-
film solar cells can be strongly increased by internal diffraction gratings [203] as well
as photonic crystals [204] that are directly imprinted into one of the transport layers. In
contrast to the previous examples, the active layer stack is directly modified, requiring special
layer designs.

• In organic solar cells, metallic and dielectric scattering particles have been incorporated
into the absorber as well as the transport layers and transparent electrodes. While metallic
particles can enhance the absorption by both a strong field enhancement due to the excitation
of surface plasmons [205] and an average optical path enhancement due to strong scattering
[206], dielectric nanoparticles do not introduce additional parasitic absorption [207].

All here mentioned light management techniques have in common that an increase in optical
performance is achieved by a reduced reflection at the outer cell interface, and/or by a randomization
of the optical path upon diffraction or scattering. The focus on improved absorption comes with
no surprise, as the upper most prominent concern of photovoltaics is the economic efficiency of
renewable power generation and herewith its competitiveness.
In the following however, I will shift my focus towards white and colorful solar cells, where light
management introduces additional loss in order to provide a tailored appearance, rather than an
optimized power conversion.

7.3 Building integrated photovoltaics

To utilize the enormous surfaces of roofs, glazings and building facades of inhabited and urban
areas for the solar power generation, not only the power conversion efficiency, but also architectural
desires and safety concerns play a crucial role. Building integrated photovoltaic (BIPV) is meant to
replace the conventional building envelope, which presents the potential to significantly contribute
to the renewable power generation without dissipating additional space.
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7 Diffuse, white reflectance from solar cells

With its integration in roof tops, facades and semi-transparent glazings, also a number of different
challenges arise concerning environmental stability, durability and public acceptance [208]. From
an architectural perspective, some prefer a clear visual recognition of the photovoltaic system, while
others have a strong demand for a discreet hiding of the solar modules [209]. To meet these desires,
photovoltaic modules have to mimic the conventional look of building materials, which requires
a large flexibility in visual appearance. In that sense, BIPV has to cover three key aspects: the
tunable color, its angular stability, and the suppression of strong, specular reflection.

7.3.1 White and colored solar cells

To customize its visual appearance and hereby addressing one of the key purchase criterions for
solar modules [210], its spectral dependent reflectance typically has to be altered. This means, that
the incident radiation is on purpose reflected in part and therefore is not available for absorption.
To introduce such a customized loss channel, various concepts exist. One way is to alter the
multi-layered antireflection coatings in order to obtain control over the wavelength dependent
transmittance [211]. The thin-film interference in such a distributed Bragg reflector allow a precise
control of the band pass transmittance. However, it influences the underlying solar cell stack and
requires customized optimization of the solar cell designs. Similarly, colored solar cells relying on
photonic crystals [212, 213] and diffraction gratings [214] have been applied but cannot preserve
color appearance for a wide range of incident and observant angles. Contrary to such approaches,
the color of a solar cell can also be influenced by color conversion materials that downshift UV
radiation into the visible [215]. Hereby, no additional reflection losses are introduced and the
power conversion can even benefit partly from the converted emission.
The most prominent and desired color for building facades is white in all its variants. However,
its realization requires a broad reflection over the full visible spectrum which is counter-intuitive
to the working principle of solar cells [216]. Hence, a careful balance between reflectance and
transmittance of the visible spectrum is necessary to preserve any meaningful absorbance, unless
the solar cell absorption is shifted towards infrared irradiance [217].

In the following, I will investigate the potential of attaching an external porous polymer film on top
of a solar cell to provide a tunable, broadband white reflectance, without altering the underlying
solar cell stack. To investigate the solar cell performance over the full visible spectrum and various
incident angles, I will apply periodic boundary conditions (introduced in chapter 6) to the multiple
micrometer thick porous networks, which are mimicked by a random distribution of spherical air
voids in a polymer host. The exemplary simulations serve as an illustration for the improved
performance of T-matrix simulations that rely on periodic boundaries. With a strong decrease in
individual simulation time, the method’s scope is strongly broadened, enabling thick, volumetric
scattering layers as well as the investigation of their spectral and angular dependence.
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7.4 Perovskite solar cell

7.4 Perovskite solar cell

To investigate the potential of light scattering by porous polymer films as a light management layer
for white solar cells, I start with a planar Perovskite solar cell stack, depicted in figure 7.3. The
shown n-i-p structure is similar to the wide-bandgap, double-cation Perovskite solar cells fabricated
in our group [218]. The layer sequence and the respective layer thicknesses (summarized in figure
7.3) have been provided by Raphael Schmager. To utilize the available refractive index data that is
provided in reference [219], I have replaced the Perovskite composition with the similar Perovskite
Cs0.17FA0.83Pb(Br0.17I0.83)3. Further refractive index data of the ITO electrode can be found in
reference [220], for the tin oxid (SnO2) ETL and the spiro-OMeTAD HTL in [221] and the gold
electrode in [222].
In what follows throughout this chapter, I will only consider light impinging onto the thin-film solar
cell stack that is already propagating within the poly(methyl methacrylate) (PMMA) substrate,
which will later function as the polymer host of the porous network. Hereby, one neglects
any reflections at the air-substrate-interface that in practice would anyhow be treated by one of
the antireflection strategies summarized in section 7.2. This simplification also circumvents the
necessity to treat the optically thick substrate by means of geometrical optics that would split each
simulation into a two-step process in which the thin-film stack’s BRDF would be required for each
wavelength. I consider this to be justified in order to focus onto the spectral dependent absorbance
and reflectance by the thin-film solar cell stack in combination with light scattering by thick, porous
networks, rather than to comprise the system in all its complexity at once.
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Figure 7.3: Investigated n-i-p Perovskite solar cell architecture.
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Figure 7.4: (a) Spectral dependent absorbance and reflectance of the planar Perovskite solar cell under normal incidence.
(b) Color appearance of the planar Perovskite solar cell illuminated by the standard illuminant D65 in x, y
color coordinates of the CIE 1931 chromacity diagram and in sRGB.

7.4.1 Visual appearance

The spectral dependent absorbance (green) and reflectance (red) of the planar Perovskite solar
cell under normal incidence is shown in figure 7.4(a). Subtracting any parasitic absorption in the
electrodes and transport layers that does not contribute to the power generation, the absorbance
within the Perovskite layer is depicted in black. Below the Perovskite’s band gap of 1.62 eV [219]
most light is reflected, while irradiation below a wavelength of 765 nm is strongly absorbed, leading
to the typical dark appearance of the solar cell.
To characterize the color appearance of the investigated solar cells, I weight the visible reflectance
spectra with the spectrum of the CIE standard illuminant D65 [223] and the color matching
functions x(λ), y(λ), z(λ) [224] to obtain the tristimulus

X =
1

N

∫ 780 nm

380 nm
R(λ)SD65(λ)x(λ)dλ, (7.4)

Y =
1

N

∫ 780 nm

380 nm
R(λ)SD65(λ) y(λ)dλ, (7.5)

Z =
1

N

∫ 780 nm

380 nm
R(λ)SD65(λ) z(λ)dλ, (7.6)

with the normalization factor

N =

∫ 780 nm

380 nm
SD65(λ) y(λ)dλ. (7.7)

110



7.5 Porous polymer films

Then, the color coordinates of the CIE 1931 chromacity diagram read

x =
X

X + Y + Z
, y =

Y

X + Y + Z
. (7.8)

For the yellow reflectance of the planar Perovskite solar cell the color coordinates measure (x, y) =

(0.4258, 0.4800), as depicted in figure 7.4(b). However, the reduction of the three-dimensional
color space into a two-dimensional diagram removes the information about the color’s lightness,
rendering it impossible to mimic our visual perception of the measured reflectance. To obtain a
visual impression of the theoretical color appearance, the reflectance is also displayed in sRGB color
coordinates. The conversion between the CIE XYZ coordinates and sRGB has been performed
according to reference [225].
For the later comparison of different broadband, "white" reflections with only small variations in
XYZ and RGB color coordinates, I will also make use of the CIE LAB color space. Originally
introduced to obtain a uniform color space, in which a change in color perception is represented in
a comparable shift in color coordinates, the quantity L∗ represents the color’s lightness between
0 (black) and 1 (white), a∗ the relative ratio between green and red contributions (negative values
indicate a green surplus) and b∗ corresponding to the ratio between blue and yellow (positive
values represent a blue depletion). The respective conversion between color spaces is specified in
reference [226].
In case of the planar solar cell the coordinates measure (L∗, a∗, b∗) = (31.69,−4.68, 35.79),
indicating a relatively dark appearance with a decent balance between green and red and clear
surplus of yellow compared to blue.

7.5 Porous polymer films

To obtain a white, diffuse and in the ideal case excitation angle independent reflectance, I will
investigate light scattering by porous polymer films that are directly attached to the planar Perovskite
solar cell stack.
Such porous films consist of a polymer host medium that is riddled by a random network of nano-
and micro-sized air bubbles. In recent years, polymer matrices have received a lot of attention
as a possible substitute of conventional white pigments. Due to its strong light scattering, low
cost fabrication and chemical and thermal stability, the most prominent white pigment, namely
titanium dioxide (TiO2) nanoparticles, has replaced almost every other industrial relevant pigment
for the production of white plastic packaging, coatings, paints, cosmetics and even toothpaste [227].
Nonetheless, the use of TiO2 raises an increasing number of concerns, as the eco-friendliness of
its energy intensive production and the therewith arising by-products is in question [228] and has
been related to health issues [229].
Providing a similar white appearance, pigment-free polymer foams are regarded as an inexpensive
and easily recyclable alternative. Mechanically stable, yet flexible, such polymer foams could
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(a) (b)

Figure 7.5: (a) Micro-CT reconstruction of a porous network enclosed within a PMMA sphere of a 30µm radius. The
particle size distribution has been analyzed over the blue volume that has been mapped with high resolution.
(b) SEM image of a porous polymer film.

replace TiO2 in plastic packaging and cosmetics [230], but also in optoelectronic devices like solar
cells, where diffuse white back reflectors can be used for light management purposes [20, 231].
One strategy to obtain porous polymer films is supercritical carbon dioxide (CO2) foaming. In
a first step, the polymer is saturated with CO2 under constant pressure and temperature. While
the CO2 concentration increases, the glass transition temperature of the polymer decreases; the
polymer becomes viscous. By a rapid pressure drop and due to the comparatively slow decaying
CO2 concentration a supersaturation of the polymer host is caused and nucleation occurs. Not
soluble in the polymer host anymore, the CO2 escapes into the nuclei, which grow into pores. As
the CO2 concentration decreases, the glass transition temperature of the polymer host rises again
and hence solidifies [232]. A precise control of pressure and temperature throughout the foaming
process allows to control size and density of the porous network [38], which hence can be tailored
to match the desired optical properties.
Within our group, supercritical CO2 foaming has been utilized, e.g., to obtain porous polymer
networks that support the color conversion of QD films [233] or as a semi-transparent reflector to
improve the energy conversion of organic solar cells [234].
Besides the described supercritical foaming procedure, porous polymer films can also be fabricated
by phase separation [28, 230] or via electrospinning [235], each providing porous disorder but
varying topologies.

For the modeling of light scattering by porous polymer films, I recall on pore size distributions
and densities that have been obtained via micro-CT measurements performed by Cristine Santos
de Oliveira on porous networks enclosed within PMMA spheres. A three-dimensional micro-CT
reconstruction of such a pore distribution is displayed in figure 7.5(a). All investigated samples have
been fabricated by Luisa Borgmann, who also provided the SEM image of a porous polymer film
shown in figure 7.5(b). Depending on the fabrication parameters, namely pressure and temperature,
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(a) (b) (c)

Figure 7.6: Graphical illustration of one unit cell of the Perovskite solar cell and a porous polymer film on top. The pore
radii follow a Gaussian distribution around 120 nm with a standard deviation of 30 nm. (a) Film thickness
of h = 5µm and a pore density of ρ = 10 % (v/v), (b) h = 10µm, ρ = 10 % (v/v), (c) h = 5µm,
ρ = 15 % (v/v).

pore densities between 3 % (v/v) and 15 % (v/v) and size distributions with average pore radii
between 90 nm and 150 nm and standard deviations between 30 nm and 45 nm have been reported.
For the here presented simulations, I restrict myself to pore sizes that follow a Gaussian distribution
around 120 nm with a standard deviation of 30 nm and different film thicknesses h and pore
densities ρ. A graphical illustration of three exemplary porous networks can be found in figure
7.6. Shown is a single unit cell with a period of P = 4250 nm that correspond to an excitation
vacuum wavelength of λ0 = 850 nm in a non-dispersive polymer host of namb = 1.5 and a period-
wavelength-ratio of P/λ = 7.5. The importance of the period-wavelength-ratio on the optical
mimicking of disordered structures by artificial periodicities is described in section 6.8. To cope
with such unit cell size, the separation parameter η that splits the lattice sums into its short- and
long-range contributions has been chosen according to equation (6.50) with constant C = e3.
Each particle configuration has been generated by random sequential addition of particles to the
target volume until the desired volume filling fraction is reached. This procedure however has
only been done for the largest investigated unit cells. For smaller wavelengths of excitation, the
fixed period-wavelength ratio results in a decreased period size. In this case, only a subdomain of
the largest unit cell has been considered. Inevitably, this procedure leads to small fluctuations in
the particle density between simulations of different excitation wavelengths. To minimize such,
particles that intersect the unit cell boundaries have been verified or removed from the simulation
model in random order. As a result, the simulation model of the identical parameter set but slightly
varying excitation wavelengths only exhibit small variations, which already allows for consistent
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simulation results without performing sample averaging over multiple particle configurations.
Although these unit cells contain more than 2000 individual particles, small deviations between
individual configurations are to be expected. Each simulation result will be averaged over 6 random
configurations, half of which are excited by either a TE- or a TM-polarized plane wave.

7.6 White reflectance

The simulated wavelength dependent reflectance and absorbance of light impinging onto the Per-
ovskite solar cell under normal incidence are summarized in figure 7.7 for three different parameter
sets of thickness h and pore density ρ of the porous polymer substrates (illustrated in figure 7.6)

• (1) ρ = 10 % (v/v), h = 5µm,

• (2) ρ = 10 % (v/v), h = 10µm,

• (3) ρ = 15 % (v/v), h = 5µm.

The solar cell’s average reflectance as a function of excitation wavelength under normal incidence
is shown in figure 7.7(a). With increasing wavelength, the pores’ scattering cross-section contin-
uously decreases, leading to a slow, approximately linear decrease in reflectance over the visible
spectrum. This trend is in line with measured data from comparable porous films [38]. Slightly
varying between each individual random realization of the porous network, the results’ standard
deviations are denoted by red corridors. As expected, both an increase in film thickness or pore
density increases the observed reflectance, which in principle allows to continuously vary the
film’s transparency towards opaqueness. For all three scattering samples, the reflectance of the
underlying, planar device does not overlay the measured reflectance spectra, indicating a disguise
of the solar cell.
The absorbance in the Perovskite absorber layer is shown in figure 7.7(b) in black. Only slightly
decreased from the total absorbance (green), the results show that light scattering does not favor any
parasitic absorption in the electrodes or transport layers. The introduction of additional reflection
loss and the herewith reduced possible energy conversion is hence fully utilized for the solar cells’
color appearance. I would like to note that the simulations indicated an absorbance in the Perovskite
layer even above bandgap (λ0 > 765 nm) of about 12 % for solar cells with a porous substrate.
This measured absorbance can be attributed to light, scattered into the waveguide, that is formed
by the Perovskite layer and the surrounding SnO2 and spiro-OMeTAD of lower refractive indices.
Infinitely propagating within the waveguide, the scattered light is missing in the energy balance
between light entering and dissipating on both sides of the absorber film and hence is attributed to
its absorbance. For the planar reference this is not the case, since it is impossible to couple light
into a waveguide by refraction.
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Figure 7.7:Wavelength dependent reflectance (a) and absorbance (b) of a Perovskite solar cell attached to porous
polymer substrates of different pore densities ρ and foamed film thicknesses h, in comparison to the planar
reference device. (c) Color appearance of the solar cells illuminated by the standard illuminant D65 in x, y
color coordinates of the CIE 1931 chromacity diagram and in sRGB. (d) Comparison of lightness and color
appearance in the CIE LAB color space.

ρ (%(v/v)) h (µm) Y x y L∗ a∗ b∗

planar Perovskite solar cell 0.0695 0.4258 0.4800 31.69 −4.68 35.79

White porous polymer

(1) 10 5 0.2904 0.3119 0.3329 60.83 −1.57 0.89

(2) 10 10 0.4469 0.3078 0.3284 72.69 −1.78 −0.88

(3) 15 5 0.3494 0.3027 0.3270 65.70 −3.12 −1.85

SiO2 - ZnS core-shell nanoparticles

(4) 5 5 0.0947 0.3092 0.3315 36.88 −1.43 0.142

(5) 10 10 0.1669 0.2383 0.2604 47.87 −3.45 −23.03

Table 7.1: Color coordinates of the CIE XYZ and CIE LAB color space of measured reflectance spectra, weighted
by the spectrum of the standard illuminant D65 for the planar Perovskite solar cell and attached to porous
polymer substrates or scattering layers containing SiO2 - ZnS core-shell nanoparticles.
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7 Diffuse, white reflectance from solar cells

In figure 7.7(c) the color appearance of the reflected spectra stemming from the Perovskite solar
cell attached to the three different porous films under illumination with the standard illuminant D65
is illustrated in x, y-coordinates of the CIE 1931 chromacity diagram and in sRGB. To distinguish
between the different lightness of the reflectance spectra, CIE LAB color coordinates are displayed
in figure 7.7(d). The respective values are summarized in table 7.1. With the x, y-color coordinates
only slightly varying from the white point (Yw, xw, yw) = (1, 0.33, 0.33), all three samples provide
a white reflectance, but exhibit a slight blue shift. Dependent on the ratio between absorbance
and reflectance, the samples exhibit different lightness, creating varying shades of white. The here
presented theoretical color coordinates of reflectance spectra, arising from a Perovskite solar cell
with a porous polymer film, are in good accordance with experimental data of Perovskite solar cells
with an inkjet-printed, particle based white cover layer [236]. A white reflectance with a lightness
of L∗ ≈ 65 was found to fully disguise the underlying Perovskite solar cell and was further utilized
as an intermediate layer to achieve other vivid colors.

7.6.1 White reflectance via blue scattering

Besides a broadband white reflectance from a porous polymer film or conventional white pigments,
a neutral color appearance of the Perovskite solar cell can also be achieved by balancing out the
reflectance spectra of the planar device. The here discussed exemplary device exhibits a yellowish
appearance due to a lack of blue contributions in the reflectance spectrum (see section 7.4). Similar
to white light emission, obtained from a blue LED in combination with a yellow phosphor, the
yellow reflectance of the Perovskite solar cell can be complemented by an additional blue reflection.
For this purpose, I replace the porous network in the PMMA substrate with silica (SiO2

1) - zinc
sulfide (ZnS) core-shell nanoparticles. Due to its relatively high, almost constant refractive index
(cf. figure 7.8(a)) throughout the visible spectrum, ZnS is known as a typical white pigment [237]
that exhibits almost negligible absorption between 400 nm and 650 nm. Today, ZnS has been
mostly replaced as a white pigment by TiO2 [238]. Coated onto SiO2 nanoparticles however, the
SiO2 - ZnS core-shell particles exhibit the here desired blue scattering properties. A good size
control during the fabrication process has been demonstrated for a wide range of core sizes and shell
thicknesses [239], which makes SiO2 - ZnS an ideal candidate for a tailored scattering response
by possibly varying both, core and shell radii. Figure 7.8(b) shows the spectral dependency of the
normalized scattering efficiency of SiO2 - ZnS core-shell particles of 120 nm radius embedded in
homogeneous host environment of namb = 1.5. With decreasing shell thickness ds, the particle’s
scattering efficiency exhibits a blue shift. To illustrate the particles dominant blue light scattering,
its scattering efficiency is displayed in the respective sRGB color for an excitation with the standard
illuminant D65. With increasing shell thickness, the blue scattering slowly shifts towards the
whitish response of solid ZnS nanoparticles.

1 The in-house measured refractive index data of thin film SiO2 have been provided by Adrian Mertens.
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Figure 7.8: (a) Real valued refractive index and extinction coefficient of ZnS [240] and SiO2. (b) Normalized scattering
efficiency of SiO2 - ZnS core-shell nanoparticles embedded in an ambient medium of namb = 1.5 with a
radius of 120 nm and varying ZnS shell thicknesses ds between 10 nm and 50 nm.

Figures 7.9(a) and (b) display the reflectance and absorbance spectra of the Perovskite solar
cell attached to scattering layers of SiO2 - ZnS core-shell nanoparticles embedded in a PMMA
substrate. To compensate for the lack of blue reflection by the planar Perovskite cell, a particle
density of 5 %(v/v) randomly dispersed in a 5µm thick film is sufficient. Compared to the planar
device, only a slight decrease in absorbance below 550 nm has to be sacrificed for a strong shift
in color appearance towards white (see figure 7.9(c)). Above 550 nm negligible light scattering
is observed and the device behaves similar to its planar pendant. Due to a small increase in total
reflectance its lightness only slightly increases, resulting in a dark gray appearance (figure 7.9(d)).
The respective color coordinates are summarized in table 7.1.
Further promoting scattering by a thicker or denser scattering layer shifts the device appearance
into the blue. Hereby, a significant increase in parasitic absorption within the scattering layer can
be observed, which hence is not utilized for the solar cell’s power conversion, nor for its visual
appearance.
While the approach is suitable to compensate for the intrinsic color of the planar device, one cannot
achieve a bright white reflectance. This renders the approach only suitable to achieve a neutral
color appearance, while preserving a good absorption efficiency.
Another drawback of the color-neutral reflectance obtained via blue light scattering is shown

in figure 7.10. While the broad white reflectance of the porous polymer film preserves a strong
reflection haze throughout the visible spectrum, the negligible light scattering of the core-shell
particles towards green and red excitation results in a strong specular reflection of the underlying
planar device. For building integration however, a suppression of specular reflection is highly
demanded to prevent interfering with traffic and an uncomfortable blinding of people.
The reflection haze has been derived as the fraction of diffuse reflectance outside a ±5° cone of
the specular reflection, with respect to the total reflectance, as illustrated in the inset of figure 7.10.
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Figure 7.9:Wavelength dependent reflectance (a) and absorbance (b) of a Perovskite solar cell attached to polymer
substrates doped with SiO2 - ZnS core-shell nanoparticles of different densities ρ and film thicknesses h,
in comparison to the planar reference device. (c) Color appearance of the solar cells illuminated by the
standard illuminant D65 in x, y color coordinates of the CIE 1931 chromacity diagram and in sRGB. (d)
Comparison of lightness and color appearance in the CIE LAB color space.
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Figure 7.11:Wavelength dependent reflectance (a) and absorbance (b) of a Perovskite solar cell attached to porous
polymer substrates of ρ = 10 %(v/v) and foamed film thicknesses h = 10µm (sample (2)), excited at a
polar angle of 0° and 21.5°. (c) Color appearance of the solar cells illuminated by the standard illuminant
D65 in x, y color coordinates of the CIE 1931 chromacity diagram and in sRGB. (d) Comparison of
lightness and color appearance in the CIE LAB color space.

7.6.2 Angular color stability

Besides the desired white reflectance, building integrated photovoltaics demands for the angular
stability of the solar cell appearance. As shown above, the porous polymer films provide a strong
reflection haze and therefore ensure that a moving observer does not witness strong shifts in the
device appearance.
Next, we have to ask ourselves how the solar cell’s visual appearance shifts over the course of a
day, while the relative position of the sun moves across the sky. To answer this question, I alter the
polar angle of excitation of the Perovskite solar cell that is attached to a porous polymer film with
a pore density of ρ = 10 %(v/v) and foamed film thicknesses of h = 10µm (identical to sample
(2), discussed in figure 7.7).
Figure 7.11 summarizes a minor increase of the reflectance for a polar angle of excitation of

θ = 21.5°. This increase can be attributed to an increased average optical path length within the
porous film compared to normal incidence. The increase in optical path length is almost inde-
pendent of the wavelength of excitation and hence, the overall spectral dependence of reflectance
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Figure 7.12: Polar incident angle dependence of (a) the reflectance and absorbance, and (b) the normalized reflected
irradiance of a Perovskite solar cell, attached to porous polymer substrate (sample (2)) at three different
wavelengths

remains unchanged. Therefore, only a small increase in lightness can be observed but no significant
color shift.
To further investigate the dependence of the angle of incidence on the solar cell reflectance, I

will restrict myself to three wavelengths of excitation, namely 450 nm (blue), 575 nm (green) and
700 nm (red). This is sufficient, as no major difference in the scattering response of air voids in a
non-dispersive medium have to be expected throughout the visible spectrum. Figure 7.12(a) shows
a continuous decrease in absorbance within the Perovskite layer that results from an increased
reflectance of the porous film with growing angle of incidence. As expected, the porous network
behaves similarly for all three considered wavelengths of excitation. From this I suspect without
proof that the white reflectance remains largely intact for all angles of incidence and that only the
sample’s lightness might change. To find out whether this is the case, one has to take the incoming
irradiance Ee into account that is the fraction of incoming radiant flux Φe per area, which scales
with the cosine of the polar angle of incidence. Figure 7.12(b) shows the normalized reflected
irradiance, which has been obtained as the reflectance, weighted with the cosine of the polar angle.
Although the fraction of reflected light increases with the polar angle of incidence, the irradiance
decreases, which leads to a somewhat stable amount of light that is reflected per area of the solar
cell for angles up to ≈ 40°. With a further increase of θ, the solid angle under which the solar cell
is illuminated strongly diminishes and eventually overtakes the increase in reflectance. As a result,
a solar cell attached to a porous polymer film is expected to show only small changes in visual
appearance throughout the day unless it is illuminated under highly oblique incidence.
I would like to note that the non-equidistant discretization of polar angles in figure 7.12 is the
result of the applied periodic boundary conditions, the choice of period-wavelength-ratio and the
necessity to avoid lattice resonances. For more information please see section 6.8. Moreover, the
data point at θ = 90° has not been calculated but was added for completeness, as it is given a
priori. Further, the considerations regarding incoming irradiance are not rigorous in a sense that I
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7.6 White reflectance

have not considered a change in the incoming irradiance spectra due the sun’s movement and the
therewith varying air mass coefficients. Nevertheless, I consider this to be justified, as it does not
further simplify the outer most constraint I have formulated in section 7.4, which states that only
light is considered which is already propagating within the substrate. This assumption of a perfect
antireflection coating already removed any angular intensity dependence of the incoming light and
was necessary to reduce this study to a bearable cost.
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8 Conclusions and outlook

The central objective of this work has been to strengthen the applicability of a superposition T-
matrix scheme for the optical modeling of disordered light management structures in optoelectronic
devices. Following this goal, I have modeled light extraction from OLEDs and light harvesting
in solar cells, but I have also worked on quantum dot light conversion [4] and particle-based
wavelength selective filter designs [1]. All these different applications in mind, the challenge has
been to adapt the existing framework to the variety of prevailing circumstances.

In this work, new insights have been gained in regard to:

Superposition T-matrix method for dense, nonspherical particle aggregates An alternative
formulation of the translation addition operator for SVWFs, based on an intermediate transforma-
tion into plane waves, allows to separate the propagating field contributions from the evanescent
plane-wave spectrum. Hereby, erroneous terms in the evanescent near-field can be removed from
the direct particle interactions. Doing so, the particle separation restriction of the superposition
T-matrix method can be neglected. High accuracy of the approach has been demonstrated for both,
volumetric aggregates of spheroidal scatterers and dense pillar structures on a substrate.

Nearfield of nonspherical scatterers Switching into a plane-wave representation of scattered
fields, not only the direct interactions between nonspherical particles in close vicinity can be
accurately described. Also the particle’s direct nearfield becomes accessible with good accuracy
down to the particle surface. Hereby, the series expansion approach becomes interesting for
the description of dipole emitters in direct vicinity of nonspherical scatterers and the design of
surface-enhanced Raman spectroscopy textures.

Low vs. high index planarized scattering layers The effect of low and high index planarization
on the extraction of light from a green OLED has been investigated for various filling fractions
and two different aspect ratios of scatterers. The results show that the high index planarization
does not necessarily outperform extraction layers with a low index planarization, even if a material
combination is found that allows for a strong refractive index mismatch between the scatterer and
the planarization layer. For oblique incidence, the high index scatterers show a broader scattering
response compared to their low index counterparts, especially promoting the extraction of substrate
modes.
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8 Conclusions and outlook

Periodic boundary conditions in T-matrix computations Ewald-type lattice sums to account
for particle interactions between planar, periodic particle grids distributed in three dimensions
have been integrated into the existing superposition T-matrix framework. With the introduction of
periodic boundary conditions, the open simulation domain boundaries can be closed, preventing
edge effects of the otherwise finite particle arrangements. A parallelized evaluation of the Ewald
lattice sums in conjunction with a grid-to-grid interaction scheme based on plane waves for periodic
distributions with a large vertical displacement enable the efficient modeling of light scattering in
very large three-dimensional unit cells that host thousands of arbitrary particles.

Mimicking disorder in periodic particle arrangements The effect of introducing an artificial
periodicity into an otherwise random particle arrangement has been investigated. Even for peri-
odicities much larger than the wavelength of interest, strong lattice resonances can be observed
for aligning combinations of periodicity, excitation’s wavenumber and incident angle. Avoiding
those resonances by a systematic adjustment of the artificial periodicity in accordance to a change
of excitation allows for the prediction of spectral and angular behavior of random, volumetric
scattering layers.

White solar cells for building integration The potential of porous polymer films to obtain
diffuse, white reflectance from solar cells has been investigated for their use in building integrated
photovoltaics. A precise control of the porous network morphology in terms of pore size and
density allows to gradually shift the reflectance spectra from dark gray to white. Attaching a
porous network onto the optimized solar cell does not promote parasitic absorption. As a result,
all incident light can either contribute to the power conversion or the device’s visual appearance.

SMUTHI The in this work described optical modeling techniques for dense nonspherical
particles and periodic particle arrangements are integrated into the existing framework and will be
released for free use in the publicly available software package SMUTHI [3].

8.1 Outlook

Besides questions that have been answered, some remain open and new ones have been raised.
Along these lines, I see the following opportunities for a continuation of this work:

Automated truncation criterion for plane-wave coupling The alternative formulation of
the translation addition operator for SVWFs based on an intermediate plane-wave expansion
enables superposition T-matrix simulations of large and dense aggregates of nonspherical particles.
However, an accurate evaluation of the direct particle interactions can only be ensured, if a precise
truncation of the evanescent plane-wave spectrum is performed. So far, an automated truncation
criterion based on a phenomenological formula is only available for individual scatterers that are
directly located on a substrate. It will be crucial to also derive such an automated criterion for
arbitrary pairs of particles so that the formalism can be widely adopted.
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8.1 Outlook

Comparison of new techniques Besides the plane-wave coupling formalism, a number of
different techniques (reviewed in section 4.7) are currently in development that allow to deal with
nonspherical scatterers in close vicinity. It would be interesting to perform an in-depth comparison
between the different approaches for various, typical application scenarios to identify the advantages
and disadvantages of each technique, which would allow an appropriate choice depending on the
task at hand. Thus, it might become apparent that in case of highly nonspherical particles, one of the
multi-source methods, such as the global polarizability matrix [110] or the multipole distribution
along a particle’s topological skeleton [111], are necessary. For less complex particles, but possibly
larger systems, the plane-wave coupling formalism (cf. chapter 4) or the multipole translation
scheme [109] could be sufficient but faster.

Periodic boundary conditions and internal excitation Periodic boundary conditions do not
only imply an infinite periodic extent of the particle arrangement, but also a periodicity in excitation.
This makes them particularly interesting for applications that are excited by an external plane wave.
However, also internal excitation by means of a periodic repetition of dipole emitters could be
realized by a decomposition of the periodic emission into upwards and downwards propagating,
discrete plane waves. Alternatively to the periodic dipole excitation it could also be possible to
consider only a single dipole and to enforce the periodicity by a Floquet transform [241]. For
this, one would first need to answer how this technique would translate to the here applied series
approach.

Iterative solver scheme The periodic particle arrangements considered in this work consist
of up to a few thousand scatterers. While already quite large, it is still possible to store the
system of linear equations in the main memory of common work stations, which allows for a direct
evaluation. However, the somewhat limited ratio between excitation wavelength and periodicity
results in a discrete angular distribution of the scattered far-field. To mimic the continuous far-field
pattern of disordered particle arrangements, significantly larger period sizes are required, which
further increases the number of unknowns. A lookup table, similar to the solution strategy for non-
periodic particle arrangements, would allow to interpolate the Ewald lattice sums from a discrete
set of precalculated grid displacements and enables an iterative solver scheme. Hereby, the use of a
graphical processing unit becomes feasible, which could significantly speed up the computations.
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A Wigner D-functions

To relate spherical vector wave functions in a rotated coordinate system (R) to those in the laboratory
coordinate system (L) of identical origin, the WignerD-functions are applied (cf. equation (2.37)).
With the Euler angles α, β and γ successively rotating the laboratory coordinate system into the
rotated coordinate system via the z, y′, z′-convention (cf. figure 2.4), the WignerD-functions read
[63]

Dl
mm′(α, β, γ) = (−1)m+m′eimα∆mm′d

l
mm′(β)eim′γ , (A.1)

with

∆mm′ =





1, m ≥ 0, m′ ≥ 0

(−1)m
′
, m ≥ 0, m′ < 0

(−1)m, m < 0, m′ ≥ 0

(−1)m+m′ , m < 0, m′ < 0.

(A.2)

For their construction, I make use of an iterative scheme of the Wigner d-functions presented in
Appendix B of reference [56]. The Wigner d-functions are defined by

dlmm′(β) =
√

(l +m)!(l −m)!(l +m′)!(l −m′)! (A.3)

×
∑

s

(−1)s
(cos β2 )2l−2s+m−m′(sin β

2 )2s−m+m′

s!(l +m− s)!(l −m′ − s)!(m′ −m+ s)!
,

where the sum is performed over all integer s that lead to non-negative faculties and β ∈ [0, π].
Their construction follows a recursion, with

dl+1
mm′(β) =

1

l
√

(l + 1)2 −m2
√

(l + 1)2 −m′2
(A.4)

×
(

(2l + 1)
[
l(l + 1) cosβ −mm′

]
dlmm′(β)

− (l + 1)
√
l2 −m2

√
l2 −m′2 dl−1

mm′(β)
)
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A WignerD-functions

and the starting points

dlmin−1
mm′ (β) = 0, (A.5)

dlmin
mm′(β) =

ξmm′

2−lmin

[
(2lmin)!

(|m−m′|)!(|m+m′|)!

] 1
2

(1− cosβ)
m−m′

2 (1 + cosβ)
m+m′

2 , (A.6)

with lmin = max(|m|, |m′|) and

ξmm′ =





1, form′ ≥ m
(−1)m−m

′
, form′ < m.

(A.7)

In the special case of m = m′ = 0, the Wigner d-function can be obtained from the Legendre
Polynomials

dl00(β) = Pl(cosβ). (A.8)
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B Plane of separation for
spheroidal particles

In section 4.2.1 I have introduced a formalism of a direct coupling operator for nonspherical particles
in close vicinity that is based on an intermediate plane-wave representation of the outgoing spherical
wave expansion. For a pair of particles that cannot be separated by a plane that is parallel to the
xy-plane of the laboratory coordinate system (cf. figure 4.3) the formalism demands to rotate the
particles into a coordinate system in which a horizontal plane of separation exists.
One strategy to find a plane of separation between particles with a convex surface shape is to
determine the points p and p′ on the surfaces of scatterers S and S′ that are closest to each other.
With these, the vector p′p is normal to the separation plane. Hence, one faces the problem of
finding p and p′, for which

∆2 =
(
p− p′

)T (
p− p′

)
with ∆ = |p′p| (B.1)

becomes minimal.

Here, I will present one possible procedure to determine these points for two spheroidal particles,
following the ideas presented in reference [242].
Let ÂS′ be the quadric of spheroid S′

ÂS′ =




a−2 0 0

0 a−2 0

0 0 c−2


 (B.2)

with the eigenvalues being the inverse square of the spheroid’s semi-half axes a and c that are
aligned along the x-, y- and z-axes of a Cartesian coordinate system. Then, a spheroid of arbitrary
orientation (rotated by Euler angles (α, β, γ) with respect to the aligned spheroid) is defined by

(r− rS′)
T AS′ (r− rS′) = 1, (B.3)

with the quadric of the rotated spheroid

AS′ = RT
α,β,γÂS′Rα,β,γ (B.4)
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Figure B.1: (a) To determine a plane of separation between two spheroidal scatterers, the surface points p and p′

are sought-for. (b) To simplify the three-dimensional minimization problem, a coordinate transformation
converts scatterer S′ into the unit sphere, centered at origin.

and Rα,β,γ being the rotation matrix of successive rotations according to the zy′z′-convention (cf.
figure 2.4).
The now presented formalism is based on the idea that in a transformed coordinate system, in

which one of the two spheroids can be represented by the unit sphere centered at origin, the problem
of finding p and p′ simultaneously reduces into finding a single point on the other spheroids surface
that is closest to the center of the coordinate system (illustrated in figure B.1).
I start with the Cholesky decompose of the spheroid’s quadric

LS′L
T
S′ = AS′ (B.5)

to perform the coordinate transformation of

r̃ = LS′ (r− rS′) (B.6)

that converts spheroid S′ into the unit sphere centered at origin

(r− rS′)
T AS′ (r− rS′) = 1 → r̃Tr̃ = 1. (B.7)

Under the same transformation, the quadric representation of spheroid S takes the form

(r̃− r̃S)T ÃS (r̃− r̃S) = 1, (B.8)
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with
ÃS = L−T

S′ ASL−1
S′ (B.9)

and
r̃S = LS′ (rS − rS′) . (B.10)

Looking for a point p̃ on the transformed spheroid of S, I rewrite equation (B.8) into

1 = (p̃− r̃S)T ÃS (p̃− r̃S) (B.11)
= (p̃− r̃S)T L̃SL̃T

S (p̃− r̃S)

= yTy,

where I have introduced ÃS = L̃SL̃T
S and

y = L̃T
S (p̃− r̃S) ,

p̃ = L̃−T
S y + r̃S .

(B.12)

Now, one can rewrite the minimization problem (B.1) in the transformed coordinate system and
utilize the properties of the unit sphere to find

∆̃2 =
(
p̃− p̃′

)T (
p̃− p̃′

)
(B.13)

= p̃Tp̃.

Inserting equation (B.12) into (B.13) one obtains

∆̃2 =
(
L̃−T
S y + r̃S

)T (
L̃−T
S y + r̃S

)
(B.14)

=
(
yTL̃−1

S + r̃T
S

)(
L̃−T
S y + r̃S

)

= yTL̃−1
S L̃−T

S y + 2r̃T
S L̃−T

S y + r̃T
S r̃S ,

which can be minimized, e.g., with a sequential least square algorithm to find y. Finally the
retransformation yields

p = LS′p̃ + rS′ (B.15)

on the surface of spheroid S that is closest to spheroid S′.
Once p is found it can be inserted into equation (B.1), which then has the form of (B.13) and hence
p′ can be determined with the same minimization procedure.
With this, one has found a plane of separation that can be used for the plane-wave coupling
formalism.
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C Normalization factor for Ewald
sums

The in section 6.3 specified lattice sums have been derived by Kambe for the case of SVWFs
in two-dimensional periodic lattices. In literature one can find various formulations that also
compensate a minor error in Kambe’s derivation. Due to their complexity, I have decided to not
add another notation that would explicitly fit to the here used normalization conventions. I rather
stick to the notation I was provided by Dominik Beutel and add a normalization factor Nm.
To find Nm I have compared all relevant definitions related to the spherical vector wave functions
used in this work that are based on reference [63] with the respective definitions in [173] based on
reference [243]. All differences in the normalizations can be traced back to the spherical harmonics
and the therein applied associated Legendre functions. Rewriting equations (2.27) - (2.29), I have
applied the spherical harmonics

Ylm(θ, ϕ) =

√
2l + 1

2

(l − |m|)!
(l + |m|)! P̃

|m|
l (cos θ) eimϕ, (C.1)

with
P̃ml (x) =

(
1− x2

)m/2 dmPl(x)

dxm
. (C.2)

Comparing equation (C.1) to the spherical harmonics specified in reference [173]

Y ∗lm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
(−1)mP̃ml (cos θ)eimφ, (C.3)

one has to distinguish between positive and negative indicesm.

m ≥ 0:
Ylm(θ, ϕ) =

√
2π(−1)−mY ∗lm(θ, ϕ) (C.4)

m < 0:
For negativem, I utilize that

P̄ml (x) = (−1)mP̃ml (x) (C.5)
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can be construct from positive indices [243]

P̄ml (x) = (−1)|m|
(l − |m|)!
(l + |m|)! P̄

|m|
l (x). (C.6)

Inserting equation (C.5) into (C.1) and equation (C.6) into (C.3) I find by comparison

Ylm(θ, ϕ) =
√

2π(−1)−2|m|
√

(l +m)!

(l −m)!

√
(l + |m|)!
(l − |m|)!Y

∗
lm(θ, ϕ) (C.7)

=
√

2πY ∗lm(θ, ϕ). (C.8)

The normalization factor then reads

Ylm(θ, ϕ) = NmY
∗
lm(θ, ϕ) =

√
2π





(−1)−m

1
Y ∗lm(θ, ϕ)

m > 0

m ≤ 0,
(C.9)

which can directly be applied to the lattice sum (6.10).

For the SVWFs in both notations (cf. equation (2.25) and reference [173]) the normalization
difference in spherical harmonics translates into

M
(ν)
lmτ (r) = i

√
π





(−1)−m

1
M
∗(ν)
lmτ (r)

m > 0

m ≤ 0.
(C.10)
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