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Abstract
Graph neural networks have achieved impressive results in predicting molecular properties, but
they do not directly account for local and hidden structures in the graph such as functional groups
and molecular geometry. At each propagation step, graph neural networks aggregate only over first
order neighbours and can only learn about important information contained in subsequent
neighbours as well as the relationships between those higher order connections—over many
propagation steps. In this work, we generalize graph neural nets to pass messages and aggregate
across higher order paths. This allows for information to propagate over various levels and
substructures of the graph. We demonstrate our model on a few tasks in molecular property
prediction.

1. Introduction andmotivation

Graph neural networks (GNNs) are a powerful tool for representation learning across different domains
involving relational data such as molecules [1] or social and biological networks [2]. These models learn
node embeddings in a message passing framework [3] by passing and aggregating node and edge feature
information across the graph using neural networks. The learned node representations can then be used for
any downstream procedure such as node or graph classification or regression. In particular, GNNs were
shown to predict molecular properties with density-functional theory level accuracy but 105 times faster [3].

Another model, learns a similar embedding of atom types—SchNet [4] which is specifically designed to
model atomistic systems by making use of continuous-filter convolutional layers to accurately predict a range
of properties across chemical space for molecules and materials. These classes of deep learning models have
lead to a revolution in molecular property prediction.

However, current GNN models still suffer from limitations as they only propagate information across
neighbouring edges and pooling that information into final node embeddings [1, 5]. This means that, in
most models, nodes only learn about the larger neighbourhood surrounding them over many propagation
steps. This makes it difficult for GNNs to learn higher order graph structure and impossible to learn in a
single propagation layer. However, such long range correlations are important for many domains, in
particular, when learning chemical properties that depend on rings, branches, functional groups or
molecular geometry.

It would be advantageous to develop a model that can account for long range molecular dependencies
directly in a single propagation layer as there are many molecular features and substructures that arise in
larger molecular neighbourhoods than a single atom and its neighbours. Consider figure 1, notice how much
larger the neighbourhood of the atom gets when you consider second and third order neighbours.

The only way to directly account for higher order graph properties is to pass messages over additional
neighbours in every propagation layer of the GNN. This work focuses on generalizing message passing neural
networks to accomplish this.

© 2021 The Author(s). Published by IOP Publishing Ltd
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Figure 1. The neighbourhood of one atom comprised of (a) 1st (b) 2nd and (c) 3rd order neighbours for a molecule randomly
sampled from the CEP dataset.

1.1. Motivations
There are many factors pertaining to molecular graphs that motivate the development of our model. In this
section we discuss, in more depth, the limitations of GNNs with respect to specific aspects of molecules that
motivate our model. These include molecular substructures like rings and functional groups, molecular
geometry as characterized by internal coordinates as well as stereochemistry.

Molecular substructures play an important role in determining molecular properties for example
functional groups influence the chemical reactions a molecule undergoes. By only aggregating over
neighbours, GNNs cannot learn about these larger substructures in a single propagation layer. On the other
hand, by passing messages over larger neighbourhoods, in every layer we could directly learn about these
structures. Furthermore, We could directly indicate if the path that a message is travelling on contains a
simple functional group like alcohol (ROH) or passes through a larger functional group. For example, atoms
in the neighbourhood of a functional group could receive a message along a path indicating a functional
group is in the neighbourhood.

Molecular geometry is the three dimensional arrangement of atoms in a molecule and influences several
properties, including the reactivity, polarity and biological activity of the molecule. An important application
of GNNs is predicting quantum mechanical properties of molecules, which are heavily dependent on the
geometry of the molecule. The 3D configuration of a molecule can be fully specified by (1) bond
lengths—the distance between two bonded atoms, (2) bond angles—the angle formed between three
neighbouring atoms, and (3) dihedral angles between four consecutive atoms. In fact the potential energy is
typically modelled as a sum of terms involving each of these three. Current GNN approaches to quantum
chemistry incorporate neighbouring geometry by using bond distances as edge features [3], but do not
directly account for the relative orientation of neighbouring atoms and bonds—a framework that could do
so would be advantageous.

Stereochemistry involves the relative spatial arrangement of atoms in molecules, specifically,
stereoisomers—which are molecules with the same discrete graph but different three-dimensional
orientation of atoms. For example, enantiomers—non-superimposable mirror images of molecules and
cis-trans isomers, that only differ through the rotation of a functional group. Even if they use interatomic
distances as edge features, GNNs will have limited ability to distinguish stereoisomers, since these molecules
only differ through the relative orientation of atoms. In general, at every propagation step, GNNs should
learn representations over each node’s extended neighbourhood to encode the relationships between nodes
in that neighbourhood.

1.2. Approach and contributions
We generalize message passing neural networks (MPNNs) to aggregate across larger neighbourhoods by
passing messages along simple paths of higher order neighbours. We describe the general framework in
section 3. We experiment with various molecular property prediction task and a node classification task in
citation networks. Our specific contributions are two-fold:

• Wedevise a simple extension to anymessage passing neural network to learn representations over larger node
neighbourhoods within each propagation layer by simply augmenting the message function to aggregate
over additional neighbours.

• By summing over additional neighbours we enable the use of path features such as bond angles for paths of
length two and dihedral angles for paths of length three and thus encoding the full molecular geometry and
orientation, so that MPNNs can distinguish isomers.
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2. Related work and background

2.1. Background
Message passing neural networks operate on graphs G with n nodes each with feature vector xv ∈ Rf that
specify what kind of atom the node is, among other possible features. There are n× n edge feature vectors
evw ∈ Re that specify what kind of bond type atoms v,w have. The forward pass has two phases, a message
passing phase and a readout phase.

The message passing phase runs for T propagation steps and is defined in terms of message functionsMt

and node update functions U t . During the message passing phase, hidden states htv at each node in the graph
are updated based on messagesmt+1

v according to:

mt+1
v =

∑
w∈Nv

Mt(h
t
v,h

t
w,evw), ht+1

v = Ut(h
t
v,m

t+1
v ), y= Readout({hTv ,xv}v∈G).

We have xv = h0v . The message node v receives aggregates over its neighboursNv, in this case, by simple
summation. We then readout predictions y based on final node embeddings.

2.2. Related work
The first graph neural network model was proposed by [6] and many variants have been recently proposed
[5, 7, 8]. Our focus is on the general framework of neural message passing from [3]. We review relevant GNN
models and their use in Molecular Deep learning in this section.

2.2.1. Molecular deep learning
Recently GNNs have superseded machine learning methods involving hand-crafted feature representation,
on predicting molecular properties for large datasets [3]. For example, neural fingerprints generalizes
standard molecular fingerprints with a differentiable one that achieves better predictive accuracy [1].
Another model, SchNet [4] defines a continuous-filter convolutional neural network for modelling quantum
interactions and achieves state of the art results.

2.2.2. Higher order GNNs
Recent work has generalized graph convolution networks (GCNs) [8] to higher order structure by repeatedly
mixing feature representations of neighbours at various distances [9], or casting GCNs into a general
framework inspired by the path integral formulation of quantum mechanics [10]. Both of these works are
based on powers of the adjacency matrix and do not account directly for the relationship between higher
order neighbours. Another work [11] proposes k-dimensional GNNs in order to take higher order graph
structures at multiple scales into account. GNNs and higher order GNNs do not incorporate the relationship
between higher order neighbours, which would allow for features that are dependent on that relationship,
namely ‘path features’.

2.2.3. Path augmented transformer
Another model based on the transformer architecture [12] accounts for long range dependencies in
molecular graphs by augmenting edge feature tensor to include some (shortest) path features like bond type,
conjugacy, inter-atomic distance and ring membership.

2.2.4. Structured transformer
A few graph neural networks recently proposed have incorporated directional information. The first [13]
builds a model for proteins that considers the local change in the coordinate system for each atom in the
chain.

2.2.5. 3D GCN
Cho et al [14] build a three-dimensional graph convolutional network, for molecular properties and
biochemical activities prediction using 3D molecular graph by augmenting the standard GCN layer with the
relative atomic position vector.

2.2.6. Directional message passing
Klicpera et al [15] embeds the messages passed between atoms such that each message is associated with a
direction in coordinate space and are rotationally equivariant since the associated directions rotate with the
molecule. Their message passing scheme transforms messages based on the angle between them in order to
encode direction.

3



Mach. Learn.: Sci. Technol. 2 (2021) 045009 D Flam-Shepherd et al

Figure 2.Message function and path features for (a) standard MPNN and (b) MPNN passing messages on paths with length 3 in
a molecule with path features involving molecular geometry. Light grey is carbon. Red is oxygen. Dark grey is the initial/end atom
in the path. The molecule is anisole, or methoxybenzene.

Other work has incorporated attention and edge memory schemes to the existing message passing neural
network framework [16] as well message passing directed over bonds to construct embeddings [17].

3. Neural message passing on paths

We extend the message passing framework by propagating information from every node’s higher order
neighbour instead of aggregating messages from only nearest neighbours. The message passing phase is
augmented such that hidden states htv at each node in the graph are updated based on messages over all
simple paths up to length ℓ from its neighbourhood:

mt+1
v =

∑
p∈Pv

ℓ

Mt(h
t
v,p) =

∑
v1∈Nv

∑
v2∈Nv1
v2 ̸=v

· · ·
∑

vℓ∈Nvℓ−1

vℓ ̸=vℓ−2,...,v

Mt(h
t
v,pv1→vℓ

), (1)

where we define p to be a path in Pℓ
v, which is the set of all simple paths starting from node v with length ℓ

and pv1→vℓ
to be path features along path p from node v1 to node vℓ. We only sum over simple paths,

excluding loops and multiple inclusions of the same node.

3.1. Path features
For graphs with a large number of nodes and edges, passing messages along paths becomes very expensive
and, as in GraphSage [2], sampling a subset of paths of higher order neighbours is necessary. However, for
molecules, where the number of neighbours is usually⩽4 this is not necessary. Furthermore, one can include
domain specific path features in the message function. We describe two examples of these path features
below.

3.1.1. Molecular substructures
We can incorporate whether the path travels through a molecular substructure by considering paths of at
least length 2, where we have a message function that sums over two neighbouring atoms v→w→ y. Along
with their node and edge features, the possible path features include ring features—ie one hot indication if
any atoms are in (specific) rings as well as if the path is a functional group (ROH) or within a larger
functional group:

mt+1
v =

∑
w∈Nv

∑
y∈Nw
y ̸=v

Mt(h
t
v,pv→y) pv→y =

[
htw hty
evw ewy

]
. (2)

3.1.2. Molecular geometry
Considering paths of length 3, where we have a message function that sums over three neighbouring atoms
v→w→ y→ x. Along paths of length three additional features include two bond angles αvwy& αwyx and the
dihedral angle φvwyx between the planes defined by the pairs of atoms (v,w) and (y, x). Effectively, messages
passed over three consecutive neighbours contain information about the entire molecular geometry (see
figure 2):

mt+1
v =

∑
w∈Nv

∑
y∈Nw
y ̸=v

∑
x∈Ny

x ̸=w,v

Mt(h
t
v,pv→x) pv→x =

 htw hty htx
evw ewy eyx
αvwy αwyx φvwyx

 . (3)
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Figure 3.Molecules from the datasets considered.

4. Experiments

4.1. Datasets
We compare the performance of our model against a few baselines on a variety of molecular property
prediction tasks involving different datasets of undirected molecular graphs with different sizes and
distributions. One with moderately large graphs with 6–8 rings and two with much smaller molecules and
1–2 rings. Figure 3 has examples of molecules from the datasets in these tasks, they include:

• ESOL: Delaney [19] predicting the aqueous solubility of 1144 molecules.
• QM8: Ruddigkeit et al [20] predicting 16 electronic spectra values calculated using density functional theory
for 21 786 organic molecules.

• CEP: the photovoltaic efficiency of 20 000 organic molecules from The Harvard Clean Energy Project [21].

4.2. Model design
For QM8 we use the Path MPNN with message given by equation (3) since molecular geometry is very
important for the targets in QM8, the path features such as bond lengths, bond angles and dihedrals are
computed on the fly using rdkit [22] given supplied atomic coordinates in the data. We use the message
function from the interaction networks model in [23]mv→x = τ(Concat[pv→x]) that passes the
concatenated path features through a single layer neural net with relu activation and then uses graph
attention [7] to aggregate incoming messages passed over paths:

Mt(h
t
v,pv→x) = av→xmv→x where av→x =

ea
⊤mv→x∑

v→x e
a⊤mv→x

, (4)

where a is the attention weight vector and the summation is over the simple path v→ x which is the same
triple sum in (3). For ESOL and CEP we pass messages over paths of length two as specified by equation (2)
in order to use path features for molecular substructures (which are important for the targets in these
datasets as well), these features also computed using rdkit. For both models, the node update function
concatenates incoming messages with the current node state and feeds it through a dense layer
Ut = σ([htv,m

t+1
v ]). After propagation through message passing layers, we use the set2set model [24] in the

same way as [3] as the readout function to combine the node hidden features into a fix-sized hidden vector.
For all models, we only use atom and bond type/distance as one-of-k hot encodings for for initial node

and edge features xv,euv, in addition to previously described path features. The models are trained using root
mean squared error (RMSE) for loss. Model evaluation is done using mean absolute error (MAE) of the
molecular properties in the QM8 dataset, RMSE for ESOL and percent for CEP. We use a 80%–10%–10%
train, validation, test set split. We perform three runs with different randomizations and report the mean
performance and standard deviation. We do not perform cross-validation.

4.3. Implementation details
The model was coded in pytorch [25] from scratch and trained on a GeForce RTX 2070 GPU which has 8GB
of ram. The Path MPNNmodel is memory intensive and the largest batch size we could use was 32 for the
smaller dataset (QM8, ESOL) with 16 for the larger molecular graphs (CEP). Minimal hyperparameter
optimization was needed for the path model to achieve superior performance. We used learning rate of 10−4

with the adam optimizer [26] training for 300 epochs for both the Path MPNN and baseline MPNN. We
experimented with 1–3 path MPNN layers and 3–6 MPNN layers in the baseline but we found no
improvement for increasing number of layers in both. For both the baseline MPNN and Path MPNN we
used 128 hidden units for the node representation as well as in the message function’s one layer NN with a
ReLu non-linearity. In addition we use 1024 hidden units for the set2vec model with five unroll steps for
both the Path MPNN and baseline MPNN. We only optimized hidden unit number and number of message
passing layers along with learning rate.

5
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Table 1.Mean and std error predictive accuracy on various dataset and baselines.

Dataset QM8 ESOL CEP
Units MAE in eV (× 10−3) RMSE in log mol l−1 Percent

Neural fingerprint [1] 13.80± 0.11 0.52± 0.07 1.43± 0.09
MPNN 11.30± 0.31 0.47± 0.03 1.37± 0.09
MolNet [18] 10.80± 0.30 0.58± 0.03 —
Path transformer [12] 10.20± 0.30 0.55± 0.06 —
PathMPNN 8.70± 0.06 0.41± 0.02 1.23± 0.08

Table 2. CORA test accuracy.

Model Test accuracy

GCN [8] 81.5
MixHop [9] 81.9
PAN [10] 82.0
Path GCN 82.4

4.4. Baselines and results
We use the top performing model from Molecule Net [18] (Molnet) for each dataset. We also benchmark
with the differentiable version of circular fingerprints from [1] (neural fingerprints). To highlight the
importance of path features, we also compared the performance of a standard Message Passing neural net
that uses three message passing layers. This uses the same message function, node update function and
readout function as the Path model (except path length is one). The last benchmark is the path-augmented
graph transformer network since this model is similarly built to model longer-range dependencies in
molecular graphs. As can be seen in table 1, for QM8, ESOL and CEP, passing messages over paths leads to a
substantial improvement in predictive accuracy.

5. Comparison with other higher order GNNs

In a separate experiment, we compare the path MPNN with other GNNs that use higher order neighbours
and do not use edge features. We consider a standard task of semi-supervised node classification with the
CORA citation network dataset [27].

The dataset contains sparse bag-of-words feature vectors for each document and a list of citation links
between documents for undirected edges in the adjacency matrix. Each document has a class label.
Altogether, the network has 2708 nodes and 5429 edges with 7 classes and 1433 features.

5.1. Model
We use the experimental setup of [8]. We sum over paths of length 3 while uniformly sampling a single
second order and third order neighbour. Our base MPNN is a GCN [8] that has message function:

mt+1
v =

∑
w∈Nv

Âvwh
t
v, Ut = σ(mt+1

v ), (5)

where Â is the adjacency matrix and σ is a dense layer with sigmoid activation. There is no readout function
necessary for pooling and a softmax layer maps the node representations to the prediction. For a citation
network the path features are just the node features and edge features connecting v to nodes that are ℓ nodes
away, i.e.

pv1→vℓ
= {htv1 ,evv1 , . . . ,h

t
vℓ ,evℓvℓ−1}.

5.2. Results
We compare with two other higher order GCN variants: Mixhop [9] and PAN [10]: Path integral graph
convolution—both use powers of the adjacency to aggregate GCN layers of higher order neighbours. The
results are displayed in table 2 and our model achieve similar accuracy to our baselines.

6. Conclusion and discussion

6.1. Limitations
In this work we only considered very simple message functions, in general, it is not straight forward to
construct message function over paths. For example, the message function from [3], maps edge features to a

6



Mach. Learn.: Sci. Technol. 2 (2021) 045009 D Flam-Shepherd et al

square matrix using a neural net—incorporating more neighbours and their edge and path features into this
kind of message function introduces many design challenges. There are many graph types where the path
MPNN would be roughly as useful as a standard MPNN, including most non chemical graph data. In
general, we found no improvement in accuracy in passing messages over longer paths than relevant to the
desired path features for example. The path MPNN has a large capacity and is very susceptible to overfitting,
by using a fairly low learning rate we were able to overcome this and see comparable performance on
training, validation and test sets. In further we hope to find methods to reduce the memory requirement of
the Path model.

6.2. Complexity
For standard MPNNs, a single step of the message passing phase for a dense graph requiresO(n2d2) floating
point multiplications. Naturally for the Path models this is multiplied by the path length ℓ but is still roughly
equivalent to ℓ propagation steps for the standard MPNN while having increased performance benefits.

We introduce a general GNN framework based on message passing over simple paths of higher order
neighbours. This allows us to use path features in addition to node and edge features, which is very useful in
molecular graphs, as many informative features are characterized by the paths between atoms. We
benchmarked our framework on molecular property prediction tasks and a node classification task in
citation networks.

Data availability statement

The data that support the findings of this study will be openly available following an embargo at the
following URL/DOI: https://gitlab.com/verysure/path-mpnn. Data will be available from 31 March 2021.
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