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Abstract  28 

Although CRISPR/Cas-mediated gene editing has revolutionized biology and plant breeding, 29 

large-scale, heritable restructuring of plant chromosomes is still in its infancy. Duplications 30 

and inversions within a chromosome, and also translocations between chromosomes, can 31 

now be achieved. Subsequently, genetic linkages can be broken or can be newly created. 32 

Also, the order of genes on a chromosome can be changed. Whereas natural chromosomal 33 

recombination occurs by homologous recombination during meiosis, CRISPR/Cas-mediated 34 

chromosomal rearrangements can be obtained best by harnessing non-homologous end 35 

joining (NHEJ) pathways in somatic cells. NHEJ can be subdivided into the classical (cNHEJ) 36 

and alternative NHEJ (aNHEJ) pathways which partially operate antagonistically. The cNHEJ 37 

pathway not only protects broken DNA ends from degradation but also suppresses the 38 

joining of previously unlinked broken ends. Hence, in the absence of cNHEJ, more inversions 39 

or translocations can be obtained which can be ascribed to the unrestricted use of the 40 

aNHEJ pathway for double-strand break repair. In contrast to inversions or translocations, 41 

short tandem duplications can be produced by paired single-strand breaks via a Cas9 42 

nickase. Interestingly, the cNHEJ pathway is essential for these kinds of duplications, 43 

whereas aNHEJ is required for patch insertions that can also be formed during double-strand 44 

break repair. As chromosome engineering has not only been accomplished in the model 45 

plant Arabidopsis (Arabidopsis thaliana) but also in the crop maize (Zea mays), we expect 46 

that this technology will soon transform the breeding process. 47 

  48 
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Genome editing might become a fundamental pillar in plant breeding to face the 49 

future challenges in food supply concerning the alarming growth rate of the world population 50 

and globally changing climate conditions (Hickey et al., 2019; Zaidi et al., 2020). To address 51 

the global increase in food demand and to compensate the expected global temperature rise 52 

of 2°C by 2050 (Bastin et al., 2019), breeders and scientists are trying to improve the yield 53 

and quality as well as pathogen resistance and abiotic stress tolerance of major food crops 54 

(Newbery et al., 2016; Pingali, 2012; Zaidi et al., 2020).  55 

For a long time, high-yielding traits had been selected by classical breeding methods. 56 

However, this field has been revolutionized by the application of site-specific nucleases for 57 

the induction of targeted genetic change (Atkins and Voytas, 2020; Gao, 2021; Schindele et 58 

al., 2020; Zhang et al., 2019). The targeted induction of double-strand breaks (DSB) enables 59 

the recruitment of the cell's own repair machinery. In eukaryotes, two main repair pathways 60 

exist for DSB repair: non-homologous end-joining (NHEJ) and homologous recombination 61 

(HR). Which of the two mechanisms occurs is determined by the cell cycle phase and the cell 62 

type (Trenner and Sartori, 2019). In somatic plant cells, DSBs are mainly repaired via NHEJ, 63 

whereas DSBs induced during meiosis are repaired by HR. 64 

The induction of targeted genetic changes depends on the efficiency and specificity of 65 

the utilized site-specific nuclease. The latter presented a major obstacle prior to the 66 

discovery of the clustered regularly interspaced short palindromic repeats 67 

(CRISPR)/CRISPR-associated protein (Cas) system in 2012, comprising a RNA-guided Cas 68 

endonuclease to induce a targeted DSB (Jinek et al., 2012). The first biotechnological 69 

applications were tested with the type II single nuclease Cas9 from Streptococcus pyogenes. 70 

The sequence specificity of the nuclease is ensured by the complementary binding of the 71 

chimeric single-guide RNA (sgRNA). Guided by the sgRNA to the target sequence, the Cas9 72 

enzyme catalyzes the DSB induction if a protospacer adjacent motif (PAM) is present next to 73 

the complementary region (Jinek et al., 2012).  74 

CRISPR/Cas-based genome engineering was not only rapidly applied in the model 75 

organism Arabidopsis (Arabidopsis thaliana) (Fauser et al., 2014; Li et al., 2013), but also in 76 

crops, such as rice (Oryza sativa), maize (Zea mays), tomato (Solanum lycopersicum L.) and 77 

even cotton (Gossypium hirsutum L.) and banana (Musa acuminata) (Jaganathan et al., 78 

2018), to induce mutations based on erroneous NHEJ. Pioneering results have been 79 

achieved by simultaneous editing of multiple loci, e.g. in the de novo domestication of the 80 

wild tomato Solanum pimpinellifolium (Zsögön et al., 2018) and various salt-tolerant or 81 

disease-resistant accessions (Li et al., 2018). A Cas9-based multiplexing approach was used 82 

to target different genes whose knockout is responsible for improved traits and yield of crops. 83 

Altered morphology, increased fruit number and size as well as an optimized nutritional 84 

content could be achieved in a remarkably short time.  85 
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The mechanisms of non-homologous end-joining and their application in modifying 86 

individual genes 87 

Since most genome engineering methods rely on targeted DSB induction and 88 

subsequent cellular repair, it is of enormous importance to understand these repair pathways 89 

in order to assess the outcome of the intended modification. DSB repair is highly conserved 90 

between plants and mammals, with different pathways competing for successful repair 91 

(Ceccaldi et al., 2016; Zhao et al., 2020). Thus, a DSB can be either repaired via HR, which 92 

mainly acts in the late S and G2 phase of the cell cycle as sister chromatids can be used as 93 

a repair template, or by the error-prone NHEJ, which dominates in somatic plant cells 94 

(Beying et al., 2021; Puchta, 2005). In plants, as in mammals, two NHEJ-based DSB repair 95 

sub-pathways are known (Figure 1) (Zhao et al., 2020). In classical NHEJ (cNHEJ) (Figure 96 

1A), the break ends are rapidly bound by the abundant, ring-shaped heterodimer KU70/KU80 97 

(Walker et al., 2001) which recruits a wide variety of other repair factors and subsequently 98 

facilitates the break to be re-ligated by DNA LIGASE 4 (LIG4) (Grawunder et al., 1997). A 99 

cNHEJ repair may result in small deletions or insertions next to perfect ligations. 100 

In contrast, repair via the alternative NHEJ (aNHEJ) pathway results in larger 101 

deletions since microhomologies, present at the break sites, are used for annealing (Figure 102 

1B). This leads to the loss of the intermediate sequence. Here, the break ends can be bound 103 

by poly(ADP-ribose)-polymerase 1 (PARP1) (Audebert et al., 2004; Robert et al., 2009), a 104 

polymerase competing with the KU heterodimer (Wang et al., 2006). Recruited by PARP1, 105 

the 5’-3' resection of the DSB can occur, creating short single-strand overhangs (Truong et 106 

al., 2013). The exposed microhomologies can anneal, with the resulting repair intermediate 107 

being stabilized by polymerase Q (PolQ) (Black et al., 2016; Seol et al., 2018; Wyatt et al., 108 

2016; Zahn et al., 2015). After the protruding 3' ends have been degraded by nucleases 109 

(Bennardo et al., 2008), PolQ-initiated fill-in synthesis can begin (Ahmad et al., 2008; Hogg 110 

et al., 2012). Finally, the break can be ligated by a Xrcc1/Ligase III complex or Ligase I 111 

(Liang et al., 2008; Masani et al., 2016). Moreover, POLQ is essential for the integration of 112 

T-DNA, following Agrobacterium tumefaciens-mediated floral dip transformation of 113 

Arabidopsis (Nishizawa‐Yokoi et al., 2021; van Kregten et al., 2016).  114 
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 115 

Since most DSBs in somatic plant cells are repaired by NHEJ, this pathway serves as 116 

the basis for a wide variety of chromosomal modifications. Apart from mutagenesis 117 

approaches that exploit the error susceptibility of NHEJ-mediated repair to disrupt the protein 118 

open reading frame for functional characterization, the induction of DSBs and their repair can 119 

be used to facilitate precise insertions, deletions and replacements.  120 

The integration of a target sequence at a defined site can be achieved by inducing a 121 

single DSB in the target sequence (Salomon and Puchta, 1998). Insertion efficiencies of 122 

2.2% were achieved by an intron targeting-based method in rice (Li et al., 2016). Another 123 

approach enabled efficient integration in up to 25% of the analyzed samples by modifying 124 

DNA ends of the donor with a phosphorothioate linkage and 5ʹ phosphorylation. Thus, it is 125 

now feasible to integrate regulatory elements upstream of agronomically important genes to 126 

manipulate the expression pattern in crops (Lu et al., 2020). Next to NHEJ-based strategies, 127 

HR-based approaches can be pursued for error-free and predictable modification of target 128 

sequences. In recent years, some promising approaches lead to the optimization of gene 129 

targeting efficiencies, creating another attractive tool for plant breeding (Dong and Ronald, 130 

2021; Huang and Puchta, 2019) 131 

The induction of two DSBs can lead to the deletion of the intervening sequence 132 

(Figure 2) (Siebert and Puchta, 2002). Targeted formation of deletions can be used in basic 133 

research for functional analyses (Durr et al., 2018), the induction of smaller deletions is also 134 

an attractive approach for practical applications in molecular breeding. For example, by using 135 

CRISPR/Cas9 in a multiplex approach in tomato, deletions within regulatory elements of 136 

promoters could be induced, altering tomato yield and fruit quality (Rodríguez-Leal et al., 137 

2017). Also, large deletions have been successfully induced in crops, ranging from 245 kb in 138 

rice (Zhou et al., 2014) to 1 Mb in soybean (Glycine max (L.) Merr.) (Duan et al., 2021). 139 

Moreover, deletions can be combined with the integration of a defined sequence at the break 140 

sites. To do so, a suitable donor is introduced into the cell that can be integrated in place of 141 

the deleted region. To ensure that the NHEJ-based sequence mutations do not affect coding 142 

regions, CRISPR/Cas-based intron targeting was used in rice to exchange exon sequences 143 

(Li et al., 2016). 144 

In addition to these modifications, induction of two breaks can lead to different 145 

chromosomal rearrangements (Figure 2) (Rönspies et al., 2021). Thus, the induction of 146 

staggered single strand breaks (SSB) enables the formation of duplications (Schiml et al., 147 

2016). Simultaneous induction of two DSBs on the same chromosome can result in the 148 

integration of the intervening sequence in the reverse orientation, leading to an inversion 149 

(Schmidt, Pacher, Puchta, 2019), whereas the induction of two DSBs on different 150 
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chromosomes can lead to reciprocal translocations (Beying et al., 2020). In the subsequent 151 

sections we will take a closer look at these kinds of induced changes. 152 

 153 

NHEJ-mediated duplications 154 

Effective adaptation to changing environmental conditions over many generations can 155 

be achieved by the evolution of plant genomes through chromosomal restructuring and gene 156 

copy variation. A particularly rapid change in genome structure was observed in 157 

CHROMATIN ASSEMBLY FACTOR 1 Arabidopsis mutants which resulted in large tandem 158 

duplications in addition to a significant reduction of ribosomal genes up to 20 % compared to 159 

the wild type. The duplication of more than one hundred genes resulted in an increased 160 

transcript number which lead to, among other things, an increased resistance to pathogens 161 

(Picart-Picolo et al., 2020). Most likely, these duplications are due to induction of random 162 

DSBs in the mutant, resulting from its defect in chromatin organization. It is tempting to 163 

speculate that duplication of these segments originates from translocations between sister 164 

chromatids or homologues. The duplicated region might be excised from one sister 165 

chromatid and re-integrated in the other one via NHEJ-based repair. Thus, the formation of 166 

duplications could be achieved by inducing DSBs at both ends of the target region. Evidence 167 

for the feasibility of this approach was recently demonstrated in a study in Arabidopsis. Here, 168 

DSBs were induced flanking a segment of 2.3 kb or 8.5 kb (Lynagh et al., 2018). Both 169 

approaches indicated a successful duplication of the segment in somatic tissue. 170 

Furthermore, the smaller fragment of 2.3 kb was successfully transmitted to the next 171 

generation in one line.  172 

Bioinformatic analysis of natural DNA insertions revealed that short tandem 173 

duplications are overrepresented in rice (Vaughn and Bennetzen, 2014). Sometimes, DSB 174 

repair is associated with insertions which can arise by an SDSA-like mechanism. During this 175 

process, sequences from distant parts of the genome can be copied into the break site 176 

(Gorbunova and Levy, 1997; Salomon and Puchta, 1998). If copying of these regions occurs 177 

discontinuously, patch insertion patterns can be formed at the repaired site (Figure 3A). In 178 

contrast, the formation of tandem duplication could not be explained by such a mechanism. 179 

Therefore, an alternative model was proposed in which the formation of tandem duplications 180 

results from defective repair of adjacent SSBs in opposite strands (Vaughn and Bennetzen, 181 

2014). Indeed, a paired Cas9 nickase approach, which was used to induce neighboring 182 

genomic SSBs on opposite strands, showed that the majority of observed insertions were 183 

simple tandem duplications between nicks (Schiml et al., 2014, 2016). Figure 3B shows the 184 

mechanism explaining these duplications. Starting from the SSB, DNA is synthesized from 185 

both ends, resulting in a duplication of the sequence between the staggered nicks. It can 186 

differ in length, depending on the extent of the 5’ end resection.  187 

D
ow

nloaded from
 https://academ

ic.oup.com
/plphys/advance-article/doi/10.1093/plphys/kiab572/6454114 by KIT Library user on 16 D

ecem
ber 2021



 

8 
 

In a recent study, Wolter et al. defined the role of different DSB repair pathways in 188 

insertion formation (Wolter et al., 2021). The paired nickase approach was applied to a 189 

variety of mutants in different repair proteins to induce 5' staggered ends with a nick distance 190 

of 50 bp. In the wild type, tandem duplications and, to a lesser extent, patch insertions were 191 

mainly detected, in addition to deletions. Mutation patters of representative members of the 192 

cNHEJ pathway (KU70 and LIG4), the aNHEJ pathway (X-Ray Repair Cross Complementing 193 

1 (XRCC1) and PARP1) and the HR pathway (Radiation Sensitive 51 (RAD51) and 194 

Radiation Sensitive 54 (RAD54)) were analyzed. In the case of both cNHEJ mutants, ku70 195 

and lig4, NGS analysis revealed a drastically different mutation pattern, with a distinct 196 

reduction in insertions and an increased number of deletions compared to the wild type and 197 

all other tested mutants. Detailed analysis of these insertions showed that, in contrast to the 198 

wild type, in which around 90% of all insertions were tandem duplications, in both cNHEJ 199 

mutants the occurrence of tandem duplications was dramatically reduced in comparison to 200 

patched insertions. In contrast, analysis of mutants devoid of the aNHEJ factors XRCC1 and 201 

POLQ, showed almost exclusively tandem duplications with a complete lack of patch 202 

insertions. Thus, the presence of the cNHEJ pathway is a prerequisite for tandem duplication 203 

formation, whereas aNHEJ plays no role in this process. The authors suggest that the 204 

KU70/KU80 heterodimer either directly protects longer single-stranded overlaps from 205 

nucleolytic degradation and/or promotes the fill-in reaction. On the other hand, aNHEJ, and 206 

here POLQ as a central factor, are required for the formation of patch insertions, whereas the 207 

binding of the KU heterodimer might even hinder the formation of this class of insertions. As 208 

patch insertions are a regular outcome of DSB repair, in contrast to tandem duplications, 209 

which were only detected after the induction of paired nicks, it is likely that POLQ is generally 210 

required for their formation in plants.  211 

The fact that the presence of cNHEJ is essential for the formation of tandem 212 

duplications is consistent with recently published data on mammalian cells (Schimmel et al., 213 

2021). Tandem duplications preferentially arise at DSBs with 3′ protruding ends in a Ku80-214 

dependent manner (Schimmel et al., 2017). Subsequently, it was shown that 215 

DNA polymerase α (Pol α)-primase can be activated near DSBs with 3′ overhangs and 216 

initiate the fill-in synthesis, generating blunt ends that can be repaired via the cNHEJ 217 

(Schimmel et al., 2021). Unfortunately, it has not yet been elucidated which polymerases are 218 

required for tandem duplication formation at 5' overhangs, but there are some indications that 219 

the DNA repair polymerase  λ and  μ are involved in mammals (Schimmel et al., 2017). 220 

In terms of practical applications, an interesting question is, how far apart the paired 221 

nicks can be induced on opposite DNA strands, so that duplications arise at a reasonable 222 

frequency. Whereas distances of 50 and 100 bps turned out to be efficient, there was a steep 223 

reduction in their occurrence in the case of 250 and 600 bp (Schiml et al., 2016; Wolter et al., 224 
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2021). Despite this limitation to about 100 nucleotides, the controlled induction of tandem 225 

duplications by a paired-nick approach is a promising tool for applications in genome 226 

engineering. Also, this methods appears to be particularly suitable for the manipulation of 227 

promoter regions (Rodríguez-Leal et al., 2017; Wolter et al., 2019). Duplication of 228 

transcription factor binding sites could help to enhance gene expression for crop 229 

improvement. 230 

 231 

NHEJ-mediated inversions 232 

Large genomic changes play a substantial role in plant biodiversity. Especially 233 

inversions are associated with environmental adaptation and niche specification (Schubert 234 

and Vu, 2016). A consequence of large-scale inversions in different plant species is hybrid 235 

sterility, centromere shifting as well as the formation of new open reading frames (ORFs), but 236 

also disruption of already existing genes, resulting in alteration of expression profiles, and, in 237 

some cases, the formation or breakage of genetic linkages. The most prominent inversion of 238 

A. thaliana is the heterochromatic knob hk4S inversion on the short arm of chromosome IV 239 

(Fransz et al., 2016). This inversion with a size of 1.17 Mb is found in the Columbia 240 

accession, but not in the Landsberg accession and is associated with a pericentromeric shift. 241 

To demonstrate the feasibility of inversions for chromosome engineering purposes, Schmidt 242 

et al. established a CRISPR/Cas9-based system to generate targeted heritable inversions 243 

(Schmidt, Pacher, Puchta, 2019). In a proof-of-concept experiment, the induction of two 244 

DSBs, 3 kb apart, within a single chromosome was tested, resulting in up to 7% deletions 245 

and up to 2% inversions. Molecular analysis of the newly formed junctions of the inverted 246 

sequences revealed that most of the inversions were devoid of deletions or other mutations, 247 

indicating that cNHEJ plays a key role. To verify this finding, the same approach was 248 

performed in the DNA repair mutant ku70. Surprisingly, digital droplet (dd)PCR showed a 249 

twofold increase in the formation of inversions at the two tested loci, indicating that the 250 

KU70/KU80 heterodimer is also required for tethering the broken ends during the repair 251 

process. Consistently, in animals, a single XRCC4-like factor (XLF) dimer recruited by the 252 

KU70/KU80 heterodimer has been shown to promote tight alignment of DNA ends. A 253 

mutation of the KU binding site for XLF affected end-joining efficiency and accuracy (Graham 254 

et al., 2018; Nemoz et al., 2018). In the absence of KU70, the chance of a ligation of the 255 

unlinked broken ends is increased, resulting in more inversions. However, this improvement 256 

comes with a price: due to the lack of protection of the broken DNA ends by the KU70/KU80 257 

heterodimer, the majority of inversions contained deletions within the newly formed junctions. 258 

To obtain heritable inversions, a strategy was used that was first developed to obtain 259 

rare gene targeting events in Arabidopsis. Here, the use of the egg cell-specific EGG 260 

CELL1.1 (EC1.1) promoter, fused to the EC1.2 enhancer for tissue-specific expression of the 261 
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Cas9 nuclease, resulted in a three-fold increase in gene targeting frequency and, thus, 262 

heritable gene targeting events (Wolter et al., 2018). Indeed, replacement of the constitutive 263 

promotor with the egg cell-specific promotor restricting the expression of the Cas9-nuclease 264 

to the early stage of plant development, allowed more efficient and heritable induction of 265 

inversions in wild type plants. In the experimental setup, inversions of defined sequences 266 

comprising up to 18 kb were induced at two different loci. Thus, inversion events were 267 

detected in up to 10 % of the tested progeny of individual T1 plants. A total of 25 plants with 268 

a fully inverted sequence were identified. Sequencing of six junctions indicated error-free 269 

repair of the break sites. Hence, inversions can now be induced precisely and more 270 

efficiently in wild-type plants. (Schmidt, Pacher, Puchta, 2019). Apart from the replacement of 271 

the Cas-driving promotor, prior testing of the nuclease cutting efficiency on the target 272 

sequence turned out to be of great importance for the success of the approach. 273 

Later, this system was used to revert the large 1.7 kb heterochromatic knob hk4S 274 

inversion in the accession Col-0 on the short arm of chromosome IV (Schmidt et al., 2020). 275 

In total, seven different heritable inversion events were obtained, equating to a 0.5% 276 

inversion frequency. Analysis of the newly formed junctions showed that 10 of 14 junctions 277 

were formed by precise ligation, whereas the remaining four junctions contained minor 278 

deletions or insertions. Fluorescence in situ hybridization (FISH) analysis revealed the 279 

successful reversion of the hk4S knob. In a subsequent step, meiotic recombination of the 280 

formerly recombination-cold region was tested between the accession Ler-1, which is devoid 281 

of the hk4S knob, and a homozygous hk4S knob reversion line. As expected, CO events 282 

could be detected in the hybrid lines which were equally distributed over the inverted area. 283 

As many crop plants carry natural inversions, this approach will be very helpful for breeders 284 

to reactivate recombination-dead regions.  285 

Recently, a 75.5 Mb pericentric inversion on chromosome II has been inverted in a 286 

maize inbred line by scientists of Corteva Agriscience. Using pre-assembled gRNA and 287 

ribonucleoprotein (RNP) complexes, DSBs flanking the large inversion were induced in 2000 288 

maize embryos (Schwartz et al., 2020). After selection and analysis, two T0 plants showed a 289 

full 75.5 Mb-long pericentric reinversion on chromosome II. This is a major advance as it 290 

shows that chromosomal rearrangements can also be induced in crop plants with more 291 

complex genomes.  292 

 293 

NHEJ-mediated translocation 294 

While chromosome translocations in mammals are often associated with the 295 

occurrence of various genetic diseases and cancer (Bunting and Nussenzweig, 2013; 296 

Rowley, 2001), in plants these types of genome rearrangements are important for trait 297 

diversity, speciation and evolution (Gabur et al., 2019; Lysak et al., 2006; Schmidt, 298 
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Schindele, Puchta, 2019). Since stabilizing of trait linkages or breaking linkage drags is 299 

essential for crop optimization, chromosome engineering has a huge potential for breeding. 300 

Based on first evidence that simultaneous DSB induction on heterologous chromosomes 301 

may lead to reciprocal translocations (Pacher et al., 2007), Beying et al. induced DSBs in 302 

intergenic regions on the long arm of chromosome I and II of Arabidopsis, using the Cas9 303 

nuclease (Beying et al., 2020). Here, a reciprocal translocation of both 0.5 Mb chromosome 304 

ends could be detected in 0.01% of the samples via ddPCR. To determine which repair 305 

pathway was used to form the translocations, NGS analysis was performed and revealed 306 

error-free ligation in 60%, while the remaining samples often showed small deletions at the 307 

junction. This suggests that cNHEJ is the main pathway for forming the chromosomal 308 

translocation. Furthermore, a knockout of KU70 resulted in a five times higher occurrence of 309 

translocations, demonstrating that cNHEJ suppresses the joining of unlinked DSB ends, as 310 

has been shown for inversions before. 311 

For the induction of heritable translocations, an egg cell-specific expression of Cas9 312 

was used. Translocations between chromosome I and II as well as chromosome I and IV 313 

were induced successfully in independent approaches. The translocation between 314 

chromosome I and II stood out in particular with translocation frequencies of up to 2.5% in 315 

individual T2 lines. Here, independent translocation events were identified in four plants in a 316 

Col-0 background. A FISH-based microscopic analysis confirmed the successful 317 

translocation between chromosome I and II. Sequencing of homozygous translocation-318 

bearing offspring revealed cNHEJ-mediated repair of the junction sites, whereby three of the 319 

four lines carried a perfect ligation of both junctions, while the remaining line showed a 44 bp 320 

deletion at one junction. Translocation induction in the ku70-mutant further improved 321 

translocation frequency. Here, successful translocation events were increased to 3.75% in 322 

individual T2 lines. In total, eight individual plants were identified carrying the reciprocal 323 

translocation between chromosome I and II. As expected, all analyzed junctions showed 324 

larger deletions and inversions, indicating repair via aNHEJ. While higher translocation 325 

frequencies in ku70 mutants appear attractive for further applications, the precision of the 326 

approach suffers due to the high mutation ratio, making the outcome of CRISPR/Cas-based 327 

chromosome rearrangement less predictable (Beying et al., 2020).  328 

 329 

Is HR a valuable alterative to NHEJ for plant chromosome engineering? 330 

For an unbiased evaluation of the potential of NHEJ in chromosome engineering, one 331 

has to view results in relation to what has been achieved using HR-based approaches. 332 

Indeed, most heritable genetic changes are based on the repair of DSBs by HR which occurs 333 

in a temporally controlled manner in meiotic cells leading to an exchange of parental genetic 334 

material between two homologous chromosomes. The non-reciprocal transfer of genetic 335 
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information leads to a non-crossover product (NCO), while the reciprocal exchange of 336 

homologous fragments leads to allelic shuffling and is referred to as crossovers (CO) 337 

(Mercier et al., 2015). For the initiation of meiotic recombination, a programmed DSB is 338 

induced by the highly conserved SPORULATION11 (SPO11) topoisomerase-like protein 339 

(Bergerat et al., 1997). After processing of the DSB, the arising 3' single-stranded overhang 340 

can invade in the double helix of the paired homologue and form a displacement loop (D-341 

loop). If the invading strand of the D-loop is elongated via synthesis-dependent strand 342 

annealing (SDSA), the structure can be resolved and the break can be repaired using the 343 

elongated 3' single-strand overhang. SDSA-based repair results in NCO products. 344 

Alternatively, the D-loop can be transformed into a double holiday junction (dHJ), extending 345 

the D-loop so that the invading strand can anneal to the remaining DSB end (Beying et al., 346 

2021). Depending on the resolution of this repair intermediate, both CO and NCO products 347 

can arise. These CO events can generate new allelic combinations. Thus, two favorable 348 

traits might be combined or an unfavorable one might be eliminated from an elite cultivar 349 

(Figure 4A). Although genetic exchange is highly desired for breeding, CO events are rare 350 

and limited to the euchromatic parts of chromosomes which often hinders the segregation of 351 

linked favorable and unfavorable traits, especially if coded in between a short distance on the 352 

same chromosome.  353 

A comprehensive study in yeast (Saccharomyces cerevisiae) reported targeted COs 354 

by fusion of the natural meiotic DSB inductor SPO11 to DNA-binding domains, such as zinc 355 

fingers (ZFs), transcription activator-like effector (TALE) modules and the CRISPR/Cas9 356 

system, showing that overcoming this limitation is possible. Depending on the DNA 357 

recognition domain and the targeted sequences, an increased CO frequency and a SPO11-358 

mediated DSB induction could be detected. However, the effect was quite small and 359 

restricted to euchromatic regions (Sarno et al., 2017). Recently published data suggest that 360 

recruitment of the natural DSB-inducing machinery is not sufficient to affect CO induction in 361 

plants using a similar approach (Yelina et al., 2021). Here, the SPO11 complex partner, 362 

meiotic topoisomerase VIB (MTOPVIB), which is essential for SPO11-mediated DSB 363 

induction, was fused with a deadCas9 and guided to CO-accessible regions in A. thaliana. 364 

However, no improvement in CO frequency or distribution was obtained. 365 

In a pioneering study, recombination between homologous chromosomes in somatic 366 

cells could be demonstrated after targeted DSB induction by Cas9 in tomato (Filler Hayut et 367 

al., 2017). The experimental setup is based on two genetically distinct tomato accessions 368 

which carry different mutations in the PHYTOENE SYNTHASE (PSY1) gene. Using Cas9, a 369 

DSB between these mutations was induced, followed by a fruit color assay and single-370 

nucleotide polymorphisms (SNPs) sequencing to analyze genomic reshuffling events in 371 

hybrid plants. The analysis revealed somatic HR events, including gene conversions and one 372 
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putative crossover which unfortunately was not transmitted through the germline. 373 

Nevertheless, this demonstrates that targeted somatic HR can be used for precise 374 

chromosomal rearrangements. Recently, extended to another tomato locus, called 375 

CAROTENOID ISOMERASE (CRTISO), the occurrence of two targeted COs was detected 376 

through whole genome sequencing and it was confirmed that these COs can be transmitted 377 

through the germline (Ben Shlush et al., 2020). Furthermore, a recent study demonstrated 378 

targeted recombination in somatic maize cells. In two independent approaches, Kouranov et 379 

al. induced DSBs in chromosome III of both parental homologues in F1 hybrid maize using 380 

the LbCas12a nuclease (Kouranov et al., 2021). Genotypic analyses were able to identify 381 

targeted CO events, where in one case the respective junction contained a deletion and in 382 

the other no mutation. Therefore, cNHEJ as well as HR might be responsible for somatic CO 383 

formation. Furthermore, is was shown that these targeted COs can be inherited (Kouranov et 384 

al., 2021). These studies show that, despite their low efficiency, there is potential for 385 

CRISPR/Cas applications in CO induction to improve biodiversity in commercial crops. 386 

Another approach to influence trait heritage is implemented by the gene drive concept 387 

(Figure 4B). The selective inheritance of target genes from only one parent was established 388 

first in insects and mice and is used to convert heterozygous traits into homozygous traits 389 

(Grunwald et al., 2019; Kyrou et al., 2018). A study by Zhang et al. demonstrated the 390 

establishment of a gene drive system in A. thaliana (Zhang et al., 2021). This system is 391 

based on the prior integration of a gene drive cassette into the CRYPTOCHROME 1 (CRY1) 392 

gene via HR, resulting in cry1 drive lines. The gene drive cassette consisted of a Cas9 393 

coding sequence and a gRNA for DSB induction in the natural CRY1 locus. After crossing 394 

the homozygous cry1 lines with wild type plants, heterozygous F1 progeny were generated in 395 

which expression of the gene drive cassette resulted in targeted DSB induction in the wild-396 

type CRY1 locus. Repairing this break via the HR-based mechanism, the gene drive 397 

cassette-bearing cry locus can be used as a template. This leads to a conversion of the wild-398 

type CRY1 locus to the cry locus and thus to a transfer of the gene drive cassette. As a 399 

result, homozygous cry1 loci could be detected in up to 8% of the F1 plants. Additionally, in 400 

another approach, a non-autonomous trans-acting gene drive was performed, whereby the 401 

gene drive unit and the target locus were located on different chromosomes. Here, gene 402 

drive-based conversion of a heterozygous to a homozygous locus could be identified in 403 

1.25% of the analyzed F1 plants. To improve efficiency of gene drive in plants, the use of 404 

transformation boosters that enhance HR efficiencies in somatic cells, as it has been shown 405 

for gene targeting in maize (Peterson et al., 2021), might be an option.  406 

Thus, despite various attempts, HR-based chromosome engineering is currently, in 407 

contrast to yeast (Sarno et al., 2017), not a feasible technology for plants. 408 

 409 
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Conclusion 410 

Taken together, all these results demonstrate a key role of NHEJ not only in efficient 411 

mutation induction but also for various kinds of chromosome engineering. Thus, deletions, 412 

inversions and duplications within a chromosome and also translocations between 413 

chromosomes are achievable. Interestingly, the knockout of one or the other pathway might 414 

have decisive consequences on the efficiency as well as product classes. While cNHEJ 415 

suppresses all kinds of chromosomal restructuring in which previously unlinked DSBs are 416 

joined, it is essential for SSB-induced formation of tandem duplications. In contrast, aNHEJ, 417 

a backup mechanism for joining of any DSB ends in a more complex way, is also involved in 418 

the formation of patch insertions. By manipulating these pathways, the occurrence of specific 419 

product classes might be enhanced as shown for the knockout of cNHEJ in HR gene 420 

targeting (Endo et al., 2016; Qi et al., 2013). As a new level of CRISPR/Cas applications has 421 

been achieved in the case of plants (Lee and Wang, 2020), exciting novel question arise 422 

(see Outstanding Questions) (Rönspies et al., 2021): Are we going to be able to change the 423 

number of chromosomes by fusion or fission? Can we reconstruct genome evolution? Can 424 

we create novel plant species by making individuals genetically incompatible by genome 425 

restructuring? Only the future will tell how fast we will be able to answer these questions and 426 

how far we can go, but eight years after the start of the CRISPR/Cas revolution we have 427 

already seen a number of dreams materializing.  428 

  429 
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  439 

Outstanding Questions 

 Can we further improve the efficiency of chromosome engineering by the 

manipulation of DNA repair pathways? 

 Can we develop chromosome engineering in all important crops? 

 Will we be able to change chromosome numbers in plants? 

 Is the induction of chromosomal rearrangements possible in polyploid crops with 

multiple homologous chromosomes? 

 Will it be possible to establish genetic isolation and, thus, new plant species by 

induced NHEJ-based chromosomal rearrangements? 

Advances 

 Two DSBs induced on the same chromosome facilitate the deletion or inversion 

of the intermediate region. 

 Two DSBs induced on different chromosomes facilitate reciprocal translocations. 

 The induction of staggered single-strand breaks on the same chromosome allows 

the formation of tandem duplications via cNHEJ. 

 Blocking cNHEJ enhances the linkage of previously unlinked sequences.  

 CRISPR/Cas-mediated chromosome engineering allows breaking or forming 

genetic linkages for breeding. 
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Figure Legends: 440 

Figure 1: DSB repair via NHEJ. 441 
A DSB can be repaired via cNHEJ (A) or aNHEJ (B). In cNHEJ-mediated repair, the broken ends are bound by 442 
the KU70/KU80 heterodimer (green) and re-ligated by LIG4 (grey). Depending on whether the ends need to be 443 
processed prior to re-ligation, small insertions and/or deletions may occur in addition to error-free repair. In 444 
contrast, microhomologies (dark blue) at the break site are used in aNHEJ-mediated repair. Here, the break ends 445 
are bound by the polymerase PARP1 (orange), initiating the 5' to 3' resection of the ends. The annealing of the 446 
exposed microhomologies takes place, stabilized by the polymerase POLQ (red), whereby intervening regions 447 
can get lost. After filling the gaps via a POLQ-mediated fill-in synthesis, the break can be ligated. As areas 448 
between the microhomologies are resected, aNHEJ-mediated repair results in large deletions or more complex 449 
insertions. 450 

 451 

Figure 2: Possible chromosomal rearrangements after targeted break induction. 452 
If two DSBs (black triangle) are induced on the same chromosome, the intervening sequence can be deleted or 453 
inverted. Induction of two SSBs on opposite DNA strands of the same chromosome can result in duplication of the 454 
intervening sequence, whereas induction of two DSBs on non-homologous chromosomes can result in a 455 
translocation by exchanging the ends of the chromosomes. 456 

 457 

Figure 3: Possible mechanisms for the formation of insertions.  458 
(A) The repair of a DSB via an SDSA-like mechanism can result in the formation of patch insertions. In this 459 
process, microhomologies at the break site (blue and yellow) may allow hybridization with distant sequences 460 
(green) in the genome. Depending on the microhomologies used, different ectopic sequences can be copied as 461 
templates and integrated into the break site. (B) Tandem duplications can arise when DSBs with staggered 5’ 462 
overhanging ends are repaired in a microhomology-independent manner. Once the complementary regions are 463 
separated, the 5' overhangs can be degraded, while fill-in synthesis starts at the 3' end. After synthesis, the ends 464 
can be directly re-ligated resulting in the formation of duplications, depending on the length of the 5' overhang. 465 

 466 

Figure 4: HR-based applications for plant chromosome engineering. 467 
(A) To modify genetic linkage, DSBs (black triangles) can be induced on both homologous chromosomes. 468 
Repairing the break via meiotic HR, the homologous chromosome can be used as a repair template and targeted 469 
CO can be formed. Thus, breaking or creating genetic linkage of attractive traits is possible. (B) Gene drive 470 
enables the introduction of a genetic modification into a natural population. Thereby, a gene drive cassette (black) 471 
codes for a targeted Cas nuclease and is initially located on only one of the homologous chromosomes. Once the 472 
Cas nuclease is expressed, a DSB can be induced in the second chromosome at the same homologous site. 473 
Using the first chromosome as a template, a HR-based repair of the break copies the gene drive construct into 474 
the second chromosome. The gene drive cassette is now present on both chromosomes and is thus inherited by 475 
all offspring. 476 
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ADVANCES 

• Two DSBs induced on the same 
chromosome facilitate the deletion or 
inversion of the intermediate region. 

• Two DSBs induced on different 
chromosomes facilitate reciprocal 
translocations. 

• The induction of staggered single-strand 
breaks on the same chromosome allows 
the formation of tandem duplications via 
cNHEJ. 

• Blocking cNHEJ enhances the linkage of 
previously unlinked sequences.  

• CRISPR/Cas-mediated chromosome 
engineering allows breaking or forming 
genetic linkages for breeding. 
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OUTSTANDING QUESTIONS 

• Can we further improve the efficiency of 
chromosome engineering by the 
manipulation of DNA repair pathways? 

• Can we develop chromosome engineering 
in all important crops? 

• Will we be able to change chromosome 
numbers in plants? 

• Is the induction of chromosomal 
rearrangements possible in polyploid 
crops with multiple homologous 
chromosomes? 

• Will it be possible to establish genetic 
isolation and, thus, new plant species by 
induced NHEJ-based chromosomal 
rearrangements? 
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