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VOLUME AND MACROSCOPIC SCALAR CURVATURE

Sabine Braun and Roman Sauer

Abstract. We prove the macroscopic cousins of three conjectures: (1) a conjectural
bound of the simplicial volume of a Riemannian manifold in the presence of a lower
scalar curvature bound, (2) the conjecture that rationally essential manifolds do not
admit metrics of positive scalar curvature, (3) a conjectural bound of �2-Betti num-
bers of aspherical Riemannian manifolds in the presence of a lower scalar curvature
bound. The macroscopic cousin is the statement one obtains by replacing a lower
scalar curvature bound by an upper bound on the volumes of 1-balls in the universal
cover.

1 Introduction

1.1 Results. Scalar curvature is a microscopic concept. The scalar curvature
at a point p of a Riemannian manifold M can be read off from the volumes of
balls around p whose radii approach zero. A lower scalar curvature bound for M
corresponds to an upper bound on the volumes of sufficiently small balls in M or,
equivalently, in ˜M as the universal cover projection ˜M → M is locally isometric.

How can we replace scalar curvature by a macroscopic concept? For instance,
by replacing a lower scalar curvature bound by an upper bound on the volumes of
balls of a fixed radius, say radius 1, in the universal cover. We form the macroscopic
cousin of a mathematical statement involving a lower scalar curvature bound for a
Riemannian manifold M by the replacing it with an upper bound on the volumes
of 1-balls in ˜M . Guth’s ICM report [Gut10] describes the analogies and connections
that emerge from the macroscopic point of view.

Our first main theorem is the macroscopic cousin of a conjecture by Gromov
[Gro86, Conjecture 3A] for which it is assumed that the scalar curvature is bounded
from below by −1. Via the Bishop-Gromov inequality one sees that it also generalizes
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Gromov’s main inequality [Gro82, Section 0.5] for which it is assumed that the Ricci
curvature is bounded from below by −1.

Theorem 1.1. For every V1 > 0 and d ∈ N there is constant const(d, V1) > 0
with the following property. If M is a d-dimensional closed Riemannian manifold
such that the volume of every 1-ball in the universal cover of M is at most V1, then

‖M‖ ≤ const(d, V1) · vol(M),

where ‖M‖ denotes the simplicial volume of M .

Theorem 1.1 generalizes another theorem, Guth’s volume theorem, as the simpli-
cial volume of a hyperbolic manifold coincides with its volume up to a dimensional
constant by a result of Gromov and Thurston. Other generalizations of Guth’s the-
orem can be found in [BK19, AF17, Theorem 1.3].

We adopt the following convention. Within a statement P about a manifold, a
dimensional constant just means a positive real constant that only depends on the
dimension of the manifold. In other words, if the dimensional constant is denoted by
c(d) the statement P should be read with the preface: For every dimension d there
is a constant c(d) > 0 such that the following holds true.

Let us denote the supremal volume of an r-ball in a Riemannian manifold (M, g)
by V(M,g)(r). The induced metric on the universal cover is denoted by g̃.

Theorem 1.2. (Guth’s Volume theorem [Gut11]). Let M be a d-dimensional
closed hyperbolic manifold, and let g be another metric on M . Suppose that

V
(˜M,g̃)

(1) ≤ VHd(1),

where H
d is d-dimensional hyperbolic space. Then

vol(M, ghyp) ≤ const(d) · vol(M, g)

for a dimensional constant const(d) > 0.

Guth’s volume theorem is the macroscopic cousin of Schoen’s conjecture [Sch89,
p. 127] which says that scalM,g ≥ scalM,ghyp implies vol(M, ghyp) ≤ vol(M, g). More
precisely, it is the non-sharp macroscopic cousin because of the dimensional constant
const(d).

Our second main theorem for R = 1 is the non-sharp macroscopic cousin of the
conjecture that rationally essential manifolds do not admit a metric of positive scalar
curvature (the statement for R = 1 readily implies the one for all R > 0 by scaling
the metric).

Theorem 1.3. There is a dimensional constant ε(d) > 0 with the following prop-
erty. For every rationally essential Riemannian manifold (M, g) of dimension d and
every R > 0 we have

V
(˜M,g̃)

(R) > ε(d) · Rd.
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If ε(d) could be chosen to be the volume of a Euclidean d-ball, then the above
conjecture would follow. A closed oriented manifold is rationally essential if its classi-
fying map sends the fundamental class to a non-zero class in rational homology. Guth
proves the volume estimate in Theorem 1.3 for Riemannian manifolds whose univer-
sal cover have infinite filling radius [Gut11, Theorem 1]. Not every rationally essen-
tial manifold has a universal cover with infinite filling radius according to [BH10,
Theorem 1.4 and Proposition 2.8].

Our third main theorem is the macroscopic cousin of the combined conjec-
tures [Gro86, Conjecture 3A; 21, 3.1 (e) on p. 769] by Gromov (see also [Gro93, p.
232]). It generalizes the main result in [Sau09] where a lower Ricci curvature bound
was assumed. See also [Sau16] for related results in the residually finite case.

Theorem 1.4. For every V1 > 0 and d ∈ N there is a constant const(d, V1) > 0
with the following properties.

(1) If (M, g) is a d-dimensional connected closed oriented Riemannian manifold
with classifying map c : M → BΓ such that V

(˜M,g̃)
(1) ≤ V1, then the von

Neumann rank of c∗([M ]) ∈ Hd(BΓ), where [M ] is the fundamental class of M ,
is bounded from above by const(d, V1) · vol(M).

(2) If, in addition, the manifold M is aspherical, then its �2-Betti numbers satisfy

β
(2)
i (M) ≤ const(d, V1) · vol(M, g)

for every i ∈ N, and the Euler characteristic satisfies

|χ(M)| ≤ const(d, V1) · vol(M, g).

Section 3.3 contains an overview of what we need from the theory of �2-Betti
numbers, including the definition of von Neumann rank.

We present a result which is an outcome of our methods but is of independent
interest. See Remark 3.6 for the relevant notions.

Theorem 1.5. For every V1 > 0 and d ∈ N there is constant const(d, V1) > 0
with the following properties:

The integral foliated simplicial volume of every d-dimensional closed aspherical
Riemannian manifold (M, g) that satisfies V

(˜M,g̃)
(1) ≤ V1 is bounded from above by

const(d, V1) ·vol(M, g). More precisely, the inequality |M |α ≤ const(d, V1) ·vol(M, g)
holds for any free measurable pmp action α on a standard probability space.

Theorem 1.5 generalizes Corollary 1.2 of [Fau21] since the assumption in [Fau21,
Corollary 1.2] implies the vanishing of the minimal volume [CG86, Theorem 3.1].
Theorem 1.5 shows the vanishing of the integral foliated simplicial volume (and
its variants above) for 3-dimensional graph manifolds since their minimal volume
vanishes [CG86, Example 0.2 and Theorem 3.1]. This vanishing result is a special
case of [FFL19, Theorems 1.2 and 1.6].
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1.2 Comment on the proof. The proof of Theorem 1.1 involves an action of
the fundamental group on the Cantor set. We will explain why.

A close reading of Guth’s proof of the volume theorem yields a proof of Theo-
rem 1.1 for closed aspherical manifolds whose smallest non-contractible loop (systole)
is of length at least 1 (see the discussion [AF17, Section 4]). If the fundamental group
is residually finite, then we can pass to a finite cover whose systole is of length at
least 1. Since the stated inequality between simplicial volume and Riemannian vol-
ume may be verified on every finite cover, Theorem 1.1 follows for closed aspherical
manifolds with residually finite fundamental groups.

We have to get rid of the assumptions of asphericity and residual finiteness.
Residual finiteness is hard to verify beyond locally symmetric spaces; we do not
even know whether fundamental groups of closed negatively curved manifolds are
residually finite. The attempt to get rid of residual finiteness leads to actions on the
Cantor set.

If the fundamental group Γ of our manifold M is not residually finite, we may
not have enough finite covers to enforce a large systole. Let us consider the inverse
limit

lim←−
i∈I

Mi

of the directed system of all connected finite regular covers of M – even if there are
none except M itself in the most extreme case. By covering theory the system Mi,
i ∈ I, corresponds to a directed system of finite index normal subgroups Γi < Γ,
i ∈ I. Each Mi is just the quotient Γi\˜M . The inverse limit ̂Γ = lim←−Γ/Γi is the
profinite completion of Γ. We have

lim←−
i∈I

Mi
∼= lim←−

i∈I

Γi\˜M ∼= lim←−
i∈I

Γ/Γi ×Γ
˜M ∼= ̂Γ ×Γ

˜M.

The Γ-quotient on the right is the quotient by the diagonal action. The profinite
completion has an obvious action by translations. The Γ-space ̂Γ has three important
properties:

(1) It is homeomorphic to the Cantor set.
(2) It possesses an invariant probability measure (the Haar measure).
(3) If Γ is residually finite then the Γ-action is free.

Let X be the Cantor set. In Theorem 2.1 we reprove an observation of Hjorth-
Molberg that every countable group Γ admits a free, continuous action on X having
a Γ-invariant probability measure. With regard to such an action we form the space

X ×Γ
˜M,

which acts as a replacement for lim←− Mi if the fundamental group is not residually
finite. Guth’s methods need the finite covers Mi. Our contribution is to generalize
them so that we can work with the global object X ×Γ

˜M instead.
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Recent results of Liokumovich–Lishak–Nabutovsky–Rotman [LLNR] and Papa-
soglu [Pap20] generalize Guth’s theorem in [Gut17, Theorem 0.1] on Uryson width.
Papasoglu’s proof is simpler than Guth’s proof which underlies our work. Can one
combine the method in [Pap20] with our ideas to obtain shorter proofs for our main
results or to obtain explicit constants as in Nabutovsky’s paper [Nab]? We do not
think this is possible in the case of Theorems 1.1 and 1.4, but it might be possible
in the case of Theorem 1.3.

1.3 Structure of the proof. We establish a framework of equivariant bundles
over X (Cantor bundles). After Section 2 on preliminaries we introduce the notion of
Cantor bundle in Section 4. The space X ×˜M with its diagonal action of Γ = π1(M)
is a trivial example. A more interesting toy example is Example 4.9. Cantor bundles
can be regarded as spaces with a groupoid action, namely the groupoid given by the
orbit equivalence relation on X, endowed with additional geometric data. Spaces
with groupoid actions are considered in many contexts. Our main inspiration came
from Gaboriau’s R-simplicial complexes in the measurable world [Gab02]. Another
influence is Gromov’s paper [Gro91].

After discussing transverse Hausdorff measures on Cantor bundles in Section 5
we introduce the rectangular nerve construction in the framework of Cantor bun-
dles (Section 6). The rectangular Cantor nerve of an equivariant cover on X × ˜M
as described above is a non-trivial Cantor bundle. The toy example gives a good
impression how such a rectangular Cantor nerve might look like.

In Section 7 we establish the existence of good covers in our framework and
prove the analog of Guth’s result on the exponential decay of the volume of the
high multiplicity set in our framework. This is the main point about the auxiliary
space X: We cannot obtain a good, equivariant cover on ˜M , only on the Cantor
bundle X × ˜M .

We then bound the transverse volume of the image of the map to the rectangular
Cantor nerve. In Section 8 this map is homotoped as a Cantor bundle map to the
d-skeleton where d is the dimension of M . In Section 9 we relate what we have done
so far to the simplicial volume of M . Here we use tools from homological algebra
and equivariant topology.

2 Topological Preliminaries

In Section 2.1 we present a short proof of the existence of suitable actions on the
Cantor set which is a result of Hjorth-Molberg. In Section 2.2 we review the notion
of an equivariant CW-complex and of a classifying space. In Sections 2.3 and 2.4 we
give a detailed review of rectangular complexes and Guth’s rectangular nerve since
special care is needed in our equivariant context.

We adhere to the following notation. Let M be a closed d-dimensional Rieman-
nian manifold with fundamental group Γ. Its universal cover is denoted by ˜M and
endowed with the Riemannian metric induced by M . The Cantor set is denoted
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by X. We fix a free continuous Γ-action on X and a Γ-invariant Borel probability
measure μ on X whose existence is stated in Theorem 2.1. If B = B(p, r) ⊂ ˜M is
the open ball of radius r around p, then aB is the concentric ball of radius a · r
around p.

2.1 Free actions on the Cantor set. The following observation is due to
Hjorth and Molberg [HM06, Theorem 0.1]Based on the notion of co-induction we
formulate a shorter proof here for the convenience of the reader. A stronger state-
ment, which we only need in the proof of Theorem 1.5, was obtained by Elek [Ele21].

Theorem 2.1. Let Γ be a countable discrete group and let X be the Cantor set.
Then there is a free, continuous Γ-action on X having a Γ-invariant probability
measure.

Proof. The case of finite groups is easy. We may and will assume that Γ is infinite.
For every element γ ∈ Γ let Xγ be the profinite completion of the cyclic subgroup 〈γ〉
endowed with the left translation action by 〈γ〉 and the normalized Haar measure νγ .
Depending on the order of γ, Xγ is either a finite set or homeomorphic to the profinite
completion ̂Z of Z, which is a Cantor set. Let Yγ be the co-induction of the 〈γ〉-space
Xγ , that is

Yγ := map(Γ, Xγ)〈γ〉 =
{

f : Γ → Xγ | ∀x∈Γf(γx) = γ · f(x)
}

endowed with the compact-open topology and the left Γ-action (λ·f)(x) = f(xλ) for
x ∈ Γ and λ ∈ Γ. Non-equivariantly, Yγ is homeomorphic to the product

∏

〈γ〉\Γ Xγ ,
which is a Cantor set. One easily verifies that the product measure μγ of the νγ is
invariant under the Γ-action on Yγ . Finally, we define X to be the product

X :=
∏

γ∈Γ

Yγ

endowed with diagonal Γ-action and the product measure of the measures μγ . The
product measure is clearly Γ-invariant. As a countable product of Cantor sets, X is
a Cantor set. It remains to show that the Γ-action on X is free. Let x = (yγ) ∈ X
and γ0 ∈ Γ. Assume that γ0 · x = (γ0 · yγ)γ∈Γ = (yγ)γ∈Γ. Since the 〈γ0〉-action on
Yγ0 is free, it implies that γ0 = e. �
2.2 Equivariant CW-complexes. We recall some terminology concerning
equivariant CW-complexes and classifying spaces. For the notion of an (equivari-
ant) Γ-CW-complex we refer to [Tom87, Section II.1]. The skeleta N (n) of a Γ-CW-
complex N are built inductively via Γ-pushouts of the form

∐

i∈In
Γ/Hi × Sn−1 N (n−1)

∐

i∈In
Γ/Hi × Dn N (n)
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The conjugates of the subgroups Hi, i ∈ In, n ≥ 0, are precisely the isotropy groups
of the Γ-space N . If all subgroups Hi are trivial, then N is a free Γ-CW-complex.
If all subgroups Hi are finite, then N is a proper Γ-CW complex. The universal
cover of a CW-complex with fundamental group Γ has a natural structure of a free
Γ-CW-complex.

A cellular action of a discrete group Γ on a CW-complex W is a continuous
action of Γ on W such that

(1) for every open cell e and γ ∈ Γ the translate γe is an open cell and
(2) if γ ∈ Γ fixes an open cell set-wise then it does so point-wise.

A CW-complex with a cellular Γ-action is a Γ-CW-complex in the sense of [Tom87,
p. 98] (see [Tom87, Proposition (1.15) on p. 101]), which means that is obtained
from glueing equivariant cells Γ/H × Dk along their boundaries Γ/H × Sk−1 where
H < Γ is a subgroup.

The equivariant homotopy category of free Γ-CW complexes possesses a terminal
object which is denoted by EΓ. The space EΓ is unique up to equivariant homotopy
and called the classifying space of Γ. The quotient of EΓ is commonly denoted by
BΓ and also called classifying space. Each free Γ-CW-complex admits an equivariant
map to the classifying space of Γ. Any such map—they are unique up to homotopy—
is called classifying map.

2.3 Rectangular complexes. A rectangular complex is a Mκ-polyhedral com-
plex with κ = 0 in the sense of Bridson–Haefliger [BH99, Definition 7.37 on p. 114]
such that each cell is isometric to a Euclidean d-cuboid [0, a1]× [0, a2]×· · ·× [0, ad] ⊂
R

d and the intersection of two cells is either empty or a single face. We recall some
terminology and basic facts from the book of Bridson–Haefliger [BH99, Chapter I.7].

The faces of [0, a] are just {0}, {a} and [0, a]. The faces of a Euclidean d-cuboid
[0, a1] × · × [0, ad] are the subsets given by F1 × · · · × Fd where each Fi is a face of
[0, ai]. Faces of dimensions 0 and 1 are also called vertices and edges, respectively.
The barycenter of a Euclidean d-cuboid C = [0, a1]× [0, a2]× · · ·× [0, ad] with d > 0
is the point (1

2a1, . . . ,
1
2ad). It lies in the interior of C and is fixed by any isometry

of C. The barycenter of a vertex is the vertex itself.
A rectangular complex has the structure of a CW-complex with the cells corre-

sponding to the Euclidean cuboids. Depending on the context, we refer to the latter
as cells or (Euclidean) cuboids or faces. A rectangular complex is endowed with the
path metric that is induced by the Euclidean metric on each Euclidean cuboid.

The second barycentric subdivision of a rectangular complex is simplicial com-
plex, even a M0-simplicial complex [BH99, Proposition 7.49 on p. 118].

Let J be a, possibly countably infinite, index set. The real vector space with
basis J will be denoted by E

J . We regard E
J as the vector space of real sequences

indexed over J that have only finitely many non-zero components. We endow E
J

with the Euclidean norm and metric.
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For a family (aj)j∈J of positive real numbers we will define a rectangular complex

N
(

(aj)j∈J

) ⊂ E
J

as a subset of E
J in the following way. The vertices of N are the sequences of E

J\{0}
whose j-component, j ∈ J , is either 0 or aj . Two vertices are adjacent if they differ in
exactly one component. A family of 2k vertices span a k-face (or k-cell, or k-cuboid)
given by their convex hull if each vertex is adjacent to exactly k vertices. We call
N
(

(aj)j∈J

)

the rectangular complex associated to the family (aj)j∈J .
To see that the previous definition yields a rectangular complex we have to verify

that the intersection of two faces is empty or a single face. To this end, we start with
following remark.

Remark 2.2. A face F in N((aj)j∈J) is a subset of E
J of the following type: There is

a finite subset J ′ ⊂ J and there are cj ∈ {0, aj} for every j ∈ J\J ′ with (cj)j∈J\J ′ �= 0
such that

F =
{

(bj)j∈J | ∀j∈J ′ bj ∈ [0, aj ] ∧ ∀j∈J\J ′ bj = cj

}

. (2.1)

Vice versa, every such subset is a face in N((aj)j∈J), namely the convex hull of
the following set of vertices of cardinality 2#J ′

{

(bj)j∈J | ∀j∈J ′ bj ∈ {0, aj} ∧ ∀j∈J\J ′ bj = cj

}

.

Depending on F , we define the following four subsets of the index set J :

J0(F ) :=
{

j ∈ J\J ′ | cj = 0
}

, J 1
2
(F ) := J ′,

J1(F ) :=
{

j ∈ J\J ′ | cj = aj

}

, J+(F ) := J1(F ) ∪ J 1
2
(F ).

Equivalently we could define J0(F ), J 1
2
(F ), and J1(F ) as the subset of indices j ∈ J

for which the j-component of the barycenter of F is 0, 1
2aj , and 1, respectively.

Let us consider two faces

F =
{

(bj)j∈J | ∀j∈J 1
2
(F ) bj ∈ [0, aj ] ∧ ∀j∈J\J 1

2
(F ) bj = cj

}

,

F̃ =
{

(bj)j∈J | ∀j∈J 1
2
(F̃ ) bj ∈ [0, aj ] ∧ ∀j∈J\J 1

2
(F̃ ) bj = c̃j

}

.

The intersection

F ∩ F̃ =
{

(bj)j∈J | ∀j∈J 1
2
(F )∩J 1

2
(F̃ ) bj ∈ [0, aj ] ∧ ∀j 	∈J 1

2
(F ) bj = cj ∧ ∀j 	∈J 1

2
(F̃ ) bj = c̃j

}

is empty or again of the type (2.1) and thus a single face of N((aj)j∈J). We conclude
that N((aj)j∈J) is indeed a rectangular complex.

Let F be a face in N((aj)j∈J). We denote the dimension of F by d(F ). By
definition of the rectangular complex we have J1(F ) �= ∅. One has d(F ) = #J 1

2
(F ).

Further, F is a cuboid with side lengths aj , j ∈ J 1
2
(F ). For every face F we enumerate

these side lengths by

r1(F ), . . . , rd(F )(F ) such that r1(F ) ≤ · · · ≤ rd(F )(F ). (2.2)
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2.4 Rectangular nerves of covers. We recall the definition of the rectangular
nerve of a cover by balls which was introduced by Guth.

Definition 2.3. Let V = {Bj | j ∈ J} be a cover of a Riemannian manifold W by
open balls such that the balls 1

2Bj still cover W . Let rj be the radius of the ball
Bj . The rectangular nerve N(V) of V is the subcomplex of N((rj)j∈J) whose faces
F are precisely the ones for which

⋂

j∈J+(F )

Bj �= ∅

and J1(F ) �= ∅.

We turn to the equivariant setting with regard to the action of the fundamental
group Γ = π1(M) on the universal cover ˜M .

Lemma 2.4. Let J be a free cofinite Γ-set, and V = {Bj | j ∈ J} be an equivariant

cover of ˜M by balls Bj of radius rj in the sense that γBj = Bγj for every j ∈ J and
γ ∈ Γ. Then N(V) is a locally finite rectangular complex. The left shift action

Γ �

∏

j∈J

[0, rj ], γ · (xj

)

j∈J
=
(

xγ−1j

)

j∈J

restricts to a proper Γ-action on N(V) that permutes cells. Further, the barycentric
subdivision of N(V) is a proper Γ-CW-complex.

Proof. Since Γ is cofinite and and the Γ-action on ˜M by deck transformations is
proper, the cover V is locally finite. Hence N(V) is a locally finite CW-complex.
Clearly, the action permutes cells, thus the action satisfies property (1) of a cellular
action. Each stabilizer of a cell is contained in the set-stabilizer of a finite subset
of J , thus is a finite group. The CW-structure of N(V) does not necessarily satisfy
property (2) of a cellular action. Next we show that its barycentric subdivision does.
A k-face of the barycentric subdivision is given by the convex hull of the barycenters
of a strictly ascending chain F0 ⊂ F1 ⊂ · · · ⊂ Fk where Fi is an i-face of N(V). Let
γ ∈ Γ fix the k-face C associated with F0 ⊂ F1 ⊂ · · · ⊂ Fk as a set. Then γ fixes
each face Fi as a set. Since F0 is a vertex, γ fixes F0 pointwise. By induction we may
assume that γ fixes Fi pointwise for i < k. Since γ fixes the i + 1-dimensional face
Fi+1 as a set and its i-dimensional subface Fi pointwise, it must fix Fi+1 pointwise.
Hence γ fixes C pointwise. So the Γ-action on the barycentric subdivision is cellular.
The stabilizers of cells are finite as discussed above, which means that the barycentric
subdivision of N(V) is a proper Γ-CW-complex. �
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3 Homological Preliminaries

In Section 3.1 we review Thurston’s measure homology which is isomorphic and
isometric to real singular homology on CW-complexes but has better functorial
properties with regard to Cantor bundles which are considered later. In Section 3.2
we discuss normed abelian groups and chain complexes. There we review integral
variants (X-parametrised integral simplicial volume, integral foliated simplicial vol-
ume) of the simplicial volume that take an action of the fundamental group on a
Cantor set or a probability space into account. In Section 3.3 we collect what we
need from Lück’s approach to �2-Betti numbers. We prove a bound on the von Neu-
mann rank (Definition 3.8) via the X-parametrised integral simplicial norm which
slightly generalizes a bound of �2-Betti numbers of a closed manifold by the foliated
simplicial volume due to Schmidt [Sch05].

We collect some notation. The space of real-valued and integer-valued continuous
functions on X is denoted by C(X) and C(X; Z), respectively. The action of Γ on X
induces a (left) action on C(X). Tensor products M⊗ZN over the ring Z are denoted
by M ⊗ N . The integral group ring of Γ is denoted by Z[Γ]. Modules over a (non-
commutative) ring are assumed to be left modules unless said otherwise. Since Z[Γ]
is a ring with involution—induced by γ �→ γ−1—we can turn any left Z[Γ]-module
into a right Z[Γ]-module. We do implicitly so if we write M ⊗Z[Γ] N for two left Z[Γ]-
modules. The singular chain complex of a space Y is denoted by C∗(Y ). We write
C∗(Y ; R) for the singular chain complex with real coefficients. Similar for singular
homology. If the group Γ is acting continuously on Y and M is a Z[Γ]-module, then
we write the equivariant homology and cohomology as

HΓ
p (Y ; M) := Hp

(

M ⊗Z[Γ] C∗(Y )
)

and Hp
Γ(Y ; M) := Hp

(

homZ[Γ](C∗(Y ), M)
)

.

The projection ˜M → M yields a canonical isomorphism HΓ∗ (˜M ; Z)
∼=−→ H∗(M ; Z).

3.1 Measure homology. Measure homology replaces the finite linear combi-
nations in singular homology by signed measures on the space of singular simplices.
It was invented by Thurston. We recall its basic notions. For more details we refer
to [Loh06].

For a topological space N we endow the space of continuous maps map(Δn, N)
from the standard n-simplex to N with the compact-open topology. We define Cn(N)
as the R-vector space of signed Borel measures on map(Δn, N) that have compact
support and finite variation. The elements of Cn(N) are called measure chains. The
alternating sum of pushforwards of face maps turn C∗(N) into a chain complex whose
homology is called the measure homology of N .

The variation of measures induces a seminorm on the measure homology. The
map from the singular chain complex to the chain complex of measure chains
C∗(N) → C∗(N) that sends a singular n-simplex to the point measure on that
simplex is a natural chain homomorphism, which induces an isometric isomorphism
in homology [Loh06].
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3.2 Norms on abelian groups and chain complexes. We consider norms
and seminorms on R-modules, i.e. real vector spaces, and on Z-modules, i.e. abelian
groups. The defining properties of a (semi-)norm on an R-module make sense for a
Z-module A and a function | | : A → R

≥0 with the slight modification that |r ·a|A =
|r| · |a|A is only required for r ∈ Z and a ∈ A.

Theorem 3.1. ([Ste85]). An abelian group endowed with a norm that induces the
discrete topology is free.

The supremum norm on the abelian group C(X; Z) of integer valued continuous
functions on X induces the discrete topology. We record the following consequence
for later use.

Corollary 3.2. The abelian group C(X; Z) is free.

A chain complex of Z- or R-modules equipped with a (semi-)norm on each chain
group is called a (semi-)normed chain complex provided the boundary maps are
continuous. We endow the quotient of a (semi-)normed module with the quotient
semi-norm. In general, a norm does not induce a norm on the quotient but only
a semi-norm. In the context of semi-norms being isometric does not imply being
injective.

The singular chain complexes C∗(N) and C∗(N ; R) of a topological space N with
integer or real coefficients, respectively, are normed via the �1-norm with respect to
the basis by singular simplices. They induce semi-norms on H∗(N) and H∗(N ; R),
respectively. The latter is denoted by ‖ ‖ and called simplicial norm. The induced
chain homomorphism and homology homomorphism of a map of spaces do not
increase the simplicial norms. Gromov and Thurston defined the simplicial volume
of a closed manifold M as the simplicial norm of its fundamental class [M ]. We
denote it by ‖M‖.

The �1-norm on C(X; Z) with respect to the measure μ and the simplicial norm
induce the following norm on each abelian group C(X; Z) ⊗ Cp(N) which we call
the X-parametrised integral simplicial norm and denote by ‖ ‖X

Z
: For functions

f1, . . . , fk ∈ C(X; Z) and distinct singular p-simplices σ1, . . . , σk we set

‖f1 ⊗ σ1 + · · · + fk ⊗ σk‖X
Z

:=
∫

X
|f1|dμ + · · · +

∫

X
|fk|dμ.

Let us now consider the situation where N is a topological space endowed with
the action of a group Γ. Then C∗(N) is a chain complex over the group ring Z[Γ].
We obtain an induced semi-norm on the quotient C(X; Z)⊗Z[Γ] Cp(N) of C(X; Z)⊗
Cp(N) which we call by the same name and denote by the same symbol.

Definition 3.3. Let Y be a connected space with fundamental group Γ and univer-
sal cover ˜Y . The composition of chain maps

C∗(Y )
∼=←− Z ⊗Z[Γ] C∗(˜Y ) ↪→ C(X; Z) ⊗Z[Γ] C∗(˜Y )
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is denoted by jY∗ . Here the right hand map is induced by the inclusion of constant
functions.

Remark 3.4. Let iR∗ be the change of coefficients C∗(Y ) → C∗(Y ; R). We have
∥

∥jY
∗ (z)

∥

∥

X

Z
≤ ∥

∥iR∗ (z)
∥

∥

for every chain z in C∗(Y ) and thus a similar statement for every homology class.
This follows from the fact that invariant measure μ on X yields by integration a
chain map

C(X; Z) ⊗Z[Γ] C∗(˜Y ) → R ⊗Z[Γ] C∗(˜Y )
∼=−→ C∗(Y ; R)

that does not increase norms.

Definition 3.5. The X-parametrised integral simplicial volume of a connected
closed oriented manifold M with fundamental group Γ is defined as

‖M‖X
Z

:=
∥

∥jM
∗ ([M ])

∥

∥,

where [M ] ∈ Hd(M) is the fundamental class.

Note that we take the liberty to skip the dependency on the measure μ in the
notation of the X-parametrised integral simplicial volume.

Remark 3.6 (Relation to integral foliated simplicial volume). Let us denote the free
and probability measure preserving (pmp) action of Γ on (X, μ) by α. Then ‖M‖X

Z

only depends on the measure isomorphism class of α, and ‖M‖X
Z

coincides with
the α-parametrised simplicial volume |M |α as defined in [FLPS16, Definition 2.2].
The integral foliated simplicial volume is defined as the infimum of α-parametrised
simplicial volumes over all free measurable pmp actions α of Γ, and is thus bounded
from above by the X-parametrised integral simplicial volume. We refer to [FLPS16,
Sch05] for more details.

3.3 �2-Betti numbers. We use Lück’s approach to �2-Betti numbers which is
based on the dimension function for modules over finite von Neumann algebras. This
is not just a matter of taste as it is important in our context to work with singular
chains and to be able to read off �2-Betti numbers from the singular chain complex
instead of the simplicial chain complex.

Lück [Luc98] defines a dimension function dimA taking values in [0, ∞] for arbi-
trary modules over a von Neumann algebra A with a finite trace, where A is regarded
just as a ring, not as functional-analytic object. Our most important example is the
group von Neumann algebra L(Γ) with its canonical trace. The complex group ring
C[Γ] is a subring of L(Γ). The trace of an element in C[Γ] is the coefficient of 1Γ. The
involution of C[Γ] induced by complex conjugation and taking inverses extends to
an involution of L(Γ) which corresponds to taking adjoint operators. In particular,
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we can turn any left L(Γ)-module into a right L(Γ)-module via this involution. The
p-th �2-Betti number of a Γ-space Y is then defined as

β(2)
p (Y ; Γ) := dimL(Γ) HΓ

p

(

Y ; L(Γ)
)

.

In the case of the universal covering ˜M → M and Γ = π1(M) we simply write
β

(2)
p (M) instead of β

(2)
p (˜M ; Γ) and call it the p-th �2-Betti number of M . In the case

of Riemannian manifolds and simplicial complexes the above definitions coincide
with those by Atiyah and Dodziuk, respectively. For more information and proofs
we refer to Lück’s book [Luc02].

Next we describe another von Neumann algebra whose relevance to �2-Betti
numbers became clear in the work of Gaboriau [Gab02]. The probability space (X, μ)
from Theorem 2.1 gives rise to the abelian von Neumann algebra L∞(μ) of complex-
valued measurable functions on X with the integral as finite trace. The measure
preserving action of Γ induces a unitary Γ-action on L∞(μ). One can then form the
crossed product von Neumann algebra L∞(μ)�̄Γ which contains L(Γ) and L∞(μ) as
subalgebras and which possesses a (unique) finite trace that extends those of L(Γ)
and L∞(μ). For γ ∈ Γ ⊂ C[Γ] ⊂ L(Γ) and f ∈ L∞(μ) we have

γ · f = f
(

γ−1
) · γ ∈ L∞(μ)�̄Γ.

The involution on L∞(μ)�̄Γ extends the one of L(Γ) and the complex conjugation
on L∞(μ). We indicate the involution in all cases with a bar. We refer for more
information to [Gab02, Sau05].

The following theorem was suggested by ideas of Connes and Gromov and was
proved in the PhD thesis of Schmidt [Sch05].

Theorem 3.7. Every �2-Betti number of a closed oriented manifold is bounded
from above by its X-parametrised integral simplicial volume.

We formulate a slightly more general version (Theorem 3.10) based on the notion
of von Neumann rank which is defined below. The proof of Theorem 3.10 can be
extracted from Schmidt’s proof of Theorem 3.7. To make it easier for the reader we
present a proof of Theorem 3.10 which is a streamlined version of Schmidt’s method.

Some preparations are in order. Let C∗ be a chain complex of left Z[Γ]-modules.
We denote by C−∗ the chain complex whose p-th chain module is homZ[Γ]

(

C−p, Z[Γ]
)

with the induced differential. We may extend chain complexes that are indexed over
non-negative degrees like the singular chain complex to all degrees in Z by setting
them zero in negative degrees. Since the group ring is a ring with involution we may
regard te module C−∗ which is naturally a right Z[Γ]-module as a left Z[Γ]-module.
Let D∗ be another Z[Γ]-chain complex. We consider the following commutative dia-
gram of Z-chain complexes:
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Z ⊗Z[Γ]

(

C∗ ⊗Z D∗
)

homZ[Γ]

(

C−∗, D∗
)

L∞(μ) ⊗Z[Γ]

(

C∗ ⊗Z D∗
)

homL∞(µ)�̄Γ

(

L∞(μ)�̄Γ ⊗Z[Γ] C−∗, L∞(μ)�̄Γ ⊗Z[Γ] D∗
)

(3.1)

The tensor product of chain complexes C∗ ⊗ D∗ is itself a Z[Γ]-chain complex via
the diagonal Γ-action. The complex on the upper right is the hom-complex; its p-
th chain group consists of chain maps C−∗ → D∗ of degree p; its p-th homology
consists of the group of chain homotopy classes of degree p chain maps, which we
denote by [C−∗, D∗]. We refer to [Bro94, I.0] for a detailed description of these
standard constructions of chain complexes. The left vertical map comes from the
inclusion of constant functions. The right vertical map is the induction from Z[Γ] to
L∞(μ)�̄Γ. The upper horizontal arrow sends 1 ⊗ x ⊗ y to the map g �→ g(x) · y for
g ∈ C−∗. The lower horizontal arrow is the map

f ⊗ x ⊗ y �→
(

a ⊗ g �→ a · f · g(x) ⊗ y
)

. (3.2)

To verify that this map is well defined we check that f(γ ) ⊗ x ⊗ y and f ⊗ γx ⊗ γy
have the same image. This follows from

af(γ )g(x) ⊗ y = af(γ )g(x)γ−1 ⊗ γy = aγf(γ )g(x) ⊗ γy = af( )γg(x) ⊗ γy

= af( )g(γx) ⊗ γy.

We leave the verification of the property of being a chain map to the reader.
Next let Y be a topological space with a free Γ-action. Set C∗ = D∗ = C∗(Y ).

Let A∗ : C∗(Y × Y ) → C∗(Y ) ⊗Z C∗(Y ) be the Alexander-Whitney map, and let
Δ∗ : C∗(Y ) → C∗(Y × Y ) be the map induced by the diagonal embedding. If we
compose the horizontal maps in the commutative square above with the chain maps
idZ ⊗Z[Γ]A∗◦Δ∗ and idL∞(μ) ⊗Z[Γ]A∗◦Δ∗, respectively, and take homology, we obtain
the following commutative square. The left vertical map is induced by the inclusion
of constant functions.

Hd(Γ\Y ) ∼= HΓ
d (Y ; Z)

[

C−∗(Y ), Cd+∗(Y )
]

HΓ
d

(

Y ; L∞(μ)
) [

L∞(μ)�̄Γ ⊗Z[Γ] C−∗(Y ), L∞(μ)�̄Γ ⊗Z[Γ] Cd+∗(Y )
]

∩

(3.3)

The upper and lower horizontal maps are variants of the cap product.

Definition 3.8. Let Z be a connected space with fundamental group Γ. Let x ∈
Hd(Z). The von Neumann rank of x is defined as

dimL(Γ)

(

⊕

n≥0

im
(

Hn
Γ

(

˜Z; L(Γ)
) x∩−−→ HΓ

d−n

(

˜Z; L(Γ)
)

))

.
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Remark 3.9. Let M be a closed oriented d-manifold. The sum of the �2-Betti num-
bers of M is the von Neumann rank of its fundamental class. This is direct conse-
quence of (equivariant) Poincare duality which says that the image of the fundamen-
tal class under the upper horizontal map in (3.3) is chain homotopy equivalence.

Theorem 3.10. Let Z be a connected space with fundamental group Γ. Then
the von Neumann rank of a homology class [x] ∈ Hd(Z) is bounded from above by

d · ∥∥[jZ∗ (x)]
∥

∥

X

Z
.

Proof. Suppose the image of x under the map induced by inclusion of constant
functions is homologous to a cycle

∑m
k=1 ak ⊗ σk where ak ∈ C(X; Z) and σk is a

singular d-simplex in ˜Z. Via the embedding C(X; Z) ↪→ L∞(μ) we obtain a homology
class [

∑m
k=1 ak ⊗ σk] ∈ HΓ

d ( ˜Z; L∞(μ)). The cap product with
∑m

k=1 ak ⊗ σk, that is
the image of

∑m
k=1 ak ⊗ σk under the lower horizontal map of (3.3), is represented

by the L∞(μ)�̄Γ-chain homomorphism whose degree i part is

L∞(μ)�̄Γ ⊗Z[Γ] Ci( ˜Z) → L∞(μ)�̄Γ ⊗Z[Γ] Cd−i( ˜Z), 1 ⊗ g

�→
m
∑

k=1

ak · g(σk�i) ⊗ σk�d−i.

Here σ�i and σ�d−i denote the front i-face and the back (d− i)-face of σ respectively.
It clearly factorizes over the L∞(μ)�̄Γ-homomorphism

L∞(μ)�̄Γ ⊗Z[Γ] Ci( ˜Z) →
m
⊕

k=1

L∞(μ)�̄Γ · χsupp(ak),

y ⊗ g �→ (

yakg(σk�i)
)

k
=
(

yg(σk�i)ak

)

k
.

Further, we have

dimL∞(μ)�̄Γ

(
m
⊕

k=1

L∞(μ)�̄Γ · χsupp(ak)

)

=
m
∑

k=1

μ(supp(ak)) ≤ ∥

∥

m
∑

k=1

ak ⊗ σk

∥

∥

X

Z
.

The last inequality uses the fact that ak is integer-valued. Hence the L∞(μ)�̄Γ-
dimension of the image of the cap product with [

∑m
k=1 ak ⊗ σk]

⊕

n≥0

im
(

Hn
Γ( ˜Z; L∞(μ)�̄Γ) → HΓ

d+n( ˜Z; L∞(μ)�̄Γ)
)

(3.4)

is bounded by
∥

∥[jZ∗ (x)]
∥

∥

X

Z
. It remains to verify that the L∞(μ)�̄Γ-dimension of (3.4)

is the von Neumann rank of [x]. Since L(Γ) ⊂ L∞(μ)�̄Γ is a flat ring extension
[Sau05, Theorem 4.3], we obtain that

⊕

n≥0

im
(

Hn
Γ( ˜Z; L∞(μ)�̄Γ) → HΓ

d+n( ˜Z; L∞(μ)�̄Γ)
)

∼= L∞(μ)�̄Γ ⊗L(Γ)

⊕

n≥0

im
(

Hn
Γ( ˜Z; L(Γ)) → HΓ

d+n( ˜Z; L(Γ))
)
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where the maps on the right hand side are induced by the cap product with [x].
Since the von Neumann dimension is compatible with induction [Sau05, Theorem
2.6], the proof is finished. �

4 The Category of Cantor Bundles

In 4.1 we introduce the central notion of a Cantor bundle. A Cantor bundle comes
with a map to the Cantor set X. In general, a Cantor bundle is not a locally trivial
bundle over X. See Example 4.9. It is, however, locally trivial, when restricted to
compacta (see Lemma 4.3). Metric Cantor bundles are also introduced which are
Cantor bundle whose fibers over X come with the structure of a metric space. In 4.2
we define Cantor bundle maps. We also consider pushouts of Cantor bundles. In 4.3
we study the functoriality of certain chain complexes attached to Cantor bundles.

4.1 Cantor bundles. We define the data of a product atlas for a space over
X.

Definition 4.1. Let W be a topological space and pr: W → X a continuous map
to the Cantor set. We denote the fiber over x ∈ X by Wx. For A ⊂ X we write W |A
for pr−1(A) ⊂ W . We introduce the notion of a product atlas for W :

� A product chart for W consists of a clopen subset A ⊂ X, an open subset
U ⊂ W , a space F , and a homeomorphism U → A × F over A.

� Two product charts ci : Ui → Ai × Fi, i ∈ {1, 2} are compatible if there are
subspaces F ′

i ⊂ Fi such that ci(U1 ∩ U2) = (A1 ∩ A2) × F ′
i and the transition

map

c2 ◦ c−1
1 : (A1 ∩ A2) × F ′

1 → (A1 ∩ A2) × F ′
2

is a product of idA1∩A2 and a homeomorphism g : F ′
1 → F ′

2.
� A product atlas for W consists of a family of compatible product charts whose

domains cover W ; it is maximal if it contains every product chart that is
compatible with the product charts of the atlas.

If in the definition of a product atlas we would replace the Cantor set by a
connected space then the existence of a product atlas for W → X would imply that
W → X is trivial. This in stark contrast to our situation.

Definition 4.2. Let pr : W → X be a topological space over X endowed with a
maximal product atlas.

� A relatively compact subset K ⊂ W is called a box if there is a product chart
c : U → A × F such that K ⊂ U and c(K) = A × F ′ for a subspace F ′ ⊂ F .

� For a box K and for all x, y ∈ A := pr(K) the map

τx,y : Kx
∼=−→ Ky
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defined by

τx,y(p) = c−1
(

y, pr2(c(p))
)

for a choice of product chart K ⊂ U
c−→ A × F is independent of the choice of

chart. We say that τx,y is the parallel transport inside the box K.

Lemma 4.3. Let pr: W → X be a locally compact Hausdorff space over X endowed
with a maximal product atlas. For every compact subset K ⊂ W there is a relatively
compact, open subset L ⊂ W containing K and a clopen partition X = A1∪· · ·∪An

such that L|Ai
is a box for each i ∈ {1, . . . , n}. Further, if K is a finite union of open

boxes, we may choose L = K.

Proof. Since W is locally compact, each point lies in an open box. Since K is compact
it is covered by finitely many open boxes B1, . . . , Bn. Let L be the union of these
boxes. Every box is relatively compact, and so is L. Since the clopen subsets of X
form a set algebra, there is a clopen partition A1, . . . , Am of pr(L) that is subordinate
to pr(B1), . . . ,pr(Bn).

We claim that L|Ai
is box: Pick x0 ∈ Ai. We construct a product chart

fi : L|Ai
→ Ai × (Wx0 ∩ L)

as follows. Every p ∈ Lx ⊂ L|Ai
lies in a box Bk with Ai ⊂ pr(Bk). We set fi(p) =

(x, τBk
x,x0

(p)) where τBk
x,x0

is the parallel transport inside Bk. We have

τBk
x,x0

(p) = τBl
x,x0

(p) for p ∈ Wx ∩ Bk ∩ Bl and {x, x0} ⊂ pr(Bk ∩ Bl),

hence fi is well defined. The map fi is a homeomorphism, and its inverse maps (x, q)
to τBk

x0,x(q) for any box Bk with q ∈ Bk.
Since fi is compatible with all the boxes Bk and its domain is covered by them,

fi lies in the maximal product atlas. So L|Ai
is box. Moreover, we can add the

complement of pr(L) to the clopen partition above to get the statement of the
lemma. �
Definition 4.4 (Cantor bundle). A Cantor bundle is a locally compact Hausdorff
space W endowed with a continuous proper Γ-action and a continuous Γ-equivariant
map pr: W → X and a maximal product atlas such that the Γ-action on W has a
Borel fundamental domain that is a union of finitely many boxes.

Note that the action on a Cantor bundle is automatically free since it lies over
the free action on X.

Definition 4.5. Let pr : W → X be a Cantor bundle, and let V ⊂ W be a Γ-
invariant subspace so that for every p ∈ V there is a product chart U → A×F such
that p ∈ U and U ∩ V is a box. Then we call pr |V : V → X a Cantor subbundle of
pr : W → X.
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Lemma 4.6. Let A be a maximal product atlas of a Cantor bundle W → X. A Can-
tor subbundle V ⊂ W is a Cantor bundle with respect to the product atlas

AV :=
{

U
c−→ A × F | c ∈ A, U ∩ V is a box

}

.

Proof. The only non-obvious statement is the existence of a fundamental domain for
V consisting of finitely many boxes. Let D ⊂ W be a fundamental domain for W
which is a union of boxes B1, . . . , Bn. Note that D is relatively compact as every Bi

is relatively compact. Then V ∩ D is a fundamental domain for V . At every point
p ∈ V ∩ D we can choose a product chart with a domain Up � p such that Up ∩ V is
a box. By relative compactness we can cover V ∩D with finitely many such product
chart domains Up1 , . . . , Upm

. Every set

Upi
∩ V ∩ D =

n
⋃

j=1

Upi
∩ V ∩ Bj

is a box, hence V ∩ D is a union of such. �

Example 4.7. Let A ⊂ X be a clopen subset and Y any compact space. We consider
the trivial Cantor bundle X × (Γ × Y ) with the projection to the first factor and
endowed with the Γ-action

γ · (x, γ′, y) = (γx, γγ′, y).

Then A × Γ × Y endowed with the projection

A × Γ × Y → X, (a, γ, y) �→ γa

and the left translation Γ-action on the second factor is a Cantor subbundle via the
embedding

A × Γ × Y ↪→ X × Γ × Y, (a, γ, y) �→ (γa, γ, y).

Remark 4.8 (Finite isotropy disappears). Let H < Γ be a finite subgroup. Then
X × Γ/H is a Cantor bundle with the projection to X and the diagonal Γ-action.
Let A ⊂ X be a Borel fundamental domain for the H-action on X. Then

X × Γ/H ∼= A × Γ

are isomorphic as Cantor bundles where the latter is the one from the previous
example. An isomorphism is given by

A × Γ → X × Γ/H, (a, γ) �→ (γa, γH).
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-2 -1 0 1 2

Figure 1: The simplicial complex L.

-2 -1 0 1 2

Figure 2: Lx for x = (. . . , 1, 1,0, 1, 0, . . . ) ∈ {0, 1}Z.

Example 4.9 (Non-trivial Cantor bundle). We describe an example of a Cantor
bundle whose fibers exhibit uncountably many homeomorphism types. In particular,
it is not a trivial Cantor bundle. Let Γ = Z and let X be a minimal subshift of the
shift action of Z on {0, 1}Z such that the Z-action on the Cantor set X is free. Such a
minimal subshift exists due to [GU09, Theorem 4.2]. Let L be the following infinite
1-dimensional simplicial complex: (Fig. 1) We have an obvious Z-action on L by
translation. For x = (xi) ∈ X ⊂ {0, 1}Z let Lx ⊂ L be the subcomplex that consists
of the horizontal line and of an upward caret at each n with xn = 1 and a downward
segment at each n with xn = 0 (Fig. 2).

Then

W =
{

(x, p) | p ∈ Lx} ⊂ X × L

is a Cantor subbundle of the trivial Cantor bundle X ×L: The diagonal Z-action on
X × L restricts to W . For every x = (xi) ∈ X we consider the clopen neighborhood
of x

Ax(n) =
{

(yi) ∈ X | yi = xi for i ∈ {−n, . . . , n}},

and let Lx(n) ⊂ Lx be the finite subgraph obtained from Lx by cutting off the
horizontal line at −n and n. We then have

W ∩ (Ax(n) × Lx(n)
)

= Ax(n) × Lx(n) ⊂ X × L.

Running through x ∈ X and n ∈ N we cover all of W . So W is a Cantor subbundle.
Since the valency of Lx at each vertex is at least 3, two fibers Lx and Ly are

homeomorphic if and only if they are simplicially isomorphic. Since X is uncountable,
W has uncountably many homeomorphism types of fibers.

Definition 4.10 (Metric and Riemannian Cantor bundles). A Cantor bundle
pr : W → X is metric if

� each fiber Wx is endowed with a metric inducing the topology of Wx, and
� the maps Wx → Wγ·x induced by multiplication are isometries for every x ∈ X

and every γ ∈ Γ.
� for each product chart c : U → A × F there is a metric on F such that c is

fiberwise an isometry.
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If, in addition, each fiber Wx is a d-dimensional Riemannian manifold with the
induced Riemannian metric, we say that pr : W → X is a d-dimensional Riemannian
Cantor bundle.

Finally, metric Cantor subbundles are defined similarly to Cantor subbundles.

Example 4.11 The product space X × ˜M with the diagonal Γ-action is a Rieman-
nian Cantor bundle. Each fiber {x} × ˜M ∼= ˜M carries the Riemannian metric lifted
from the Riemannian metric from M . The maximal product atlas is defined to be
the set of all product charts that are compatible with id: X × ˜M → X × ˜M . The
Γ-action possesses a relatively compact Borel fundamental domain F ⊂ ˜M . Then
the box X × F is a Borel fundamental domain of the Γ-action on X × ˜M .

4.2 Cantor bundle maps. To obtain a category of Cantor bundles we define
the morphisms next.

Definition 4.12 Let V and W be topological spaces over X endowed with maximal
product atlases. Let Φ: V → W be a continuous map over X.

Let c : UV → AV ×FV be a product chart of V . We say that Φ|U is a product map
if there is a product chart d : UW → AW ×FW of W such that d◦Φ◦c−1 : AV ×FV →
AW × FW is a product of the identity on X and a continuous map.

We say that Φ is locally product-like if every point of V lies in the domain of a
product chart on which Φ is a product map.

Definition 4.13 A continuous map over X between Cantor bundles is called a
Cantor bundle map if it is Γ-equivariant and locally product-like. A Cantor bundle
map between metric Cantor bundles is called Lipschitz if there is some L > 0 such
that it is L-Lipschitz on each fiber.

Remark 4.14 A Cantor bundle map V → W is automatically proper since the
Γ-actions on V and W are proper and both actions possess relatively compact fun-
damental domains.

The composition of (Lipschitz) Cantor bundle maps is a (Lipschitz) Cantor bun-
dle map. So we obtain a category of Cantor bundles with Cantor bundle maps as
morphisms.

The notion of product map does not depend on the choices of product charts as
we show next.

Lemma 4.15 Let V and W be locally compact Hausdorff spaces over X equipped
with maximal product atlases. Let Φ: V → W be locally product-like and proper.
Then every compact subset K ⊂ W is contained in a relatively compact, open subset
L ⊂ W such that there is a clopen partition X = A1 ∪ · · · ∪ An with the following
properties.

� L|Ai
is a box for each i ∈ {1, . . . , n}.

� Φ−1(L)|Ai
is a box for each i ∈ {1, . . . , n}.
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� The restriction of Φ to

Φ−1(L)|Ai
→ L|Ai

is a product map for each i ∈ {1, . . . , n}.

If K is an open box, we may choose L to be K.

Proof Every compact subset of W is contained in a relatively compact, open subset
L ⊂ W with the properties as in Lemma 4.3. We may assume that L itself is a box.
Since Φ is proper, Φ−1(L) is relatively compact as well. We cover Φ−1(L) by finitely
many open boxes Bi, i ∈ I, such that Φ is a product of maps on each box. The
intersection of two boxes is a box. The preimage of a box under Φ|Bi

is a box. Hence
Φ−1(L) is the union of boxes B′

i := Φ−1(L) ∩ Bi, i ∈ I. On each B′
i the map Φ is a

product. Let X = A1 ∪ · · · ∪An be a clopen partition subordinate to prV (B′
i), i ∈ I.

It exists since the clopen sets of X form a set algebra. By the same argument as in
the proof of Lemma 4.3 each Φ−1(L)|Aj

, j ∈ {1, . . . , n}, is a box. As in the proof of
Lemma 4.3 one sees that the parallel transport on the boxes B′

i and the choice of
some x0 ∈ Aj yields a product chart

Φ−1(L)|Aj

∼=−→ Aj × (

Φ−1(L) ∩ Vx0

)

.

Similarly for L|Aj
. Since Φ is a product map on each B′

i, it is compatible with the
parallel transport within each B′

i, and so the restriction of Φ to Φ−1(L)|Aj
→ L|Aj

is a product map. �

Lemma 4.16 Let V and W be locally compact Hausdorff spaces over X equipped
with maximal product atlases. Let Φ: V → W be locally product-like and proper.
Then every compact subset K ⊂ V is contained in a relatively compact, open subset
L ⊂ V such that there is a clopen partition X = A1 ∪ · · · ∪ An with the following
properties.

� L|Ai
is a box for each i ∈ {1, . . . , n}.

� The restriction of Φ to L|Ai
is a product map for each i ∈ {1, . . . , n}.

If K is an open box, we may choose L to be K.

Proof This follows from applying Lemma 4.15 to the relatively compact subset Φ(K).
The last statement follows from the fact that the intersection of two boxes is a box.
�

Next we discuss categorical pushouts in the category of Cantor bundles.

Lemma 4.17 A commutative square of Cantor bundles and Cantor bundle maps that
is a pushout of topological spaces is a pushout in the category of Cantor bundles.
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Proof Let the following diagram

A C

B D

f

i j

g

be commutative and consist of Cantor bundles and Cantor bundle maps. We further
assume that it is a pushout of topological spaces. Let Z be a Cantor bundle, and
let r : B → Z and s : C → Z be Cantor bundle maps compatible with A. By the
pushout property there is unique map t : D → Z that makes everything commute.
It is obvious that t is equivariant and lies over X. It remains to show that t is
locally product-like. Let p ∈ D be a point over x ∈ X. Let U ⊂ D be an open box
around p. By Lemma 4.16 there are clopen subsets XC and XB of X that contain
x such that j−1(U)|XC

and g−1(U)|XB
are boxes and the restrictions of j and g to

j−1(U)|XC
and g−1(U)|XB

are product maps. By the same lemma we obtain a clopen
neighborhood XA ⊂ XB ∩ XC of x such that i−1(g−1(U))|XA

= f−1(j−1(U))|XA
is

a box and the restrictions of i and f to i−1(g−1(U))|XA
are product maps. By

applying Lemma 4.16 to the boxes g−1(U)|XA
and j−1(U)|XA

we find a smaller
clopen neighborhood XZ ⊂ XA of x such that r and s are product maps on these
boxes. Now the box U |XZ

is a pushout of the boxes g−1(U)|XZ
and j−1(U)|XZ

along
the box i−1(g−1(U))|XZ

. All maps in the pushout square are product maps as well
as the restrictions of r and s to the corners. Hence t restricted to U |XZ

is a product
map. �

Example 4.18 (Continuing Example 4.9). The Cantor bundle W in Example 4.9
can be written as a pushout. Let

A =
{

x ∈ X ⊂ {0, 1}Z | x0 = 1
}

and Ac ⊂ X its complement. Let X × R be the trivial Cantor bundle with the
diagonal Z-action. On R we consider the usual translation action of Z. The pushout
for W can be written semi-formally as

Here we regard a space of the type A × Z × M as a Cantor bundle as in Exam-
ple 4.7.

A× Z× Ac × Z× X × R

A× Z× Ac × Z× W.
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Lemma 4.19 Let N be a cocompact proper Γ-CW complex. Then X × N with the
diagonal Γ-action is a Cantor bundle. Further, there is a locally product-like map
X × N → X × EΓ over X to the classifying space of Γ which is Γ-equivariant with
respect to the diagonal actions.

Proof The Γ-CW complex N is built via equivariant pushouts where we successively
attach finitely many equivariant cells of the form Γ/H × Dn with finite H < Γ:

∐

i∈In
Γ/Hi × Sn−1 N (n−1)

∐

i∈In
Γ/Hi × Dn N (n)

Taking a product with the compact Hausdorff space X preserves pushouts. With
Remark 4.8 we see that X ×N is inductively built via finitely many pushouts of the
form

∐

i∈In
Ai × Γ × Sn−1 X × N (n−1)

∐

i∈In
Ai × Γ × Dn X × N (n).

There is a Borel fundamental domain of X × N consisting of the finite union of the
products of Ai and the open n-cell associated with i ∈ In over all n and i ∈ In.
Hence X × N is a Cantor bundle.

Next we apply repeatedly Lemma 4.17 to the above pushout for n =
1, 2, . . . ,dim(N) and to the target X ×EΓ to construct equivariant, locally product-
like maps X × N (n) → X × EΓ. Strictly speaking, the target X × EΓ is not nec-
essarily a Cantor bundle as required in the lemma since EΓ might not be a finite
Γ-CW complex. However, the image of the maps below lie in the product of X and
a finite Γ-CW subcomplex which allows us to use Lemma 4.17.

On the 0-skeleton
∐

i∈I0
Ai × Γ we define an equivariant and locally product-like

map to X × EΓ as the equivariant extension that maps (a, 1) to (a, p) for some
chosen point p ∈ EΓ. To proceed inductively via the pushout property, we need to
extend a continuous locally product-like equivariant map Ai × Γ × Sn−1 → X × EΓ
to Ai × Γ × Dn. By decomposing each Ai into a suitable clopen partition we may
assume that the restriction Ai ×{1}×Sn−1 → X ×EΓ is a product of the inclusion
A ↪→ X and a continuous map Sn−1 → EΓ. Since EΓ is contractible, we can extend
the map A×{1}×Sn−1 → EΓ to A×{1}×Dn and then extend further to A×Γ×Dn

by equivariance. The resulting map is locally product-like. �
4.3 Chains and norms of chains in the context of Cantor bundles. We
consider various chain complexes involving singular chains, locally finite chains and
measure chains for Cantor bundles or spaces over X.
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The abelian group C(X; Z) carries a left Z[Γ]-module structure and via the invo-
lution on the group ring also a right Z[Γ]-module structure. Let N be a Γ-space. For
every x ∈ X the map

evx : C(X; Z) ⊗Z[Γ] C∗(N) → C lf
∗ (N)

∑

i

fi ⊗ σi �→
∑

γ∈Γ

∑

i

fi(γ−1x)γσi

to locally finite chains is a chain map [FLPS16, Lemma 2.5]. We consider the map

map
(

Δn, N
) → Cn

(

X × N
)

, σ �→ σX

that sends a singular n-simplex σ in N to the finite, compactly supported Borel
measure σX on map(Δn, X × N) characterized by the property

∫

map(Δn,X×N)
gdσX =

∫

X
g
(

Δn σ−→ {x} × N ↪→ X × N
)

dμ(x)

for every compactly supported continuous function g on map(Δn, X × N). If f ∈
C(X), then f ∗ σX denotes the measure with

∫

map(Δn,X×N)
gd(f ∗ σX) =

∫

X
f(x)g

(

Δn σ−→ {x} × N ↪→ X × N
)

dμ(x).

The map

C(X; Z) ⊗ C∗(N) ↪→ C∗(X × N)
∑

i

fi ⊗ σi �→
∑

i

fi ∗ σX
i

is a Γ-equivariant injective chain map. Here Γ acts diagonally on the left hand side,
and the left action on the right hand side is induced by the diagonal action on X×N .

Definition 4.20 The chain map C(X; Z) ⊗ C∗(N) ↪→ C∗(X × N) is called the dif-
fusion embedding.

Lemma 4.21 Let U and V be topological Hausdorff spaces. We endow X × U and
X × V with the obvious maximal product atlasses. Let Φ: X × U → X × V be
a locally product-like map over X. Then there is a chain map, indicated by the
dashed arrow, such that the following diagram commutes. Furthermore, this chain
is non-increasing with respect to the X-parametrised integral simplicial norm.

C∗(X × U) C∗(X × V )

C(X; Z) ⊗ C∗(U) C(X; Z) ⊗ C∗(V )

Φ∗

Here the upper horizontal map is the induced map in measure chains. The vertical
maps are the diffusion embeddings. We will also denote the dashed arrow by Φ∗.
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Proof Let σ : Δp → U and f ∈ C(X; Z). We apply Lemma 4.15 to the map

X × Δn idX ×σ−−−−→ X × U
Φ−→ X × V.

The image of this map is a compact subspace of the Hausdorff space X × V , hence
we can apply Lemma 4.15 even if V is not locally compact. As a result there is a
finite Borel partition X = A1 ∪ · · · ∪ An and there are continuous maps gi : U → V
for i ∈ {1, . . . , n} such that

(

Δp
σ−→ {x} × U

Φx−−→ X × V
pr−→ V

)

= gi ◦ σ for x ∈ Ai.

Hence Φ∗ maps f ⊗ σ to the measure that is the image of
∑n

i=1 f · χAi
⊗ gi ◦ σ

under the diffusion embedding. The statement about the X-parametrised integral
simplicial norm follows directly from this description. �
Remark 4.22 The advantage of measure homology is that Φ obviously induces a
chain map. It automatically follows that its restriction to the complex C(X; Z) ⊗
C∗( ) is a Γ-equivariant chain map provided Φ is Γ-equivariant, for example a Cantor
bundle map. A direct verification of functoriality that avoids measure homology
would be more cumbersome.

5 Transverse Measure Theory on Cantor Bundles

In this short section we define the notion of transverse measure which gives, in
particular, a finite measure on Γ-invariant Borel subsets of X × ˜M . As before, μ
denotes the Γ-invariant probability measure on the Cantor set X.

Definition 5.1 Let W be a standard Γ-space endowed with a Γ-invariant Borel
measure λ. For any choice of a measurable Γ-fundamental domain F ⊂ W we define
a Borel measure λtr on the σ-algebra of Γ-invariant Borel subsets of W by

λtr(A) = λ(A ∩ F ).

We call λtr the transverse measure induced by λ.

Remark 5.2 The definition of the transverse measure does not depend on the choice
of the Borel fundamental domain. This is proved similarly to the situation of a lattice
in a locally compact group. Let F ′ ⊂ W another Borel Γ-fundamental domain. Let
A ⊂ W be a Γ-invariant Borel subset. Then

λ(A ∩ F ) = λ
(

A ∩
⋃

γ∈Γ

γF ′ ∩ F
)

= λ
(

⋃

γ∈Γ

A ∩ γF ′ ∩ F
)

= λ
(

⋃

γ∈Γ

γ−1A ∩ F ′ ∩ γ−1F
)

= λ
(

A ∩ F ′ ∩
⋃

γ∈Γ

γ−1F ′
)

= λ(A ∩ F ′).



S. BRAUN, R. SAUER GAFA

Definition 5.3 Retaining the setting of the previous definition, the pushforward
of λtr under the restriction of the quotient map F → Γ\W is a Borel measure on
Γ\W that we also call the transverse measure induced by λ and denote by the same
symbol.

Definition 5.4 Let pr : W → X be a metric Cantor bundle. Let Hd
x be the d-

dimensional Hausdorff measure on Wx. Then
∫

X
Hd

xdμ(x)

defines a Γ-invariant Borel measure on W that we call the d-dimensional Hausdorff
measure of the Cantor bundle pr. We denote it generically by vold. The induced
transverse measure is denoted by voltrd .

The fact that A �→ ∫

X Hd
x(A ∩ Wx)dμ(x) is Borel measurable for a Borel subset

A ⊂ W follows from the existence of a product atlas. The Γ-invariance follows
from the fact that μ is Γ-invariant and the multiplication with an element γ ∈ Γ is
fiberwise an isometry. So the above definition is justified.

Lemma 5.5 Let Φ: V → W be a Lipschitz Cantor bundle map, and let φ be the
induced map on Γ-quotients. Then the map

Γ\W → N ∪ {∞}, w �→ #φ−1({w})

is voltrd -measurable, and we define the transverse d-volume of Φ as

voltrd (Φ) =
∫

Γ\W
#φ−1({w})d voltrd (w).

Proof Let FW ⊂ W be a Borel fundamental domain of Γ � W that is a finite union
of boxes. Then FV = Φ−1(FW ) is a fundamental domain of Γ � V . By Lemma 4.15
there is a clopen partition X = A1 ∪ · · · ∪ An such that each V |Ai

∩ FV is a box,
each W |Ai

∩ FW is a box and the restriction

Φ: V |Ai
∩ FV → W |Ai

∩ FW

is a product idAi
×hi (in product charts) with hi being Lipschitz.

The statement is equivalent to the measurability of the map

f : FW → N ∪ {∞}, w �→ #
(

Φ−1({w}) ∩ FV

)

.

In product chart coordinates (x, p) ∈ Ai × F ∼= (FW )|Ai
we have f(x, p) =

#h−1
i ({p}). So the measurability over Ai and hence everywhere follows from [Fed69,

2.10.9]. �
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Let f : M → N be a Lipschitz map between Riemannian manifolds. By Rade-
macher’s theorem f is differentiable almost everywhere. Let Jdf be the almost every-
where defined d-dimensional Jacobian of Df . If f is smooth and M and N are d-
dimensional, then Jdf(m) is the absolute value of the determinant of the differential
at m ∈ M with respect to orthonormal bases. Let Φ: V → W be a Lipschitz Cantor
bundle map between metric Cantor bundles for which every fiber is a Riemannian
manifold. We consider the quotient map φ : Γ\V → Γ\W . By equivariance of Φ the
d-dimensional Jacobian of φ is well defined on a conull set by

Jdφ([p]) = JdΦ(p).

We prove the following version of the area formula for Cantor bundles.

Theorem 5.6 (Area formula). Let Φ: V → W be a Lipschitz Cantor bundle maps
between Riemannian Cantor bundles, where each fiber of V is d-dimensional. Then
the d-dimensional Jacobian Jdφ is voltrd -measurable and

voltrd (Φ) =
∫

Γ\W
#φ−1({w})d voltrd (w) =

∫

Γ\V
Jdφ(v)d voltrd (v).

Proof Let FW ⊂ W be a Borel fundamental domain consisting of finitely many
boxes. Let FV be its Φ-preimage. The statement is equivalent to

∫

FW

#Φ−1({w})d vold(w) =
∫

FV

JdΦ(v)d vold(v). (5.1)

Let X = A1 ∪ · · · ∪ An be a clopen partition as in Lemma 4.15 such that (FV )|Ai

and (FW )|Ai
are boxes. Choose homeomorphisms Ai × Fi

∼= (FV )|Ai
and Ai × F ′

i
∼=

(FW )|Ai
such that under these homeomorphisms the map Φ is of the form idAi

×hi.
The left hand side of (5.1) becomes

n
∑

i=1

μ(Ai)
∫

F ′
i

#h−1
i ({w})dHd(w).

The right hand side of (5.1) becomes
n
∑

i=1

μ(Ai)
∫

Fi

Jdhi(v)dHd(v).

The i-th summand of left and right hand side coincide by the classical area formula
[Fed69, 3.2.3 on p. 243]. �

6 Rectangular Cantor Nerves and Cantor Covers

In Section 6.1 we introduce the notion of Cantor cover on X × ˜M which is an analog
of a Γ-equivariant cover by balls on ˜M . Then we define a good Cantor cover. The
proof of its existence is postponed to Section 7.1. In Section 6.2 we introduce the
analog of Guth’s rectangular nerve in our setting. In Section 6.3 we introduce the
nerve map as a Cantor bundle map.
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6.1 Cantor covers. A Cantor cover of X × ˜M is an open cover

U = {Aj × Bj | j ∈ J}
of X×˜M by product sets of clopen sets Aj ⊂ X and open balls Bj ⊂ ˜M indexed over
a free cofinite Γ-set J such that Aγj = γAj and Bγj = γBj for all γ ∈ Γ and j ∈ J .
We further require that {Aj × 1

2Bj | j ∈ J} still covers X × ˜M . If we replace the
property of being a cover by requiring that the elements of U are pairwise disjoint
then we call U a Cantor packing.

Since the index set is cofinite, i.e. consists of finitely many orbits, and the Γ-action
on ˜M is proper, a Cantor cover is always locally finite. Let U = {Aj ×Bj | j ∈ J} be
a Cantor cover or Cantor packing of X × ˜M . Let V be an arbitrary family of subsets
of a space.

� We denote the union of the elements of V by
⋃V.

� For x ∈ X we denote by

Ux = {Bj | j ∈ J, x ∈ Aj}
the induced open cover (packing, respectively) of ˜M ∼= {x} × ˜M .

� We say that U has no self intersections if
(

γAj ×γBj

)∩ (Aj ×Bj

) �= ∅ implies
γ = 1 for every j ∈ J and γ ∈ Γ.

� For a > 0 we write a U := {Aj × aBj | j ∈ J}.

We produce a suitable Cantor cover of X ×˜M that consists of good balls in every
fiber. The notion of goodness goes back to Gromov. We refer to [Gut11, Section 1]
for this notion. A cover by good balls will be called a good cover which is a bit
unfortunate since this terminology is also used for covers with contractible sets and
intersections.

Let N be a d-dimensional Riemannian manifold and VN (1) be the supremal
volume of 1-balls in N . The ball B(p, r) ⊆ N of radius r around a point p ∈ M is
called a good ball if the following conditions are satisfied.

(1) Reasonable growth: vol(B(p, 100r)) � 104(d+3) vol(B(p, 1
100r)).

(2) Volume bound: vol(B(p, r)) � 102(d+3)VN (1)rd+3.
(3) Small radius: r � 1

100 .

A good cover of a Riemannian manifold is an open cover by good balls where the
concentric 1

6 -balls are disjoint and the 1
2 -balls provide a cover of the manifold as

well. A Cantor cover U of X × ˜M is called good if Ux is a good cover of ˜M for every
x ∈ X.

Guth showed that any closed Riemannian manifold has a good cover [Gut11,
Lemma 2]. At the end of Section 7.1 we will be able to give the proof of the equiv-
ariant statement:

Theorem 6.1 There exists a good Cantor cover on X × ˜M that has no self inter-
sections.
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6.2 The rectangular Cantor nerve of a Cantor cover. In the sequel we
consider a Cantor cover

U = {Aj × Bj | j ∈ J}

of X × ˜M . We adhere to the following notation.

� By picking a set of Γ-representatives we write the Γ-set J as Γ×I with finite I.
� Let rj denote the radius of the ball Bj and mj the center of Bj .
� Let V := {Bj | j ∈ J}. This is a locally finite cover of ˜M since Γ acts freely

and properly on ˜M .

The nerve N(V) satisfies the requirements of Lemma 2.4. In particular, its
barycentric subdivision is a proper Γ-CW-complex. By properness and cofiniteness
of J the maximal multiplicity of V is finite, hence N(V) is cocompact. Since Ux is a
subcover of V, N(Ux) is a subcomplex of N(V) for every x ∈ X.

Definition 6.2 The rectangular Cantor nerve NCa(U) of the Cantor cover U is the
subset

{

(x, p) | p ∈ N(Ux), x ∈ X
} ⊂ X × N(V).

Clearly, NCa(U) is a Γ-invariant subset of N(V). We restrict the metric of
N((rj)j∈J) to N(V) and, further, to each N(Ux).

Lemma 6.3 The rectangular Cantor nerve NCa(U) is a metric Cantor subbundle of
the trivial metric Cantor bundle X × N(V) endowed with its diagonal Γ-action.

Proof It suffices to construct an open box neighborhood around each point

(x, p) ∈ NCa(U) ⊂ X × N(V) ⊂ X × N
(

(rj)j∈J

)

.

Let F be an open face in N(Ux) that contains p. The star of F within N
(

(rj)j∈J

)

consists of all open faces in N
(

(rj)j∈J

)

that contain F in their closure. A face E of
N
(

(rj)j∈J

)

is in the star of F if and only if J+(F ) ⊂ J+(E). For a face E which lies
in the star of F and in N(V) the subset J+(E) lies in the subset

JF :=
{

j ∈ J | Bj ∩
⋂

i∈J+(F )

Bi �= ∅},

which is finite since V is locally finite. As a finite intersection of clopen sets the set

C :=
⋂

j∈JF

x∈Aj

Aj ∩
⋂

j∈JF

x 	∈Aj

X\Aj

is a clopen neighborhood of x. Let S be the star of F within N(V). Let S′ be the
star of F within N(Ux).
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We claim that every face E of S′ lies in N(Uy) for all y ∈ C. For such E we have
J1(E) �= ∅ and

⋂

j∈J+(E) Bj �= ∅. Since E lies in N(Ux) we have x ∈ ⋂

j∈J+(E) Aj .
The inclusion J+(E) ⊂ JF implies that C ⊂ ⋂

j∈J+(E) Aj . Thus E lies in N(Uy) for
every y ∈ C. Therefore

NCa(U) ∩ (C × S′) = C × S′,

where the left hand intersection is taken within X × N(V).
Next we show that C × S′ is open in NCa(U). To this end, we show that S′ =

N(Uy) ∩ S for all y ∈ C. Since S is open in N(V) this proves that C × S′ is open.
Let E be a face in N(Uy) ∩ S. In particular, y ∈ ⋂

j∈J+(E) Aj . Then E lies in S′ if
x ∈ ⋂

j∈J+(E) Aj . Suppose there is j0 ∈ J+(E) with x �∈ Aj0 . Since y ∈ C, this would
imply y ∈ X\Aj0 and contradict y ∈ ⋂

j∈J+(E) Aj . Hence E lies in S′.
So C × S′ is a box neighborhood containing (x, p) ∈ NCa(U) with respect to the

global product chart on X × N(V). �
Next we try to understand the rectangular Cantor nerve by pushouts.

Lemma 6.4 We assume that U has no self-intersections. Let Cn be a complete set
of representatives of the Γ-orbits of the n-dimensional faces of N(V). The n-skeleton
NCa(U)(n) = NCa(U) ∩ X × N(V)(n) of NCa(U) arises from the (n − 1)-skeleton as
a pushout

∐

F∈Cn

(

⋂

j∈J+(F )

Aj

)

× Γ × ∂
( n
∏

k=1

[0, rk(F )]
)

NCa(U)(n−1)

∐

F∈Cn

(

⋂

j∈J+(F )

Aj

)

× Γ ×
( n
∏

k=1

[0, rk(F )]
)

NCa(U)(n).

(6.1)

whose maps are Cantor bundle maps. The lower horizontal map is fiberwise an
isometric embedding of

∏n
k=1[0, rk(F )].

Proof The map
∐

F∈Cn

(

⋂

j∈J+(F )

Aj

)

× Γ ×
(

∏

j∈J 1
2
(F )

[0, rj ]
)

Ψ−→ X × N
(

(rj)j∈J

)

(

a, γ, (wj)j∈J 1
2
(F )

) �→ (

γa, γ · (w̄j)j∈J

)

where

w̄j =

⎧

⎪

⎨

⎪

⎩

wj if j ∈ J 1
2
(F ),

0 if j ∈ J0(F ),
rj if j ∈ J1(F ),
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lands in NCa(U)(n) and is a Cantor bundle map into NCa(U)(n). Next we verify that
the restriction Ψ0 of Ψ

∐

F∈Cn

(

⋂

j∈J+(F )

Aj

)

× Γ ×
∏

j∈J 1
2
(F )

(0, rj)
Ψ0−−→ NCa(U)(n)\NCa(U)(n−1)

is bijective. Suppose Φ0 maps two points (a, γ, (wj)) and (a′, γ′, (w′
j)) in the left hand

summands associated with the n-faces F and F ′ to the same point. By equivariance
it suffices to consider the case γ′ = 1. The open faces γF and F ′ intersect, hence
concide as subsets γF = F ′1. Since F, F ′ are from a complete set of Γ-representatives
Cn we obtain that F ′ = F and γF = F as subsets. Let x := γa = a′. The n-faces
of N(Ux) are exactly the n-faces E with x ∈ ⋂

j∈J+(E) Aj and
⋂

j∈J+(E) Bj �= ∅
and J1(E) �= ∅. From γF = F we obtain that ∅ �= ⋂

j∈J Bj =
⋂

j∈J γBj and
x ∈ ⋂

j∈J+(γF ) Aj =
⋂

j∈J+(F ) γAj . In particular, Bj ∩ γBj �= ∅ and Aj ∩ γAj �= ∅
for every j ∈ J+(F ). Since U has no self-intersections, this implies γ = 1 and proves
injectivity. By [Tom08, Proposition 8.3.1 on p. 203] and rewriting

∏

j∈J 1
2
(F )[0, rj ] as

∏n
k=1[0, rk(F )] the pushout property of (6.1) follows from the bijectivity of Ψ0 and

the fact that Ψ is a quotient map onto its closed image. The image of Ψ is the union
of closed n-faces which is closed. Let C ⊂ im(Ψ) be a subset such that Ψ−1(C) is
closed. Let F be a compact subset of the domain of Ψ whose translates cover the
domain. Then

C = Φ
(
⋃

γ∈Γ

γF ∩ Φ−1(C)
)

=
⋃

γ∈Γ

γ · Φ
(

F ∩ γ−1Φ−1(C)
)

.

Moreover, each subset Φ
(

F ∩γ−1Φ−1(C)
)

is compact and lies in the compact subset
Φ(F ). The Γ-action on N(V) is proper. Hence C is closed, and Φ is a quotient map
onto its image. �

6.3 The map to the rectangular Cantor nerve. A Cantor bundle map
Φ: X × ˜M → NCa(U) ⊂ X × N((rj)j∈J) is subordinate to U if each component
Φj : X × ˜M → [0, rj ], j ∈ J , of the map Φ is supported in Aj × Bj .

Next we construct a specific Cantor bundle map subordinate to U . We define the
continuous component map Φj for each j ∈ J by

Φj : X × ˜M → [0, rj ]

Φj(x, p) =

⎧

⎪

⎨

⎪

⎩

0 if d
˜M

(p, mj) ≥ rj or x �∈ Aj ,

2(rj − d
˜M

(p, mj)) if rj

2 ≤ d
˜M

(p, mj) ≤ rj and x ∈ Aj ,

rj if d
˜M

(p, mj) < rj

2 and x ∈ Aj .

1 Since N(V) is not a Γ-CW complex (only after barycentric subdivision) one might have F = γF
as subsets but not pointwise.
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Definition 6.5 The Cantor nerve map Φ associated with U is the product of the
maps Φj

Φ: X × ˜M → NCa(U), Φ(x, p) =
(

x, (Φj(x, p))j∈J

)

.

One sees immediately that Φ is subordinate to U .

Lemma 6.6 The Cantor nerve map associated with U is a Lipschitz Cantor bundle
map.

Proof Since each Aj is clopen and Φj is clearly continuous when restricted to Aj ×˜M

or (X\Aj) × ˜M , Φj is continuous. Thus Φ is continuous. For each j ∈ J and γ ∈ Γ
we have

Φγj(γx, γp) = Φj(x, p),

which implies that Φ is Γ-equivariant. Let (x, p) ∈ X × ˜M . Let F be an open face in
NCa(U) = N(Ux) that contains Φ(x, p). Then x ∈ ⋂

j∈J+(F ) Aj and p ∈ ⋂

j∈J+(F ) Bj .
We consider the following sets

JF :=
{

j ∈ J | Bj ∩
⋂

i∈J+(F )

Bi �= ∅},

C :=
⋂

j∈JF

x∈Aj

Aj ∩
⋂

j∈JF

x 	∈Aj

X\Aj .

Let S be the star of F within N(Ux). In the proof of Lemma 6.3 we showed that
C × S is an open box (S was denoted S′ in the proof), that is,

NCa(U) ∩ C × S = C × S.

Let y ∈ C and q ∈ ⋂

j∈J+(F ) Bj . Next we show that Φj(y, q) = Φj(x, q) for every
j ∈ J which implies that Φ is a product of maps on C ×⋂

j∈J+(F ) Bj .
First assume that Φj(y, q) = 0. If q �∈ Bj , then Φj(x, q) = 0. If q ∈ Bj , then

j ∈ JF , thus y �∈ Aj . This implies that y �∈ C or x �∈ Aj . Because of y ∈ C we must
have x �∈ Aj . Hence Φj(y, q) = Φj(x, q) = 0.

Second assume that Φj(y, q) > 0. Then q ∈ Bj and j ∈ JF and y ∈ Aj . If x �∈ Aj

then y ∈ C would imply that y �∈ Aj . Hence x ∈ Aj . Therefore

Φj(y, q) = Φj(x, q) =

{

2(rj − d
˜M

(p, mj)) if rj

2 ≤ d
˜M

(p, mj) ≤ rj ,

rj if d
˜M

(p, mj) < rj

2 .

It remains to show that Φ is Lipschitz. Each Φj has Lipschitz constant 2. Hence
Φj has local Lipschitz constant at (x, p) bounded by 2mx(p)1/2 where mx(p) is the
multiplicity at p of the cover Ux. The multiplicity is uniformly bounded by the
multiplicity of the cover V (albeit not by a dimensional constant). Hence Φ is a
Lipschitz Cantor bundle map. �
Remark 6.7 Restricted to a fiber x ∈ X the map Φx : ˜M → N is exactly Guth’s
nerve map [Gut11, Section 3] associated with the cover Ux.
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7 Volume Estimates

The goal of this section is to prove the existence of a good Cantor cover and to prove
the analog of Lemma 4 in [Gut11] in the Cantor setting. In Section 7.1 we define
layers of an ordinary cover and of a Cantor cover. The most important technical
result is the existence of layers for Cantor covers with no self-intersections. After
that, the proof of the analog of Guth’s Lemma 4 in Sections 7.2 and 7.3 runs similar
to Guth’s proof.

7.1 Cantor–Vitali layerings of equivariant covers. Let V be a cover of a
Riemannian manifold by balls. A Vitali layering of V consists of a finite sequence of
subsets V(1), . . . ,V(n) of V, called layers, with the following property:

(1) The balls within each layer are pairwise disjoint.
(2) For every pair i < j in {1, . . . , n} and every ball B ∈ V(j) there is a ball in

V(i) that meets B and whose radius is greater or equal than the one of B.
(3) Every ball of V appears in precisely one of the layers.

We say that a layer V(j) is lower than a layer V(i) if i < j. The relation < on V(i)
associated to the Vitali layering is defined as the smallest partial order < on the
layer V(i) such that B < B′ whenever there is a ball B′′ from a lower layer that
meets both B and B′ and the radii of these balls satisfy

2r ≤ r′′ ≤ r′.

The core of a layer is the union of all balls 1
10B where B is maximal with respect to

the relation < on that layer.

Lemma 7.1 Let V = {Bj | j ∈ J} be a good cover of a Riemannian manifold by
balls. Let V(1), V(2), . . . ,V(n) be a Vitali layering of V with cores Vc(1), . . . ,Vc(n).
The following holds for every integer l ∈ {1, . . . , n}.

(1) Every point in
⋃Vc(l) is contained in at most 108(d+3) balls from lower layers.

(2) For l′ ≥ l we have
⋃V(l′) ⊂ ⋃

3V(l).
(3)

⋃V(l) ⊂ ⋃

10Vc(l).

Proof Both statements (1) and (3) are extracted from the proof of Lemma 4 in
Guth’s paper [Gut11, p. 60]. Concerning (1), Guth shows that the radii of balls in
layers ≥ l that contain a point p ∈ 1

10Bj in the l-th core, where Bj ∈ V(l) is a
maximal ball of radius rj , are pinched in the interval [ 1

15rj , 2rj ]. The number of such
balls is bounded by a dimensional constant [Gut11, Lemma 3] which can be taken
to be 108(d+3). Ad (2): Let l′ ≥ l. Let Bj ∈ V(l′). Then there is a ball Bk ∈ V(l) that
meets Bj and has rk ≥ rj . Hence Bj ⊂ 3Bk ⊂ ⋃

3V(l). �
A Cantor–Vitali layering of a Cantor cover U consists of a finite sequence of

Cantor packings U(1), . . . ,U(n) such that U(1)x, . . . ,U(n)x is a Vitali layering of Ux

for every x ∈ X. Further, the core of the l-th layer U(l) is defined to be union of the
cores of U(l)x over all x ∈ X.
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Lemma 7.2 Let U = {Aj × Bj | j ∈ J} be a Cantor packing of X × ˜M such that
each ball Bj is good. Then

voltrd
(

⋃

10 U
)

≤ 104(d+3) voltrd
(

⋃

U
)

.

Proof We write J = Γ×I as Γ-sets. Let U0 = {Ai×Bi | i ∈ I}. Since the Γ-translates
of Ai × 10Bi, i ∈ I, cover the set

⋃

10 U and
⋃U0 is a Γ-fundamental domain of

⋃U by the packing property, we obtain for the transverse measure that

voltrd
(

⋃

10 U
)

≤ vold
(

⋃

10 U0

)

≤
∑

i∈I

μ(Ai) vold(10Bi)

≤
∑

i∈I

104(d+3)μ(Ai) vold(Bi) (since Bi is good)

= 104(d+3) voltrd
(

⋃

U
)

. �

Lemma 7.3 Let U be a good Cantor cover of X×˜M . Let U(1), U(2), . . . be a Cantor–
Vitali layering of U . Further, let Uc(l) denote the core of U(l). Then the following
hold.

(1) For every x ∈ X and p ∈ ⋃Uc(l)x the number of balls that contain p and lie
in U(l′)x for some l′ ≥ l is bounded by 108(d+3).

(2) For l′ ≥ l we have
⋃U(l′) ⊂ ⋃

3 U(l).
(3) For l ≥ 1 we have voltrd

(⋃U(l)
) ≤ 104(d+3) · voltrd

(⋃Uc(l)
)

.

Proof (1) and (2) follow directly from Lemma 7.1. By applying Lemma 7.1 (3)
fiberwise to the packings U(l)x and then taking unions over x ∈ X we obtain that

⋃

U(l) ⊂
⋃

10 Uc(l).

Statement (3) follows from 7.1 (3) and 7.2. �

Theorem 7.4 Every Cantor cover of X × ˜M without self-intersections possesses
a Cantor–Vitali layering.

Proof Let U = {γ · Aj × γ · Bj | (γ, j) ∈ Γ × {1, . . . , n}} be a Cantor cover of
X × ˜M without self-intersections. Let rj be the radius of Bj . We assume that the
enumeration of balls is such that r1 ≥ r2 ≥ · · · ≥ rn. For the purpose of this proof,
we call a set of subsets of X × ˜M of product type if it is of the form {γ · Yj × γ · Bj |
(γ, j) ∈ Γ×{1, . . . , n}} where each Yj is a (not necessarily non-empty) clopen subset
of X.

We construct the layers by a double induction. For every l ∈ N and s ∈ {1, . . . , n}
we define Cantor packings Us(l) and U(l) depending on U(1), . . . ,U(l − 1) and on
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Us−1(l) in the following way.

U(0) := ∅,

U0(l) := ∅ for every l ∈ {1, . . . , n},

Y s(l) :=
{

x ∈ X | Bs ∈ Ux, Bs is disjoint from all balls in Us−1(l)x,

and Bs is not contained in U(1)x, . . . ,U(l − 1)x

}

,

Us(l) := Us−1(l) ∪ {γY s(l) × γBs | γ ∈ Γ
}

,

U(l) := Un(l).

Each set Us(l) is of product type: It suffices to verify that each set Y s(l) is clopen.
By induction we may assume that Us−1(l) and U(i) are of product type for every
i ∈ {1, . . . , l − 1}, that is,

Us−1(l) =
{

γ · Y s−1
j (l) × γ · Bj | (γ, j) ∈ Γ × {1, . . . , n}},

U(i) =
{

γ · Yj(i) × γ · Bj | (γ, j) ∈ Γ × {1, . . . , n}}

for suitable clopen subsets Y s−1
j (l) ⊂ X and Yj(i) ⊂ X. For every j ∈ {1, . . . , n} let

F s
j :=

{

γ ∈ Γ | Bs ∩ γBj �= ∅}.

The subset F s
j is finite. Then we have

Ys(l) = As ∩
(

X\
(

⋃

j∈{1,...,n}
γ∈F s

j

γY s−1
j (l) ∪

⋃

j∈{1,...,n}
i∈{1,...,l−1}

γ∈F s
j

γYj(i)
)

)

,

which is clearly a clopen subset.
Each Us(l) is a Cantor packing : Equivalently, we may show that Us(l)x is a packing
for every x ∈ X. Since Y s(l) ⊂ As and U has no self intersections,

{

γY s(l) × γBs |
γ ∈ Γ

}

is a Cantor packing for every s ∈ {1, . . . , n} and l ∈ N. By induction we
may assume that Us−1(l) is a Cantor packing or, equivalently, Us−1(l)x is packing
for every x ∈ X. Hence if for some x ∈ X there is a non-empty intersection of two
balls in Us(l)x it has to be a ball γBs in Us(l)x intersecting a ball in Us−1(l)x. In
particular, x ∈ γY s(l). By Γ-equivariance the ball Bs lies in Us(l)γ−1x and intersects
a ball in Us−1(l)γ−1x. This contradicts γ−1x ∈ Y s(l). So Us(l)x is indeed a packing
for every x ∈ X.
The sequence U(1), U(2), . . . ,U(n) is a Cantor–Vitali layering of U : Let x ∈ X. We
show that U(1)x, U(2)x, . . . ,U(n)x is a Vitali layering of Ux. Let i, j ∈ {1, . . . , n}
with i < j. Consider a ball γBs in U(j)x. In particular, x ∈ γY s(j). We have to find
a ball in U(i)x that meets γBs and has radius at least rs. Equivalently, we have to
find a ball in U(i)γ−1x that meets Bs ∈ U(j)γ−1x and has radius at least rs. If such



S. BRAUN, R. SAUER GAFA

a ball did not exist, then Bs would lie in Us(i)γ−1x ⊂ U(i)γ−1x or Bs would lie in
U(1)γ−1x, . . . ,U(i − 1)γ−1x. Both possibilities are absurd.

Let x ∈ X. If s ∈ {1, . . . , n} is the smallest number so that Bs ∈ {B1, . . . , Bn}∩Ux

but Bs is not in one of the layers U(1)x, . . . ,U(n − 1)x then Bs ∈ Us(n)x ⊂ U(n)x.
Hence every ball of {B1, . . . , Bn} ∩ Ux is in one of the layers U(1)x, . . . ,U(n)x. By
equivariance each ball of Ux appears in one of the layers U(1)x, . . . ,U(n)x. It is clear
from the construction that each ball also appears in at most one layer. �
Proof of Theorem 6.1 By [Gut11, Lemma 1] around every point of ˜M there is a good
ball. We choose a Γ-fundamental domain of ˜M and a good ball for every point in the
fundamental domain. Since M is compact we can select a finite subset B1, . . . , Bn

of these balls such that the projections of 1
12B1, . . . ,

1
12Bn cover all of M . Hence the

translates of X × 1
12B1, . . . , X × 1

12Bn form a Cantor cover of X × ˜M .
By properness of the Γ-action on ˜M the set

F :=
{

γ ∈ Γ | ∃i∈{1,...,n}Bi ∩ γBi �= ∅}

is finite. Next we show that there is clopen partition X = A1 ∪ · · · ∪ Ar of X such
that γAi ∩ Ai = ∅ for every γ ∈ F and every i ∈ {1, . . . , r}. To this end, choose
a metric d on X that induces the topology on X. For every γ ∈ F the continuous
map

X → [0, ∞), x �→ d(γx, x)

takes on a minimum εγ which is strictly positive as the Γ-action on X is free. Let
ε := minγ∈F εγ > 0. Now we pick a cover of X by clopen subsets of diameter at most
ε/2. Then there is a subordinate clopen partition X = A1 ∪ · · · ∪ Ar of X. Since the
diameter of each Ai is at most ε/2 we have γAi ∩ Ai = ∅ for every γ ∈ F and every
i ∈ {1, . . . , r}. Then the translates of the sets Ai×Bj , i = 1, . . . , r, j = 1, . . . , n, form
a Cantor cover U ′ indexed over Γ×{1, . . . , r}×{1, . . . , n} without self-intersections.
Also the Cantor cover 6 U ′ has no self-intersections.

According to Theorem 7.4 the Cantor cover U ′ has a Cantor–Vitali layering. Let
U ′(1) be the top layer. We claim that U := 6 U ′(1) is a good Cantor cover without
self-intersections: Since the top layer is always a Cantor packing, 1

6 U = U ′(1) is a
Cantor packing. Further, 1

2 U = 3 U ′ is a Cantor cover by Lemma 7.3 (2). Finally,
since 6 U ′ has no self intersections, U has no self-intersections either. �
7.2 Exponential decay of the volume of the high multiplicity set. Sim-
ilar remarks as in Guth’s paper on the multiplicity are valid here: The (fiberwise)
multiplicity of a Cantor cover is bounded but not in terms of a universal constant.
Therefore we cannot bound later the Lipschitz constant of the Cantor nerve map
universally. However, the volume of the high multiplicity set decays exponentially.
The argument for that is basically the same as the one in [Gut11, p. 61/62], only
with volume replaced by transverse measure and so on.
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Theorem 7.5 Let U be a good Cantor cover of X × ˜M with no self-intersections.
For (x, p) ∈ X × ˜M let mx(p) be the multiplicity of the point p with respect to the

cover Ux of ˜M . There are dimensional constants α(d) > 0 and β(d) > 0 such that
for every λ ≥ 1

voltrd
(

{

(x, p) | mx(p) ≥ λ + β(d)
}

)

≤ e−α(d)λ · vol(M).

Remark 7.6 In the above statement we can choose α = − log(1 − 10−16(d+3)) and
β = 108(d+3). This is a consequence of the proof below.

Proof According to Theorem 7.4 we pick a Cantor–Vitali layering U(1), U(2), . . . of
U . Let Uc(l) ⊂ U(l) be the associated core of U(l). Consider the subsets

Lθ(λ) =
{

(x, p) ∈ X × ˜M | (x, p) ∈
⋃

U(l) for at least

θ values of l in the range l ≥ λ
}

.

By Lemma 7.1 (2) and Lemma 7.2 we obtain that

voltrd
(

L1(λ)
) ≤ voltrd

(
⋃

3U(λ)
) ≤ 104(d+3) voltrd

(
⋃

U(λ)
)

. (7.1)

With the constant β(d) = 108(d+3) from Lemma 7.1 (1) we define T (λ) as the average
volume

T (λ) :=
1

β(d)

β(d)
∑

θ=1

voltrd
(

Lθ(λ)
)

.

An element (x, p) ∈ Lθ(λ)\Lθ(λ+1) lies in U(λ) and in exactly θ−1 different layers
lower than λ. With Lemma 7.1 (1) this implies that

⋃

Uc(λ) ⊂
β(d)
⋃

θ=1

(

Lθ(λ)\Lθ(λ + 1)
)

.

Note that Uc(λ) and Lθ(λ) are Γ-invariant subsets to which we can apply the measure
voltrd . The above inclusion yields

voltrd
(Uc(λ)

) ≤ voltrd
(

β(d)
⋃

θ=1

(

Lθ(λ)\Lθ(λ + 1)
) ≤

β(d)
∑

θ=1

voltrd
(

Lθ(λ)\Lθ(λ + 1)
)

=
β(d)
∑

θ=1

voltrd
(

Lθ(λ)
)− voltrd

(

Lθ(λ + 1)
)

≤ β(d)
(

T (λ) − T (λ + 1)
)

.
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We conclude further that

T (λ) − T (λ + 1) ≥ 1

β(d)
voltrd

(
⋃

Uc(λ)
) ≥ 10−4(d+3)

β(d)
voltrd

(
⋃

U(λ)
)

(Lemma 7.1 (3))

≥ 10−8(d+3)

β(d)
voltrd

(

L1(λ)
)

(using (7.1))

= 10−16(d+3) voltrd
(

L1(λ)
)

≥ 10−16(d+3)T (λ).

Hence T (λ + 1) ≤ (1 − 10−16(d+3))T (λ). So T decays exponentially. More precisely,
we obtain that for λ ≥ 1

T (λ) ≤ e−α(d)λ · T (1) ≤ e−α(d)λ · vol(M), (7.2)

where α = α(d) = − log(1 − 10−16(d+3)). Finally, we relate the function T to the
volume of the high multiplicity subset. Let (x, p) ∈ X × ˜M be a point with mx(p) ≥
λ + β(d). Since the balls in layer U(l)x are disjoint, the point (x, p) lies in at most
λ many balls from the layers

⋃U(1)x, . . . ,
⋃U(λ)x. Hence (x, p) ∈ Lβ(d)(λ). We

conclude that

voltrd
(

{

(x, p) | mx(p) ≥ λ + β(d)
}

)

≤ voltrd
(

Lβ(d)(λ)
) ≤ T (λ) ≤ e−α(d)λ vol(M).

�

7.3 Bounding the transverse volume of the image of the nerve map.
In the sequel let U = {Aj × Bj | j ∈ J} be a good Cantor cover of X × ˜M

with no self-intersections. Let Φ: X × ˜M → NCa(U) be the Cantor nerve map.
The following (non-equivariant) statement only concerns the fiberwise nerve map
Φx : ˜M → N (Ux). In view of Remark 6.7 we can cite the following theorem from
Guth’s paper. Recall that the constant V1 denotes an upper bound on the volume
of 1-balls of ˜M (see Theorem 1.1) and that d(F ) denotes the dimension of a face F .

Theorem 7.7 ([Gut11, Lemma 5]). There are dimensional constants C(d) > 0
and β(d) > 0 so that for every x ∈ X and every open face F ∈ N(Ux) we have

vold
(

Φ|
Φ−1

(

{x}×star(F )
)

)

< C(d) · V1 · r1(F )d+1 · e−β(d)·d(F ).

We now fix a dimensional constant β(d) > 0 that satisfies the conclusions of
Theorems 7.5 and 7.7.

Theorem 7.8 There is a dimensional constant C(d) > 0 such that

voltrd
(

Φ
) ≤ C(d) · vol(M).
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Proof Let n be the maximal multiplicity of the cover {Bj | j ∈ J} of ˜M . For i ∈ N0

we define the Γ-invariant subsets

Si :=
{

(x, p) ∈ X × ˜M | i + β(d) ≤ mx(p) < 1 + i + β(d)
}

,

S :=
{

(x, p) ∈ X × ˜M | mx(p) < β(d)
}

.

Restricted to Si or S the map Φ is fiberwise Lipschitz with Lipschitz constant at most
2(1 + i + β(d))1/2 or 2β(d)1/2, respectively (cf. the proof of Lemma 6.6). Therefore
we have

voltrd (Φ) ≤ voltrd
(

Φ|S
)

+
n
∑

i=0

voltrd
(

Φ|Si

)

≤ (

2β(d)1/2)d · vol(M) +
n
∑

i=0

(

2(1 + i + β(d))1/2
)d · voltrd (Si)

≤
(

2dβ(d)d/2 +
n
∑

i=0

2d(1 + i + β(d))d/2e−α(d)·i
)

· vol(M) (Theorem 7.5)

≤ C(d) · vol(M),

where we set C(d) to be the value of the convergent series

C(d) :=
(

2dβ(d)d/2 +
∞
∑

i=0

2d(1 + i + β(d))d/2e−α(d)·i
)

.

Since α(d), β(d) are dimensional constants, so is C(d). �
We now fix a dimensional constant C(d) > 0 that satisfies the conclusions of

Theorems 7.7 and 7.8.

8 Pushing the Equivariant Nerve Map Down to the d-Skeleton

In this section we deform the Cantor nerve map of a Cantor cover U to the d-skeleton
with d = dim(M). The non-equivariant counterpart in Guth’s paper [Gut11] is
the one where tools from geometric measure theory enter. An essential tool is the
following result.

Theorem 8.1 (Pushout lemma [Gut17, Lemma 0.6]). For each dimension d ≥ 2
there is a constant σ(d) > 0 so that the following holds. Suppose that N is a compact
piecewise smooth d-dimensional manifold with boundary. Suppose that K ⊂ R

n is
a convex set, and φ : (N, ∂N) → (K, ∂K) is a piecewise smooth map. Then φ may
be homotoped into a map φ′ so that the following holds.

� The map φ′ agrees with φ on ∂N .
� vold(φ′) ≤ vold(φ).
� The image φ′(N) lies in the σ(d) · vold(φ)1/d-neighborhood of ∂K.
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Here is a list of dimensional constants to be used below.
β(d) defined after Theorem 7.7.
C(d) defined after Theorem 7.8.
σ(d) see the Pushout lemma above.

Next we recall the definition of thin and thick faces from Guth’s paper. To this end,
we choose ε > 0 small enough so that

∞
∏

k=d+1

(

1 − 2
(

3 · ε · σ(d)d · e−β(d)·k)1/d
)−d

< 2 and 2 · ε · eβ(d)·d < 1. (8.1)

The infinite product converges by the exponential decay in the term e−β(d)·k. Since
the value of ε only depends on d and the dimensional constant β(d), it is a dimen-
sional constant and we write ε = ε(d). Let F be an open k-face with side lengths
r1(F ) ≤ · · · ≤ rk(F ). We call the face F thin if

C(d) · V1 · r1(F ) < ε(d). (8.2)

Otherwise it is called thick. Next we play off the framework developed in Sections 4
and 6 to transfer Guth’s methods to our setting.

8.1 Compression map. Let δ ∈ (0, 1
2). The δ-truncation NCa(U)(n)

δ of the n-
skeleton NCa(U)(n) is obtained from NCa(U)(n) by removing a smaller cuboid inside
each n-dimensional face. Referring to the pushout (6.1), we obtain NCa(U)(n)

δ by
removing

∐

F∈Cn

(

⋂

j∈J+(F )

Aj

)

× Γ ×
(

n
∏

k=1

[δrk(F ), (1 − δ)rk(F )]
)

.

The self map Rδ of the cuboid given by F stretches linearly the interval [δrk(F ), (1−
δ)rk(F )] to [0, rk(F )] and sends [0, δrk(F )] to 0 and [(1 − δ)rk(F ), rk(F )] to
rk(F ) in each coordinate. The δ-compression map on the n-skeleton is the map
Pδ : NCa(U)(n) → NCa(U)(n) such that Pδ is the identity on the (n−1)-skeleton and
on every summand of the left lower corner of the pushout (6.1) it is the equivariant
extension of

(

⋂

j∈J+(F )

Aj

)

× {1} ×
n
∏

k=1

[0, rk(F )] id ×Rδ−−−−→ NCa(U)(n).

By Lemma 4.17 the map Pδ is a Cantor bundle map.

Remark 8.2 Obviously, we have

Pδ

(

NCa(U)(n)
δ

) ⊂ NCa(U)(n−1).

The map Pδ is a Lipschitz Cantor bundle map with Lipschitz constant (1 − 2δ)−1.
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8.2 Federer–Fleming deformation in thick faces. Let n > d. Let

Φ: X × ˜M → NCa(U)(n)

be a Lipschitz Cantor bundle map which is subordinate to U . Referring to the
pushout (6.1), we consider the subset

LF :=
(

⋂

j∈J+(F )

Aj

)

× {1} ×
n
∏

k=1

[0, rk(F )]

of NCa(U)(n). Let L◦
F ⊂ LF be similarly defined as LF by taking the interior of the

cuboid in the right hand factor. By applying Lemma 4.15 to each box LF and taking
a common refinement we obtain a clopen partition X = B1 ∪ · · · ∪Bm such that the
following holds.

� For every i ∈ {1, . . . , m} and every F ∈ Cn we have either Bi ⊂ ⋂

j∈J+(F ) Aj

or Bi ∩⋂j∈J+(F ) Aj = ∅.
� Φ−1(LF )|Bi

is a box (possibly empty). So we have Φ−1(LF )|Bi
= Bi ×Wi,F for

some subset Wi,F ⊂ ˜M .
� If Bi ⊂ ⋂

j∈J+(F ) Aj , then Φ|Bi×Wi,F
= idBi

×hi,F for some Lipschitz map
hi,F : Wi,F → ∏n

k=1[0, rk(F )].

Let us denote the restriction of hi,F to the hi,F -preimage of the interior of the cube
by h◦

i,F . We apply the Federer–Fleming deformation theorem to h◦
i,F for each thick

F ∈ Cn in the same way as in [Gut11, p. 70]. It gives us points pi,F in the interior of
the cube

∏n
k=1[0, rk(F )] such that for the radial projections pri,F from the interior

of the cube minus the point pi,F to the boundary of the cube we have
∫

Jpri,F ◦h◦
i,F

d vol
˜M
d ≤ G(V1, d) ·

∫

Jh◦
i,F

d vol
˜M
d (8.3)

for a constant G(V1, d) ≥ 1 only depending on V1 and d. Here vol˜Md is the Riemannian
volume measure on ˜M induced by M .

The same two remarks in [Gut11, p. 70] apply here: First, the stretching factor
G(V1, d) depends on the dimension d(F ) of the face. However, the maximal dimension
of a thick face only depends on V1 and d as noted before. Second, the usual Federer–
Fleming construction takes place in a cube rather than a cuboid. The fact that
the face is thick puts a limit on how distorted it is in comparison to a cube. By
properness of Φ the infimal distance ε of pi,F to im hi,F over all thick F ∈ Cn and
i ∈ {1, . . . , m} is strictly positive.

Next we describe two Cantor subbundles Z
(n)
1 and Z

(n)
2 of NCa(U)(n). The first

one Z
(n)
1 is obtained by removing ε-balls around the Γ-translates of the points pi,F ,

more precisely, by removing
∐

F∈Cn thick
i=1,...,m

(

⋂

j∈J+(F )

Aj ∩ Bi

)

× Γ × B(pi,F , ε).
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The second one Z
(n)
2 is obtained by removing all thick n-faces, that is, Z

(n)
2 is given

by a similar pushout as in (6.1) with the coproduct in the lower left corner running
only over thin F ∈ Cn.

By equivariance, im Φ ⊂ Z
(n)
1 , so the map Φ factors as

X × ˜M → Z
(n)
1 ↪→ NCa(U)(n).

The maps pri,F and the identity on the (n − 1)-skeleton and thin faces yield by

the pushout property (see Lemma 4.17) a Cantor bundle map Z
(n)
1 → Z

(n)
2 . It

depends on the choice of the points pi,F . For every such choice the composition of
Φ: X × ˜M → Z

(n)
1 with the radial projection map Z

(n)
1 → Z

(n)
2 ↪→ NCa(U)(n) is

called a Federer–Fleming deformation of Φ.
Since each pri,F is Lipschitz when restricted to the complement of a small ball

around the center, a Federer–Fleming deformation of Φ is still Lipschitz. We can-
not bound the Lipschitz constant by a dimensional constant, though, as we cannot
control the above quantity ε.

Lemma 8.3 Let Φ: X × ˜M → NCa(U)(n) be a Lipschitz Cantor bundle map which
is subordinate to U . Let Φ′ be a Federer–Fleming deformation of Φ. Then Φ′ is a
Lipschitz Cantor bundle map subordinate to U and

voltrd (Φ′) ≤ G(V1, n) · voltrd (Φ).

Proof Let E ⊂ NCa(U)(n−1) be a Borel Γ-fundamental domain of the (n−1)-skeleton.
Then

Φ−1(E) ∪
⋃

F∈Cn

Φ−1
(

L◦
F

)

is a Borel Γ-fundamental domain of X × ˜M . The above union is disjoint. By (5.1)
we obtain that

voltrd (Φ′) =
∫

Φ−1(E)
JΦ′d vold +

∑

F∈Cn

∫

Φ−1(L◦
F )

JΦ′d vold .

On the Φ-preimage of the (n − 1)-skeleton the maps Φ and Φ′ coincide. The maps
Φ and Φ′ also coincide on Φ−1(L◦

F ) for each thin F ∈ Cn. Hence

voltrd (Φ′) =
∫

Φ−1(E)
JΦd vold +

∑

F∈Cn

F thin

∫

Φ−1(L◦
F )

JΦd vold +
∑

F∈Cn

F thick

∫

Φ−1(L◦
F )

JΦ′d vold .

For thin F ∈ Cn the set Φ−1(L◦
F ) is the disjoint union of products of Bi ∩

⋂

j∈J+(F ) Aj and the domain of h◦
i,F where i runs over 1, . . . , m. Recall that each
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Bi is either disjoint from or contained in
⋂

j∈J+(F ) Aj . For thick F ∈ Cn we obtain
from (8.3) that

∫

Φ−1(L◦
F )

JΦ′d vold =
∑

i=1,...,m
Bi⊂⋂j∈J+(F ) Aj

μ(Bi)
∫

Jpri,F ◦h◦
i,F

d vol
˜M
d

≤ G(V1, d) ·
∑

i=1,...,m
Bi⊂⋂j∈J+(F ) Aj

μ(Bi)
∫

Jh◦
i,F

d vol
˜M
d

= G(V1, d) ·
∫

Φ−1(L◦
F )

JΦd vold .

The claimed inequality follows from Theorem 5.6. �
8.3 Guth’s pushout lemma for thin faces. While the Federer–Fleming
deformation allows us to deform the nerve map away from thick faces, the pushout
deformation of this subsection, in combination with the compression map, allows us
to deform the nerve map away from thin faces.

We retain the setup at the beginning of Section 8.2. We additionally require that
Φ is piecewise smooth on each fiber. We apply exactly the same argument as in
[Gut17, p. 206] to each thin face and the maps hi; we only have to take care that
everything fits together to a Cantor bundle map in the end.

For each open thin face F ∈ Cn and each i ∈ {1, . . . , m} one chooses a convex
subset Ki,F of F containing almost all of F but in general position with respect to hi:
The hi-preimage of Ki,F is a piecewise smooth submanifold Si,F of ˜M with boundary
∂Si,F which is the hi-preimage of ∂Ki,F . We apply the Pushout Lemma 8.1 to

hi|Si,F
: (Si,F , ∂Si,F ) → (Ki,F , ∂Ki,F ).

The result is a map h̃i,F so that h̃i,F coincides with hi on ∂Si,F and

vold(h̃i,F ) ≤ vold(hi|Si,F
), (8.4)

and the image of h̃i,F lies in the wi,F -neighborhood of ∂Ki,F where

wi,F := σ(d) · vold
(

hi|Si,F

)1/d
.

We modify the map Φ as follows. The Cantor bundle X×˜M contains the Γ-invariant
subspace

⋃

γ∈Γ
F∈Cn thin
i=1,...,m

γ·
(

⋂

j∈J+(F )

Aj ∩ Bi

)

×γ · Si,F = Φ−1
(

⋃

γ∈Γ
F∈Cn thin
i=1,...,m

(

⋂

j∈J+(F )

Aj ∩ Bi

)

×Γ × Ki,F

)

(8.5)
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which is a disjoint union of subspaces and in each fiber a disjoint union of piecewise
smooth d-dimensional submanifolds with boundaries. We make the subspace (8.5)
slightly smaller by replacing each Si,F with its interior and then consider the com-
plement, which we denote by R ⊂ X × ˜M , of this smaller subspace. Then X × ˜M
can be expressed as the pushout of Cantor bundles

∐

γ∈Γ
F∈Cn thin
i=1,...,m

(

⋂

j∈J+(F ) Aj ∩ Bi

)

×Γ × ∂Si,F R

∐

γ∈Γ
F∈Cn thin
i=1,...,m

(

⋂

j∈J+(F ) Aj ∩ Bi

)

×Γ × Si,F X × ˜M.

By the pushout property (Lemma 4.17) we obtain a new Cantor bundle map Φ′ : X×
˜M → NCa(U)(n) that coincides with Φ on R and is the equivariant extension of
id ×h̃i,F on each summand of the left lower corner of the pushout. The map Φ′ is
still Lipschitz and piecewise smooth on each fiber. We say that the map Φ′ is a
pushout deformation of Φ.

Similarly as in Lemma 8.3, we conclude the following statement from (8.4).

Lemma 8.4 If Φ′ is a pushout deformation of Φ, then

voltrd (Φ′) ≤ voltrd (Φ)

and

vold
(

Φ′
x|Φ′

x
−1(star(F ))

)

≤ vold
(

Φx|Φ−1
x (star(F ))

)

for every thin face F ∈ N(V) and every x ∈ X.

8.4 Pushing down the skeleta. We consider the Cantor nerve map Φ of a
Cantor cover U with no self-intersections. Let V be the locally finite cover of ˜M
obtained by the right factors of elements in U (see Definition 6.2). Let N ∈ N be
such that the nerve map Φ: X × ˜M → NCa(U) lands in the N -skeleton. We define

δ(k) :=
(

3 · ε(d) · σ(d)d · e−β(d)·k
)1/d

.

We set ΦN := Φ and construct, by a finite downward induction, a sequence of
Lipschitz Cantor bundle maps subordinate to U

Φi : X × ˜M → NCa(U)(i), i = N, . . . , d,

such that for every i ∈ {N, N − 1, . . . , d + 1}
voltrd

(

Φi−1

) ≤ (

1 − 2 · δ(i)
)−d · G(V1, d) · voltrd

(

Φi

)

, (8.6)
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and for every thin face F ∈ N(V) and every x ∈ X and i ∈ {N, N − 1, . . . , d + 1}

vold
(

Φi−1|Φ−1
i−1

(

{x}×star(F )
)

)

≤ (

1 − 2 · δ(i)
)−d · vold

(

Φi|Φ−1
i

(

{x}×star(F )
)

)

(8.7)

and for every thin face F ∈ N(V) and every x ∈ X and i ∈ {N, N − 1, . . . , d}

vold
(

Φi|Φ−1
i

(

{x}×star(F )
)

)

≤ 2 · ε(d) · r1(F )d · e−β(d)·d(F ). (8.8)

We combine the deformation steps in the previous subsections to inductively
deform Φi with i > d which lands in the i-skeleton to map Φi−1 which lands in
the (i − 1)-skeleton. The application of Guth’s pushout lemma requires that the
map to the nerve is fiberwise piecewise smooth. This is true for the original Cantor
nerve map. All deformation steps preserve that property. The first map ΦN = Φ
satisfies (8.8) by Theorem 7.7 and (8.2). Next we construct Φi−1 from Φi.

First, let Φ′
i be a Federer–Fleming deformation of Φi. The image of Φ′

i does not
meet any open thick i-faces; it lies in the Cantor subcomplex Z

(i)
2 . By Lemma 8.3,

voltrd
(

Φ′
i

) ≤ G(V1, d) · voltrd
(

Φi

)

. (8.9)

Let F be an open thin face in NCa(U)x ⊂ {x} × N(V). Let x ∈ X. We have

Φ′
i|Φ′

i
−1
(

{x}×F
) = Φi|Φ−1

i

(

{x}×F
).

Since every face in the open star of a thin face is thin, we also obtain that

Φ′
i|Φ′

i
−1
(

{x}×star(F )
) = Φi|Φ−1

i

(

{x}×star(F )
). (8.10)

Next we assume that F is i-dimensional and we consider a pushout deformation Φ′′
i

of Φ′
i which does not increase volumes according to Lemma 8.4. Let

wi,F := σ(d) · vold
(

Φ′
i|Φ′−1

i

(

{x}×F
)

)1/d
= σ(d) · vold

(

Φi|Φ−1
i

(

{x}×F
)

)1/d
.

The image of (Φ′′
i )x within F lies in the wi,F -neighborhood of the boundary of a

convex subset of F which we can choose arbitrarily large within F . By (8.8) we
have

wi,F ≤ σ(d) · vold
(

Φi|Φ−1
i

(

{x}×star(F )
)

)1/d ≤ (

2 · σ(d)d · ε(d) · e−β(d)·i)1/d · r1(F ).

Hence we choose the convex subset so that im(Φ′′
i )x ∩ F lies in the δ(i) · r1(F )-

neighborhood of ∂F . Hence the composition with a suitable compression map

Φi−1 := Pδ(i) ◦ Φ′′
i

lands in the (i − 1)-skeleton. Now (8.6) follows from (8.9), the fact that the
pushout deformation does not increase volume, and Pδ(i) having Lipschitz constant



S. BRAUN, R. SAUER GAFA

at most
(

1 − 2 · δ(i)
)−1. Similarly and because of (8.10) for every thin face F and

P−1
δ(i)(star(F )) ⊂ star(F ) for every face F we obtain (8.7). Note that (8.1) says that

N
∏

l=i

(

1 − 2 · δ(l)
)−d

< 2.

Using the induction hypothesis, we obtain (8.8) from

vold
(

Φi−1|Φ−1
i−1

(

{x}×star(F )
)

)

≤ vold
(

Φ|
Φ−1

(

{x}×star(F )
)

)

·
N
∏

l=i

(

1 − 2 · δ(l)
)−d

≤ 2 · vold
(

Φ|
Φ−1

(

{x}×star(F )
)

)

≤ 2 · C(d) · V1 · r1(F )d+1 · e−β(d)·d(F ) (Theorem 7.7)

≤ 2 · ε(d) · r1(F )d · e−β(d)·d(F ) (see (8.2)).

Theorem 8.5 There is constant C(V1, d) > 0 only depending on V1 and d such

that the map Φd : X × ˜M → NCa(U)(d) satisfies

voltrd
(

Φd

) ≤ C(V1, d) · vol(M).

Furthermore, for every thin d-face F in N(V) and every x ∈ X we have

vold
(

Φd|Φ−1
d

(

{x}×star(F )
)

)

< r1(F )d.

Proof By the same argument as in [Gut11, Proof of Lemma 9] based on [Gut11,
Lemma 3], there is a constant D(V1, d) > 0 only depending on V1 and the dimension
d such that every thick face in NCa(U) is at most D(V1, d)-dimensional. Hence we
have to apply the Federer–Fleming deformation step at most D(V1, d) times. The
constant G(V1, d) in (8.6) only appears if a Federer–Fleming deformation was used
when deforming Φi to Φi−1. Therefore we obtain that

voltrd
(

Φd

) ≤
∞
∏

l=d+1

(

1 − 2δ(l)
)−d · G(V1, d)D(V1,d) · voltrd

(

Φ
)

≤ 2 · G(V1, d)D(V1,d) · voltrd
(

Φ
)

.

The first assertion now follows from Theorem 7.8. The second assertion follows
from (8.1) and (8.8). �
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9 From Volume to Simplicial Volume

In this section we complete the proofs of the main results in the introduction.
Let us recall the common setup of the main theorems. Let M be a closed con-

nected d-dimensional Riemannian manifold with fundamental group Γ. Let X be a
Cantor space endowed with a free continuous action of Γ and a Γ-invariant Borel
probability measure μ (Theorem 2.1). Let V1 > 0 be an upper bound of the volumes
of 1-balls in the universal cover ˜M . We choose a good Cantor cover U on X×˜M with
no self-intersections (Theorem 6.1). The transverse volume of the associated Cantor
nerve map is universally bounded by the volume of M (Theorem 7.8). According
to the previous section, in particular Theorem 8.5, we can deform the Cantor nerve
map to the d-skeleton without loosing the control on its transverse volume. More
precisely, we obtain a Cantor bundle map Φ: X × ˜M → NCa(U)(d) subordinate to U
such that

voltrd (Φ) ≤ C(d, V1) · vol(M) (8.1)

for a constant C(d, V1) > 0 only depending on V1 and the dimension d. The second
assertion of Theorem 8.5 and the fact that r1(F )d ≤ vold(F ) for an open d-face F
implies that for every x ∈ X and every thin open d-face F in N(Ux) the image of Φx

misses at least a point of F . As before, we will denote by V the locally finite cover
of ˜M by all balls appearing as factors of elements of U . For the rest of this section,
let N denote the d-skeleton of the nerve of V. In particular, we have

NCa(U) ⊂ X × N.

The remaining steps to complete the proofs of the main theorems are as follows.
In Section 9.1 we present an auxiliary result on the freeness of certain Z[Γ]-

modules. This is, for example, needed in the proof of Lemma 9.6 where we invoke the
fundamental theorem of homological algebra to show that a homology isomorphism
between free Z[Γ]-chain complexes is induced by a Z[Γ]-chain homotopy equivalence.
In Section 9.2 we discuss classifying maps to classifying spaces. In Section 9.3 we see
how to read off geometric information from the coefficients of a suitable represen-
tative of the image of the fundamental class under Φ∗. We finish the proofs of the
main theorems in Section 9.4.

9.1 A result on modules over the group ring. If H < Γ is a finite subgroup,
then Q[Γ] ⊗Q[H] Q is a projective Q[Γ]-module. However, if H is a non-trivial finite
subgroup, Z[Γ] ⊗Z[H] Z is not a projective Z[Γ]-module. The following lemma shows
how to remedy the situation for integral coefficients using the Z[Γ]-module C(X; Z).

Lemma 9.1 The following statements hold true:

(1) Let H < Γ be a finite subgroup and χ : H → {±1} a character. Let Z
χ denote

the Z[H]-module Z endowed with the action h·x = χ(h)x for h ∈ H and x ∈ Z.
Then the Z[Γ]-module

C(X; Z) ⊗
(

Z[Γ] ⊗Z[H] Z
χ
)
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with the module structure induced by the diagonal (left) Γ-action is free.
(2) Let H < Γ be a finite subgroup. The Z[Γ]-module C(X; Z) ⊗ Z[Γ/H] with the

module structure induced by the diagonal (left) Γ-action is free.

Proof Ad 1). Since H is finite there is a clopen fundamental domain A of the H-
action on X. Consider the Z-homomorphism

C(A; Z) → C(X; Z) ⊗
(

Z[Γ] ⊗Z[H] Z
χ
)

that maps f ∈ C(A; Z) to f ⊗ 1 ⊗ 1. Here we regard C(A; Z) as a subgroup of
C(X; Z) by extending functions by zero. The above homomorphism extends to a
Z[Γ]-homomorphism

g : Z[Γ] ⊗ C(A; Z) → C(X; Z) ⊗
(

Z[Γ] ⊗Z[H] Z
χ
)

from the induced module. Since C(A; Z) is a free Z-module by Corollary 3.2 it suffices
to show that g is bijective.

Let S ⊂ Γ be a set of representatives for the right H-cosets. We obtain a natural
isomorphism as Z-modules

Z[Γ] ⊗Z[H] Z
χ ∼=

⊕

γ∈S

Z

and thus

C(X; Z) ⊗
(

Z[Γ] ⊗Z[H] Z
χ
) ∼=

⊕

γ∈S

C(X; Z). (8.2)

The domain of g is in an obvious way isomorphic to

Z[Γ] ⊗ C(A; Z) ∼= Z[Γ] ⊗Z[H] C(X; Z) ∼= Z[Γ/H] ⊗ C(X; Z) ∼=
⊕

γ∈S

C(X; Z). (8.3)

Both isomorphisms (8.2) and (8.3) are compatible with g. Thus g is an isomorphism.
Ad 2). This is a special case of (1) for the trivial character. �

9.2 Classifying maps and the simplicial norm. Upon passing to the
barycentric subdivision N becomes a proper Γ-CW complex (Lemma 2.4). We choose
a map Ψ: X×N → X×EΓ as in Lemma 4.19. We consider the following composition
of maps of Z[Γ]-chain complexes.

C∗(˜M) → C(X; Z) ⊗ C∗(˜M) Φ∗−→ C(X; Z) ⊗ C∗(N) Ψ∗−−→ C(X; Z) ⊗ C∗(EΓ) (8.4)

The first map is induced by the inclusion of constant function Z ↪→ C(X; Z). The
next two maps are induced by Φ and Ψ according to Lemma 4.21. Recall that the
group Γ acts diagonally on the tensor products. The abelian group C(X; Z) is free, in
particular flat, due to Corollary 3.2. Hence we have a resolution of the Z[Γ]-module
C(X; Z) on the right. Again by Lemma 9.1 it is a free Z[Γ]-resolution. The singular
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chain complex C∗(˜M) is a free Z[Γ]-chain complex, and on 0-th homology the above
composition is the inclusion of constant functions. Let c : ˜M → EΓ be the classifying
map. Then

C∗(˜M) c∗−→ C∗(EΓ) ↪→ C(X; Z) ⊗ C∗(EΓ)

is a Z[Γ]-chain map with the same behaviour on 0-th homology. By the fundamental
theorem of homological algebra the two chain maps are chain homotopic which we
record for later use.

Remark 9.2 Let c : ˜M → EΓ be the classifying map. The map (8.4) and the chain
map C∗(˜M) c∗−→ C∗(EΓ) ↪→ C(X; Z) ⊗ C∗(EΓ) are chain homotopic as Z[Γ]-chain
maps. Further, the latter map is equal to the composition C∗(˜M) ↪→ C(X; Z) ⊗
C∗(˜M) id ⊗c∗−−−−→ C(X; Z) ⊗ C∗(EΓ).

9.3 Cellular chains and volume in the Cantor nerve. Let Sn be a complete
set of representatives of the Γ-orbits of n-faces of N . For each n-face F let ΓF < Γ
be the finite subgroup of elements γ ∈ Γ with γF = F as subsets of N . After
choosing an orientation for an n-face F we obtain a character ηF : ΓF → {±1}
which indicates whether γ ∈ ΓF preserves or reverses the orientation; the character
is independent of the choice of orientation. Note that the character would be trivial
if the CW-structure of N would be a Γ-CW structure. There is an isomorphism of
Z[Γ]-modules

Ccell
n (N) ∼=

⊕

F∈Sn

Z[Γ] ⊗Z[ΓF ] Z
ηF . (8.5)

Lemma 9.1 now implies the first statement of the following lemma. The second
statement follows similarly by noting that the singular chain groups Cn(N ; Z) is a
direct sum of Z[Γ]-modules of the type Z[Γ/H] ∼= Z[Γ] ⊗Z[H] Z with H < Γ being
finite.

Lemma 9.3 For every n ∈ N the Z[Γ]-module C(X; Z) ⊗Z Ccell
n (N) endowed with

the diagonal Γ-action is free. The same is true when Ccell
n (N) is replaced by C(X).

There is a natural chain map from the cellular chain complex of N to the oriented
singular chain complex of N—but not to the singular chain complex of N . Recall that
the oriented singular chain complex Co∗(Y ) of a space Y is the quotient complex of
C∗(Y ) obtained by introducing the relation gσ−sign(g)σ for σ ∈ Cp(X), g ∈ S(p+1)
and the natural action of the symmetric group S(p+1) on singular p-simplices, and
the relation σ = 0 if there is a transposition t with tσ = σ.

The barycentric subdivision of a (closed) n-face in N consists of 2n · n! many n-
simplices. For each oriented n-face F of N the sum of the affine singular n-simplices
matching the simplices of the barycentric subdivision with orientation is a chain
cF ∈ Co

n(N). We obtain an equivariant chain map

s∗ : Ccell
∗ (N) → Co

∗(N)
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that maps an oriented n-face F to cF . We endow the oriented singular chain complex
with the quotient norm. Since the integral foliated simplicial volume is defined in
terms of the norm on singular chains it is important to know that we do not lose
too much by passing to oriented singular chains. The following result can be found
in [CS19, Theorem 3.3 and Remark 3.4].

Theorem 9.4 Let Y be a topological space. The projection pr∗ : C∗(Y ) → Co∗(Y )
is a natural chain homotopy equivalence. The norm of the map pr∗ is at most 1, and
the norm of a suitable chain homotopy inverse is at most (p + 1)! in degree p.

Remark 9.5 The natural chain homotopy inverse constructed in [CS19, Theorem
3.3 and Remark 3.4] takes the equivalence class of a singular simplex σ and maps
it to a linear combination of singular simplices with coefficients in {1, −1} which
corresponds to a barycentric subdivision of σ.

Lemma 9.6 The composition

C(X; Z) ⊗ Ccell
∗ (N) id ⊗s∗−−−−→ C(X; Z) ⊗ Co

∗(N)
id ⊗qN

∗−−−−→ C(X; Z) ⊗ C∗(N),

where qN∗ is any natural chain homotopy inverse as in Theorem 9.4, is a Z[Γ]-chain
homotopy equivalence (with regard to the diagonal Γ-actions).

Proof Both s∗ and qN∗ are homology isomorphisms. Since C(X; Z) is a free abelian
group (Corollary 3.2), also id⊗s∗ and id⊗qN∗ are homology isomorphisms. Both the
domain and the codomain of the composition are free Z[Γ]-modules by Lemma 9.3.
By the fundamental theorem of homological algebra the composition is a Z[Γ]-
homotopy equivalence. �

In the following we consider the local degree of a map f : ˜M → Sd which is
proper outside a fixed basepoint of Sd [Dol95, VIII.4]. Recall that the local degree of
f at point z ∈ Sd different from the basepoint is the integer degz(f) such that the
locally finite fundamental class is sent to degz(f) · [Sd] under

H lf
d

(

˜M
) → Hd

(

˜M, ˜M\f−1({z})
) f∗−→ Hd

(

Sd, Sd\{z}) ∼=←− Hd(Sd).

The local degree does not depend on the choice of z [Dol95, Proposition 4.4 on p.
267]; thus we denote it by deg(f). If f is Lipschitz then

deg(f) =
∑

y∈f−1({z})

sign det Dfy (8.6)

for almost every z ∈ Sd by [Fed69, Corollary 4.1.26 on p. 383].
For a d-face F in N we write S(F ) for the quotient of the closure of F by its

boundary which is homeomorphic to Sd. We take the collapsed boundary as the
basepoint of S(F ).

Below we refer to the map jM∗ from Definition 3.3.
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Lemma 9.7 Let Sd and ΓF for a d-face be as in (8.5). Let AF ⊂ X be a fundamental
domain for the ΓF -action on X. Then there are aF ∈ C(X; Z) supported on AF and
integral chains eF ∈ Cd(N) of �1-norm at most 2d · d! · (d + 1)! such that the image
of the fundamental class under

Hd(M)
jM

∗−−→ HΓ
d

(

˜M ; C(X; Z)
) Φ∗−→ HΓ

d

(

N ; C(X; Z)
)

is represented by the cycle
∑

F∈Sd
aF ⊗ eF . For x ∈ AF , we have

deg
(

˜M
Φx−−→ N

prF−−→ S(F )
)

= ±aF (x)

and

|aF (x)| ≤ 1
vold(F )

∫

Φ−1
x (F )

JdΦ(y)d vol
˜M
d (y).

Proof Every d-cycle in C(X; Z) ⊗Z[Γ] C∗(N) is homologous to a cycle coming from
C(X; Z) ⊗Z[Γ] C

cell
d (N) via the map in Lemma 9.6 (after passing to Γ-coinvariants).

Since Ccell
d (N) is an abelian group generated by Γ-translates of F ∈ Sd, it follows

that every d-cycle is homologous to a d-cycle of the form
∑

F∈Sd

bF ⊗ qN
∗
(

[cF ]
) ∈ C(X; Z) ⊗Z[Γ] Cd(N)

for some bF ∈ C(X; Z). Set eF := qN∗ ([cF ]). The statement about the norm eF follows
from the fact that cF consists of 2d · d! singular simplices and Theorem 9.4. Next we
rewrite the tensor products to obtain functions supported on AF : Let b′

F = χAF
· bF

where χAF
is the characteristic function of AF . We have

bF ⊗ eF =
∑

h∈ΓF

b′
F (h−1 ) ⊗ eF =

∑

h∈ΓF

b′
F ⊗ ηF (h) · eF =

(

∑

h∈ΓF

ηF (h)b′
F

)

⊗ eF

where ηF : ΓF → {±1} is the character as in (8.5). Therefore every homology class
is of the form

[∑

F∈Sd
aF ⊗ eF

]

where aF are functions supported on AF and eF are
integral chains of �1-norm at most 2d ·d! · (d+1)!. We represent zM := Φ∗ ◦ jM∗ ([M ])
like that with suitable aF and eF . The image of zM under the map evx, x ∈ X, from
Section 4.3, which is a locally finite homology class of N , is denoted by (zM )lfx . We
obtain that

(Φx)∗
(

[˜M ]lf
)

= (zM )lfx =
[
∑

γ∈Γ

∑

F∈Sd

aF (γ−1x) · γ · eF

]

as elements in the locally finite homology of N . Let F0 be an open d-face in N and
z0 a point in F0. We consider the image of (zM )lfx under the homomorphism

H lf
d

(

N
) → Hd

(

N, N\ pr−1
F0

({z0})
) Hd(prF0

)−−−−−→ Hd

(

S(F0), S(F0)\{z0}
) ∼=←− Hd

(

S(F0)
)

.
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For γ �∈ ΓF0 or F �= F0 the chain γ · eF is mapped to zero under the chain
map C lf

d (N) → Cd(N, N\ pr−1
F0

({z0})) → Cd(S(F0), S(F0)\{z0}). Therefore only the
terms aF (γ−1x)γ · eF with γ ∈ ΓF0 and F = F0 contribute something potentially
non-zero to the image of the homology class. But for x ∈ AF0 and γ ∈ ΓF0\{1} we
have aF (γ−1x) = 0. Hence (zM )lfx is mapped to aF0(x) times the generator, which
implies the statement about the local degree. The bound for |aF (x)| is now a direct
consequence of the area formula [Fed69, Theorem 3.2.5 on p. 244 and the remark
before 3.2.47 on p. 282] and the characterization (8.6) of the local degree. �
9.4 Conclusion of proofs of main results. For the next result we refer the
reader to the overview of dimensional constants after Theorem 8.1.

Theorem 9.8 For every V1 > 0 and d ∈ N there are constants const(d, V1) > 0
and ε(d) > 0 with the following properties.

Let (M, g) be a d-dimensional closed Riemannian manifold with V
(˜M,g̃)

(1) < V1.

Let Γ = π1(M), and let c : M → BΓ be the classifying map. Then

∥

∥iR∗ ◦ c∗([M ])
∥

∥ ≤ ∥

∥jBΓ
∗ ◦ c∗([M ])

∥

∥

X

Z
≤ const(d, V1) · vol(M).

Furthermore, if V
(˜M,g̃)

(1) < C(d)−1 · ε(d), then

iR∗ ◦ c∗([M ]) = 0 ∈ Hd(BΓ; R).

Proof The following diagram contains all the maps we have to consider.

HΓ
d (N ; C(X; Z))

Hd(M) HΓ
d (˜M ; C(X; Z)) HΓ

d (EΓ; C(X; Z)) Hd(BΓ; R)

Ψ∗

jBΓ
∗ ◦c∗

iR◦c∗

jM
∗

Φ∗

The middle horizontal map is induced by the (equivariant) classifying map ˜M → EΓ
and the identity on C(X; Z). The right-hand horizontal map is induced by integration
C(X; Z) → R (see Remark 3.4). The upper triangle is commutative by Remark 9.2.
That the lower part commutes is straightforward.

Let zM be the image of [M ] ∈ Hd(M) in HΓ
d (N ; C(X; Z)). According to

Lemma 9.7 the homology class zM is represented by a cycle of the form
∑

F∈Sd

aF ⊗ eF

where the function aF is supported on AF and aF (x) is the local degree of Φx followed
by the projection to S(F ) for x ∈ AF . If F ∈ Sd is thin and x ∈ X, then there is
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at least one point in the interior of F that is not in the image of Φx according to
the volume estimate of Theorem 8.5. In this case aF (x) = 0. Under the assumption
V

(˜M,g̃)
(1) < C(d)−1 · ε(d) every d-face is thin. Hence zM = 0. The commutativity of

the diagram implies the second statement.
The smallest side length of a thick d-face in N and hence its volume are bounded

from below by a constant that only depends on the dimension d and V1. Let
const′(d, V1) > 0 be such that 1/ const′(d, V1) is a lower volume bound of thick
d-faces. We now set const(d, V1) := 2d · d! · (d + 1)! · const′(d, V1) · C(d, V1), where
C(d, V1) is the constant in (8.1). Since Ψ∗ does not increase the integral foliated
norm, the above diagram commutes and because of Remark 3.4, it suffices to show
that ‖zM‖X

Z
≤ const(d, V1) ·vol(M) to obtain the first statement of the theorem. Let

Td ⊂ Sd be the subset of thick d-faces. With the norm bound on eF from Lemma 9.7
and the above argument for thin d-faces we obtain that

‖zM‖X
Z

≤ 2d · d! · (d + 1)! ·
∑

F∈Td

∫

AF

|aF (x)|dμ(x).

Again with Lemma 9.7 we conclude that

‖zM‖X
Z

≤ 2d · d! · (d + 1)! · const′(d, V1)
∑

F∈Td

∫

AF

∫

Φ−1
x (F )

∣

∣JdΦx(y)
∣

∣d vol
˜M
d (y).

The subset
{

(x, y) | F ∈ Td, x ∈ AF , y ∈ Φ−1
x (F )

}

is contained in a Γ-fundamental domain of X × ˜M . Hence the Area Formula (The-
orem 5.6) and the definition of const(d, V1) imply that

‖zM‖X
Z

≤ 2d · d! · (d + 1)! · const′(d, V1) · vold(Φ) ≤ const(d, V1) · vol(M). �

Proof of Theorem 1.1 By Gromov’s mapping theorem [Gro82, Section 3.1. on p. 248]
we have ‖iR,∗ ◦ c∗([M ])‖ = ‖M‖. Therefore Theorem 1.1 is implied by Theorem 9.8.
�
Proof of Theorem 1.3 By scaling the metric, it is enough to prove the case R = 1.
The case R = 1 is the second statement of Theorem 9.8. �
Proof of Theorem 1.4 According to Theorem 9.8 the X-parametrised integral sim-
plicial norm of c∗([M ]) ∈ Hd(BΓ) is bounded from above by const(d, V1)·vol(M). By
Theorem 3.10 the von Neumann rank of c∗([M ]) is bounded by d·C(d, V1)·vol(M). If
M is, in addition, aspherical, then c is a homotopy equivalence and the von Neumann
rank of c∗([M ]) is the von Neumann rank of [M ] which is the sum of the �2-Betti
numbers of M according to Remark 3.9. This implies the second statement of Theo-
rem 1.4. The statement about the Euler characteristic is an immediate consequence
since the alternating sum of �2-Betti numbers equals the Euler characteristic. �
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Proof of Theorem 1.5 Let α be a free measurable pmp action of Γ on a standard
probability space (Y, μ). By [Ele21, Theorem 2] there is a free continuous action
of Γ on the Cantor set X and an equivariant Borel embedding X ↪→ Y such that
μ(X) = 1. This means that we can realize every free measurable pmp action by
a free continuous action on the Cantor set. Therefore the α-parametrised simpli-
cial volume |M |α coincides with the X-parametrised simplicial volume (with regard
to μ). According to Theorem 9.8 the X-parametrised integral simplicial norm of
c∗([M ]) ∈ Hd(BΓ) is bounded from above by const(d, V1) · vol(M). Since c is a
homotopy equivalence the X-parametrised integral simplicial norm of c∗([M ]) is the
X-parametrised integral simplicial volume of M . �
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[Tom87] T. tom Dieck. Transformation Groups. De Gruyter Studies in Mathematics,
Vol. 8. Walter de Gruyter & Co., Berlin (1987).

S. Braun and R. Sauer
Karlsruhe Institute of Technology, Karlsruhe, Germany.

sabine.r.braun@gmail.com
roman.sauer@kit.edu
http://topology.math.kit.edu

Received: April 24, 2021
Accepted: October 26, 2021

https://nbn-resolving.org/urn:nbn:de:hbz:6-05699458563
https://nbn-resolving.org/urn:nbn:de:hbz:6-05699458563

	Volume and macroscopic scalar curvature
	Abstract
	1 Introduction
	1.1 Results.
	1.2 Comment on the proof.
	1.3 Structure of the proof.

	2 Topological Preliminaries
	2.1 Free actions on the Cantor set.
	2.2 Equivariant CW-complexes.
	2.3 Rectangular complexes.
	2.4 Rectangular nerves of covers.

	3 Homological Preliminaries
	3.1 Measure homology.
	3.2 Norms on abelian groups and chain complexes.
	3.3 ell2-Betti numbers.

	4 The Category of Cantor Bundles
	4.1 Cantor bundles.
	4.2 Cantor bundle maps.
	4.3 Chains and norms of chains in the context of Cantor bundles.

	5 Transverse Measure Theory on Cantor Bundles
	6 Rectangular Cantor Nerves and Cantor Covers
	6.1 Cantor covers.
	6.2 The rectangular Cantor nerve of a Cantor cover.
	6.3 The map to the rectangular Cantor nerve.

	7 Volume Estimates
	7.1 Cantor–Vitali layerings of equivariant covers.
	7.2 Exponential decay of the volume of the high multiplicity set.
	7.3 Bounding the transverse volume of the image of the nerve map.

	8 Pushing the Equivariant Nerve Map Down to the d-Skeleton
	8.1 Compression map.
	8.2 Federer–Fleming deformation in thick faces.
	8.3 Guth's pushout lemma for thin faces.
	8.4 Pushing down the skeleta.

	9 From Volume to Simplicial Volume
	9.1 A result on modules over the group ring.
	9.2 Classifying maps and the simplicial norm.
	9.3 Cellular chains and volume in the Cantor nerve.
	9.4 Conclusion of proofs of main results.

	References




