KIT | KIT-Bibliothek | Impressum | Datenschutz

Two-Photon 3D Laser Printing Inside Synthetic Cells

Abele, Tobias; Messer, Tobias; Jahnke, Kevin; Hippler, Marc; Bastmeyer, Martin; Wegener, Martin; Göpfrich, Kerstin

Abstract:

Toward the ambitious goal of manufacturing synthetic cells from the bottom up, various cellular components have already been reconstituted inside lipid vesicles. However, the deterministic positioning of these components inside the compartment has remained elusive. Here, by using two-photon 3D laser printing, 2D and 3D hydrogel architectures are manufactured with high precision and nearly arbitrary shape inside preformed giant unilamellar lipid vesicles (GUVs). The required water-soluble photoresist is brought into the GUVs by diffusion in a single mixing step. Crucially, femtosecond two-photon printing inside the compartment does not destroy the GUVs. Beyond this proof-of-principle demonstration, early functional architectures are realized. In particular, a transmembrane structure acting as a pore is 3D printed, thereby allowing for the transport of biological cargo, including DNA, into the synthetic compartment. These experiments show that two-photon 3D laser microprinting can be an important addition to the existing toolbox of synthetic biology.


Verlagsausgabe §
DOI: 10.5445/IR/1000141745
Veröffentlicht am 10.01.2022
Originalveröffentlichung
DOI: 10.1002/adma.202106709
Scopus
Zitationen: 26
Dimensions
Zitationen: 28
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Institut für Biologische und Chemische Systeme (IBCS)
Institut für Nanotechnologie (INT)
Karlsruhe School of Optics & Photonics (KSOP)
Zoologisches Institut (ZOO)
Publikationstyp Zeitschriftenaufsatz
Publikationsdatum 10.02.2022
Sprache Englisch
Identifikator ISSN: 0935-9648, 1521-4095
KITopen-ID: 1000141745
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Weitere HGF-Programme 47.14.02 (POF IV, LK 01) Information Storage and Processing in the Cell Nucleus
Erschienen in Advanced Materials
Verlag John Wiley and Sons
Band 34
Heft 6
Seiten Art. Nr.: 2106709
Vorab online veröffentlicht am 20.11.2021
Nachgewiesen in Scopus
Web of Science
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page