KIT | KIT-Bibliothek | Impressum | Datenschutz

On the topology of moduli spaces of non-negatively curved Riemannian metrics

Tuschmann, Wilderich; Wiemeler, Michael

Abstract:

We study spaces and moduli spaces of Riemannian metrics with non-negative Ricci or non-negative sectional curvature on closed and open manifolds. We construct, in particular, the first classes of manifolds for which these moduli spaces have non-trivial rational homotopy, homology and cohomology groups. We also show that in every dimension at least seven (respectively, at least eight) there exist infinite sequences of closed (respectively, open) manifolds of pairwise distinct homotopy type for which the space and moduli space of Riemannian metrics with non-negative sectional curvature has infinitely many path components. A completely analogous statement holds for spaces and moduli spaces of non-negative Ricci curvature metrics.


Verlagsausgabe §
DOI: 10.5445/IR/1000141753
Veröffentlicht am 13.01.2022
Originalveröffentlichung
DOI: 10.1007/s00208-021-02327-y
Scopus
Zitationen: 1
Web of Science
Zitationen: 2
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Algebra und Geometrie (IAG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0025-5831, 1432-1807
KITopen-ID: 1000141753
Erschienen in Mathematische Annalen
Verlag Springer
Band 384
Seiten 1629–1651
Vorab online veröffentlicht am 20.12.2021
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page