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Abstract

Deterministic models for radiation transport describe the density of radiation particles moving through a
background material. In radiation therapy applications, the phase space of this density is composed of
energy, spatial position and direction of flight. The resulting six-dimensional phase space prohibits fine
numerical discretizations, which are essential for the construction of accurate and reliable treatment plans.
In this work, we tackle the high dimensional phase space through a dynamical low-rank approximation of the
particle density. Dynamical low-rank approximation (DLRA) evolves the solution on a low-rank manifold
in time. Interpreting the energy variable as a pseudo-time lets us employ the DLRA framework to represent
the solution of the radiation transport equation on a low-rank manifold for every energy. Stiff scattering
terms are treated through an efficient implicit energy discretization and a rank adaptive integrator is chosen
to dynamically adapt the rank in energy. To facilitate the use of boundary conditions and reduce the overall
rank, the radiation transport equation is split into collided and uncollided particles through a collision source
method. Uncollided particles are described by a directed quadrature set guaranteeing low computational
costs, whereas collided particles are represented by a low-rank solution. It can be shown that the presented
method is L2-stable under a time step restriction which does not depend on stiff scattering terms. Moreover,
the implicit treatment of scattering does not require numerical inversions of matrices. Numerical results for
radiation therapy configurations as well as the line source benchmark underline the efficiency of the proposed
method.

Keywords: Dynamical low-rank approximation, radiation therapy, kinetic equations, rank adaptivity,
model order reduction

1. Introduction

Radiation therapy is one of the main tools in cancer treatment. In treatment planning, the set-up of radi-
ation beams is optimized such that the tumor receives the prescribed dose, while minimizing the damage
of surrounding risk organs or healthy tissue. Here, exact and fast dose calculation is of basic importance.
Exact dose calculations however require the solution of a high dimensional coupled system of linear transport
equations. Therefore, clinical dose calculation algorithms often rely on simplified pencil beam models [2],
which are based on the Fermi-Eyges theory of radiative transfer [17]. Although these models are computa-
tionally efficient, they can only describe layered heterogeneities [25]. Thus simulation results are inaccurate,
especially in cases including air cavities or other inhomogeneities [25, 29].

More exact dose calculation can be achieved by an appropriate Monte Carlo (MC) algorithm, where in-
dividual interacting particles are directly simulated [4]. However, while recent performance-tuned MC
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implementations have achieved large run time improvements, the high computational costs and associated
statistical noise still limit their clinical usage [18, 26]. The application of deterministic Boltzmann equations
for dose calculation can achieve similar accuracy as MC simulations, but also exhibit the same computa-
tional complexity for grid-based solutions [6]. Moment models for the Boltzmann equation in radiation dose
calculation have for example been considered in [19, 35]

In this work, we tackle the challenges arising from high-dimensional phase spaces in radiation therapy
applications through dynamical low-rank approximation (DLRA) [28]. DLRA represents the solution by a
low-rank ansatz. When the solution is an n by m time-dependent matrix with huge n and m, such a low-
rank representation can be defined by a singular value decomposition (SVD) truncated to a (small) rank r.1

Time evolution equations for each of the low-rank factors of the SVD are then derived by minimizing the
residual while maintaining the solution’s low-rank structure. When the original method requires O(n ·m)
operations per time step, the updates of the low-rank factors only require O(r2 ·(n+m)) operations. Robust
integrators for the time evolution of these factors are the matrix projector–splitting integrator (PSI) [34]
and the recently developed “unconventional” basis-update & Galerkin low-rank matrix integrator of [9].
Unlike the unconventional integrator, the projector–splitting integrator can be extended to high order.
However, since it includes a backward step in time, the projector–splitting integrator can yield instabilities
for parabolic equations. Moreover, the backward time step can result in unstable schemes for hyperbolic
problems, which is not an issue for the unconventional integrator [30]. Following [30], stable discretizations
of the PSI can however be constructed by using the continuous DLRA formulation proposed in [14].

The efficiency of dynamical low-rank approximation has been demonstrated in several applications, including
kinetic theory [14, 15, 38, 37, 16, 12, 13, 8, 30, 11]. Two main challenges of DLRA in the context of kinetic
theory and radiation transport specifically are the preservation of mass as well as capturing the asymptotic
limit. Methods to guarantee mass conservation include re-scaling strategies [38], a high-order low-order
(HOLO) decomposition [37] and the incorporation of certain basis functions in the tangent space of low-rank
functions [13]. An asymptotic preserving scheme for dynamical low-rank approximation has been proposed
in [11]. The key ingredients of this scheme are the ordering of low-rank updates and the choice of an implicit
time discretization. A further method uses a HOLO scheme to guarantee preserving the asymptotic limit
[12]. Even though radiation therapy applications do not exhibit sufficiently strong scattering to fall into the
diffusive regime, stiff scattering terms remain a challenge. While implicit time discretizations guarantee a
stable treatment of such terms, their significantly increased computational costs pose difficulties.

The efficiency of DLRA highly depends on the rank required to capture important solution characteristics.
Choosing this rank sufficiently high to guarantee a satisfactory solution quality while at best maintaining
low computational costs requires a great amount of intuition. Furthermore, a fixed choice of the rank does
not capture the time evolution of the solution complexity. Rank adaptive DLRA integrators which pick the
rank in an automated fashion during run time have for example been proposed in [10, 39, 8].

This work presents a dynamical low-rank approximation for radiation therapy. To employ the DLRA
framework in this setting, we formulate the energy dependency of the continuous slowing down equation
as a pseudo-time. Dynamical low-rank approximation is then used to update the low-rank factors of the
solution in energy. An efficient choice of the rank for every energy is provided through the rank adaptive
integrator of [8]. Further novelties of this work are:

1. A stable and efficient time discretization of stiff scattering terms. Following [36, 30], stiff scattering
terms are split from the radiation transport equation. The unconventional integrator is used to time
update the streaming part and the matrix projector-splitting integrator updates the scattering part.
According to [30], the scattering part only requires an update of a single low-rank factor. By using an
implicit time discretization on this part of the integrator and explicit updates on the remainder, we
significantly reduce computational costs while allowing for a less restrictive CFL condition.

1Note that the low-rank solution does not require a diagonal r by r singular value matrix. In fact, DLRA uses dense
coefficient matrices.
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2. A first-collision source method to reduce the rank and impose boundary conditions. Boundary condi-
tions in radiation therapy are often Dirichlet conditions of uncollided particles traveling into a single
direction. To efficiently incorporate this information into our solution ansatz, we perform a collided-
uncollided split, see e.g. [1, 24]. Here, collided and uncollided particles are treated in two separate
equations. For the uncollided particles, an SN method with a directed quadrature set resolving only
the small number of relevant directions can be used. The collided part of the solution is represented
through dynamical low-rank approximation. This strips away highly peaked particle distributions in
the low-rank approximation, thereby potentially reducing the rank. Furthermore, since the density of
uncollided particles is zero at the boundary, imposing boundary conditions becomes straightforward.

3. A multilevel dynamical low-rank approximation. The collided-uncollided split can be extended to L-
collided splits. This can be interpreted as writing the solution as a telescoping sum. Expecting a
reduced rank in every of these telescoping updates, individual dynamical low-rank approximations are
derived for every term.

This paper is structured as follows: Sections 2 and 3 give an overview on methods used in this work to
point to existing work and to fix notation. A general background to the used radiation transport methods,
especially the continuous slowing down equation and numerical methods to solve it is given in Section 2.
Section 3 provides a recap of dynamical low-rank approximation as well as robust integrators for the DLRA
evolution equations. The main method of this work is presented in Section 4. In Section 5, we derive a CFL
condition which ensures stability and extend the results to the rank adaptive unconventional integrator in
Section 6.

2. Recap: Mesoscopic transport models in radiation therapy

2.1. Continuous slowing down equation

In the following, we discuss kinetic transport in the field of radiation treatment planning as well as related
numerical methods used in this work. The task of computational mathematics in radiation therapy is to
predict the transport of radiation particles in cancer patients. An accurate model is provided by the linear
Boltzmann equation, which describes the dynamics of the particle density ψ on a mesoscopic level [19]. The
continuous slowing down (CSD) approximation [32] to the linear Boltzmann equation reads

Ω · ∇xψ(E,x,Ω) + ρ(x)Σt(E)ψ(E,x,Ω) =

∫
S2
ρ(x)Σs(E,Ω ·Ω′)ψ(E,x,Ω′) dΩ′

+ ∂E (ρ(x)St(E)ψ(E,x,Ω)) , (1a)

ψ(E,x,Ω) = ψBC(E,x,Ω) for x ∈ ∂D , (1b)

ψ(Emax,x,Ω) = ψmax(x,Ω) . (1c)

The phase space of the particle density ψ consists of energy E ∈ [0, Emax] ⊂ R+, space x ∈ D ⊂ R3 and
direction of flight Ω ∈ S2. We use St : R+ → R+ to denote the stopping power, which describes the rate at
which particles lose energy. The tissue density of the patient is ρ : D → R+. Material cross sections Σt and
Σs describe scattering and absorption interactions of particles with tissue. Stopping power and material
cross-sections are given from physical databases [23]. The quantity of interest is the dose absorbed by the
tissue, which can be determined from

D(x) =
1

ρ(x)

∫ ∞
0

∫
S2
St(E)ψ(E,x,Ω) dΩdE . (2)

Since particles are assumed to lose energy continuously, the energy can be interpreted as a pseudo-time t.
By performing a transformation of cross-sections and the particle density, cf. [5], the CSD equation (1)
becomes

∂tψ̃ = −Ω · ∇x
ψ̃

ρ
− Σ̃tψ̃ +

∫
S2

Σ̃s(t,Ω ·Ω′)ψ̃(t,x,Ω′) dΩ′ := R(t, ψ̃) . (3)
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We omit phase space dependencies for ease of presentation. The pseudo-time t is defined as

t(E) :=

∫ Emax

0

1

S(E′)
dE′ −

∫ E

0

1

S(E′)
dE′ . (4)

A tilde is used to denote the transformation of particle densities and cross sections, given by Σ̃t(t) = Σt(E(t)),

Σ̃s(t,Ω ·Ω′) = Σs(E(t),Ω ·Ω′) and

ψ̃(t,x,Ω) := S(E(t))ρ(x)ψ(E(t),x,Ω) . (5)

To simplify our presentation, we will from now on omit the tilde and always refer to the transformed
quantities by ψ, Σt and Σs. Furthermore, the in-scattering operator will be denoted as S, i.e.,

(Sψ)(t,x,Ω) :=

∫
S2

Σs(t,Ω ·Ω′)ψ(t,x,Ω′) dΩ′ . (6)

2.2. Collision source method

First collision source methods split the solution to the radiation transport equation (3) into a collided and
uncollided part, see e.g. [3, 24]. Let us write ψ(t,x,Ω) = ψu(t,x,Ω) + ψc(t,x,Ω), where ψu represents
uncollided and ψc represents collided particles. Then, the radiation transport equation (3) can be split into

∂tψu = −Ω · ∇x
ψu
ρ
− Σtψu := Ru(t, ψu) , (7a)

∂tψc = −Ω · ∇x
ψc
ρ
− Σtψc + S (ψu + ψc) := Rc(t, ψu, ψc) . (7b)

The first equation describes the dynamics of uncollided particles. Since collided particles cannot generate or
deplete uncollided particles, (7a) solely depends on ψu. Furthermore, as uncollided particles do not generate
inscattering, only the outscattering term −Σtψu describes interactions with the background material. The
dynamics of collided particles are described by (7b) and include inscattering from uncollided particles. This
methodology of representing the solution in terms of collided and uncollided particles can be developed
further: Denoting the particles that have collided ` = 0, · · · , L times as ψ` and particles that have collided
more than L times as ψc, we have ψ = ψ0 + ψ1 + · · ·+ ψL + ψc. Then, we obtain the equations

∂tψ0 = −Ω · ∇x
ψ0

ρ
− Σtψ0 := R0(t, ψ0) , (8a)

∂tψ` = −Ω · ∇x
ψ`
ρ
− Σtψ` + Sψ`−1 := R1(t, ψ`−1, ψ`) , for ` = 1, · · · , L, (8b)

∂tψc = −Ω · ∇x
ψc
ρ
− Σtψc + S (ψL + ψc) := Rc(t, ψL, ψc) . (8c)

2.3. Angular discretization

To allow for numerical approximations of solutions to the presented equations, time, space and angle need
to be discretized. Numerical artifacts that numerical solutions exhibit crucially depend on the angular
discretization. Deterministic discretizations can be classified into nodal and modal methods. A conventional
nodal method is the discrete ordinates (SN ) [33] method, which evolves the solution on a chosen angular
quadrature set. A conventional modal discretization technique is the spherical harmonics (PN ) method [7]
which spans the solution in terms of spherical harmonics basis functions. For degree ` and order k, the
spherical harmonics for an angle Ω = (

√
1− µ2 cosϕ,

√
1− µ2 sinϕ, µ)T are defined as

Y k` (Ω) =

√
2`+ 1

4π

(`− k)!

(`+ k)!
eikϕP k` (µ) ,
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where P k` are the associated Legendre polynomials. In this work, we use the real spherical harmonics

mk
` =


(−1)k√

2

(
Y k` + (−1)kY −k`

)
, k > 0 ,

Y 0
` k = 0 ,

− (−1)ki√
2

(
Y −k` − (−1)kY k`

)
, k < 0 .

Let us collect all basis functions up to degree N in a vector

m = (m0
0,m

−1
1 ,m0

1,m
1
1, · · · ,mN

N )T ∈ R(N+1)2

and choose the modal approximation ψ(t,x,Ω) ≈ u(t,x)Tm(Ω). The coefficient (or moment) vector u has
m := (N + 1)2 entries. Then, the PN equations for x = (x, y, z)T read

∂tu(t,x) = −A · ∇x
u(t,x)

ρ(x)
− Σt(t)u(t,x) + Σu(t,x),

where A · ∇x := A1∂x + A2∂y + A3∂z with Ai :=
∫
S2 mmTΩi dΩ. The diagonal in-scattering matrix Σ has

entries Σkk(t) = 2π
∫

[−1,1]
Pk(µ)Σs(t, µ) dµ. Note that Σt(t) = Σ11(t) > 0 and

|Σkk(t)| ≤ 2π

∫
[−1,1]

|Pk(µ)| · |Σs(t, µ)| dµ ≤ 2π

∫
[−1,1]

|Σs(t, µ)| dµ = Σ11(t) . (9)

2.4. Spatial discretization

Several benchmarks in radiation transport assume a two-dimensional spatial domain, i.e., the spatial variable
becomes x = (x, y)T . In this setting, we focus on the discretization of the PN equations, since these will
become relevant in the proposed DLRA method. Then, we have

∂tu(t,x) = −Ax∂xu(t,x)−Ay∂yu(t,x) + Gu(t,x) . (10)

A finite volume discretization splits the spatial domain D into Nx·Ny cells. In case of a structured quadrangle
grid, the x and y domains are discretized into uniform one-dimensional grids x1 ≤ x2 ≤ · · · ≤ xNx+1 and
y1 ≤ y2 ≤ · · · ≤ yNy+1 with grid size ∆x and ∆y respectively. Then, the cell of index (i, j) is defined on
Iij := [xi, xi+1]× [yj , yj+1] on which the numerical solution is chosen as

uij(t) '
1

∆x∆y

∫
Iij

u(t,x) dx .

In the same manner we compute the patient density ρij . To simplify the presentation of the spatial
discretization, let us collect uij(t) = (uijk(t))

m
k=1 ∈ Rm for i = 1, · · · , Nx and j = 1, · · · , Ny into a

matrix u(t) ∈ Rnx×m, where nx := Nx · Ny. For this, we define the function idx : N × N → N as
idx(i, j) = (i− 1) ·Nx + j. Then, the entries of u(t) are defined as uidx(i,j),k(t) = uijk(t).

With this notation at hand, we can define a finite volume scheme for (10) in compact notation. Let us define

the sparse diffusion stencil matrices L
(1)
x,y ∈ Rnx×nx as

L
(1)
x,idx(i,j),idx(i,j) =

1

ρij∆x
, L

(1)
x,idx(i,j),idx(i±1,j) = − 1

2ρi±1,j∆x
,

L
(1)
y,idx(i,j),idx(i,j) =

1

ρij∆y
, L

(1)
y,idx(i,j),idx(i,j±1) = − 1

2ρi,j±1∆y
,

as well as the sparse advection stencil matrices L
(2)
x,y ∈ Rnx×nx as

L
(2)
x,idx(i,j),idx(i±1,j) =

±1

2ρi±1,j∆x
, L

(2)
y,idx(i,j),idx(i,j±1) =

±1

2ρi,j±1∆y
.
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Furthermore with Ax,y = Vx,yΛx,yV
T
x,y, the Roe matrices |Ax|, |Ay| ∈ Rm×m are defined as

|Ax| := Vx|Λx|VT
x , and |Vy| := Vy|Λy|VT

y .

Here, Vx,y collects the orthonormal eigenvectors of the symmetric matrices Ax,y and Λx,y = diag(λx,y1 , · · ·λx,ym )
are the corresponding real eigenvalues. Then, the semi-discrete finite volume update becomes a huge matrix
differential equation of the form

u̇(t) = F(u(t)) + G(t,u(t),u(t)) ,

where

F(u) := L(2)
x uAT

x + L(2)
y uAT

y + L(1)
x u|Ax|T + L(1)

y u|Ay|T ,
G(t,v,u) := − Σt(t)u + vΣ(t) .

The costs of evaluating the right-hand side are CPN
. nx ·m, when accounting for the sparsity of all stencil,

flux and Roe matrices which leads to linear costs in nx and m of matrix products.

3. Recap: Dynamical low-rank approximation

3.1. Main framework

This section gives a brief overview on dynamical low-rank approximation [28] for matrix differential equa-
tions u̇(t) = F(t,u(t)). Dynamical low-rank approximation represents and evolves the solution on a manifold
of rank r matrices, which we denote by Mr. A low-rank representation is given by the SVD-like factoriza-
tion

u(t) ≈ X(t)S(t)W(t)T , (11)

where X ∈ Rnx×r and W ∈ Rm×r are basis matrices with orthonormal column vectors and S ∈ Rr×r is a
dense coefficient matrix. Time evolution equations for the factors can be defined by imposing

u̇(t) ∈ Tu(t)Mr such that ‖u̇(t)− F(t,u(t))‖ = min . (12)

We use Tu(t)Mr to denote the tangent space of Mr at u(t), i.e., the solution should remain of rank r over
time while minimizing the defect. These conditions yield a time evolution equation for the low-rank solution
[28, Lemma 4.1], which reads

u̇(t) = P(u(t))F(t,u(t)) . (13)

The operator P is the orthogonal projection onto the tangent space, given by

Pg = XXTg −XXTgWWT + gWWT .

Evolution equations can then be derived for the factors X, S and W, see [28]. However, the resulting
equations depend on the inverse of the commonly ill conditioned coefficient matrix, which substantially
limits the permitted step size [27].

3.2. Robust fixed rank integrators

Two robust integrators have been proposed for the evolution equation (13). First, the matrix projector–
splitting integrator [34] splits (13) by a Lie-Trotter splitting technique, yielding

u̇I(t) = F(uI(t))WWT , uI(t0) = u(t0) , (14a)

u̇II(t) = −XXTF(uII(t))WWT , uII(t0) = uI(t1) , (14b)

u̇III(t) = XXTF(uIII(t)) , uIII(t0) = uII(t1) . (14c)

The resulting consecutive movement in the low-rank manifold ensures robustness irrespective of singular
values and thereby allows for increased step sizes [34]. Defining the decompositions uI = KWT as well as
uIII = XL gives the matrix projector-splitting integrator, which updates the low-rank factors X0 = X(t0),
W0 = W(t0) and S0 = S(t0) to time t1 = t0 + ∆t:

6



1. K-step: Update X0 to X1 and S0 to S̃0 via

K̇(t) = F(K(t)W0,T )W0 , K(t0) = X0S0 . (15)

Determine X1 and S̃0 with K(t1) = X1S̃0 by performing a QR decomposition.

2. S-step: Update S̃0 to S̃1 via

˙̃
S(t) = −X1,TF(X1S̃(t)W0,T )W0 , S̃(t0) = S̃0 (16)

and set S̃1 = S̃(t1).

3. L-step: Update W0 to W1 and S̃1 to S1 via

L̇(t) = X1,TF(X1L(t)) , L(t0) = S̃1W0,T . (17)

Determine W1 and S1 with L(t1) = S1W1,T by performing a QR decomposition.

Then, the time updated solution is u(t1) = X1S1W1,T . It has been noted in [30] that when the flux
function takes the form F(t,u(t)) = u(t)G(t), the K and S-steps cancel out and only the L-step determines
the dynamics.

The second robust integrator is the unconventional integrator, which has recently been introduced in [9].
This integrator first performs basis updates of X and W in parallel and then updates the coefficient matrix
S by a Galerkin step. This integrator shares the robustness properties of the matrix projector–splitting
integrator [9]. It takes the form

1. K-step: Update X0 to X1 via

K̇(t) = F(K(t)W0,T )W0 , K(t0) = X0S0 . (18)

Determine X1 with K(t1) = X1R and store M = X1,TX0.

2. L-step: Update W0 to W1 via

L̇(t) = X0,TF(X0L(t)) , L(t0) = S0W0,T . (19)

Determine W1 with L(t1) = W1R̃ and store N = W1,TW0.

3. S-step: Update S0 to S1 via

Ṡ(t) = X1,TF(X1S(t)W1,T )W1 , S(t0) = MS0NT (20)

and set S1 = S(t1).

3.3. Rank adaptive unconventional integrator

The unconventional integrator has recently been extended to allow for rank adaptivity [8]. That is, given a
tolerance parameter ϑ, the integrator adapts the rank in time.

Starting from time t0 where the solution has rank r0, the integrator gives the factored solution at time t1
with rank r1 ≤ 2r0. In the following, we use r = r0 and use hats to denote matrices of rank 2r. Then the
rank adaptive integrator reads

1. K-step: Update X0 ∈ Rnx×r to X̂1 ∈ Rnx×2r via

K̇(t) = F(K(t)W0,T )W0 , K(t0) = X0S0 . (21)

Determine X̂1 with [K(t1),X0] = X̂1R and store M̂ = X̂1,TX0 ∈ R2r×r.

7



2. L-step: Update W0 ∈ Rm×r to Ŵ1 ∈ Rm×2r via

L̇(t) = X0,TF(X0L(t)) , L(t0) = S0W0,T . (22)

Determine Ŵ1 with [L(t1),W0] = Ŵ1R̃ and store N̂ = Ŵ1,TW0.

3. S-step: Update S0 ∈ Rr×r to Ŝ1 ∈ R2r×2r via

˙̂
S(t) = X̂1,TF(X̂1Ŝ(t)Ŵ1,T )Ŵ1 , Ŝ(t0) = M̂S0N̂T (23)

and set Ŝ1 = Ŝ(t1).

4. Truncation: Determine the SVD Ŝ1 = P̂ Σ̂Q̂> where Σ̂ = diag(σj). For a given tolerance ϑ, choose
the new rank r1 ≤ 2r such that ( 2r∑

j=r1+1

σ2
j

)1/2

≤ ϑ .

Compute the new factors as follows: Let S1 be the r1×r1 diagonal matrix with the r1 largest singular
values and let P1 ∈ R2r×r1 and Q1 ∈ R2r×r1 contain the first r1 columns of P̂ and Q̂, respectively.

Finally, set X1 = X̂1P1 ∈ Rm×r1 and W 1 = Ŵ 1Q1 ∈ Rn×r1 .

4. A robust collision source method for dynamical low-rank approximation

In this section we present the main method, which aims at providing an efficient and robust alternative to
conventional strategies. Key ingredients for the construction are 1) a collision source method to define a
splitting of the original equation, 2) a further splitting of collision terms which are treated implicitly, 3)
computing individual DLRA updates by using the unconventional integrator for collided particles.

4.1. Collided-uncollided split

We start by deriving moment equations for the collided particles in the collision source method and use an
SN method for uncollided particles. Without going into detail, we denote the SN solution of the uncollided
particles as ψ and the right-hand side of a time continuous SN method for streaming (i.e., particles move
without interacting with tissue) as FS(ψ). Then the evolution equations for the semi-discrete solution
become

ψ̇(t) = FS(ψ(t))− Σt(t)ψ(t) , (24a)

u̇1(t) = F(u1(t))− Σt(t)u1(t) +ψ(t)TMΣ(t) , (24b)

u̇`(t) = F(u`(t))− Σt(t)u`(t) + u`−1(t)Σ(t) , for ` = 2, · · · , L, (24c)

u̇c(t) = F(uc(t))− Σt(t)uc + (uL(t) + uc(t)) Σ(t) , (24d)

where the matrix TM maps the nodal solution onto its moments. These L + 2 equations can be solved
consecutively. Since radiation therapy commonly investigates the effects of particle beams which enter the
computational domain from the boundary, the SN equations from the uncollided particles can be solved
efficiently by using a biased quadrature rule. I.e., the quadrature only encodes the small number of possible
flight directions. After the first collision, particles move into all directions. To account for the increased
complexity, we describe the collided solution through dynamical low-rank approximation. Following [30], we
split streaming and scattering parts and use the matrix projector–splitting integrator to update in-scattering
in equation (24d) as well as the unconventional integrator for the remainder.

To simplify our presentation, we start by discussing this strategy for (24b) and then extend it to the
remaining equations. Let us first split streaming and scattering in (24b). Omitting the subscript 1 gives

u̇I(t) = F(uI(t)) , uI(t0) = u1(t0) , (25a)

u̇II(t) = −Σt(t)uII(t) +ψ(t1)TMΣ(t) , uII(t0) = uI(t1) . (25b)
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The updated solution at time t1 = t0 + ∆t is then given as u1(t1) = uII(t1). Note that the splitting
method introduces an error of O(∆t), which can be reduced by high order splitting methods. We start
with the derivation of the basis update and Galerkin step equations of the unconventional integrator for
the streaming part (25a). That is, we derive evolution equations for XI(t),SI(t),WI(t) such that uI(t) ≈
XI(t)SI(t)WI(t)

T . To simplify notation let us omit Roman indices in the following. The K-step equations
(18) read

K̇(t) = F(K(t)W0,T )W0

= L(2)
x K(t)W0,TAT

xW0 + L(2)
y K(t)W0,TAT

y W0

+ L(1)
x K(t)W0,T |Ax|TW0 + L(1)

y K(t)W0,T |Ay|TW0

= L(2)
x K(t)Â0

x + L(2)
y K(t)Â0

y + L(1)
x K(t)|Âx|0 + L(1)

y K(t)|Ây|0 , (26)

where we use Â0
x,y := W0,TAT

x,yW
0 and |Âx,y|0 := W0,T |Ax,y|TW0. The numerical costs to compute these

matrices are of O(r2 ·m) and evaluating the right-hand side of the K-step equations has costs of O(r2 ·nx).
To point out that the spatial basis is not yet updated by the scattering step (25b), we define the superscript
1/2, i.e., the solution is given as X1/2 := XI(t1).

The L-step equations (19) read

L̇(t) = X0,TF(X0L(t))

= X0,TL(2)
x X0L(t)AT

x + X0,TL(2)
y X0L(t)AT

y

+ X0,TL(1)
x X0L(t)|Ax|T + X0,TL(1)

y X0L(t)|Ay|T

= L̂(2),0
x L(t)AT

x + L̂(2),0
y L(t)AT

y + L̂(1),0
x L(t)|Ax|T + L̂(1),0

y L(t)|Ay|T , (27)

where we use L̂
(2),0
x,y := X0,TL

(2)
x,yX0 and L̂

(1),0
x,y := X0,TL

(1)
x,yX0. The numerical costs to compute these

matrices are of O(r2 ·nx) and evaluating the right-hand side of the L-step equations has costs of O(r2 · m).
To point out that the directional basis is not yet updated by the scattering step (25b), we define W1/2 :=
WI(t1).

The S-step equations (20) read

Ṡ(t) = X
1/2,TF(X

1/2S(t)W
1/2,T )W

1/2

= X
1/2,TL(2)

x X
1/2S(t)W

1/2,TAT
xW

1/2 + X
1/2,TL(2)

y X
1/2S(t)W

1/2,TAT
y W

1/2

+ X
1/2,TL(1)

x X
1/2S(t)W

1/2,T |Ax|TW
1/2 + X

1/2,TL(1)
y X

1/2S(t)W
1/2,T |Ay|TW

1/2

= L̂(2),1/2
x S(t)Â

1/2
x + L̂(2),1/2

y S(t)Â
1/2
y + L̂(1),1/2

x S(t)|Âx|
1/2 + L̂(1),1/2

y S(t)|Ây|
1/2 . (28)

The numerical costs to compute update matrices and to evaluate the right-hand side of the S-step equations
are of O(r2 · (nx + m)). To point out that the coefficient matrix is not yet updated by the scattering step
(25b), we define S1/2 := SI(t1).

In a second step, we use the updated factors as initial condition, i.e., XII(t0) = X1/2, SII(t0) = S1/2 and
WII(t0) = W1/2. Again Roman numbers are omitted in the following. However, we do include a subscript
1 to denote that we are solving for the factors of u1. For the scattering step (25b), determining the K, L
and S-steps is straightforward and leads to

K̇1(t) = − Σt(t)K1(t) +ψ(t1)TMΣ(t)W
1/2
1 , (29a)

L̇1(t) = − Σt(t)L1(t) + X
1/2,T
1 ψ(t1)TMΣ(t) , (29b)

Ṡ1(t) = − Σt(t)S1(t) + X1,T
1 ψ(t1)TMΣ(t)W1

1 . (29c)

The time updated solution after streaming and scattering is given as u1(t1) = X1(t1)S1(t1)W1(t1)T . When
the directed SN quadrature set has nq nodes, computational costs are of O(r · nq · (nx + m)). Note that
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since radiation therapy uses highly peaked particle beams as boundary conditions or source terms, only a
limited number of directions needs to be resolved by the quadrature, i.e., nq is expected to be small.

In the same manner, evolution equations for the factors of the solutions to the remaining moment equations
(24c) and (24d) are derived. Here, the streaming update can be determined with (26), (27) and (28) (except
for (24a), since for ψ we use a directed SN method instead of a dynamical low-rank approximation). The
scattering update for a general ` = 2, · · · , L which we denote by a subscript reads

K̇`(t) = − Σt(t)K`(t) + X1
`−1S

1
`−1W

1,T
`−1Σ(t)W

1/2
` ,

L̇`(t) = − Σt(t)L`(t) + X
1/2,T
` X1

`−1S
1
`−1W

1,T
`−1Σ(t) ,

Ṡ`(t) = − Σt(t)S`(t) + X1,T
` X1

`−1S
1
`−1W

1,T
`−1Σ(t)W1

` .

Computational costs are of O(r2 · (nx +m)). Lastly, for the collided solution we perform a further splitting
step. Omitting the subscript c, we have

u̇I(t) = F(t,uI(t)) , uI(t0) = u1(t0) , (31a)

u̇II(t) = uL(t1)Σ(t) , uII(t0) = uI(t1) , (31b)

u̇III(t) = −Σt(t)uIII(t) + uIII(t)Σ(t) , uIII(t0) = uII(t1) . (31c)

In this case, the K, S, L-equations for inscattering from uL, i.e., equation (31b) read (omitting Roman
indices)

K̇c(t) = X1
LS1

LW1,T
L Σ(t)W

1/2
c , (32a)

L̇c(t) = X
1/2,T
c X1

LS1
LW1,T

L Σ(t) , (32b)

Ṡc(t) = X1,T
c X1

LS1
LW1,T

L Σ(t)W1
c . (32c)

For the in-scattering and out-scattering of the collided flux, i.e., equation (31c) we use the matrix projector–
splitting integrator. Following [30], only the L-step needs to be computed and we are left with

L̇c(t) = −Σt(t)Lc(t) + Lc(t)Σ(t). (33)

The costs for the collided particles are again O(r2 · (nx + m)). According to the derived steps, the scheme
then consecutively updates the uncollided particles ψ, the factors of u1, · · · ,uL and lastly the factors of uc.
In every step, the factors are first updated by a streaming step, followed by a scattering step. Lastly, when
updating the factors of the collided flux, the additional L-step is performed to account for self-scattering.
This procedure is repeated until a final time (or minimal energy) is reached. A flow chart to visualize the
presented method is given in Figure 1.

4.2. Time (or energy) discretization

The presented equations still continuously depend on the pseudo-time (or energy) t. To treat stiff scattering
terms, we use an implicit time update method for the scattering equations. The remainder uses explicit
time discretizations. More specifically, we use implicit and explicit Euler time-discretizations in this work.
Let us start with Xn

` = X0
` , Sn` = S0

` and Wn
` = W0

` , where ` denotes the individual collision steps, i.e.,
` ∈ {1, · · · , L − 1, L, c}. The streaming update is the same for all collision steps. Hence, when omitting a
specific collision index, we obtain

K
1/2 = K0 + ∆t

(
L(2)
x K0Â0

x + L(2)
y K0Â0

y + L(1)
x K0|Âx|0 + L(1)

y K0|Ây|0
)
, X

1/2R1 = K1 ,

(34a)

L
1/2 = L0 + ∆t

(
L̂(2),0
x L0AT

x + L̂(2),0
y L0AT

y + L̂(1),0
x L0|Ax|T + L̂(1),0

y L0|Ay|T
)
, W

1/2R2 = L1,T ,

(34b)

S
1/2 = S̃0 + ∆t

(
L̂(2),1/2
x S̃0Â

1/2
x + L̂(2),1/2

y S̃0Â
1/2
y + L̂(1),1/2

x S̃0|Âx|
1/2 + L̂(1),1/2

y S̃0|Ây|
1/2
)
, (34c)
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input
• SN solution ψ(t0)
• factored moments u`(t0) with ` ∈ {1, · · · , L, c} as X0

` ,S
0
` ,W

0
`

compute ψ(t1) from (24a)

compute factored u1,I(t1) with (26), (27) and (28)

compute factored u1(t1) with (29)

compute factored u`,I(t1) with (26), (27) and (28)

compute factored u`(t1) with (30)

` = L?

compute factored uc,I(t1) with (26), (27) and (28)

compute factored uc,II(t1) with (32)

compute factored uc(t1) with (33)

`← `+ 1

output
• SN solution ψ(t1)
• factored moments u`(t1) with ` ∈ {1, · · · , L, c} as X1

` ,S
1
` ,W

1
`

no

yes

Figure 1: Flowchart of the presented method.
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where S̃0 = X1/2,TX0S0W0,TW1/2 and flux matrices are computed before evaluating the right-hand side.
The collision equations differ for the ` = 1 and ` ∈ {2, · · · , L} collided fluxes as well as the collided flux.
For ` = 1, we have

K1
1 =

1

1 + ∆tΣ(t1)

(
K

1/2
1 + ∆tψ(t1)TMΣ(t1)W

1/2
1

)
, X1

1R1 = K1
1 , (35a)

L1
1 =

1

1 + ∆tΣ(t1)

(
L

1/2
1 + ∆tX

1/2,T
1 ψ(t1)TMΣ(t1)

)
, W1

1R2 = L1,T
1 , (35b)

S1
1 =

1

1 + ∆tΣ(t1)

(
S̃

1/2
1 + ∆tX1,T

1 ψ(t1)TMΣ(t1)W1
1

)
. (35c)

For ` ∈ {2, · · · , L} we have

K1
` =

1

1 + ∆tΣ(t1)

(
K

1/2
` + ∆tX1

`−1S
1
`−1W

1,T
`−1Σ(t1)W

1/2
`

)
, X1

`R1 = K1
` , (36a)

L1
` =

1

1 + ∆tΣ(t1)

(
L

1/2
` + ∆tX

1/2,T
` X1

`−1S
1
`−1W

1,T
`−1Σ(t1)

)
, W1

`R2 = L1,T
` , (36b)

S1
` =

1

1 + ∆tΣ(t1)

(
S̃

1/2
` + ∆tX1,T

` X1
`−1S

1
`−1W

1,T
`−1Σ(t1)W1

`

)
. (36c)

The collided flux is then updated through

K1
c = K

1/2
c + ∆tX1

LS1
LW1,T

L Σ(t1)W
1/2
c , X1

cR1 = K1
c , (37a)

L1
c = L

1/2
c + ∆tX

1/2,T
c X1

LS1
LW1,T

L Σ(t1) , W̃1
cR2 = L1,T

c , (37b)

S
1

c = S̃
1/2
c + ∆tX1,T

c X1
LS1

LW1,T
L Σ(t1)W̃1

c , (37c)

L̃1
c = S

1

cW̃
1,T
c (I + Σt(t1)∆tI−∆tΣ(t1))−1 , W1

cS
1,T
c = L̃1,T

c . (37d)

Note that since Σ is a diagonal matrix, the inversion in (37d) is given explicitly without having to solve
a linear system of equations. The time updated solution is then given by Xn+1

` = X1
` , Sn+1

` = S1
` and

Wn+1
` = W1

` , where ` ∈ {1, · · · , L− 1, L, c}.

Remark 1. The proposed idea of multilevel DLRA can be applied in various settings with various strategies.
The core ingredient is to write the solution as a sum of different contributions

u(t) = u1(t) + u2(t) + · · ·+ uL(t) .

Strategies to write the solution as a sum of different components can be the use of telescoping identities, a
split into symmetric and anti-symmetric solution contributions, a splitting of the original phase space, e.g.
particles that move forward and backward and many more. In a second step, evolution equations for every
component need to be derived. Third, every component ui is represented through a low-rank factorization
and evolution equations for every factor are derived with DLRA.

5. L2-stability of the proposed scheme

The derived method is robust in that its time step restriction (or CFL number) does not depend on small
singular values of the coefficient matrix or stiff terms arising in the scattering step. By the choice of the
splitting steps, we ensure that this stability is achieved without having to invert matrices or solve a nonlinear
problem, which is commonly the case for implicit time integration methods. To determine a suitable CFL
condition, let us investigate the L2-stability of the proposed scheme, which follows the approach taken in
[30]. In contrast to [30], the update equations include the inverse density, which will pose a challenge. We
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first note that the inverse density can be pulled out of the stencil matrices. For this, we define the sparse

diffusion stencil matrices without density dependence T
(1)
x,y ∈ Rnx×nx as

T
(1)
x,idx(i,j),idx(i,j) =

1

∆x
, T

(1)
x,idx(i,j),idx(i±1,j) = − 1

2∆x
,

T
(1)
y,idx(i,j),idx(i,j) =

1

∆y
, T

(1)
y,idx(i,j),idx(i,j±1) = − 1

2∆y
,

as well as the sparse advection stencil matrices without density dependence T
(2)
x,y ∈ Rnx×nx as

T
(2)
x,idx(i,j),idx(i±1,j) = ± 1

2∆x
, T

(2)
y,idx(i,j),idx(i,j±1) = ± 1

2∆y
.

With ρ−1 = diag
(

(ρ−1
idx(i,j))

Nx,Ny

i,j=1

)
, we have that L

(1,2)
x,y = T

(1,2)
x,y ρ−1. Following [30], we pursue a von

Neumann-like approach and investigate how the scheme amplifies and dampens certain Fourier modes. Let
us store these modes in a matrix E ∈ Cnx×nx with entries

Eidx(`,k),idx(α,β) =
√

∆x∆y exp(iαπx`) exp(iβπyk) ,

where i ∈ C denotes the imaginary unit. This matrix has several properties. First, it is orthonormal, i.e.,
EEH = EHE = I, where an uppercase H denotes the complex transpose. Second, the matrix E applied to
the spatial flux matrices diagonalizes the scheme:

T(1,2)
x,y E = ED(1,2)

x,y . (38)

The diagonal matrices D
(1,2)
x,y ∈ Rnx×nx have entries

D
(1)
x,idx(α,β),idx(α′,β′) =

1

2∆x

(
eiαπ∆x − 2 + e−iαπ∆x

)
δαα′δββ′ =

1

∆x
(cos(απ∆x)− 1) δαα′δββ′ ,

D
(1)
y,idx(α,β),idx(α′,β′) =

1

2∆y

(
eiαπ∆y − 2 + e−iαπ∆y

)
δαα′δββ′ =

1

∆y
(cos(απ∆y)− 1) δαα′δββ′ ,

D
(2)
x,idx(α,β),idx(α′,β′) =

1

2∆x
(eiαπ∆x − e−iαπ∆x)δαα′δββ′ = − i

∆x
sin(απ∆x)δαα′δββ′ ,

D
(2)
y,idx(α,β),idx(α′,β′) =

1

2∆y
(eiαπ∆y − e−iαπ∆y)δαα′δββ′ = − i

∆y
sin(απ∆y)δαα′δββ′ .

With these tools at hand, we can prove stability. Let us start with the streaming steps:

Lemma 1. Assume that the CFL condition

λmax(Ax,y)

ρmin

∆t

∆x
≤ 1

2
(39)

holds true. Then, the streaming scheme (34) is L2-stable, i.e.,

‖X1/2S
1/2W

1/2,T ‖F ≤ ‖X0S0W0,T ‖F .

Proof. First, we include the identity EEH inside the spatial flux matrices of the S-step (34c):

L̂(1),1/2
x,y = X

1/2,TT(1)
x,yEEHρ−1X

1/2 (38)
= X

1/2,TED(1)
x,yE

Hρ−1X
1/2 ,

L̂(2),1/2
x,y = X

1/2,TT(2)
x,yEEHρ−1X

1/2 (38)
= X

1/2,TED(2)
x,yE

Hρ−1X
1/2 .
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Then, with ρ̃−1 := EHρ−1E and u = X1/2S̃0W1/2,T , we have

S
1/2 = S̃0 + ∆t

(
L̂(2),1/2
x S̃0Â

1/2
x + L̂(2),1/2

y S̃0Â
1/2
y + L̂(1),1/2

x S̃0|Âx|
1/2 + L̂(1),1/2

y S̃0|Ây|
1/2
)

= X
1/2,TEEHuW

1/2 + ∆tX
1/2,TE

(
D(2)
x ρ̃

−1EHuAx + D(1)
x ρ̃

−1EHu|Ax|
)

W
1/2

+ ∆tX
1/2,TE

(
D(2)
y ρ̃

−1EHuAy + D(1)
y ρ̃

−1EHu|Ay|
)

W
1/2 .

Taking the norm and noting that for the spectral norm we have ‖X1/2,TE‖ = ‖W1/2‖ = 1 yields

‖S1/2‖F ≤
∥∥∥EHu+ ∆t

(
D(2)
x ρ̃

−1EHuAx + D(1)
x ρ̃

−1EHu|Ax|+ D(2)
y ρ̃

−1EHuAy + D(1)
y ρ̃

−1EHu|Ay|
)∥∥∥

F

≤
∥∥∥∥1

2
EHu+ ∆t

(
D(2)
x ρ̃

−1EHuAx + D(1)
x ρ̃

−1EHu|Ax|
)∥∥∥∥

F

(40a)

+

∥∥∥∥1

2
EHu+ ∆t

(
D(2)
y ρ̃

−1EHuAy + D(1)
y ρ̃

−1EHu|Ay|
)∥∥∥∥

F

. (40b)

Now we investigate the terms (40a) and (40b) individually. Recall that we have Ax,y = Vx,yΛx,yV
T
x,y. Then

for (40a), which we denote by ‖e‖F , we define w := EHuVx which gives

‖e‖F =

∥∥∥∥1

2
wVT

x + ∆t
(
D(2)
x ρ̃

−1wΛx + D(1)
x ρ̃

−1w|Λx|
)

VT
x

∥∥∥∥
F

≤
∥∥∥∥1

2
w + ∆t

(
D(2)
x ρ̃

−1wΛx + D(1)
x ρ̃

−1w|Λx|
)∥∥∥∥

F

.

Note that with ek := (ejk)nx
j=1 and wk := (wjk)nx

j=1, we have

‖e‖2F =

m∑
k=1

‖ek‖22 =

m∑
k=1

∥∥∥∥1

2
wk + ∆t

(
D(2)
x ρ̃

−1wkλ
x
k + D(1)

x ρ̃
−1wk|λxk|

)∥∥∥∥2

2

≤
m∑
k=1

∥∥∥∥1

2
I + ∆t

(
λxkD

(2)
x + |λxk| ·D(1)

x

)
ρ̃−1

∥∥∥∥2

· ‖wk‖22 ,

where ‖ · ‖2 denotes the Euclidean norm. Now, for the spectral norm in the above expression we have the
upper bound∥∥∥∥1

2
I + ∆t

(
λxkD

(2)
x + |λxk| ·D(1)

x

)
ρ̃−1

∥∥∥∥ ≤ ∣∣∣∣12 + ∆tλmax

(
λxkD

(2)
x + |λxk| ·D(1)

x

)
· λmax(ρ̃−1)

∣∣∣∣ .
We note that λmax(ρ̃−1) = minj ρ

−1
j =: ρ−1

min. With ν :=
maxk |λx

k|∆t
ρmin∆x we have

‖e‖F ≤max
α

∣∣∣∣12 + ν(cos(απ∆x)− 1)− iν sin(απ∆x)

∣∣∣∣ · ‖w‖
= max

α

√
1

4
+ ν(cos(απ∆x)− 1) + ν2(cos(απ∆x)− 1)2 + ν2 sin2(απ∆x) · ‖w‖

= max
α

√
1

4
+ ν(1− 2ν)(cos(απ∆x)− 1) · ‖w‖ .

To obtain stability, we need ‖e‖F ≤ ‖w‖ /2, i.e., ν ≤ 1
2 . In the same way, we can get an estimate for (40b),

which yields
maxk |λy

k|∆t
ρmin∆y ≤ 1

2 . With

‖w‖F = ‖EHuVx,y‖F ≤ ‖u‖F = ‖X1/2S̃0W
1/2,T ‖F ≤ ‖S0‖F ,

we know that ‖S1/2‖F ≤ ‖S0‖F , which with Parseval’s identity proves the theorem.
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Theorem 1. Assume that the CFL conditions (39) and

max
k

1

1 + ∆tΣt(t)−∆tΣkk(t)
≤ 1 (41)

hold true for all pseudo-times t ∈ [0, T ]. Then, the scheme is L2-stable, in the sense that with u1
c :=

X1
cS

1
cW

1,T
c and u1

` := X1
`S

1
`W

1,T
` we have

‖u1
c‖F +

L∑
`=1

‖u1
`‖F + ‖ψ(t1)‖F ≤ ‖u0

c‖F +

L∑
`=1

‖u0
`‖F + ‖ψ(t0)‖F .

Proof. We start with the collided equations. The last two steps of (37) read

S
1

c = S̃
1/2
c + ∆tX1,T

c X1
LS1

LW1,T
L Σ(t1)W̃1

c ,

L̃1
c = S

1

cW̃
1,T
c (I + Σt∆tI−∆tΣ)−1 .

Writing this as a single expression gives

L̃1
c =

(
S̃

1/2
c + ∆tX1,T

c X1
LS1

LW1,T
L Σ(t1)W̃1

c

)
W̃1,T

c (I + Σt∆tI−∆tΣ)−1 .

We take the norm of the above expression and note that since L̃1
c = S1

cW
1,T
c

‖S1
c‖F ≤ max

k

1

1 + ∆tΣt −∆tΣkk
‖S̃1/2

c ‖F + max
k

∆tΣkk
1 + ∆tΣt −∆tΣkk

‖S1
L‖F .

Note that we used

‖Σ‖ · ‖(I + Σt∆tI−∆tΣ)−1‖ = max
k

Σkk ·max
k

1

1 + ∆tΣt −∆tΣkk
= max

k

Σkk
1 + ∆tΣt −∆tΣkk

.

Adding ‖S1
L‖F to both sides and noting that by Lemma 1, we have ‖S̃1/2

c ‖F ≤ ‖S
1/2
c ‖F ≤ ‖S0

c‖F leads to

‖S1
c‖F + ‖S1

L‖F ≤ max
k

1

1 + ∆tΣt −∆tΣkk
‖S0

c‖F + max
k

1 + ∆tΣt
1 + ∆tΣt −∆tΣkk

‖S1
L‖F .

By (36c) we have

‖S1
L‖F ≤

1

1 + ∆tΣt

(
‖S̃1/2

L ‖F + ∆tmax
k

Σkk‖S1
L−1‖F

)
≤ 1

1 + ∆tΣt

(
‖S0

L‖F + ∆tmax
k

Σkk‖S1
L−1‖F

)
.

Using the chosen CFL condition gives

‖S1
c‖F + ‖S1

L‖F ≤ ‖S0
c‖F + ‖S0

L‖F + max
k

∆tΣkk
1 + ∆tΣt −∆tΣkk

‖S1
L−1‖F .

Recursively continuing this process until ` = 1 gives

‖S1
c‖F +

L∑
`=1

‖S1
`‖F ≤ ‖S0

c‖F +

L∑
`=1

‖S0
`‖F + max

k

∆tΣkk
1 + ∆tΣt −∆tΣkk

‖ψ(t1)‖F .

Adding ‖ψ(t1)‖F on both sides, noting that (when choosing an implicit time discretization for scattering of
uncollided particles)

‖ψ(t1)‖F =
1

1 + ∆tΣt
‖ψ(t0)‖F

and the use of Parseval’s identity proves the theorem.

Remark 2. Commonly, the CFL condition of the scattering step is fulfilled automatically, since Σkk ≤ Σt
for all k. Therefore, a time step restriction is only imposed by the streaming update through (39).
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6. Extension to rank adaptivity

In a last step, we discuss the extension of the proposed scheme to the rank adaptive integrator of [8]
and how it simplifies for a forward Euler time discretization. The core ingredient of this method is to
extend the time updated basis with the basis at time t0. Hence, for the streaming step, the updated basis

becomes X̂1/2 = [X0,X
1/2

], where X
1/2

is chosen such that the column range of X̂1/2 contains K(t1) from the

streaming K-step and the basis is orthonormal, i.e., X0,TX
1/2

= 0 and X
1/2,T

X
1/2

= I. Hence the matrix

to compute the initial condition of the S-step reads M̂ = X̂1/2,TX0 = [I,0]T ∈ R2r0×r0 , where r0 is the

rank at time t0. In the same manner, we have N̂ = [I,0]T ∈ R2r0×r0 . Hence, as pointed out in [8], we have

X̂1/2Ŝ(t0)Ŵ1/2,T = X0S(t0)W0,T ∈Mr0 . The fact that the initial condition of the S-step is of rank r0 can
be used to reduce computational costs when using an explicit Euler step. The S-step of the rank adaptive
integrator for the streaming step then reads

Ŝ
1/2 = [I,0]T S0 [I,0] + ∆t

(
L

(2),1/2

x S0A
1/2

x + L
(2),1/2

y S0A
1/2

y + L
(1),1/2

x S0|Ax|
1/2 + L

(1),1/2

y S0|Ay|
1/2
)
,

where the flux matrices are given by

A
1/2

x,y := W0,TAT
x,yŴ

1/2 ∈ Rr0×2r0 , |Ax,y|
1/2 := W0,T |Ax,y|TŴ

1/2 ∈ Rr0×2r0 ,

L
(2),1/2

x,y := X̂
1/2,TL(2)

x,yX
0 ∈ R2r0×r0 , L

(1),1/2

x,y := X̂
1/2,TL(1)

x,yX
0 ∈ R2r0×r0 .

Hence, the flux matrices that need to be computed have 2r2
0 entries. When using more general time inte-

gration schemes to solve the S-step for the rank adaptive integrator, the flux matrices have 4r2
0 entries. We

determine the solution factors after the streaming update X1/2,S1/2 and W1/2 as well as the rank r1/2 through
the truncation step of the rank adaptive integrator. For components ` ∈ {1, 2, · · · , L, c}, the scattering steps
have modified S-step equations

Ŝ1
1 =

1

1 + ∆tΣ(t1)

(
[I,0]T S

1/2
1 [I,0] + ∆tX̂1,T

1 ψ(t1)TMΣ(t1)Ŵ1
1

)
,

Ŝ1
` =

1

1 + ∆tΣ(t1)

(
[I,0]T S

1/2
` [I,0] + ∆tX̂1,T

` X1
`−1S

1
`−1W

1,T
`−1Σ(t1)Ŵ1

`

)
, for ` = 2, · · · , L ,

Ŝ1
c = [I,0]T S

1/2
c [I,0] + ∆tX̂1,T

c X1
LS1

LW1,T
L Σ(t1)Ŵ1

c .

For ` ∈ {1, · · · , L, c} we use X̂1
` = [X

1/2
` ,X

1

` ], where X
1

` is chosen such that the column range of X̂1
` contains

K`(t1) from the scattering K-step and the basis is orthonormal, i.e., X
1/2,T
` X

1

` = 0 and X
1,T

` X
1

` = I. The

directional basis Ŵ1
` is defined analogously. Note that for the scattered particles, we need to do a final L-step

(37d) after having updated the coefficient. In this case, the truncation step of the rank adaptive integrator

yields W̃1
c and S

1

c . Since (37d) is constructed through the fixed-rank projector–splitting integrator, it will
not modify the rank.

Besides allowing for a dynamic choice of the rank, the rank adaptive integrator remains L2 stable.

Lemma 2. Assume that the CFL condition (39) holds true. Then, the streaming scheme of the rank adaptive
integrator is L2-stable, i.e.,

‖X1/2S
1/2W

1/2,T ‖F ≤ ‖X0S0W0,T ‖F . (42)

Proof. The proof follows the steps taken in Lemmas 1 and Theorem 1. We begin with the streaming part.
Using the Fourier matrix E, the spatial flux matrices can be written as

L
(1),1/2

x,y = X̂
1/2,TT(1)

x,yEEHρ−1X0 = X̂
1/2,TED(1)

x,yE
Hρ−1X0 ,

L
(2),1/2

x,y = X̂
1/2,TT(2)

x,yEEHρ−1X0 = X̂
1/2,TED(2)

x,yE
Hρ−1X0 .
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With ρ̃−1 := EHρ−1E and ua = X̂1/2S̃0Ŵ1/2,T = X0S0W0,T , we have

Ŝ
1/2 = X̂

1/2,TuaŴ
1/2 + ∆tX̂

1/2,TE
(
D(2)
x ρ̃

−1EHuaAx + D(1)
x ρ̃

−1EHua|Ax|
)

Ŵ
1/2

+ ∆tX̂
1/2,TE

(
D(2)
y ρ̃

−1EHuaAy + D(1)
y ρ̃

−1EHua|Ay|
)

Ŵ
1/2 .

Since for the spectral norm we have ‖X̂1/2,TE‖ = ‖Ŵ1/2‖ = 1, taking norms yields the inequality (40) and

the remainder of the proof follows as in Theorem 1. Note that instead of u = X1/2S̃0W1/2,T we now use ua.

However, this does not impact the derivation, since ‖ua‖F = ‖X̂1/2S̃0Ŵ1/2,T ‖F = ‖S0‖F . Finally, we note
that the truncation step of the rank adaptive integrator does not increase the norm of the solution, in fact

‖S1/2‖ ≤ ‖Ŝ1/2‖ ≤ ‖S0‖ .

Lastly, we include scattering contributions.

Theorem 2. Assume that the CFL conditions (39) and (41) hold true for all pseudo-times t ∈ [0, T ]. Then,

the scheme is L2-stable, in the sense that with u1
c := X1

cS
1
cW

1,T
c and u1

` := X1
`S

1
`W

1,T
` we have

‖u1
c‖F +

L∑
`=1

‖u1
`‖F + ‖ψ(t1)‖F ≤ ‖u0

c‖F +

L∑
`=1

‖u0
`‖F + ‖ψ(t0)‖F .

Proof. The proof is essentially that of Theorem 1. The only difference is that we extend and truncate the
basis and coefficient matrices. However, since both of these operations do not increase the Frobenius norm
of the solution, the stability property is not violated by rank adaptivity. To make this observation more
rigorous, we start with the collided equations. The last two steps of (37) read

Ŝ1
c = [I,0]T S

1/2
c [I,0] + ∆tX̂1,T

c X1
LS1

LW1,T
L Σ(t1)Ŵ1

c ,

L̃1
c = S

1

cW̃
1,T
c (I + Σt∆tI−∆tΣ)−1 .

Note that ‖L̃1
c‖F = ‖S1

c‖F and ‖S1

c‖F ≤ ‖Ŝ1
c‖F . Hence, taking norms of the above equations yields

‖Ŝ1
c‖F ≤ ‖S

1/2
c ‖F + ∆tmax

k
Σkk‖S1

L‖F ,

‖S1
c‖F ≤max

k

1

1 + Σt∆t−∆tΣkk
‖Ŝ1

c‖F =
1

1 + Σt∆t−∆tmaxk Σkk
‖Ŝ1

c‖F ,

where we used that maxk |Σkk| = maxk Σkk. Written as a single expression, we have

‖S1
c‖F ≤max

k

1

1 + Σt∆t−∆tΣkk

(
‖S1/2

c ‖F + ∆tmax
k

Σkk‖S1
L‖F

)
(43)

≤‖S1/2
c ‖F + max

k

∆tΣkk
1 + Σt∆t−∆tΣkk

‖S1
L‖F . (44)

For the L-collided particles, the coefficient vector reads

‖S1
L‖F ≤ ‖Ŝ1

L‖F ≤
1

1 + ∆tΣt

(
‖S1/2

L ‖F + ∆tmax
k

Σkk‖S1
L−1‖F

)
.

Adding ‖S1
L‖F to both sides of (43) gives

‖S1
c‖F + ‖S1

L‖F ≤‖S
1/2
c ‖F + max

k

1 + Σt∆t

1 + Σt∆t−∆tΣkk
‖S1

L‖F

≤‖S1/2
c ‖F + ‖S1/2

L ‖F + max
k

∆tΣkk
1 + Σt∆t−∆tΣkk

‖S1
L−1‖F .
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By Theorem 2, we have that

‖S1
c‖F + ‖S1

L‖F ≤ ‖S0
c‖F + ‖S0

L‖F + max
k

∆tΣkk
1 + Σt∆t−∆tΣkk

‖S1
L−1‖F .

Continuing recursively and following the last steps of the proof for Theorem 1 proves the statement.

7. Numerical results

In the following, we demonstrate numerical experiments to compare conventional and the proposed methods.
All results can be reproduced with the openly available code framework [31].

7.1. Line source benchmark

To demonstrate the applicability of the proposed collision source method for dynamical low-rank approx-
imation in general radiation transport applications, we first take a look at the time dependent radiation
transport equation for the line source benchmark [20, 21]

∂tψ + Ω · ∇xψ + Σsψ =
Σs
4π

∫
S2
ψ dΩ , (x,Ω) ∈ [−1.5, 1.5]2 × S2 ,

ψ(t0) =
1

4πσ2
exp

(
−‖x‖

2

4σ2

)
,

(45)

where Σs = 1 and σ = 0.03. This equation can be recovered from the continuous slowing down approximation
when choosing ρ ≡ 1 and treating the energy variable as time. The line source benchmark is a common
test case for radiation transport problems, exposing deficiencies of different methods. A comparison of
conventional methods for this benchmark can for example be found in [22]. Common methods require high
computational costs or parameter tuning to yield a satisfactory approximation. Uses of dynamical low-rank
approximation for this benchmark are [38, 37, 8], where it is observed that high ranks are needed to achieve a
desired level of accuracy. Nevertheless, in comparison to classical methods, DLRA yields reduced run times
and memory requirements. We use the following computational parameters for our calculations:

nx = Nx ·Ny = 40000 number of spatial cells
m = (N + 1)2 = 484 number of spherical basis functions
nq = 968 number of quadrature points for uncollided flux
tend = 1 end time

We use a CFL number of 0.5 according to (39). The scalar flux Φ(t = 1,x) =
∫
S2 ψ(t = 1,x,Ω) dΩ computed

with different methods can be found in Figure 2. We observe a significant increase in the solution quality
when using L = 4 instead of L = 1 levels. The level 4 approximation with a tolerance parameter of ϑ = 0.3
agrees well with the PN solution. Here, we use the term PN to indicate the use of an SN solver for uncoolided
particles as well as a PN solver for the remainder. While PN takes 5408 seconds to compute the scalar flux at
time t = 1, the DLRA methods with L = 1 and L = 4 levels only require 1009 and 1278 seconds respectively.
Since particles move into all directions, a main factor in this run time is the SN solution. Taking a look at
the rank evolution in time, depicted in Figure 3, we see that most information is carried by the uncollided
flux as well as solution components with little collisions.

7.2. Treatment planning for lung patient

In the following we examine the application of the proposed method to a realistic 2D CT scan of a lung
patient. The patient is radiated with an electron beam of Emax = 21 MeV. We model this beam as

ψin(E,x,Ω) = 105 · exp(−(Ω1,∗ − Ω1)2/σΩ1
) · exp(−(Emax − E)2/σE)

· exp(−(x∗ − x)2/σx) · exp(−(y∗ − y)2/σy) ,
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Figure 2: Scalar flux Φ(t = 1,x) =
∫
S2 ψ(t = 1,x,Ω) dΩ with different methods and analytic reference solution.
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(a) ϑ = 0.3, L = 1 (b) ϑ = 0.3, L = 4

Figure 3: Rank evolution in energy for different tolerance parameters ϑ.

which is used as boundary condition for the uncollided particle flux. To determine a tissue density ρ for
given gray-scale values of the CT image, we assume a value of one, i.e., a white pixel to consist of bone
material with density ρbone = 1.85 g/cm3. The remaining tissue is scaled such that a pixel value of zero
corresponds to a minimal density of ρmin = 0.05 g/cm3. Air around the patient is filled with material, since
this region does not impact the dose distribution. The chosen settings are the same as in Section 7.1. Since
we are using a directed particle beam as boundary condition for the uncollided particles, the number of
quadrature points nq reduces by over 59 percent. The remaining parameters are:

nq = 396 number of quadrature points for uncollided flux
Emax = 21 energy of beam in MeV
x∗ = 7.25, y∗ = 14.5 spatial mean of particle beam in cm
Ω1,∗ = 1 directional mean of particle beam
σ−1

Ω1
= 75 inverse directional beam variance

σ−1
x = σ−1

y = 20 inverse spatial beam variance

σ−1
E = 100 inverse energy variance

We use a CFL number of 0.5 according to (39). For this setting we compute the full PN solution, the proposed
dynamical low-rank method with a fixed rank of 50 consisting only of collided and uncollided particles as
well as the rank adaptive version with L = 1 intermediate levels. Due to its reduced computational costs, the
DLRA methods show a significantly reduced run time. While the full PN method runs for 47329 seconds, the
DLRA methods have a run time of 4373, 3917 and 5392 seconds respectively. The resulting dose distribution
can be found in Figure 4. All considered variations of the proposed method are able to capture the effect of
heterogeneities in the patient density and agree very well with the PN solution in the relevant dose areas.
The efficiency of the method concerning both time and memory makes it feasible for practical applications.
This includes the generation of optimal treatment plans with gradient-based optimization methods. It is
observed that choosing a low refinement tolerance ϑ = ϑ̄ · ‖S‖F with ϑ̄ = 0.01 leads to a slight difference
to the full solution for the smallest isoline. Note that isolines appearing below and above the main beam
on the right are artifacts by dose values close to zero and are not of interest. The corresponding ranks at
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Figure 4: Dose distribution with different methods.
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(a) ϑ̄ = 0.01 (b) ϑ̄ = 0.001

Figure 5: Rank evolution in energy for different ϑ = ϑ̄ · ‖S‖F .

different energies for ϑ̄ ∈ {0.001, 0.01} are depicted in Figure 5. It is observed that the rank of collided
particles remains small at low and high energies. At intermediate energies, the rank reaches its maximum.
Particles that have collided once can be described with a small rank throughout the simulation. Note that
particles which have collided once are not present for energies below 15 MeV. The reason for this is that
particles directly enter the patient tissue and are therefore directly subject to scattering.

The first four dominant spatial modes at the lowest energy are depicted in Figure 6 and the first four
dominant directional modes are shown in Figure 7. These modes have been computed by an SVD of the
coefficient matrix S = UDVT . We then plot the first four columns of XU and WV. It is observed that
the directional basis carries the information that particles are predominantly travelling into the x-direction,
i.e. into the direction of the particle beam. The spatial basis encodes that particles with low energies are
situated at the left of the CT scan and can mostly be found in high-density tissue. Note that due to the low
energy of these particles, no significant contribution to the overall dose distribution is observed.

8. Summary and outlook

In this work, we proposed a dynamical low-rank approximation for the use in radiation therapy. Instead
of computing the full solution, dynamical low-rank approximation evolves a low-rank factorization of the
solution in time, thereby significantly reducing computational times and memory requirements. The method
can be understood as a Galerkin method, which automatically and dynamically picks basis functions to cap-
ture relevant information of the solution. Through rank adaptivity, the rank of the solution approximation
(that is, the number of basis functions) decreases or increases in time according to the solution complexity.
To use DLRA for treatment planning applications, we formulate the energy dependence of the governing
steady state equations as a pseudo-time according to the continuous slowing down approximation. A rank
adaptive unconventional integrator is then chosen to update the factorized solution in energy.

Furthermore, a collided-uncollided split is used to evolve only collided particles with a dynamical low-rank
approximation. Thereby, we potentially reduce the required rank while facilitating the implementation
of boundary conditions. This approach can be extended to L-collided splits, which can be interpreted as
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Figure 6: First four dominant spatial modes with fixed rank integrator.
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Figure 7: First four dominant directional modes with fixed rank integrator.
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writing the solution as a telescoping sum. By applying DLRA to each update in this sum, we can decrease the
solution complexity in a multilevel fashion. Additionally, we propose an efficient implicit time discretization
for scattering terms, which allows for increased time step sizes while not requiring the inversion of matrices.
The proposed method is shown to be L2-stable under a CFL restriction which only depends on the streaming
term. In our numerical experiments, we observe that the solution can be captured with a reduction in run
times by a factor of over 12.

In future work, we aim at using the proposed forward method to facilitate optimization and uncertainty
quantification in radiation therapy. To improve the understanding of dynamical low-rank approximation in
this new field of application, further validations, especially in 3D geometries and against the current standard
pencil beam or MC algorithms are necessary. A further advantage of DLRA that needs to be investigated
could be the use of GPU parallelizations which is limited for conventional particle based methods. Our
results promise an approach which is efficient enough for a use in dose optimization, while still taking into
account all relevant physical interactions.
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[2] A. Ahnesjö and M. M. Aspradakis. Dose calculations for external photon beams in radiotherapy. Physics in Medicine &
Biology, 44(11):R99, 1999.

[3] R. Alcouffe, R. O’Dell, and F. Brinkley Jr. A first-collision source method that satisfies discrete Sn transport balance.
Nuclear Science and Engineering, 105(2):198–203, 1990.

[4] P. Andreo. Monte Carlo techniques in medical radiation physics. 36(7):861–920, jul 1991.
[5] C. Berthon, M. Frank, C. Sarazin, and R. Turpault. Numerical methods for balance laws with space dependent flux:

application to radiotherapy dose calculation. Communications in Computational Physics, 10(5):1184–1210, 2011.
[6] C. Börgers. Complexity of Monte Carlo and deterministic dose-calculation methods. Physics in Medicine & Biology,

43(3):517, 1998.
[7] K. M. Case and P. F. Zweifel. Linear transport theory. 1967.
[8] G. Ceruti, J. Kusch, and C. Lubich. A rank-adaptive robust integrator for dynamical low-rank approximation. arXiv

preprint arXiv:2104.05247, 2021.
[9] G. Ceruti and C. Lubich. An unconventional robust integrator for dynamical low-rank approximation. BIT Numerical

Mathematics, pages 1–22, 2021.
[10] A. Dektor, A. Rodgers, and D. Venturi. Rank-adaptive tensor methods for high-dimensional nonlinear PDEs. arXiv

preprint arXiv:2012.05962, 2020.
[11] Z. Ding, L. Einkemmer, and Q. Li. Dynamical low-rank integrator for the linear Boltzmann equation: error analysis in

the diffusion limit. arXiv:1907.04247, 2019.
[12] L. Einkemmer, J. Hu, and L. Ying. An efficient dynamical low-rank algorithm for the Boltzmann-BGK equation close to

the compressible viscous flow regime. arXiv preprint arXiv:2101.07104, 2021.
[13] L. Einkemmer and I. Joseph. A mass, momentum, and energy conservative dynamical low-rank scheme for the Vlasov

equation. arXiv preprint arXiv:2101.12571, 2021.
[14] L. Einkemmer and C. Lubich. A low-rank projector-splitting integrator for the Vlasov–Poisson equation. SIAM J. Sci.

Comput., 40(5):B1330–B1360, 2018.
[15] L. Einkemmer and C. Lubich. A quasi-conservative dynamical low-rank algorithm for the Vlasov equation. SIAM Journal

on Scientific Computing, 41(5):B1061–B1081, 2019.
[16] L. Einkemmer, A. Ostermann, and C. Piazzola. A low-rank projector-splitting integrator for the Vlasov–Maxwell equations

with divergence correction. Journal of Computational Physics, 403:109063, 2020.
[17] L. Eyges. Multiple scattering with energy loss. Physical Review, 74(10):1534, 1948.
[18] M. Fippel and M. Soukup. A Monte Carlo dose calculation algorithm for proton therapy. Medical physics, 31(8):2263–2273,

2004.
[19] M. Frank, H. Hensel, and A. Klar. A fast and accurate moment method for the Fokker–Planck equation and applications

to electron radiotherapy. SIAM Journal on Applied Mathematics, 67(2):582–603, 2007.
[20] B. Ganapol. Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development.

Los Alamos National Laboratory, 1999.

25



[21] B. D. Ganapol. Analytical benchmarks for nuclear engineering applications. Case Studies in Neutron Transport Theory,
2008.

[22] C. K. Garrett and C. D. Hauck. A comparison of moment closures for linear kinetic transport equations: The line source
benchmark. Transport Theory and Statistical Physics, 42(6-7):203–235, 2013.
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