KIT | KIT-Bibliothek | Impressum | Datenschutz

Time-Harmonic Solutions for Maxwell’s Equations in Anisotropic Media and Bochner–Riesz Estimates with Negative Index for Non-elliptic Surfaces

Mandel, Rainer; Schippa, Robert

Abstract:

We solve time-harmonic Maxwell’s equations in anisotropic, spatially homogeneous media in intersections of $L^p$-spaces. The material laws are time-independent. The analysis requires Fourier restriction–extension estimates for perturbations of Fresnel’s wave surface. This surface can be decomposed into finitely many components of the following three types: smooth surfaces with non-vanishing Gaussian curvature, smooth surfaces with Gaussian curvature vanishing along one-dimensional submanifolds but without flat points, and surfaces with conical singularities. Our estimates are based on new Bochner–Riesz estimates with negative index for non-elliptic surfaces.


Verlagsausgabe §
DOI: 10.5445/IR/1000141756
Veröffentlicht am 10.01.2022
Originalveröffentlichung
DOI: 10.1007/s00023-021-01144-y
Scopus
Zitationen: 7
Web of Science
Zitationen: 5
Dimensions
Zitationen: 9
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1424-0637, 1424-0661
KITopen-ID: 1000141756
Erschienen in Annales Henri Poincaré
Verlag Springer
Band 23
Seiten 1831–1882
Vorab online veröffentlicht am 24.12.2021
Nachgewiesen in Dimensions
Scopus
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page