
ConTra Corona :
Contact Tracing against the Coronavirus

by Bridging the Centralized–Decentralized
Divide for Stronger Privacy?

Wasilij Beskorovajnov1, Felix Dörre2, Gunnar Hartung2, Alexander Koch2 ,
Jörn Müller-Quade2, and Thorsten Strufe2

1 FZI Research Center for Information Technology, Karlsruhe, Germany
lastname@fzi.de

2 Competence Center for Applied Security Technology (KASTEL),
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

firstname.lastname@kit.edu

Abstract. Contact tracing is among the most important interventions
to mitigate the spread of any pandemic, usually in the form of manual
contact tracing. Smartphone-facilitated digital contact tracing may help to
increase tracing capabilities and extend the coverage to those contacts one
does not know in person. Most implemented protocols use local Bluetooth
Low Energy (BLE) communication to detect contagion-relevant proximity,
together with cryptographic protections, as necessary to improve the
privacy of the users of such a system. However, current decentralized
protocols, including DP3T [T+20], do not sufficiently protect infected
users from having their status revealed to their contacts, which raises
fear of stigmatization.
We alleviate this by proposing a new and practical solution with stronger
privacy guarantees against active adversaries. It is based on the upload-
what-you-observed paradigm, includes a separation of duties on the
server side, and a mechanism to ensure that users cannot deduce which
encounter caused a warning with high time resolution. Finally, we present
a simulation-based security notion of digital contact tracing in the real–
ideal setting, and prove the security of our protocol in this framework.

Keywords: Digital Contact Tracing · Privacy · Transmissible Diseases ·
Active Security · Anonymity · Security Modeling · Ideal Functionality

1 Introduction

During the early stages of a pandemic, when a vaccine is not yet available, one of
the most important interventions to contain its spread, is – besides the reduction
of face-to-face encounters in general – the consequent isolation of infected persons,

? This article is based on an earlier article: [BDH+21a], c© IACR 2021 〈DOI〉. An
extended abstract of this work appeared in [BDH+21b].

https://orcid.org/0000-0002-3510-9669

as well as those who have been in close contact with them (“contacts”) to break
the chain of infections. In phases with low case numbers of the SARS-CoV-2
pandemic, contact tracing has been the used to keep case numbers in check (for
a longer time). However, tracing contacts manually (by interviews with infected
persons) is not feasible when the number of infections is too high. Hence, more
scalable and automated solutions are needed to safely relax restrictions of personal
freedom imposed by a strict lockdown, without the risk of returning to a phase
of exponential spread of infections. Digital contact tracing using off-the-shelf
smartphones is used as an additional measure that is more scalable, does not
depend on infected persons’ ability to recall their location history during the
days before the interview, and can even track contacts between strangers.

In many digital contact tracing protocols, e.g. [AHL18; C+20; R+20; CTV20;
R+; T+20; P20a; BRS20; CIY20; BBH+20; AG20], users’ devices perform automatic
proximity detection via short-distance wireless communication mechanisms, such
as Bluetooth Low Energy (BLE), and jointly perform an ongoing cryptographic
protocol which enables users to check whether they have been colocated with
contagious users. However, näıve designs for digital contact tracing pose a signifi-
cant risk to users’ privacy, as they process confidential information about users’
location history, meeting history, and health condition [KBS21].

This has sparked a considerable research effort to design protocols for privacy-
preserving contact tracing, most of which revolve around the following idea:
Participating devices continuously broadcast ephemeral, short-lived pseudonyms
and record pseudonyms broadcast by close-by devices. When a user is diagnosed,
she submits either all the pseudonyms her device used while she was contagious or
all the pseudonyms her device has recorded (during the same period) to a server.
The first approach is the upload-what-you-sent paradigm, while the second is
called upload-what-you-observed paradigm. Users’ devices are then either actively
notified by the server, or they regularly query the server for pseudonyms uploaded
by infected users.

Some of the designs that received the most attention are the centralized
PEPP-PT proposals [P20c; P20b], as well as the more decentralized approach
of [CTV20] and DP3T [T+20], which served as sketches for the subsequently
proposed Apple/Google-API (GAEN) [AG20]. While the “centralized” approaches
of PEPP-PT do not provide any privacy guarantees towards the users against
the central server infrastructure [D20b; D20c] (unless they are augmented by,
e.g. mix-nets), the DP3T approach [T+20], as well as the similar protocol by
Canetti, Trachtenberg, and Varia [CTV20], expose the ephemeral pseudonyms of
every infected user, which enables her contacts to learn whether she is infected.
A detailed comparison is given in [F20].

We argue that both, protection against a centralized actor, as well as protection
of infected users from being stigmatized for their status3, is important for any
real-world solution. By specifying a protocol that achieves both of these goals and

3 See https://coronadetective.eu for a service that detects the contacts that caused a
warning for DP3T-based approaches.

2

https://coronadetective.eu

detailing the corresponding design choices, we aim to contribute to the ongoing
discussion on privacy-preserving digital contact tracing.

1.1 Contribution

We propose a strong and encompassing simulation-based security notion via an
ideal contact tracing functionality (in Section 5) that allows us to capture the
following privacy and security guarantees.

– It makes the exact leakage an attacker would gather explicit. This leakage
can be described by a partially anonymized, partially pseudonymized contact
graph (described and motivated in detail in Section 5 and Figure 3), a list of
positively tested and corrupted participants, and their warning status. This
(minimal) leakage is inherent to BLE-based contact tracing schemes.

– It captures that the locally exchanged identifiers do change quickly (each
“short-term epoch”) in an unlinkable fashion, but the time of an encounter
causing a warning can only be narrowed down on a more coarse-grained
timescale. In other words, while observed identifiers change, e.g. every 15
minutes, a warning does only give away the day (or another globally-fixed
“long-term epoch”) of the encounter.

– It captures the worst-case guarantees in the sense that our guarantees hold,
no matter how history unfolds, people meet, move and get infected, i.e., the
environment can fully control the (directed) contact graph and infection
status per short-term epoch.

– It provides guarantees against not being warned despite a (BLE-detectable)
risk contact with an honest user (false negatives). For this, we assume that
an attacker does not jam any local communication.

– It provides guarantees against being warned without a corresponding risk
contact (false positives), unless the user was in proximity to a corrupted user
and a corrupted user is infected or in proximity to an infected user. (This
restriction is necessary, as in any protocol not protecting against malicious
replays of proximity beacons, any attacker can cause a false positive under
these conditions. However, protecting against replays would require processing
time and location information, which is deemed undesirable.)

As a second part, we specify a privacy-preserving contact tracing protocol that
achieves this security notion. It follows the upload-what-you-observed paradigm
and achieves its goals by the following mechanisms:

– We split up the identifiers into short-lived public identifiers (pids) used for
broadcasting, and longer-lived secret identifiers used for querying for warnings
(cf. Sections 3.1 and 3.2).

– We employ a strict server separation concept, where the servers (for up-
loading the lookup table for this split-up identifiers, for matching, and for
warning queries) carry out different functions (cf. Section 3.3). For reasons
of complexity reduction, the ideal functionality in the main body does not
include server corruptions. However, the case of passive server corruptions is
given informally in Section 6.2 and formally in Appendix D.

3

– We employ strong, but anonymous anti-Sybil protections coupled to, e.g.,
an SMS challenge, to ensure that the guarantees cannot be circumvented by
registering multiple Sybil identities (cf. Section 3.4).

Additionally, we argue that our protocol is similar in efficiency to DP3T, on
the side of the smartphone used, see our efficiency analysis on p. 17. While our
protocol was designed with the current COVID-19 pandemic in mind, note that
it can easily be generalized to perform contact tracing for other transmissible
diseases and enable an effective containment in case a new virus is about to hit a
population without any immunity from prior exposition.

Finally, Appendix C includes extensions, such as identifying the timing of
Bluetooth beacons as a side-channel that can be exploited to link distinct public
identifiers, and using secret sharing to ensure a lower bound on necessary contact
time for a warning.

1.2 Outline

We define our informal security model for BLE-based contact tracing in Section 2,
the formal version is given in Section 5. For this protocol, Section 3 proposes
a number of core security mechanisms in a modular way, which are applied to
obtain our overall protocol presented in Section 4. An informal security and
privacy analysis of the protocol follows in Section 6.

2 Security Model

Our main goals are privacy, i.e. limiting disclosure of information about partici-
pating individuals, and security, i.e. limiting malicious users’ abilities to produce
“wrong protocol outcomes”, such as being warned without a (BLE-detectable)
risk contact (false negatives), or not being warned despite a risk contact (false
positives). For privacy, we consider the following types of private information:
(i) where users have been at which point in time, (ii) whom they have met (and
when and where), (iii) whether a user has been infected, (iv) whether a user has
received a warning because she was colocated with an infected user. We have a
precise analysis of which of these goals are achieved under which conditions, and
refer to Sections 5 and 6 for details. We refer the interested reader to [KBS21] for
a systematization of different privacy desiderata.

Ideal–Real Paradigm. Formally, we cast our security guarantees in the ideal–
real paradigm [MR91; B92], to obtain strong, simulation-based security definitions,
as is also common in proofs in the Universal Composability framework [C01].
In contrast to a fixed list of security properties, which might leave doubt about
whether everything the system should guarantee is captured, this has the advan-
tage that the correctness guarantees and exact privacy leakage (dependent on
the behavior of the adversary) are made explicit. We refer the interested reader
to [L17]. Slightly more specific, we consider a scenario in which an interactive

4

distinguisher Z (also called environment) that can choose the parties’ inputs,
observe their outputs and can communicate with the adversary arbitrarily during
the execution, has to find out if it is running within a “real” experiment (“real
world”) or an “ideal” experiment (“ideal world”).

In the “real” experiment, the protocol is executed and an attacker interferes
with it. In the “ideal” experiment, the attacker is replaced by a Simulator S
(which simulates protocol messages so that they look like in the real experiment)
and all honest parties calculate their result via an ideal (contact tracing) func-
tionality FCT (later given in Section 5). The real-world protocol is considered
secure if no PPT distinguisher Z has a non-negligible advantage in distinguishing
an execution of the real protocol (in the “real” setting) from an execution in the
ideal setting. In this sense, the real world only permits attacks that would also
be possible in the ideal world, which behaves perfectly as prescribed/is secure
by definition. Hence, FCT formalizes the security guarantees we require for a
contact tracing protocol.

Modeling Time. We assume time is divided into disjoint, consecutive intervals
called epochs (or short-term epochs). A long-term epoch is the union of a fixed
number of consecutive short-term epochs. Again, all long-term epochs are disjoint
and consecutive. In the following, we assume each short-term epoch corresponds to
a 15 minute interval, and each long-term epoch corresponds to a day. Hence, there
are 96 short-term epochs in a long-term epoch, and a tuple from N×Z96 specifies
a short-term epoch. (These durations are parameters, but for concreteness we
describe our protocol with these parameters fixed.)

Allowing the Distinguisher to Define Reality. We let the distinguisher Z
define the physical reality for each epoch t ∈ N × Z96, i.e. who meets whom
(defined by a contact graph Gt) and who is infected (a set of parties Pinfected,t).
Nodes in Gt correspond to participating parties, and Gt contains an edge (P1, P2)
if P2 registered a contact with P1. Since who registered a contact with whom
might not be a symmetric relation (e.g. due to noise in the wireless signal), each
Gt is a directed graph.4 (We do not impose any restrictions on Gt or Pinfected,t,
the environment may set these arbitrarily, even in ways that would be impossible
in the physical world.) The distinguisher Z defines these values by sending them
to a party Pmat (named after the ideal functionality Fmat as explained below).
Each such input marks the beginning of a new short-term epoch. In the ideal
experiment, this is a dummy party which forwards these inputs to FCT. In the real
experiment, Pmat sends Pinfected to Fmed and G to Fmat. This hybrid (i.e. ideal,
but used in the real world to abstract from a realization of it) functionality Fmat

represents the “world state” or “material world”5, including a representation of
who met whom (controlable by the environment), and a synchronized “epoch-
wise” clock. This functionality is used for local broadcast and to decide which

4 This captures a relaxed notion of “proximity”, as high-gain antennas could be used
to register a contact, although not physically being in proximity.

5 Internally, the author(s) humorously prefer to read the name of Fmat as “the matrix”.

5

participant receives a particular public identifier pid. Here, Servers constitutes a
set of centralized servers, see Section 3.3.

Fmat(P, Pmat,Servers)

State:
– Current contact graph G = (P, E)
– Current time e = (elt, est) ∈ N× Z96.

Set Neighborhood:
1. Receive and store directed contact graph G = (P, E) from party Pmat.
2. Increment est (in Z96). If est = 0, increment elt and send

(newLongTermEpoch) to all servers, and then to all parties except Pmat.

Receiving Broadcasts:
1. Receive (pid) from a participant P , where pid is a public identifier.
2. Send (pid) to all P ′ with (P, P ′) ∈ E.

As mentioned above, the incorruptible party Pmat just forwards the contact graph
G and the set of infected parties Pinfected to the relevant functionalities Fmat

and Fmed (which represents the medical professional that is informed about who
is infected, and will be given in Section 4 on p. 13), respectively.

Protocol of Pmat in the Real Setting

Update Neighborhood and Infections:
1. Receive a contact graph G and a set of infected parties Pinfected from

the environment as input.
2. Send G to Fmat.
3. Send Pinfected to Fmed.

Communication Channels. Channels between the parties, functionalities and
the servers are assumed to be confidential and authentic (in the fitting direction).
We assume the attacker does not jam any wireless communication between honest
parties. (The distinguisher Z can emulate a suppression of broadcasts by leaving
out edges in the contact graph.)

When a user, e.g. uploads data used in the protocol that should not be linked
to the person (e.g. public or secret identifiers), the server can easily link these
pairs with communication metadata (such as the user’s IP address), which might
be used to ultimately link this data to a specific individual. We therefore use an
anonymous communication channel for all communication with the servers. In
practice, one can communicate via publicly available proxies that are managed
by operators separate from the protocol servers. Alternatively, one might also

6

employ the TOR onion routing network [TOR]. (We analyze the load that would
be placed on TOR on p. 17.)

Corruption Model. In the formal modeling and our security proofs – to keep
the complexity of the description and proofs manageable – centralized servers
are perfectly trusted. However, the protocol was designed in a way that the
information leakage to the servers is still acceptable in the case of a passive
(honest-but-curious) server corruption, as will be explained in Section 6.2. (A
formal security notion with passive server corruptions is given in Appendix D.

Regarding the users, we do only consider static corruptions, i.e. corruptions
that happen at the beginning the the protocol execution. We do not distinguish
between “the attacker” and corrupted, malicious, or compromised parties.

Modeling Medical Professionals. Furthermore, we trust medical profession-
als to not disclose data regarding the users who are under their care, as is their
duty under standard medical confidentiality. This is abstracted by introducing a
hybrid functionality Fmed, which represents medical professionals who are aware
about the infection status of all users. Fmed is defined in Section 4 on p. 13.

3 Core Security Mechanisms

We start by giving a relatively generic, abstract template of contact tracing
protocols, which are characterized by send-what-you-observed upon infection.
This allows us to put our core security mechanisms in context and serve as a
starting point for describing them.

Generation of “Random” Identifiers. For every time period t, the user’s
device generates an identifier pidt. (These identifiers can look uniformly
random and be computationally unlinkable, unless they incorporate additional
time/location information for replay/relay protections.)

Broadcasting and Recording. During the time period t the identifier pidt is
repeatedly broadcast so nearby participants can record it, together with the
date/time (maybe involving additional postcomputation before storing).

Warning Co-located Users. When a user is tested positive, one extracts a
list of all recorded pid′ from the infected user’s device (assuming that old
ones are periodically deleted). The user is then given a TAN code that she
can use to send this list to a central server. The server marks the respective
pids as potentially infected, and then allows users to query for a given pid,
answering whether it is marked as potentially infected.

We now describe the security mechanisms our protocol is built upon:

3.1 Splitting of Identifiers

We propose to use, instead of just one public identifier pid that is used for both,
broadcasts and warning queries, two versions of identifiers: public identifiers pid

7

that are used for broadcasting, and a secret identifiers sid which are used to
query the server for warnings. The server internally keeps a table linking sids to
pids, where users can submit new entries to. This split-up of identifiers achieves
better privacy, because malicious users cannot just use public identifiers they
have observed to query the server for the warning status of the pids’ owners. Note
that later mechanisms from Sections 3.2 and 3.3 will further modify this.

Generation of “Random” Identifiers. For every time period t, the device
generates pidt, sidt in a such way that one cannot efficiently derive sidt from
pidt. Moreover, given a set of pids which are either all from the same user,
or all from different users, it should not be possible to distinguish which is
the case. Finally, we require that only the user to whom these ids belong can
submit them, e.g. by her knowing a preimage that is used to generate both
in tandem and also submitting the preimage.6

Broadcasting and Recording. Proceeds as above.
Warning Co-Located Users. When an infected user sends a list of all recorded

pid′ as above, the server looks up the respective sids in his database of (sid, pid)
tuples and marks them as potentially infected. The server then allows users
to query for sids, answering whether they are marked as potentially infected.

3.2 Lower-Resolution Secret Identifiers for Improved
Infection-Status Privacy

In the protocol sketch described in Section 3.1, users receiving a warning can
immediately observe which of their secret identifiers sid was published. By cor-
relating this information with the knowledge on when they used which public
identifier pid, they can learn at which time they have met an infected person,
which poses a threat to the infected person’s privacy. Note that the DP3T protocol
[T+20] and [CTV20] succumb to analogous problems, see [V20a].

To mitigate this risk, we propose to associate a secret identifier sid with many
public identifiers pid, i.e. we use the same sid during a long-term epoch, but
change pids per short-term epoch. As the example of deriving (sidt, pidt) pairs for
time epoch t from Footnote 6 does not allow such longer-term secret identifiers,
we modify this procedure as follows:

Generation of “Random” Identifiers. The user generates a single random
key, now called warning identifier, once per long-term epoch. More concretely,
a user generates a random warning identifier widelt ←$ {0, 1}n per long-term
epoch elt (e.g. a day), and encrypts it with the server’s public key pkW to

6 We give a simple example of how this might be done. Note however, our protocol
uses a different method, see Section 3.2. For this example, let H be a hash function,
such that H(k‖x) is a pseudorandom function (PRF) with key k ∈ {0, 1}n evaluated
on input x. For every time period t, the device generates a random key kt ←$ {0, 1}n,
and computes sidt := H(kt‖0) and pidt := H(kt‖1), stores them, and anonymously
uploads kt to the central server, who recomputes sidt, pidt in the same way. Both
parties store (sidt, pidt).

8

Bob

Alice

Home Work

Alice

Carlos

Carol

Bob

Alice

Home

Query for
Warning

Query for
Warning

Submission Server Matching Server Warning Server

Upload
Public/Secret

Identities

TOR/Proxy

Fig. 1. Overview of the application’s infrastructure. The figure depicts different possible
scenarios: In the morning, Alice uploads her daily public/secret identifiers to the
submission server, and periodically queries the warning server for warnings. Throughout
the day, while she is in proximity to Bob, Carlos and Carol, the application exchanges
public identifiers with their phones.

obtain sid := Enc(pkW ,widelt), using a rerandomizable public-key encryption
scheme. For each shorter time period t (e.g., 15 minutes), the user generates
a rerandomization sid′t of sid, where the randomness is derived from a PRG,
and computes pidt := H(sid′t). Once per long-term epoch, the user uploads
sid and the PRG seed to the server, who performs the same rerandomization,
obtaining the same pidt values, and the corresponding widelt by decryption.

The user then broadcasts the pidt in random order during the current long-term
epoch. The warning of co-located users proceeds as before, with the only change
that the server maintains a database of (wid, pid) tuples, and allows users to
query for wids (instead of sids).

There is a trade-off regarding the length of the long-term epochs: While
warnings are more precise for shorter long-term epochs, they also give more
information about when the encounter of the warning happened. In practice,
choosing a long-term epoch of a day is reasonable.

3.3 Splitting-Up the Server into a Pipeline

The change introduced in Section 3.2 allows to split the process of warning
co-located users into three tasks for three non-colluding7 servers, the submission
server, the matching server, and the warning server:

7 To make sure servers do not collude, they should be run by different organizations
whose independence is guaranteed by law, e.g. supervisory agencies on privacy (ideally

9

– The submission server collects the uploaded secret and public identifiers
from different users (more precisely, it receives sid and the seed for the PRG)
and then computes the (sid′i, pidi) pairs using the PRG with the given seed.
It rerandomizes the sid′i values another time with fresh, non-reproducible
randomness (obtaining sid′′i), and stores (sid′′i , pidi) for a short period of time.
When the submission server has a sufficient number of submissions, it shuffles
them and sends them to the matching server. For ease of notation, we assume
that this transaction happens at the beginning of the next long-term epoch.
(We assume that enough users participate, for the batching to make sense.)

– The matching server collects the (sid′′i , pidi) pairs and stores them. Upon
receiving the pids recorded by the devices of infected users, which we call
a match request, the matching server looks up the respective sid′′i s of all
potentially infected users and sends them to the warning server.

– The warning server decrypts sid′′i to recover wid := DecskW (sid′′i) for all
potentially infected users. It then allows to query for warning ids by the users,
which we call warning query in the following.

For illustration, see Figure 1. We assume all communication between the servers
uses confidential and authenticated channels. Section 6.2 contains a privacy
analysis in case of compromised, honest-but-curious and partly colluding servers.

3.4 Protecting from Encounter-wise Warning Identifiers and Sybil
Attacks

Our measures from Section 3.2, namely having a lower resolution for the se-
cret/warning identifiers are not yet sufficient to hide the infection against the
following, more motivated attack: An attacker that is able to upload an unlimited
number of sid and PRG seed values to the submission server, can change to a set
of pids that belong to a different warning identifier, after each short-term epoch.
Upon warning, the attacker can then deduce which of the warning identifiers have
been warned, and from that deduce the exact short-term epoch the encounter
happened. A simple rate-limiting on the side of the app is ineffective against
malicious attackers, and a simple traffic-based rate-limiting on the side of the
servers per app instance is not possible due to the anonymized communication.
Moreover, the above attacker can run a so-called Sybil attack, i.e. creating multiple
(seemingly) independent app instances. Hence, we aim to prevent this type of
attack and ideally to ensure a limitation of uploads to the submission server to
one per user (identifier) per day. For this, it is helpful to use a users identifier
that is difficult to obtain in larger numbers, to force the adversary to invest
additional resources for spawning Sybil instances. While there are a number of
solutions, for concreteness, we propose to bind each app instance to a phone
number (as the aforementioned user identifier) and require a registration process
using an SMS challenge. (Note that this approach does not prevent an attacker

multiple different ones per nation-state) and non-governmental organisations that
are widely trusted by the general public.

10

from performing a Sybil attack on lower scale, as the attacker might own multiple
phone numbers.8)

Binding an app to an identifiable resource (such as a valid phone number)
while ensuring the user’s anonymity, requires a bit of care. For this, we use the
periodic n-times anonymous authentication scheme from [CHK+06]. In such a
scheme, token dispensers are issued to parties using an Obtain protocol. These
dispensers can be used n times in a Show protocol in a given epoch. The server
participating in the Obtain protocol can not link these requests to the executions
of the Show protocol.

In our setting, we choose n = 1 and choose as time period the long-term epoch
period, i.e. the user can obtain one “e-token” per long-term epoch to upload a
new sid and PRG seed to the submission server. The submission server validates
the “e-tokens” and only accepts submissions with valid tokens while checking
for double-spending. The token dispenser is then issued to the user during a
registration process, which uses the aforementioned SMS challenges. Formally, we
define the hybrid functionality Freg, which represents the party towards which
parties run the registration protocol, and which keeps a list of registered parties,
and is given below. This is e.g. for obtaining a token dispenser to perform the
regular uploads. To keep the model simple, we do not incorporate SMS challenges
into Freg. (An SMS challenge, as well as the upload TAN, might be modeled
via an authenticated channel from the party, for which an adversary can break
authentication by guessing. See [AGH+19] for a formalization).

Freg(P)

State:
– Set of registered parties and their public keys as pairs RP.
– Issuer secret and public key for e-token dispensers (skI , pkI)

Registering a Party:
1. Upon (register , pkU) from party P : if P is not already in a pair in RP,

store (P, pkU) in RP, else abort.
2. Issue a new e-token dispenser for P acting as U by participating as I in

the protocol Obtain(U(pkI , skU , 1), I(pkU , skI , 1)).

4 Our Contact-Tracing Protocol

We can now describe the full protocol. For this, let n denote the security pa-
rameter, G be a group of prime order such that the decisional Diffie-Hellman
problem in G is intractable. We assume a IND-CPA secure, rerandomizable
public key encryption scheme (Gen,Enc,Dec,ReRand) having message space
M = G. (We propose standard ElGamal for instantiation.) Let PRG be a
secure pseudorandom generator, and H be a one-way function. Finally, let

8 One might use remotely verifiable electronic ID cards instead.

11

Σtok = (GenI ,GenU ,Obtain,Show, Identify) be an anonymous e-token dispenser
scheme as in [CHK+06]. The exact definitions can be found in Appendix B.

App Setup. When the proximity tracing software is first installed on a user’s
device, for anti-Sybil measures as described in Section 3.4, the application
proves possession of a phone number (e.g. via an SMS challenge) and obtains
an e-token dispenser.

Creating Secret Warning Identifiers. For each long-term epoch, the appli-
cation generates a random warning identifier wid←$G.

Deriving Public Identifiers. For each warning identifier wid, the app com-
putes sid := Enc(pkW ,wid), where Enc is the encryption algorithm of a
rerandomizable, IND-CPA-secure public-key encryption scheme, and pkW
is the warning server’s public key. Additionally, the app chooses a random
seed←$ {0, 1}n (rerandomization seed) per warning identifier.
The app (interactively) presents an e-token τ to the submission server via
an anonymous channel, and uploads (sid, seed) to the submission server via
the same channel. If the e-token is invalid (or the server detects double-
spending of this e-token), the server refuses to accept (sid, seed). Both
the submission server and the app compute 96 rerandomization values
r1, . . . , r96 = PRG(seed), and rerandomize sid using these values, obtaining
sid′i := ReRand(sid; ri) for i ∈ {1, . . . , 96}. The ephemeral public identifiers
of the user are defined as pidi := H(sid′i) for all i. The app saves the public
identifiers for broadcasting during the day of validity of wid. The submission
server rerandomizes each sid′i again (using non-reproducible randomness) to
obtain sid′′i and stores the (sid′′i , pid) pairs.

Broadcasting and Recording. During each time period i, the device repeat-
edly broadcasts pidi. When it receives a broadcast value pid′ from someone
else, it stores (elt, pid′), where elt is the current long-term epoch. Every
long-term epoch, the device deletes all pid′s that are old enough to no longer
be epidemiologically relevant.

Sending a Warning. When a user is tested positive, the medical personnel
generates a TAN and registers it at the matching server. The user collects a
list of public identifiers pid′ that have been received by his device while the
user was likely infectious, and sends this list together with the TAN to the
matching server, see p. 16.
The medical professional is modeled by the hybrid functionality Fmed, which
gives out a TAN to parties which are deemed infected, as given below. In a
bit more detail, Fmed stores a set Pinfected of infected/positively tested partic-
ipants as provided by the environment Z. If such a participant P ∈ Pinfected

requests a TAN (using warningRequest), Fmed chooses a TAN, registers its
hash value with the matching server and sends it to P . For an illustration,
see Figure 2.

12

Work

Carlos

Charlie

Carol

Bob

Alice

Home

Doctor

Healthcare

Upload the public
identities at risk

and TAN

TOR/Proxy

Send hash value of TAN
and its expiration date

Send TAN and
its expiration date

Query for
Warning

Submission Server Matching Server Warning Server

Fig. 2. Information flow upon issuing a warning. When the doctor is informed about a
positive test, she generates a new TAN and sends it to the matching server and then
communicates it to positively tested Alice. Then, using this TAN, Alice uploads all
public identifiers she observed during her infectious period. The application regularly
queries for its warnings to its the warning server. In the case of Carlos and Carol, who
have been in contact with Alice in Figure 1, this check will turn out to be positive.

Fmed(Pmat,Matching Server)

State:
– Set of infected parties Pinfected .

Set Infected:
1. Receive and store the set of infected parties Pinfected from a party Pmat.

Handling Warning Request:
1. Upon (warningRequest) from P ∈ Pinfected .
2. Generate tan ←$ {0, 1}2n.
3. Send (H(tan)) to the Matching Server.
4. Send (tan) to P .

Retrieving Warnings. The application regularly queries the warning server
for the warning identifiers it has used during the last 28 days itself. This is
done via an anonymous channel with proper authentication of the warning
server. If the query returns that the warning identifier has been marked as
at-risk, it informs the user she has been in contact with an infected person
during the long-term epoch when the warning identifier was used.

13

Protocol of the App/Users

State:
– Current epoch e = (elt, est) ∈ N× Z96

– Current token dispenser D.
– Set of recorded broadcasts of pids.
– Let pkW and pkI be the hardwired public key of the warning server, and

e-token dispenser issuer, respectively.
– Let (skU , pkU) be the generated user secret/public key pair during the

registration.
– Current Warning identifier wid
– Set of earlier warning identifiers (wid, k), where k is the according long-

term epoch.
– The public identifiers of the current long-term epoch (pidj)j∈[1,...,96]

Register:
1. When a new party is created by the environment, it first generates a token-

dispenser secret/public key pair (skU , pkU) and then sends (register , pkU)
to Freg.

2. Obtain a token dispenser D by participating as U in
Obtain(U(pkI , skU , 1), I(pkU , skI , 1)) with Freg acting as I.

3. Initialize the state and run “Upload Submission”.

Upload Submission:
1. Generate fresh (wid, seed, sid) and the according list of
{(sid′j , pidj)}j∈[1,··· ,96].

2. Enqueue the current (wid, elt).
3. Submit a token by participating as U in

Show(U(D, pkI , elt, 1),V(pkI , elt, 1)) to the Submission Server, which
acts as V.

4. Send (seed, sid) over the same channel to the Submission Server.

Scheduled Upload:
1. Upon (newLongTermEpoch) from Fmat.
2. Increment elt.
3. Dequeue outdated wids and recorded pids.
4. Continue as in “Upload Submission”.

Sending Broadcasts:
1. Upon (sendBroadcast) from the environment.
2. Send (pidest) to Fmat and increment est.

Recording Broadcasts:
1. Upon (pid) from Fmat.
2. Enqueue (pid, elt).

14

Match Request:
1. Upon (positive) from the environment.
2. Send (warningRequest) to Fmed.
3. Receive (tan) from Fmed.
4. Extract the list L of all recorded/received public identifiers from the

queue.
5. Send (L, tan) to the Matching Server.

Querying a Warning:
1. Upon (query , t) from the environment.
2. Find the corresponding wid for long-term epoch t and send (wid) to the

Warning Server.
3. Receive bit b from the warning server.
4. Output b to the environment.

Collecting Daily Submissions. The submission server rerandomizes all the
sid′i values using fresh randomness, obtaining sid′′i := ReRand(sid′i), and saves
a list of the (sid′′i , pidi) tuples. When the submission server has accumulated
a sufficiently large list, originating from sufficiently many submissions, it
shuffles the list, forwards all tuples to the matching server and clears the list.

Protocol of the Submission Server

State:
– Current epoch elt.
– The current batch of {(sid′′kj , pidk

j)}j∈[1,··· ,96].

Handling Submissions:
1. Verify the token by participating as V in

Show(U(D, pkI , elt, 1),V(pkI , elt, 1)).
2. Detect possible double spending.
3. Receive (seed, sid) from U .
4. Generate {(sid′j , pidj)}j∈[1,··· ,96] with the help of seed.

5. Rerandomize the sid′j using fresh randomness, i.e. sid′′j = ReRand(sid′j)

6. Add the generated tuples (with rerandomization) {(sid′′j , pidj)}j∈[1,··· ,96]
to the batch of elt.

Forwarding Submissions:
1. Upon (newLongTermEpoch) from Fmat.
2. Shuffle the last batch and send the complete batch to the Matching

Server together with elt.
3. Increment elt.
4. Create a new empty batch for the new epoch.

15

Performing Contact Matching. The matching server maintains a list of hash
values of all TANs issued by medical professionals and all tuples it has received
from the submission server, deleting each tuple after three weeks.9When a user
submits a list of public identifiers together with a valid TAN, the matching
server marks the TAN’s hash value as invalid by deleting it from its list. The
server looks up the corresponding secret identifiers sid and sends them to the
warning server.

Protocol of the Matching Server

State:
– The current epoch elt.
– Per long-term epoch t a set Bt of (sid′, pid) pairs.
– Set of TANs of pending matching requests Tcorrupted .

Removing Outdated Information:
1. Upon (newLongTermEpoch) from Fmat.
2. Increment elt and delete all sets Bt where 0 ≤ t ≤ elt − 14.

Handling Submissions:
1. Receive a set of (sid′, pid) tuples and an epoch t from the Submission

Server and store it as Bt.

Preparing Match Request:
1. Receive (htan) from Fmed and insert (htan, elt) into Tcorrupted .

Handling Match Request:
1. Receive (S, tan) from party P , where S is a set of pids.
2. If there is an index t ∈ N such that there is an entry (H(tan), t) ∈
Tcorrupted , remove this entry from Tcorrupted , otherwise abort.

3. Let M :={(sid′l, tl) : ∃pidl ∈ S, tl ∈ N such that (sid′l, pidl) ∈ Btl ∧ tl ≤ t}.
4. Rerandomize all the sid′l ∈M from the previous step and send {(sid′′l :=

ReRand(sid′l), tl) : (sid′l, tl) ∈M} to the warning server.

Processing of Warnings. The warning server decrypts the secret identifiers
received from the matching server to recover the warning identifier wid
contained in them. Users may query the warning server for specific wids. On
such queries, the warning server returns either 1 (if this wid was recovered
by decryption during the last two weeks) or 0 (otherwise).

9 If a user A has been in contact with an infected user B, and if B takes up to three
weeks to show symptoms and have a positive test result, the data retention on the
matching server is sufficient to deliver a warning to A.

16

Protocol of the Warning Server

State:
– The current epoch elt.
– PKE key pair (skW , pkW).
– Set WL of released wids and their validity epoch t.

Removing Outdated Information:
1. Upon (newLongTermEpoch) from Fmat.
2. Increment elt and delete all (wid, t) ∈ WL, with 0 ≤ t ≤ elt − 14.

Issuing Warnings:
1. Receive a list {(sid′′l , tl)} from the Matching Server.
2. Decrypt, deduplicate and add the received warning identifiers {(widl =

DecskW (sid′′), tl)} to WL.

Warning Query:
1. Receive warning identifier (wid).
2. Search all finished epoch for wid and return 1 if a match is found, 0

otherwise.

This concludes the description of our protocol, cf. Figures 1 and 2 for illustration.

4.1 Efficiency

Our protocol incurs computation, communication and storage cost on the smart-
phone, submission server, matching server and the warning server.

First of all we argue that the application on the smartphone does not incur
significantly larger costs than currently deployed solutions. Computation-wise, the
most expensive operations, i.e. operations needed for using the token-dispenser
scheme and 96 reencryptions, have to be performed only once a day (long-term
epoch). These are 12 multi-base exponentiations in the domain group of a pairing
and 23 multi-base exponentiations in the target group as was shown in [CHK+06].
The remaining computations, i.e. 96 hashes for the pids and the generation of
seed,wid, sid, are cost-wise similar to currently deployed solutions for contact
tracing and thus the overall battery consumption and CPU load are comparable.
The application has to store a constant amount of information of several kilobytes,
i.e. 28× wid, 96× pid. The only growing variable is the set of recorded/observed
pids. We argue that the number of received pids will be rather small as current
studies suggest, i.e. [FM21]. The communication comprises several small requests
a day to different servers and the broadcast/reception of a pid, which we deem
overall negligible.

Next, we analyze the computational cost on the submission server. Consid-
ering that the population of the EU is approximately 448 Mio. and current
experience with the German contact-tracing application CWA shows that 30%

17

of the German population have adopted the application, we may assume for
further considerations 134 Mio. users in our protocol. The submission server
must perform 2 · 96 reencryptions of the sids per day and user, which means that
2 · 96 · 134 · 106 ≈ 2.6 · 1010 reencryptions a day or ≈ 300000 a second. Using the
ElGamal scheme, the dominant part of the reencryption are two modular expo-
nentiations or scalar multiplications if we use the ECC variant of ElGamal. For
an upper bound we may use current benchmarks for the verification algorithm of
ECDSA, which has two dominant scalar multiplications on elliptic curves as well.
According to [BL21] the verification of ecdonaldp256 on an (2018) AMD EPYC
7371 with 16× 3100MHz requires 425723 cycles, which means that we are able to

verify 16·3100·106
425723 ≈ 116507 signatures a second. We argue therefore that ≈ 300000

reencryptions per second is a realistic requirement and the computational load on
the submission server—while undeniably high—can be handled with a realistic
amount of equipment.

Next, we analyze the amount of data uploaded from the users’ devices to the
submission server. Our estimation shows that a daily upload by our protocol is at
most 240 kbit. With 138 Mio. users the submission server has to handle 33Tbit a
day. By scattering uploads across the span of the day we achieve a lower bound of
0.3Gbit/s, which we deem realistic. While the server may be able to handle this
amount of requests, our protocol requires that the uploads are performed through
an anonymous channel. To this end one may use TOR and we argue that the
EU-wide deployment of our protocol relying on TOR is within TOR’s capacities.
As of 2020 the advertised bandwidth of the TOR network is approx. 500 Gbit/s
and the consumed bandwidth is approx. 250Gbit/s (cf. https://metrics.torproject.
org/bandwidth.html), which is sufficient for our 0.3Gbit/s. Another important
restriction of TOR is the number of active users, which currently is around 2Mio
users (cf. https://metrics.torproject.org/userstats-relay-country.html). If our server
is able to handle 0.3Gbit/s then the amount of users served per second will be
1550, which is a rather small delta to the overall number of TOR users. The
latency added by using TOR is in the magnitude of seconds and has no impact
on the protocol, as a warning delivered a few seconds later is acceptable. Similar
considerations can be made for the matching and the warning server. However,
the costs of computation and communication are overall smaller than on the
submission server and are hence tamable in the same fashion.

5 Formal Security Notion

Before we are ready to state our ideal contact-tracing functionality, let us begin
with several assumptions that allow us to simplify our proof and reduce complexity:
(i) In this section, we assume that the servers are uncorruptible. However, we
provide a discussion on security against server corruptions in Section 6.2 and
give a strengthened ideal functionality in Appendix D. (ii) The per-day uploads
are synchronous. We assume that before any pid is broadcast, all parties have

18

https://metrics.torproject.org/bandwidth.html
https://metrics.torproject.org/bandwidth.html
https://metrics.torproject.org/userstats-relay-country.html

made their per-day upload.10 (iii) All parties, even corrupted ones, send exactly
one broadcast per epoch. (The distinguisher can emulate a single corrupted
party making multiple broadcasts by using additional corrupted parties with
similar/equal sets of recipients.) (iv) For formal reasons, parties can only perform
computations and broadcasts when they receive an input. Hence, we assume
the distinguisher Z inputs a dummy message (sendBroadcast) to all honest
participants at the beginning of a new epoch. (v) Contacts happening on the
day an infected person is uploading their list do not incur immediate warnings.
These are delayed until the next long-term epoch. This is also a privacy feature,
ensuring that no one can learn the time of an encounter with an infected person
with precision higher than a long-term epoch.

We are now ready to describe important aspects and notions used in our
ideal functionality FCT, which formalizes our security and privacy guarantees:
Whenever the environment Z starts a new short-term epoch by sending Gi =
(P, Ei) and Pinfected to FCT (via Pmat), FCT creates two derived graphs G′i and

(P, Êi). G
′
i is a partially anonymized, partially pseudonymized version of Gi. We

let FCT output G′i and Pinfected ∩ Pcorrupted to the simulator, hence this is the

information leakage of our protocol. The edge set Êi represents who will receive
warnings from whom, hence the simulator’s abilities to modify Êi represent the
attacker’s abilities to induce and suppress warnings.

A B

C D

A (B,A)

(D,A)

(B,C)

B

C D

A B

C D

Fig. 3. Left: An example of a contact graph Gt = (P, Et) with two honest parties A
and C and two corrupted parties B and D. The edges indicate where a broadcast is de-
livered. Middle: The pseudonymized graph G′

t = (Qt, E
′
t) of Gt as leaked by FCT to the

simulator. Dashed node borders indicate that the node name is replaced with an opaque
pseudonym. Right: An example for (P, Êt). This graph is initialized with all edges from
Gt between honest parties (shown in solid black). The adversary has already inserted
edges using the commands (relay , t, pseudonymize(C), D,B,pseudonymize((B,A))) as
in “Replay/Relay” (shown in dotted purple) and (sendBroadcast , t, t, B,D) as in “Broad-
casts From Corrupted User” (shown in dashed green). Note that warnings from honest
parties are delivered against the direction of all the edges. So an infected A would warn
C and D, an infected C would warn A and D.

10 In practice, parties can make their uploads a few days ahead of time without incurring
additional risk.

19

Information Leakage on the Contact Graph. We now describe the ano-
nymization and pseudonymization process for G′i in detail, cf. steps 3 to 5 in “Set
Neighborhood/Infected” below. The process is exemplified by the graphs Gt and
G′t shown in Figure 3 (left and middle, respectively). Nodes corresponding to
uncorrupted parties are renamed to a pseudonym chosen independently for each
epoch (in the example, the nodes of A and C are shown as dashed). This means
that an attacker cannot re-identify participants encountered earlier and hence
cannot track them over time. Edges between uncorrupted parties are removed
entirely (in the example the edge (A,C) is removed), hence the attacker is
completely oblivious of contacts between honest parties. Edges between corrupted
parties (in the example (B,D)) are preserved without modifications, since we
assume they are fully controlled by the attacker and hence the attacker is
completely aware of any contacts between them. Before the pseudonymization
takes place, nodes corresponding to honest receivers are duplicated for each
incoming edge, leaving only the outgoing edges on the original node, since
corrupted senders cannot detect if they are broadcasting to the same participant.
This step anonymizes edges to honest nodes. In the example the newly introduced
nodes by this step are: (D,A), (B,A) and (B,C). The outgoing edges are left
at their original node (for example from A), since corrupted receivers (in the
example B and D) can easily detect they were in contact with the same person
at approximately the same time by comparing the broadcast values. Note that
this disadvantage is shared by many contact tracing protocols.

Additionally, all users of the protocol can query FCT to check if they have
received a warning, which might enable them to infer additional information
about the infection status of other participants. (However, this information is
inherent to all contact tracing protocols.)

Manipulation of Warnings. We now discuss the attacker’s ability to manipu-
late warnings, i.e. the attacker’s options to influence Êi. Note that Êi is initialized
to contain all edges between honest parties (step 7 in “Set Neighborhood/Infected”
below). The simulator does not have the ability to remove edges from Êi, but it
can introduce new edges (under certain conditions) by causing FCT to execute
“Replay/Relay” and “Broadcasts From Corrupted User”.

“Replay/Relay” models a situation where a corrupted user re-broadcasts a
value previously broadcast by an honest party: In this scenario – see the dotted
purple edges of Figure 3 (right) – an honest party C broadcasted certain value
during an epoch t, received by the corrupted party D. D cooperates with B and
B re-broadcasts the same value in the presence of A. Hence, in our protocol, if A
was infected, it would cause a warning to be delivered to C (regarding a contact
during epoch t), even if those parties did not meet.

“Broadcasts From Corrupted User” models a situation, see the dashed green
edges of Figure 3 (right), where a corrupted user B broadcasts a pid potentially
uploaded by another corrupted user D, or potentially not even uploaded, yet.
Broadcasting another user’s pid causes warnings to be delivered to that user
(D), as if D had been performing the broadcast instead of B, hence we add

20

corresponding edges to Êi. Note that the time of broadcast can be different from
the long-term epoch for which the pid was (or will be) uploaded.

In addition to the ability to manipulate Êi discussed above, the attacker is
able to directly send warnings in case a corrupted party is infected. FCT enforces
that the attacker can only send warnings to honest parties who have been in
contact with any corrupted party during the last 14 long-term epochs and a
corrupted party is infected after this encounter took place (see step 6 of “Handling
Match Requests” on p. 22). The simulator is allowed to specify honest parties
fulfilling these conditions (via their pseudonyms). FCT will add these parties to
the set WP of parties who have received a warning. When these parties next
send (query , t) for the corresponding long-term epoch t to FCT, FCT will find
the warning in WP and return 1, indicating a warning has been issued.

FCT(P, Pmat)
State:
– Current epoch (elt, est) ∈ N× Z96 =: I.
– Set of corrupted parties Pcorrupted .
– Set of honest parties Phonest = P \ Pcorrupted .
– A sequence (Pinfected,i)i∈I of sets of infected parties, i.e. the history of

infected parties.
– Set of currently infected parties Pinfected

– A sequence of all contact graphs so-far (Gi = (Pi, Ei))i∈I , i.e. the global
meeting history.

– Current contact graph G = (P, E) = G(elt,est) and its pseudonymized
version G′ = (Q, E′)

– Parties at risk WP ⊆ P × N, which signifies which parties have encoun-
tered a positive participant (that generated a warning) in the last 14
long-term epochs and during which long-term epochs the encounters
took place.

– A sequence of edge sets (Êi)i∈I on Pi which does some bookkeeping
necessary to know who is to be warned. Let Ê be the edge set of the
current epoch.

Set Neighborhood/Infected:
1. Receive a contact graph G = (P, E) and a set of infected parties Pinfected

from party Pmat.
2. Add G to the global meeting history, and Pinfected to the history of

infected parties.
3. Set E′ = {(P0, P1) ∈ E | P0 ∈ Pcorrupted ∨ P1 ∈ Pcorrupted}.
4. For all α = (P0, P1) ∈ E′ with P0 ∈ Pcorrupted , P1 ∈ Phonest , replace α

with α′ = (P0, α).
5. Select a random, injective mapping pseudonymizei : Phonest ∪

(P × P) → {0, 1}2n where i = (elt, est). Extend it by
pseudonymizei(P) = P for all P ∈ Pcorrupted . Set E′ :=
{(pseudonymizei(x),pseudonymizei(y)) : (x, y) ∈ E′}, i.e. rename all
nodes in E′. Let Q be the set of nodes used in the set of edges E′.

21

6. Leak (Q, E′),Pinfected ∩ Pcorrupted to the adversary.

7. Let Ê := (Phonest × Phonest) ∩ E.
8. Increment est (in Z96).
9. If est = 0 then increment elt and delete all (P, t) pairs from WP where

0 ≤ t ≤ elt − 14.

Send Broadcast:
1. Receive and ignore (sendBroadcast) from a participant P .

Broadcasts From Corrupted User:
1. Receive (sendBroadcast , t1, t2, P1, P2) from the adversary, with t1, t2 ∈

[elt− 14, elt]×Z96, P1, P2 ∈ Pcorrupted (with the meaning that P1 broad-
casts in the name of (i.e. the pids registered by) P2).

2. For each (P1, x) ∈ Et1 , add edge (P2, x) to Êt2 .

Replay/Relay:
1. Receive (relay , t, P ′1, P

′
2, P

′
3, P

′
4) from the adversary, where P ′1 ∈

pseudonymize(P), P ′2, P
′
3 ∈ Pcorrupted , P ′4 ∈ pseudonymize(Pcorrupted ×

Phonest).
2. Let Pj := pseudonymize−1i (P ′j) for j = 1, 2, 3, 4. (Note that P2 = P ′2,
P3 = P ′3.)

3. If (P1, P2) ∈ Et, (P ′3, P
′
4) ∈ E′, let P̂4 ∈ P be the node such that

P4 = (P3, P̂4), and add the new edge (P1, P̂4) to Êt.

Handling Match Requests:
1. Receive (positive) from party P .
2. If P ∈ Pcorrupted , skip to step 6.
3. If P /∈ Pinfected , return. Otherwise, continue:
4. Let R := N∩ [elt− 14, elt). For each epoch i ∈ R×Z96 (the relevant time

period), determine the set ∆WPi (new parties at risk) of nodes P ′ such
that (P ′, P) ∈ Êi.

5. Skip to step 7.
6. Let lastInfected lt := max{i ∈ N : ∃j ∈ Z96, such that P ∈ Pinfected,(i,j)}.

(Let lastInfected lt := −∞ if this set is empty.) Let R := N ∩
[elt − 14, elt) ∩ [0, lastInfected lt]. Send (forceWarning) to the adver-
sary, asking for subsets Si of (the pseudonyms of) uncorrupted
parties which have been in proximity to a corrupted party dur-
ing epochs in R, i.e. Si ⊆ {q ∈ pseudonymizei(Phonest) | ∃q′ ∈
Pcorrupted where (pseudonymize−1i (q), q′) ∈ Ei}. After the response, set
∆WPi = pseudonymize−1i (Si) as the set of parties that will be warned
for the current epoch.

7. For each i = (ilt , ist) ∈ R× Z96, add {(P ′, ilt) | P ′ ∈ ∆WPi} to the list
of active warnings WP.

Handling Warning Query:
1. Receive (query , t) from party P
2. Return 1 if (P, t) ∈ WP, otherwise return 0.

22

6 Security and Privacy Analysis

Our protocol’s security is summarized as follows.

Theorem 1. Under the following list of assumptions, the real protocol (as
specified in Section 4) realizes the ideal protocol FCT (cf. Section 5) in the
Fmed,Fmat,Freg-hybrid model and with static corruptions, assuming that Pmat

as well as the submission, matching and warning server are honest. Assumptions:

– Let ΣR = (GenR,EncR,DecR,ReRand) be an IND-CPA-secure, rerandomiz-
able encryption scheme with message space M = G, ciphertext space C.

– Let PRG be a secure pseudorandom generator.
– Let H : C → {0, 1}2n be a one-way function.
– Let Σtok = (GenI ,GenU ,Obtain,Show, Identify) be a sound, anonymous e-

token dispenser scheme with identification of double-spending.

Having stated the formal security guarantee that we capture with this theorem,
we proceed to discuss the interpretation and limitations on what we achieve exactly.
For exact definitions of the required primitives and the proof see Appendix B
and Appendix A. For example, the extensive powers of the environment, also in
determining the number and place of corrupted users, make it less clear what,
e.g. our anti-Sybil protections actually achieve w.r.t. the privacy of the users.
While in our argumentation in Section 3.4 we state that the e-token dispenser is
meant to guarantee that not too many malicious users/Sybils exists because they
are hard to create, in our formal terms this only corresponds to the guarantee
that the number of daily uploads is bounded by the number of users(cf. Game 9).
Hence, for real-word security we believe that we can exclude excessive Sybil
attacks.

Note that this points at a larger aspect that is typical for security modeling in
general, but also relevant to fully understand the scope of our modeling: Giving
the environment a lot of power to shape the scenarios in which the protocols
are used, is an instance of a strong worst-case modelling. By quantifying over
all environments (and implicitly over all computable “real world” scenarios of
contact graphs and infection statuses), without a proper analysis of the costs and
impracticalities of achieving this in the real, physical world11, we simplify the
analysis and abstract from the many scenarios that may arise in its actual use.
In the light of this, we give, in the following, an interpretation of our security
guarantees and a discussion of guarantees and limitations not captured by our
model, in the following:

6.1 Privacy

For our privacy analysis, we assume corrupted users can link some public identifiers
they directly observe to the real identities of the corresponding user, e.g. by

11 While it would be perfectly possible for an environment to use as a contact graph
a fresh, and independently sampled random graph on P for each short-term epoch,
the costs of implementing this in real time for 15 minute epochs would be quite
challenging.

23

accidentally meeting someone they know. This pessimistic approach yields a
worst-case analysis regarding the information available to corrupted users.

Privacy of Positively Tested Participants. In the ideal functionality (FCT

in Section 5), the attacker is provided with Pinfected ∩ Pcorrupted , so the infection
status of honest parties is protected here. The pseudonymized contact graph
is independent of the infection status. Apart from the inherent leakage about
the infection status from warning queries, this models that the protocol does
not introduce any additional information leaks on the infection status of honest
participants. (For example, a motivated “paparazzi” attacker might take a “group
testing” approach in that he tries to get near several subgroups of a larger group
to later single out positively tested participants upon warning.) Note that is in
contrast to DP3T, where short-term identifiers of a whole day can be linked
together, upon uploading data in case of an infection.

Privacy of Warned Participants. Our protocol naturally protects the privacy
of warned participants and their social graph as the published warning identifier
is computationally unlinkable to any information that can be recorded locally
(i.e. pids), and also deciding whether some identifiers belong to the same user, is
impossible. Thus, a wid does not help the attacker in breaking the users’ privacy.

6.2 Privacy in the Case of Compromised Servers

This section presents an analysis of the privacy guarantees offered by our protocol
if servers are compromised. See Appendix D for the formal guarantees in case of
passively corrupted servers.

Linking Public Identifiers from the Long-Term Epoch. If the submission
server is compromised, the attacker will be able to link different public identifiers
pid to the same secret sid, and hence can link the public identifiers the user
is using during the same long-term epoch. This poses a privacy threat, if the
attacker additionally has observed some of the targeted public identifiers pid,
which requires users colluding with the server.

Similarly, if both the matching server and the warning server are corrupted,
the attacker can decrypt the sid values stored by the matching server to recover
the wid value, and hence again link public identifiers to the secret identifiers sid
and the respective warning identifier wid. Such an attacker that also colludes
with corrupted users may be able to link public identifiers to times and places
where these identifiers have been broadcast, and hence observe parts of the user’s
location history and track a user for up to one day. We stress that even if all
servers are compromised, an attacker will not be able to link public identifiers
used on different days (assuming the use of anonymous channels).

24

Contact Information of Infected Users. Information about encounters be-
tween users is stored strictly on the user’s devices. Only the meeting history, i.e.
the list of encountered public identifiers, without times and places of meetings,
of infected users is transmitted to the central servers.

If the attacker has compromised the matching server and is able to link public
identifiers used on the same long-term epoch (as in the previous scenario), the
attacker might be able to infer repeated meetings of the infected user, i.e. she
can learn how many encounters with the same persons the infected user’s device
has registered within each day. If the attacker has additionally observed some of
the warned public identifiers at specific times and places, the attacker will also
learn where and when the encounter took place, and hence learn parts of the
location history of the infected user as well as the warned users.

Warnings Issued. If the attacker has compromised the matching server, she can
immediately observe the public identifiers of all users who have been colocated
with infected users. If the attacker can additionally link a public identifier to a
specific individual, the attacker can conclude this person has received a warning.
(Note that a similar attack is possible in the DP3T protocol [T+20], but even
without compromising a server.)

6.3 Security

We now analyze an attacker’s ability to cause false negatives or false positives.
As above, we assume central servers to follow the protocol. See Appendix D for
the formal guarantees in case of passively corrupted servers.

Creating False Negatives. A false negative occurs when an uncorrupted
user A has been in colocation with an uncorrupted infected user B but A does
not receive a warning. These false negatives are not possible in our protocol. In
FCT this property is modeled by, Ê initially containing all edges between honest
users, and during the protocol edges can only be added and never removed. (Note
that we excluded jamming of the BLE signal by the adversary, as motivated in
Section 2.)

Only in the case of a (passively) corrupted matching server can the adversary
evade these guarantees regarding false negatives. This is because a corrupted
matching server will learn the TANs at the time when honest users upload their
list of observed identifiers. Exactly during (in parallel to) this step, an adversary
may “use up” (and thereby invalidate) this TAN (after the matching server
learned it), but before the honest user’s request is finished. However, note that
in this case, it is evident to the honest user that the TAN has been invalidated,
pointing towards a passive corruption of the matching server (which is hence
incentivised to not use this attack.)

False Positives Regarding Honest Users. An honest user A is subject of
a false positive if she has not been colocated with an infected user, but she

25

nonetheless receives a warning. Our security goal is to prevent false positives,
unless i) A was in proximity to a corrupted user, and ii) the attacker is in
proximity to an infected user, or has been infected themselves.

This is captured by the following fact: In order for an honest party A to be
warned, the party has to be included in WP. It can only be included in WP, if
there is an outgoing edge from A in Ê (warning triggered from an honest party)
or there is an outgoing edge from A to a corrupted party in E (warning triggered
from a corrupt party).

If A was not in proximity to a corrupted user, the attacker cannot use
“Replay/Relay” to add new outgoing edges to Ê (as (P ′3, P

′
4) 6∈ E′ in step 3,

because P ′3 is corrupted and P̂4 = A is not in proximity to a corrupted user) and
hence cannot trigger a false warning from an honest party (unless the submission
or the matching server is passively corrupted, as in this case the adversary learns
otherwise unobserved pids to use for this). The attacker cannot trigger a warning
for an honest that has not been in contact with a corrupt party, as step 6 of
“Handling Match Requests” requires all Si to be empty in this case (unless the
submission or the matching server is passively corrupted).

If the attacker has not been in proximity to an infected user and no corrupted
party has been infected, the attacker can only insert edges into Ê using “Re-
play/Relay” where the target will never be infected. So a false warning cannot
be triggered from an honest party. Regarding warnings triggered from a corrupt
party, lastInfected lt will always be −∞ in step 6 of “Handling Match Requests”
and parties can be added to WP . This concludes our argument that producing a
false positive for an honest user requires proximity of the attacker to both, the
honest user and to an infected user (or the a corrupted user is infected).

7 Related Work

Canetti et al. [CTV20] mention an extension of their protocol using private set
intersection protocols in order to protect the health status of infected individuals.
However, it is unclear how feasible such a solution is with regard to the compu-
tational load incurred on both, the smartphone and the server, cf. [D20d, P3].
Whereas DP3T [T+20] claims that protecting the infection status of individuals
in decentralized protocols is impossible by [D20a, IR 1] and therefore does not
address further countermeasures.

Chan et al. [C+20, Sect. 4.1] include a short discussion of protocols in the
upload-what-you-observed paradigm, and propose a form of rerandomization of
identifiers at the side of the smartphone. In this protocol, a user downloads all
published identifiers and checks whether they are a rerandomization of their own
identifier (requiring one exponentiation). Hence, this approach puts a regular
heavy computation cost on the user’s device, and is likely not practical. Bell et al.
[BBH+20] propose a solution for digital contact tracing based on homomorphic
equality tests, aimed at protecting the infection status. However, there the central
server learns the full contact graph for infected and non-infected users alike, as
all users periodically upload their observations.

26

Besides BLE-based approaches, there are also proposals that use GPS traces of
infected individuals to discover hot spots as well as colocation, such as [BBV+20;
FMP+20]. However, there is a consensus that GPS-based approaches do not offer
a sufficient spatial resolution to estimate the distance between two participants
with sufficient precision.

The protocols of Garofalo et al. [GhP+21], and DESIRE [CBB+20] (another
hybrid approach, constituting concurrent work), broadcast public keys and
compute Diffie-Hellman shared secret upon receiving a broadcast. Both are very
similar to a proposal from Cho, Ippolito, and Yu [CIY20]. Both constructions
compute two separate hashes of a shared secret, which constitutes an encounter,
and use one for reporting contacts at risk and another one for querying their
status. An advantage of registering an encounter by computing a shared secret
from a Non-Interactive Key Exchange is the protection against certain kinds
of replay attacks as observing a public key is not enough for impersonation.
The main disadvantage, is that a public key does usually not fit into a single
advertisement packet and therefore additional workarounds are necessary. Also,
the security model of DESIRE is different from ours, e.g. if two corrupted users
would like to know whether and when they met the same honest non-infected
user, they could cooperate with the DESIRE server (which can link all encounter
tokens of a user together, because a user has to upload all of them at once when
querying for a warning) to link both encounters. Garofalo at al. introduce a
Central Health Authority server, and a matching server that has some similarities
to our server pipeline.

Instead of broadcasting large public keys, the protocol Pronto-C2 by [ABI+20]
broadcasts addresses, where the public keys can be retrieved from. This requires
the public keys to be anonymously uploaded in advance, which is similar to the
submission routine in our protocol. Pronto-C2 separates the task for authenticat-
ing app requests from the central server and leaves the task for matching and
risk-computation to the smartphone, which might incur a significant workload on
the smartphone. On the other hand, our protocol utilizes a dedicated party for
every privacy-sensitive task, i.e. submission, matching, warning and registering,
and leaves only the task of risk-computation to the smartphone. The interested
reader is referred to [V20b] for a general discussion on hybrid approaches.

The protocol Epione by [TSS+20], as well as the protocol Catalic by [DPT20]
make use of private set intersection to improve on the privacy side.

Canetti et al. [CKL+20] introduce two protocols and also feature a universal
composability (UC) modeling of contact tracing functionalities, which constitutes
concurrent and independent work. While their modelling takes broad strokes by
employing a global functionality for interacting with the physical world, via a set
of allowable measurement functions and faking functions to the physical world,
we specifically model the aspect of people being in relevant closeness to each other
using a contact graph, and can hence model the leakage and e.g. relay attacks
by certain operations on the graph – yielding a more easy-to-handle criterion.
Moreover, only an extension of one of their protocols, called CertifiedCleverParrot,
incorporates anti-Sybil protections, but this is not modeled and proven secure in

27

their UC setting. For an alternative modelling and analysis of security notions
using game-based definitions, such as forward security, see the concurrent work
of Danz et al. [DDL+20].

8 Summary

Our protocol “ConTra Corona” provides a new and “hybrid” approach to digital
contact tracing that protects both, the contact graph/encounter history, and the
infection status. For this, it is important to fully understand, what security and
privacy of contact tracing protocols mean, and to formalize this in a rigorous
manner, with a simulation-based security notion in the real–ideal paradigm
constituting a gold standard for such an endeavour in the cryptography landscape.
Our notion makes the exact leakage and the attacker capabilities (in terms of
inducing false positives/negatives) explicit. In Appendix A we present a proof
that our protocol fulfills this security notion.

In order to reduce the required trust into the central server components,
we described how the server’s functions may be separated by distributing core
functions to different organizations. In conclusion, we argue that our protocol
represents an overall improvement regarding security and privacy and remains
practical.

Acknowledgements

We would like to express our gratitude to Michael Klooß and Jeremias Mechler for
helpful comments. This work was supported by funding from the topic Engineering
Secure Systems of the Helmholtz Association (HGF) and by KASTEL Security
Research Labs. We thank Serge Vaudenay for his comments.

References

[ABI+20] G. Avitabile, V. Botta, V. Iovino, and I. Visconti. Towards De-
feating Mass Surveillance and SARS-CoV-2: The Pronto-C2 Fully
Decentralized Automatic Contact Tracing System. 2020. Cryptology
ePrint Archive, Report 2020/493.

[AG20] Apple and Google. Privacy-Preserving Contact Tracing. 2020. url:
http://www.apple.com/covid19/contacttracing.

[AGH+19] D. Achenbach, R. Gröll, T. Hackenjos, A. Koch, B. Löwe, J. Mechler,
J. Müller-Quade, and J. Rill. “Your Money or Your Life—Modeling
and Analyzing the Security of Electronic Payment in the UC Frame-
work”. In: FC 2019. Ed. by I. Goldberg and T. Moore. LNCS 11598.
Springer, 2019, pp. 243–261. doi: 10.1007/978-3-030-32101-7 16.

[AHL18] T. Altuwaiyan, M. Hadian, and X. Liang. “EPIC: Efficient Privacy-
Preserving Contact Tracing for Infection Detection”. In: ICC 2018.
IEEE, 2018, pp. 1–6. doi: 10.1109/ICC.2018.8422886.

28

https://eprint.iacr.org/2020/493
http://www.apple.com/covid19/contacttracing
https://doi.org/10.1007/978-3-030-32101-7_16
https://doi.org/10.1109/ICC.2018.8422886

[B92] D. Beaver. “How to Break a ‘Secure’ Oblivious Transfer Protocol”.
In: EUROCRYPT 1992. Ed. by R. A. Rueppel. LNCS 658. Springer,
1992, pp. 285–296. doi: 10.1007/3-540-47555-9 24.

[BBH+20] J. Bell, D. Butler, C. Hicks, and J. Crowcroft. “TraceSecure: Towards
Privacy Preserving Contact Tracing”. In: ArXiv e-prints (2020). id:
2004.04059 [cs.CR].

[BBV+20] A. Berke, M. Bakker, P. Vepakomma, R. Raskar, K. Larson, and
A. Pentland. “Assessing Disease Exposure Risk with Location Data:
A Proposal for Cryptographic Preservation of Privacy”. In: ArXiv
e-prints (2020). id: 2003.14412 [cs.CR].

[BDH+21a] W. Beskorovajnov, F. Dörre, G. Hartung, A. Koch, J. Müller-
Quade, and T. Strufe. “ConTra Corona: Contact Tracing against
the Coronavirus by Bridging the Centralized–Decentralized Divide
for Stronger Privacy”. In: ASIACRYPT 2021. Ed. by M. Tibouchi
and H. Wang. LNCS. Springer, 2021. In press.

[BDH+21b] W. Beskorovajnov, F. Dörre, G. Hartung, A. Koch, J. Müller-
Quade, and T. Strufe. “ConTra Corona: Contact Tracing against the
Coronavirus by Bridging the Centralized–Decentralized Divide for
Stronger Privacy”. In: crypto day matters 32. Ed. by S.-L. Gazdag,
D. Loebenberger, and M. Nüsken. Gesellschaft für Informatik e.V. /
FG KRYPTO, 2021. doi: 10.18420/cdm-2021-32-43.

[BL21] D. J. Bernstein and T. Lange, eds. eBACS: ECRYPT Benchmarking
of Cryptographic Systems. 2021. url: https://bench.cr.yp.to/results-
sign.html.

[BRS20] S. Brack, L. Reichert, and B. Scheuermann. CAUDHT: Decentralized
Contact Tracing Using a DHT and Blind Signatures. Ed. by H. Tan,
L. Khoukhi, and S. Oteafy. 2020. doi: 10.1109/LCN48667.2020.
9314850.

[C+20] J. Chan et al. “PACT: Privacy Sensitive Protocols and Mechanisms
for Mobile Contact Tracing”. In: ArXiv e-prints (2020). id: 2004.
03544 [cs.CR].

[C01] R. Canetti. “Universally Composable Security: A New Paradigm for
Cryptographic Protocols”. In: FOCS 2001. IEEE Computer Society,
2001, pp. 136–145. doi: 10.1109/SFCS.2001.959888.

[CBB+20] C. Castelluccia, N. Bielova, A. Boutet, M. Cunche, C. Lauradoux,
D. L. Métayer, and V. Roca. DESIRE: A Third Way for a European
Exposure Notification System. 2020. url: https://github.com/3rd-
ways-for-EU-exposure-notification/project-DESIRE.

[CHK+06] J. Camenisch, S. Hohenberger, M. Kohlweiss, A. Lysyanskaya, and
M. Meyerovich. “How to win the clonewars: efficient periodic n-
times anonymous authentication”. In: CCS 2006. Ed. by A. Juels,
R. N. Wright, and S. D. C. di Vimercati. ACM, 2006, pp. 201–210.
doi: 10.1145/1180405.1180431.

29

https://doi.org/10.1007/3-540-47555-9_24
https://arxiv.org/abs/2004.04059
https://arxiv.org/abs/2003.14412
https://doi.org/10.18420/cdm-2021-32-43
https://bench.cr.yp.to/results-sign.html
https://bench.cr.yp.to/results-sign.html
https://doi.org/10.1109/LCN48667.2020.9314850
https://doi.org/10.1109/LCN48667.2020.9314850
https://arxiv.org/abs/2004.03544
https://arxiv.org/abs/2004.03544
https://doi.org/10.1109/SFCS.2001.959888
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE
https://github.com/3rd-ways-for-EU-exposure-notification/project-DESIRE
https://doi.org/10.1145/1180405.1180431

[CIY20] H. Cho, D. Ippolito, and Y. W. Yu. “Contact Tracing Mobile Apps
for COVID-19: Privacy Considerations and Related Trade-offs”. In:
ArXiv e-prints (2020). id: 2003.11511 [cs.CR].

[CKL+20] R. Canetti, Y. T. Kalai, A. Lysyanskaya, R. L. Rivest, A. Shamir,
E. Shen, A. Trachtenberg, M. Varia, and D. J. Weitzner. Privacy-
Preserving Automated Exposure Notification. 2020. Cryptology ePrint
Archive, Report 2020/863.

[CTV20] R. Canetti, A. Trachtenberg, and M. Varia. “Anonymous Collocation
Discovery: Harnessing Privacy to Tame the Coronavirus”. In: ArXiv
e-prints (2020). id: 2003.13670 [cs.CY].

[D20a] DP-3T Project. Privacy and Security Risk Evaluation of Digital
Proximity Tracing Systems. 2020. url: https ://github . com/DP -
3T/documents/blob/master/Security%20analysis/Privacy%20and%
20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%
20Systems.pdf.

[D20b] DP-3T Project. Security and privacy analysis of the document
‘PEPP-PT: Data Protection and Information Security Architec-
ture’. 2020. url: https://github.com/DP-3T/documents/blob/master/
Security%20analysis/PEPP-PT %20Data%20Protection%20Architecture%
20-%20Security%20and%20privacy%20analysis.pdf.

[D20c] DP-3T Project. Security and privacy analysis of the document
‘ROBERT: ROBust and privacy-presERving proximity Tracing’.
2020. url: https://github.com/DP-3T/documents/blob/master/Security%
20analysis/ROBERT%20-%20Security%20and%20privacy%20analysis.
pdf.

[D20d] DP3T Project. FAQ: Decentralized Proximity Tracing. 2020. url:
https://github.com/DP-3T/documents/blob/master/FAQ.md.

[DDL+20] N. Danz, O. Derwisch, A. Lehmann, W. Pünter, M. Stolle, and
J. Ziemann. Provable Security and Privacy of Decentralized Crypto-
graphic Contact Tracing. 2020. Cryptology ePrint Archive, Report
2020/1309.

[DDP06] I. Damg̊ard, K. Dupont, and M. Ø. Pedersen. “Unclonable Group
Identification”. In: EUROCRYPT 2006. Ed. by S. Vaudenay. Vol. 4004.
LNCS. Springer, 2006, pp. 555–572. doi: 10.1007/11761679 33.

[DPT20] T. Duong, D. H. Phan, and N. Trieu. “Catalic: Delegated PSI
Cardinality with Applications to Contact Tracing”. In: ASIACRYPT
2020. LNCS 12493. Springer, 2020, pp. 870–899. doi: 10.1007/978-
3-030-64840-4 29.

[F20] Fraunhofer AISEC. Pandemic Contact Tracing Apps: DP-3T, PEPP-
PT NTK, and ROBERT from a Privacy Perspective. 2020. Cryptol-
ogy ePrint Archive, Report 2020/489.

[FM21] D. M. Feehan and A. S. Mahmud. “Quantifying population contact
patterns in the United States during the COVID-19 pandemic”. In:
Nature communications 12.1 (2021), pp. 1–9. doi: 10.1038/s41467-
021-20990-2.

30

https://arxiv.org/abs/2003.11511
https://eprint.iacr.org/2020/863
https://arxiv.org/abs/2003.13670
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/Privacy%20and%20Security%20Attacks%20on%20Digital%20Proximity%20Tracing%20Systems.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/PEPP-PT_%20Data%20Protection%20Architecture%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/PEPP-PT_%20Data%20Protection%20Architecture%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/PEPP-PT_%20Data%20Protection%20Architecture%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/ROBERT%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/ROBERT%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/Security%20analysis/ROBERT%20-%20Security%20and%20privacy%20analysis.pdf
https://github.com/DP-3T/documents/blob/master/FAQ.md
https://eprint.iacr.org/2020/1309
https://doi.org/10.1007/11761679_33
https://doi.org/10.1007/978-3-030-64840-4_29
https://doi.org/10.1007/978-3-030-64840-4_29
https://eprint.iacr.org/2020/489
https://doi.org/10.1038/s41467-021-20990-2
https://doi.org/10.1038/s41467-021-20990-2

[FMP+20] J. K. Fitzsimons, A. Mantri, R. Pisarczyk, T. Rainforth, and Z. Zhao.
“A note on blind contact tracing at scale with applications to the
COVID-19 pandemic”. In: ARES 2020. Ed. by M. Volkamer and C.
Wressnegger. ACM, 2020, 92:1–92:6. doi: 10.1145/3407023.3409204.

[GhP+21] G. Garofalo, T. V. hamme, D. Preuveneers, W. Joosen, A. Abidin,
and M. A. Mustafa. PIVOT: PrIVate and effective cOntact Tracing.
2021. Cryptology ePrint Archive, Report 2020/559.

[KBS21] C. Kuhn, M. Beck, and T. Strufe. “Covid Notions: Towards Formal
Definitions – and Documented Understanding – of Privacy Goals
and Claimed Protection in Proximity-Tracing Services”. In: Online
Soc. Networks Media 22 (2021). doi: 10.1016/j.osnem.2021.100125.

[L17] Y. Lindell. “How to Simulate It - A Tutorial on the Simulation
Proof Technique”. In: Tutorials on the Foundations of Cryptography.
Ed. by Y. Lindell. Springer, 2017, pp. 277–346. doi: 10.1007/978-3-
319-57048-8 6.

[MR91] S. Micali and P. Rogaway. “Secure Computation (Abstract)”. In:
CRYPTO 1991. Ed. by J. Feigenbaum. LNCS 576. Springer, 1991,
pp. 392–404. doi: 10.1007/3-540-46766-1 32.

[P20a] PePP-PT e.V. Pan-European Privacy-Preserving Proximity Tracing.
2020. url: https://www.pepp-pt.org/content.

[P20b] PePP-PT e.V. PEPP-PT NTK High-Level Overview. 2020. url:
https://github.com/pepp- pt/pepp- pt- documentation/blob/master/
PEPP-PT-high-level-overview.pdf.

[P20c] PePP-PT e.V. ROBust and privacy-presERving proximity Tracing
protocol. 2020. url: https://github.com/ROBERT-proximity-tracing/
documents.

[PR07] M. Prabhakaran and M. Rosulek. “Rerandomizable RCCA Encryp-
tion”. In: CRYPTO 2007. Ed. by A. Menezes. Vol. 4622. LNCS.
Springer, 2007, pp. 517–534. doi: 10.1007/978-3-540-74143-5 29.

[R+] R. L. Rivest et al. A Global Coalition for Privacy-First Digital
Contact Tracing Protocols to Fight COVID-19. url: https://tcn-
coalition.org/.

[R+20] R. L. Rivest et al. The PACT protocol specification. 2020. url: https:
//pact.mit.edu/wp- content/uploads/2020/04/The- PACT- protocol-
specification-ver-0.1.pdf.

[T+20] C. Troncoso et al. “Decentralized Privacy-Preserving Proximity
Tracing”. In: IEEE Data Eng. Bull. 43.2 (2020). First published 3
April 2020 on https://github.com/DP-3T/documents, pp. 36–66. url:
http://sites.computer.org/debull/A20june/p36.pdf.

[TOR] The Tor Project, Inc. TOR Project. url: https://www.torproject.org/.
[TSS+20] N. Trieu, K. Shehata, P. Saxena, R. Shokri, and D. Song. “Epione:

Lightweight Contact Tracing with Strong Privacy”. In: IEEE Data
Eng. Bull. 43.2 (2020), pp. 95–107. url: http://sites.computer.org/
debull/A20june/p95.pdf.

31

https://doi.org/10.1145/3407023.3409204
https://eprint.iacr.org/2020/559
https://doi.org/10.1016/j.osnem.2021.100125
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/978-3-319-57048-8_6
https://doi.org/10.1007/3-540-46766-1_32
https://www.pepp-pt.org/content
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/PEPP-PT-high-level-overview.pdf
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/PEPP-PT-high-level-overview.pdf
https://github.com/ROBERT-proximity-tracing/documents
https://github.com/ROBERT-proximity-tracing/documents
https://doi.org/10.1007/978-3-540-74143-5_29
https://tcn-coalition.org/
https://tcn-coalition.org/
https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf
https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf
https://pact.mit.edu/wp-content/uploads/2020/04/The-PACT-protocol-specification-ver-0.1.pdf
https://github.com/DP-3T/documents
http://sites.computer.org/debull/A20june/p36.pdf
https://www.torproject.org/
http://sites.computer.org/debull/A20june/p95.pdf
http://sites.computer.org/debull/A20june/p95.pdf

[V20a] S. Vaudenay. Analysis of DP3T. 2020. Cryptology ePrint Archive,
Report 2020/399.

[V20b] S. Vaudenay. Centralized or Decentralized? The Contact Tracing
Dilemma. 2020. Cryptology ePrint Archive, Report 2020/531.

A Proof of Theorem 1

We first give the pseudocode of the simulator. A proof showing the distinguisher
Z cannot distinguish the “real world” experiment (where a real adversary tries to
attack the real protocol) and the “ideal world” (where the simulator S interacts
with the ideal functionality FCT) is given below. Note that the simulator internally
executes the adversary and thereby all corrupted parties.

Simulator S
State:
– Short term epoch est ∈ Z96 and long term epoch elt ∈ N. We write e for

(elt, est).
– Set of corrupted parties Pcorrupted .
– Set of infected corrupted parties (Pinfected)i.
– A sequence of all pseudonymized contact graphs so-far (G′i = (Qi, E

′
i))i,

i.e. a pseudonymized meeting history from the point of view of the
adversary.

– Current pseudonymized contact graph G′ = (Q, E′) = G′(elt,est).

– ListWL of active of warnings (wid, t) from corrupted parties to corrupted
parties.

– Issuer key pair for token dispensers (skI , pkI).
– The key pair (skW , pkW) of the simulated warning server.
– Set R, which records the information exchanged between corrupted par-

ties and the simulated parties by storing tuples (P,wid, elt, pid1, . . . pid96).
– A set H of tuples (pid, P, t) indicating broadcasts by corrupted parties.
– Tuple (L, t) which represents the current pending match request.
– A set Tcorrupted of tuples (tan, t, P) consisting of TANs, the day during

which each tan was generated and the party which requested it.

Register a Party:
1. Upon (register , pkU) from P ∈ Pcorrupted for Freg.
2. Issue a new token dispenser for P like Freg does.

Next Epoch:
1. Upon receiving ((Q, E′),P ′infected) from FCT replace the current contact

graph and add it to the history of pseudonymized contact graphs.
2. Increment est (in Z96).
3. If est = 0 then increment elt and remove all entries (wid, t) from WL

where t ≤ elt − 14.

32

https://eprint.iacr.org/2020/399
https://eprint.iacr.org/2020/531

4. For each honest node q ∈ Q, assign a fresh pid = H(x), where x is a
random element x ∈ C from the ciphertext space of ΣR. If the same pid
is assigned to two distinct nodes q 6= q′, abort.

5. For each edge (P1, P2) ∈ E′, where P1 ∈ Phonest and P2 ∈ Pcorrupted ,
send the pid assigned to P1 to P2 on behalf of Fmat.

Upload from Corrupted User:

1. When P ∈ Pcorrupted wants to show a token, act as V and verify the
token.

2. If the token is correct (and not reused) receive (seed, sid) from P ∈
Pcorrupted for the Submission Server.

3. Compute sid′ and pid1, . . . , pid96 as prescribed by the protocol based on
sid, seed.

4. If any of pid1, . . . , pid96 is already assigned to an honest node, abort the
simulation.

5. Compute wid := Dec(skW , sid).

6. If there is a P ′ s.t. (P ′,wid, elt, pid1, . . . , pid96) ∈ R, return.

7. Otherwise, choose P ′ ∈ Pcorrupted with (P ′, ·, elt, ·, . . . , ·) 6∈ R. If such a
P ′ does not exist, abort the simulation.

8. For each (pid, P ′′, t) ∈ H, with pid = pidi (for an i ∈ Z96) send
(sendBroadcast , t, (elt, i), P

′′, P ′)

9. Store (P ′,wid, elt, pid1, . . . , pid96) in R.

Broadcast from Corrupted User:

1. Upon receiving (pid) from a participant P ∈ Pcorrupted for Fmat.

2. Insert (pid, P, e) into H.

3. For each (P2, ·, t, . . . , pidi = pid, . . .) ∈ R, send
(sendBroadcast , e, (t, i), P, P2) to FCT.

4. Determine the set of receivers of this broadcast, i.e. the set of corrupted
parties P ′ ∈ Pcorrupted such that (P, P ′) ∈ G′. For each such P ′ send
(pid) to P ′ as coming from Fmat.

5. Look up if one of the nodes in one of the G′i (or G′) was assigned pid.
If so, let P1 be the node, P2 be an arbitrary corrupted receiver of the
broadcast from P1, P3 = P , t be the corresponding epoch of G′i (or G′).
For each target P4, send (relay, t, P1, P2, P3, P4) to FCT.

Warning Request from Corrupted User:

1. Upon receiving (warningRequest) from P ∈ Pinfected (elt,est)
∩ Pcorrupted

for Fmed.

2. Generate a TAN tan ←$ {0, 1}2n.

3. Add (tan, elt, P) to the list of valid tans Tcorrupted .

4. Send tan to P from Fmed.

33

Handle Match Request for Corrupted Parties:
1. Upon receiving (L, tan) from an arbitrary corrupted party for the Match-

ing Server, where L is a finite set of public identifiers.
2. Look up an entry (tan, t, P ′) ∈ Tcorrupted to find t and P ′. If there is no

such entry, ignore the request.
3. For each pid ∈ L try looking up pid inR. For each match with correspond-

ing warning identifier wid and long-term epoch t′, where elt−14 ≤ t′ ≤ t,
mark wid as at-risk by inserting (wid, t′) into WL.

4. Store (L, t) in the state.
5. Remove (tan, t, P ′) from Tcorrupted .
6. Send (positive) to FCT from P ′.

Force a Warning:
1. Upon receiving (forceWarning) from FCT.
2. Find the corresponding set L which the corrupted party was trying to

send to the matching server and epoch t in the state.
3. Let R := N ∩ [elt − 14, elt) ∩ [0, t].
4. Let Si := ∅ for i ∈ R× Z96.
5. For each pid ∈ L: Search the graphs G′i (for i ∈ R × Z96) for a node q

labeled pid. If a node is found in graph G′i, insert q into Si.
6. Send the sets Si back to FCT.

Warning Query from Corrupted User:
1. Upon receiving (wid) from a participant P ∈ Pcorrupted for the Warning

Server.
2. If there is a t s.t. (wid, t) is in WL, return 1.
3. Else, for each (P ′, t′) with (P ′,wid, t′, ·, · · ·) ∈ R, send (query, t′) from

party P ′ to FCT, compute the logical or of all the replies from FCT to
P ′, and return the result to P .

4. If wid is neither in WL nor in R, return 0.

Proof (Proof Sketch). It is sufficient to prove there is a simulator S (running in the
ideal experiment) which can replace the attacker A (running in the real version
of the experiment), such that all environment machines Z have at most negligible
advantage in distinguishing these games. We claim the simulator given above
achieves this. We prove this by giving a sequence of “hybrid” games/experiments
and showing that each pair of consecutive games is indistinguishable. We briefly
sketch the sequence of games. For brevity, we only describe the differences of
each game to the previous one.

Game 0 (Real Experiment). This is real experiment, running the code of
all machines as given in Section 4.

Game 1 (All-powerful Simulator). The game is modified to redirect all
communication between the environment and other parties to the simulator. We

34

introduce an intermediate simulator S1, who internally runs the attacker A as
well as the code (as given in Section 4) of all parties and hybrid functionalities,
including the honest parties and Pmat, and forwards the communication between
them accordingly.

Proposition 1. The views of the environment Z in Games 0 and 1 are perfectly
indistinguishable.

Game 2 (Replacing ri by Random Values). The simulator behaves as
in the previous game, with the following difference: When the simulator is
running the “Upload Submission” code of honest parties and the “Handling
Submissions” upload handling code of the submission server, it no longer uses
the seed to generate the rerandomization values r1, . . . , r96 used for the ReRand
procedure (applied to sid). Instead, it chooses the values r1, . . . , r96 uniformly
and independently at random (making sure that both the honest party and the
submission server use the same randomness).

Proposition 2. If there exists an environment Z which can distinguish between
Games 1 and 2 with non-negligible advantage in polynomial time, then there exists
a PPT attacker breaking the security of the PRG with non-negligible advantage.

Game 3 (Replacing the sid′ by Random Ciphertexts). The simulator acts
as before, with the following differences: When an honest party uploads (seed, sid)
to the submission server, the values sid′j are no longer derived by rerandomizing
the ciphertext sid, but instead chosen uniformly (and independently) at random
from the encryption scheme’s ciphertext space C. For corrupted parties, the sid′

continue to be generated as prescribed by the protocol. Public identities pidj

continue to be chosen as pidj := H(sid′j). For both honest and corrupted parties
P , the simulator decrypts sid to recover wid, and sets x := P (if P is honest)
and x := ⊥ otherwise, where ⊥ is a placeholder symbol to be replaced in a later
game. The (simulated) submission server stores (x,wid, elt, pid1, . . . , pid96) in the
current batch (instead of the generated (sid′j , pidj) tuples). The simulator keeps
track of all tuples generated this way by adding them to a list R. When the
current long-term epoch ends, the batch is forwarded to the matching server. The
matching server (simulated by S) is adapted accordingly: It stores the received
set as Bt and continues to delete old sets Bt′ where t′ ≤ elt − 14. When a match
request (S, tan) is received by the matching server the matching server (as before)
first checks the tan and removes it from the list. Afterwards, the matching server
looks up the corresponding widl and epoch tl for each pidl ∈ S in his state and
forwards the list of all corresponding (widl, tl) to the warning server. The warning
server (simulated by S) omits the decryption, and directly adds all received
(widl, tl) tuples to its list WL.

Proposition 3. If there exists an environment Z which can distinguish between
Games 2 and 3 with non-negligible advantage in polynomial time, then there exists
a PPT attacker with non-negligible advantage in distinguishing ciphertexts from
random elements of the ciphertext space C.

35

Game 4 (Checking for collisions on corrupted uploads). The simulator
acts as before, with the added check from step 4: When an honest party uploads
a (seed, sid) pair to the submission server, the pidj values are no longer generated

as hashes of the sid′j values, but as hashes from a value x, chosen (uniformly
and independently) at random from C. When a corrupted party performs a new
upload. Check that the generated pids are not already assigned to honest parties.
If they are, abort the simulation.

Proposition 4. If there exists an environment Z which can distinguish between
Games 3 and 4 with non-negligible advantage in polynomial time, then there exists
a PPT attacker with non-negligible advantage that can break the one-wayness
property of H.

Proof (Proof Sketch). After obtaining the challenge for the one-wayness game,
choose a random index of an honest node to embed the challenge into. When the
abortion happens the simulator knows the corresponding sid which is a preimage
for the given challenge under H.

Game 5 (Checking for honest pid collisions). The simulator acts as before,
with the added check from step 4: If the same pid is assigned to two distinct
nodes q 6= q′, abort.

Proof (Proof Sketch). Consider the experiment of drawing n random elements
xi ∈ C and then the event of having H(xi) = H(xj) for a pair i 6= j. Lets
assume this event happens with non-negligible probability p. In the security
experiment for the one-wayness of H the challenger draws a random x̃ and
gives H(x̃) to the attacker. The attacker now draws n − 1 additional random
elements xi ∈ C. The experiment is identical and so the probability of a collision
in {H(x̃),H(x1), . . . ,H(xn−1)} is also p. Because the elements are all chosen
randomly independent of each other, the probability of the collision happening
between H(x̃) and a H(xĩ) is at least p

n . The attacker can then supply xĩ as reply.
This attacker runs in polynomial time and is successful with a non-negligible
probability of at least p

n which would break the one-wayness property of H.

Game 6 (TANs are unique). The simulator acts as before, but whenever
Fmed generates a new tan, the simulator checks whether the tan has already
been assigned, i.e. there exists a tuple (tan, ·) ∈ Tcorrupted . If this is the case, the
simulator aborts. Otherwise, Fmed proceeds as in the previous games (i.e. the
tan is sent to the requesting infected participant and the matching server).

Proposition 5. For all PPT environments Z, the probability of an abort in
game Game 6 is negligible in n.

Proof (Proof Sketch). The number of tans in the tan list Tcorrupted is at most
polynomial, and all tans are chosen uniformly and independently at random.
Hence, the probability of a collision is given by the so-called “birthday bound”.
Since tans are chosen from a space of exponential size ({0, 1}2n), the probability
of a collision is negligible in n.

36

Game 7 (Honest Users’ TANs cannot be Guessed). The simulator acts
as before, but maintains two lists of tans: Tcorrupted , holding tans (and their
creation date t and requester P) sent out by Fmed to corrupted users (and the
matching server) and T ′corrupted , holding tans (and, again, their creation date t
and requester P) sent out by Fmed to honest users (and the matching server).

When Fmed generates a new tan, the simulator still checks the tan’s uniqueness,
but now uses Tcorrupted ∪ T ′corrupted for this check, i.e. the simulator aborts if
there is a tuple (tan, ·, ·) ∈ Tcorrupted ∪ T ′corrupted . Otherwise, Fmed proceeds as
before.

Step 2 of “Handling Match Request” of the matching server (see p. 16) is
adapted as follows: When a party P ∈ Phonest sends a match request to the
matching server, the simulator uses T ′corrupted to check the tan, and removes the
corresponding entry (tan, t, P) from T ′corrupted if the tan is found. When a party
P ∈ Pcorrupted sends a match request, the simulator checks if there is a tuple
(tan, ·, ·) ∈ Tcorrupted and rejects the request if this is not the case. If the request
succeeds, tan is removed from Tcorrupted .

Proposition 6. Every PPT environment Z has at most negligible advantage in
distinguishing Games 6 and 7.

Proof (Proof Sketch). From the perspective of Z, Game 7 is the same as Game 6,
except that corrupted parties cannot call “Handling Match Request” with tans
of honest users. Since these tans are uniformly random on {0, 1}2n and perfectly
hidden from the attacker (and Z), the attacker can only try to guess these
tans. However, there are at most polynomially many tans of honest users in an
exponentially large space, hence Z’s chance of guessing one of them is negligible.

Game 8 (Warnings from Honest to Honest Parties). The simulator acts

as before with the following differences. The ideal functionality F (8)
CT now acts as

follows:

F (8)
CT

State:
– Current epoch (elt, est) ∈ N× Z96 =: I.
– Set of corrupted parties Pcorrupted .
– Set of honest parties Phonest = P \ Pcorrupted .
– A sequence (Pinfected,i)i∈I of sets of infected parties, i.e. the history of

infected parties.
– Set of currently infected parties Pinfected

– A sequence of all neighbourhood graphs so-far (Gi = (Pi, Ei))i, i.e. the
global meeting history.

– Current contact graph G = (P, E) = G(elt,est).
– Parties at risk WP ⊆ P × N, which signifies which parties have encoun-

tered a positive participant (that generated a warning) in the last 14
long-term epochs and during which long-term epochs the encounters
took place.

37

– A sequence of edge sets (Êi)i on Pi which does some bookkeeping
necessary to know who is to be warned. Let Ê be the edge set of the
current epoch.

Set Neighborhood/Infected:
1. Receive a contact graph G = (P, E) and a set of infected parties Pinfected

from party Pmat.
2. Add G to the global meeting history and Pinfected to the history of

infected parties.
3. Set E′ = {(P0, P1) ∈ E | P0 ∈ Pcorrupted ∨ P1 ∈ Pcorrupted}.
4. Leak (P, E′), Pinfected to the adversary.
5. Execute steps 7 to 9 of “Set Neighborhood/Infected” from FCT (p. 21).

Send Broadcast: As in “Send Broadcast” of FCT.

Handling Match Requests:
1. Receive (positive) from party P .
2. If P ∈ Pcorrupted , abort.
3. If P /∈ Pinfected , return. Otherwise, continue:
4. Let R := N ∩ [elt − 14, elt). For each epoch i ∈ R × Z96, determine the

set ∆WPi of nodes P ′ such that (P ′, P) ∈ Êi.
5. For each i = (ilt , ist) ∈ R× Z96, add {(P ′, ilt) | P ′ ∈ ∆WPi} to the list

of active warnings WP.

Handling Warning Query:
1. Receive (query , t) from party P
2. Return 1 if (P, t) ∈ WP, otherwise return 0.

The party Pmat is adapted to forward its inputs G, Pinfected to F (8)
CT (instead

of Fmat and Fmed, respectively). The simulator, when it receives an input G =
(P, E),Pinfected from Z to Pmat, does no longer use these inputs directly, but uses

the information G′, Pinfected it receives from F (8)
CT instead. (In particular, S uses

these inputs when simulating Fmat and Fmed.) The behaviour of the matching
server is changed as follows: When an honest participant P reports as infected by
sending a set S (of pids of P ’s contacts) and a tan, the matching server checks
and invalidates the tan as before, but only forwards the (wid, t) pairs uploaded
by corrupted parties to the warning server. (The matching server’s behaviour is
unmodified when corrupted parties report themselves infected.) When Z sends
(sendBroadcast) to an honest party, the simulator sends the same message to

F (8)
CT. (Additionally, the honest party sends its current pid to Fmat, as in the real

protocol.) When Z inputs (positive) to an honest party P , the simulator forwards

this message to F (8)
CT on behalf of P , and (as before) has P run the protocol of

the app for “Match Request”. When Z sends (query , t) to an honest party P , the
simulator forwards this to FCT and receives a bit b1. Additionally, the simulator

38

executes P ’s code, and sends the party P ’s warning id wid for epoch t to the
warning server, which will return a bit b2. The simulator returns b1 ∨ b2 to Z,
where ∨ denotes the logical or of the two bits.

Proposition 7. For every PPT environment Z the views in Games 7 and 8 are
statistically indistinguishable.

Proof (Proof Sketch). In Game 8, warnings between honest parties are delivered

via F (8)
CT (using the complete neighbourhood graph G) instead of via the server

pipeline.
In more detail, honest parties no longer broadcast their pids to other honest

parties, so the receiving honest party can no longer upload the sending party’s pid
to the matching server in the case of an infection. However, when the receiving
party reports as infected, it will now (additionally) invoke “Handling Match

Requests” of F (8)
CT, adding the sending party to the warning list (since Êi contains

all edges between honest parties). When the sending party later attempts to find

out if it has received a warning, it will consider both warnings delivered via F (8)
CT

(i.e. warnings from other honest parties) and warnings delivered via the server
pipeline (i.e. warnings from corrupted parties).

All other behaviour is unchanged.

Game 9 (Limiting the Number of Uploads). The simulator acts as before,
with the following difference: Whenever a corrupted party is uploading a (seed, sid)
pair (after Show-ing an e-token) the simulator behaves as described in steps 3
and 5 to 9 of “Upload from Corrupted User” on p. 33. (This behavior replaces
the behaviour of storing tuples containing ⊥ introduced in Game 3.) In return,
the simulator no longer runs the “real” code of the submission server (“Handling
Submissions” and “Forwarding Submissions”, see p. 15).

Note that, due to this change, the simulator will abort the simulation if (during
any epoch e) the corrupted parties succeed in having the (simulated) submission
server (acting as V in the Show protocol of the e-token dispenser scheme) accept
more than n protocol runs, where n is the total number of corrupted parties. This
requires that the attacker has succeeded in having the (simulated) submission
server accept more than n e-tokens in the epoch e, which constitutes a violation
of the soundness property of the e-token dispenser scheme.

Proposition 8. If there exists a PPT environment Z which causes the game to
abort with non-neglibile probability, then there exists a PPT attacker breaking the
soundness of the e-token dispenser scheme with non-negligible probability.

Corollary. If the e-token dispenser scheme is sound, then for every PPT en-
vironment Z, the environment’s probability of distinguishing Games 8 and 9 is
negligible.

Game 10 (Warnings from Corrupted to Honest Users). The ideal func-

tionality is adapted to F (10)
CT by inserting, after step 3 of “Set Neighborhood/In-

fected”:

39

4. Select a random, injective mapping pseudonymize′i : Phonest → {0, 1}2n
and extend it to the whole set P via pseudonymize′i(P) = P for all P ∈
Pcorrupted . Set E′ := {(pseudonymize′i(x),pseudonymize′i(y)) | (x, y) ∈ E′ ∧
y ∈ Pcorrupted} ∪ {(x, y) | (x, y) ∈ E′ ∧ y /∈ Pcorrupted}. Let Q be the set of
nodes associated with the set of edges E′. (This is a modified version of step 5
of “Set Neighborhood/Infected” in FCT.)

Step 4 of “Set Neighborhood/Infected” (see p. 38) is adapted to leak (Q, E′)
(and Pinfected) to S (instead of (P, E′)). Moreover, we add steps 5 and 6 of

“Handling Match Requests” of FCT to F (10)
CT at the respective positions, where

the functions pseudonymizei, pseudonymizei
−1 are replaced by pseudonymize′i

and pseudonymize′i
−1

, respectively. Step 2 of “Handling Match Requests” (see
p. 38) is replaced by step 2 of the respective function on p. 22.

The simulator S is adapted as follows. When S receives G′ = (Q, E′) and

Pinfected from F (10)
CT , it acts as described in “Next Epoch” on page 32. (The

simulator continues to send G′ to Fmat. Moreover, the simulator continues to use
Pinfected for emulating Fmed.)

Fmat now looks up recipients in E′ instead of in E.

When a corrupted party sends (L, tan) to the matching server, the simulator
looks up whether there is a tuple (tan, t, P ′) contained in the simulated matching
server’s tan list Tcorrupted and ignores the request if this is not the case (step 2
of “Handle Match Request for Corrupted Parties” of the simulator on p. 34).
Otherwise, temporarily store (L, t) in the simulator’s state, remove the corre-

sponding tuple (tan, t, P ′) from Tcorrupted and send (positive) from P ′ to F (10)
CT

(steps 4 to 6). When the ideal functionality F (10)
CT responds with (forceWarning),

the simulator acts as defined in “Force a Warning” on page 34.

Additionally, the simulator searches through R to find the respective pids
given in L, extracts (wid, t) from the tuples found and adds all of these (wid, t)
tuples to the warning server’s list WL, as before. (This is analogous to step 3 of
“Handle Match Request for Corrupted Parties” on p. 34.)

When Z inputs (sendBroadcast) to an honest party P , the simulator no
longer sends P ’s current pid to Fmat. (But S continues to send (sendBroadcast)

to F (10)
CT from P .) When Z sends (query , t) to an honest party P , the simulator

no longer has P send the corresponding wid to the warning server. Instead, the

simulator only sends (query , t) to F (10)
CT on behalf of P , receiving a bit b in return

(as before). The simulator sends b to Z from P .

The simulator skips executing “Register” and “Upload Submission” (p. 14)
for honest parties.

Proposition 9. For each PPT environment Z the probability of distinguishing
Games 9 and 10 is negligible.

Proof (Proof Sketch). In Game 10 warnings from corrupted parties to honest

parties are now delivered via F (10)
CT (instead of via the simulated servers).

40

Suppose an honest party P broadcasts a pid in Game 9, this pid is received
by a corrupted party, and the attacker attempts to generate a warning for this
pid at a later point in time. Let e be the epoch of this broadcast.

In Game 9, the honest party P will upload (seed, sid) corresponding to the
pid to the submission server, and the simulator will add a corresponding tuple
to R. When Z in epoch e inputs (sendBroadcast) to the honest party, it will
send its current pid to Fmat, which will forward the pid to all corrupted parties
P ′ with (P, P ′) ∈ E. The corrupted parties will receive this pid but will not be
able to determine which honest party broadcasted this pid (except from what is
obvious from the structure of the graph G).

When a corrupted party sends a warning (L, tan) to the simulated matching
server in Game 9, the simulator will look up all pidis (contained in L) in R
and add the corresponding wids to the warning server’s list WL. Note that the
matching server does not store pidis older than 14 long term epochs, so these
pidis cannot be matched. Vice versa, the matching server does not consider pidis
newer than the TAN for matching (step 3).

The environment can check whether this warning is delivered to P by sending
(query , t) to P with the corresponding epoch number t. (The environment also has
a chance to detect this warning by having the attacker submit the corresponding
wid to the simulated warning server. However, this warning identity is perfectly
hidden from the view of Z, so Z’s chance of finding a the corresponding wid is
negligible, if wid is from a domain of super-polynomial size.)

In Game 10, the simulator skips simulating the “Register” and “Upload
Submission” code for honest parties, so the records of honest parties are no longer
added to R (in particular, pid is no longer contained in R). Moreover, when Z
in epoch e inputs (sendBroadcast) to an honest party P , pid is no longer sent to
Fmat. However, the simulator will now assign random pidis to all nodes of honest
parties in step 4 of “Next Epoch” (p. 32) and send these pidis to neighboring
corrupted parties (step 5). (The pidis have been chosen uniformly at random
from {0, 1}2n before, so their distribution is unchanged.)

Honest parties’ pidis which are not observed by any corrupted party are
effectively removed from the game because S skips simulating the parties’ “Upload
Submission” code. Therefore corrupted parties can no longer send warnings to
such pidis. However, since the pidis have been selected uniformly at random from
{0, 1}2n and perfectly hidden from the attacker, the attacker’s chance of sending
a warning to such a pidi was negligible.

When a corrupted party (not necessarily one of the parties who received pid)
attempts to send warnings by sending (L, tan) to the matching server in Game 10,
the simulator (“Handle Match Request for Corrupted Parties” on p. 34) first
checks (step 2) the tan and determines the corrupted party P ′ who requested
the tan and the long-term epoch t during which the tan was requested. If the
tan is found, it is invalidated later on (step 5).

As its next step (step 3), it looks up the pidis given in L in R, and adds the
corresponding (widi, t

′) tuples toWL. (Since, at this point, R only contains widis
and pidis uploaded by corrupted users, this only affects warnings from corrupted

41

users to corrupted users, and the behavior for such warnings remains unchanged.)
Note that step 3 corresponds to the restrictions from Game 9, preventing warnings
for pidis older than 14 long-term epochs or newer than tan.

Next, the simulator temporarily stores (L, t) (step 4) and sends (positive)

to F (10)
CT from P ′ (step 6). F (10)

CT (“Handling Match Requests” on p. 22) will
determine lastInfected lt , the most recent epoch during which P ′ was infected,
and ask the simulator for (pseudonyms of) parties to be warned by sending
(forceWarning) to S. Note that as only infected parties are given a tan by the
simulator, lastInfected lt ≥ t. The simulator will look up the pidjs from L to
determine if they were assigned to a graph node q of some graph G′i, where i
refers to the epochs in the time frame from 14 long-term epochs prior to the
current epoch until the generation of the tan, as described in step 5 of “Force
a Warning”. Note that this time frame is exactly the same as in Game 9 and

contained in the R determined by F (10)
CT in step 6 of “Handling Match Requests”.

S will send the sets Si of these nodes q (grouped by the corresponding epoch) to

F (10)
CT .

F (10)
CT depseudonymizes the entries in Si and ensures that for each entry q

there exists a corrupted party q′ such that q was in proximity to q′ in epoch i.
This has to be the case for all Si returned by the S, because corrupted parties
can only obtain pidjs using the broadcast functionality which respects the current

proximity graph. F (10)
CT adds the to-be-warned parties to WP which triggers the

same warnings for honest parties as in Game 9.

Game 11 (Warnings from Honest to Corrupted Users). The ideal

functionality is replaced by F (11)
CT , which acts as before, with the following

differences: When F (11)
CT receives a contact graph G = (P, E) and Pinfected from

Pmat, it behaves as described in “Set Neighborhood/Infected” of FCT on page 21.
In effect, this adds the step of splitting honest parties (step 4 of FCT), replaces
the modified version of step 5 (introduced as step 4 in Game 10), and restricts

the leakage output by F (11)
CT to S from Pinfected to Pinfected ∩ Pcorrupted (step 6

of FCT). Moreover, we revert the replacement of the pseudonymization functions
(introduced in Game 10) in step 6 of “Handling Match Requests” in FCT by

replacing the functions pseudonymize′i, pseudonymize′i
−1

by pseudonymizei and
pseudonymizei

−1 respectively.

Furthermore, we add “Broadcasts From Corrupted User” and “Replay/Relay”

(see p. 22) to F (11)
CT . Observe that after this change, F (11)

CT = FCT.

The simulator is adapted as follows. When the environment Z inputs (positive)
to an honest party P , the simulator no longer executes the app’s code for “Match
Request” (see page 15). As a consequence, honest parties no longer request tans,
and the list T ′corrupted of tans for honest users is removed from the game. However,
S continues to send (positive) to FCT on behalf of P .

Moreover, “Scheduled Upload” and “Recording Broadcasts” (p. 14) are re-
moved from the honest parties.

42

The matching server and the warning server are removed from the simulation.
Their functionalities are replaced by adding step 3 of “Handle Match Request for
Corrupted Parties” (see p. 34) and “Warning Query from Corrupted User” to S.

When a corrupted party P ∈ Pcorrupted sends a broadcast pid to Fmat,
the simulator runs the code given under “Broadcast from Corrupted User” on
p. 33 instead of simulating Fmat. In fact, Fmat is completely removed from the
simulation. The party Pmat is replaced by the dummy party from the “ideal”

world, i.e. it only forwards its inputs to F (11)
CT . When Z sends (sendBroadcast)

to an honest party P , the simulator no longer forwards the respective pid from
P to Fmat.

The ideal functionality Fmed is removed from the simulation. The simulator
takes over the generation of tans and keeping track of Tcorrupted (see “Warning
Request from Corrupted User” on p. 33).

Proposition 10. For each PPT environment Z the probability of distinguishing
Games 10 and 11 is negligible.

Proof (Proof Sketch). In Game 11 warnings from honest parties to corrupted

parties are now delivered via F (11)
CT (instead of via the simulated servers).

Suppose a corrupted party P broadcasts a pid in Game 10, this pid is received
by an honest party P ′, and the environment attempts to generate a warning for
this pid at a later point in time. Let e = (elt, est) be the epoch of this broadcast.

In Game 10, a corrupted party performs this broadcast by sending pid to Fmat.
The simulator (who had provided the pseudonymized graph G′ to Fmat before)
simulates Fmat, effectively sending pid to all parties P ′′ such that (P, P ′′) ∈ E′.
Note that due to the setup of E′ (see step 4 in Game 10 on p. 40), the receiving
side y of an edge (x, y) is never pseudonymized: If the receiver y is corrupted,
one applies pseudonymize′i, but pseudonymize′i is the identity map on corrupted
parties, and if the receiver y is honest, then pseudonymize′i is not applied. Thus,
the simulator S (simulating Fmat) will forward pid to all receivers specified in G′

(or G, respectively).
Corrupted parties P ′′ may react to this input in arbitrary ways, S simply

simulates the attacker to imitate this behaviour. Honest parties P ′ receiving such
a pid will store (pid, elt) (“Recording Broadcasts” on p. 14).

When the environment Z later (during the long term epochs e+ 1 through
e + 14) inputs (positive) to an honest, infected party P ′ who received pid, the
party P ′ will request a TAN from Fmed (simulated by S) and upload a list of
its received pidis (together with the tan) to the matching server. The simulator
S (simulating the matching server) will issue warnings to honest parties P ′′ as
described in the proof sketch of Proposition 7 (p. 39).

Warnings to corrupted parties are delivered as follows. If the pid matches a
pid that was generated from the upload of a corrupted party to the submission
server, the simulator has a record (P ′′,wid, t, . . .) ∈ R. The simulator will (upon
upload to the simulated matching server) add wid to the warning server’s listWL
allowing a corrupted to query for this warning. wid was uploaded by a corrupted
party, the environment will be aware of the wid and can test whether a warning

43

was generated by having an (arbitrary) corrupted party send (wid) to the warning
server.

In Game 11, when a corrupted party P broadcasts pid (by sending pid to
Fmat), the simulator will (in step 4) simulate Fmat. Note that in Game 11 FCT

leaks a more thoroughly pseudonymized graph G′ in comparison to Game 10
(step 4 step 5 of “Set Neighborhood/Infected” on p. 21). In particular, honest
parties receiving pids broadcasted by corrupted parties have an independent
pseudonym for each broadcast received, and an additional one for their own
broadcast.

Since corrupted parties are never pseudonymized the leaked graph G′ still
contains edges between two corrupted parties “in the clear”, so the simulator can
simulate Fmat for these edges as before.

For all honest receivers there are three cases: Either the pid was previously
uploaded by a corrupted party (handled in step 3), or the pid was previously
broadcast by an honest party (handled in step 5), or the pid is a new value which
is ignored by the simulator. (Note that case 3 is disjunct from cases 1 and 2 by
definition. If a corrupted party is able to upload a pid, that was chosen at random
as the broadcast of an honest party, this would violate the one-way property
of the used hash function, as the corrupted party has to find a sid′j such that

pid = H(sid′j). Vice versa, the pids for honest parties are chosen at random and
are only equal to previously uploaded pids with negligible probability. Hence, the
probability of cases 1 and 2 occurring at the same time is negligible for each PPT
Z. Additionally, observe that in case 2, the probability that the pid was assigned
to two distinct parties is negligible, because pids are chosen at random from an
exponentially large space, but the total number of pids assigned this way is only
polynomial.)

If the pid was uploaded by a corrupted party P2 for an epoch t = (tlt , tst)
(case 1), S will send (sendBroadcast , e, t, P, P2) to FCT, which will “copy” all
edges (P, x) ∈ E of the “real” contact graph to Êt, replacing P by P2. This will
cause FCT to generate a warning for P2 (regarding long-term epoch tlt) of an
encounter with any infected honest party that was in contact with P (in step
step 4 of “Handling Match Requests” on p. 22). This matches the behaviour in
Game 10 perfectly, so Z cannot distinguish Games 10 and 11 this way.

Regarding case 2, note that a corrupted party P is re-broadcasting a pid
which had previously been assigned to an honest user by S. In this case, the
simulator determines the epoch t = (tlt , tst) during which the pid was assigned,
the (pseudonym of) the honest party P1 who initially broadcasted pid, a corrupted
receiver P2 of the initial broadcast, and all targets P4 (in particular P ′) of the
current re-broadcast by the corrupted party P = P3. For each such party P4, the
simulator sends (relay , t, P1, P2, P3, P4) to FCT (step step 5 of “Broadcast from
Corrupted User”). FCT first maps the pseudonyms back to the actual parties
(step 2 of “Replay/Relay” on p. 22). (Again, note that corrupted parties are
not pseudonymized.) Then FCT checks if (P1, P2) ∈ Et. Note that this always is
the case, by the choice of P2 done by the simulator. Such a P2 has to exist, as
otherwise a pid would not have been assigned to the honest party. The choice of

44

P2 can be arbitrary, if multiple such parties exists, as this is the only occurrence
of P2 in the code of FCT.
FCT will then add (P1, P̂4) to Êt. When P ′ reports as infected later, FCT

will generate a warning for the original “owner” P1 of pid in step 4 of “Handling
Match Requests” (p. 22).

Observe that a corrupted party P1 might broadcast a pid in epoch t1 before
the corresponding (sid, seed) tuple is uploaded. In this case, once (sid, seed) are
uploaded, let P2 by the party chosen by S in step 7 of “Upload from Corrupted
User”, and let t2 be the (short-term) epoch for which pid was uploaded. In this
case, S will call (sendBroadcast , t1, t2, P1, P2) when the upload happens, again
causing FCT to add corresponding edges to Êt2 , see step 8 of “Upload from
Corrupted User” on p. 33.

When Z later inputs (query, tlt) to the party P1, the functionality FCT will
respond with 1, since (P1, tlt) has been added to WP.

The environment could try to detect the lack of the corresponding wid on
the warning server by having a corrupted party query for the wid. In Game 11,
the environment Z’s chance of receiving a warning for a wid not uploaded by a
corrupted user is 0. However, even in Game 10, honest users’ wids are perfectly
hidden from the environment (since the pids are chosen uniformly at random
and independently from the wids), so the environment’s chance of finding a wid
not uploaded by a corrupted user but being present on the warning server is
negligible. Hence, any PPT environment’s chance of distinguishing Games 10
and 11 in this way is negligible.

Observe that in both case 1 and 2 the honest party directly communicates
with FCT and does not never attempts to communicate with Fmed. Therefore
the simulator does not need to simulate Fmed when invoked by an honest party
and the leakage of Pinfected ∩Pcorrupted instead of Pinfected (step 6 of “Set Neigh-
borhood/Infected”, p. 22) is sufficient for the simulator.

In summary, all PPT environment Z have only negligible probability in
distinguishing Games 10 and 11 in cases 1 and 2. In case 3, the broadcast has no
effect neither in Game 10, nor in Game 11, hence the games are indistinguishable
in this case, too.

Game 12 (Ideal Experiment). Freg is removed from the game. Its function-
ality is replaced by adding “Register a Party” (p. 32) to S. The simulator no
longer aborts when generating a new tan that is already contained in Tcorrupted .
Observe that, after these changes, the game is identical to the ideal experiment.

Proposition 11. For each PPT environment Z the probability of distinguishing
Games 11 and 12 is negligible.

Proof (Proof Sketch). Removing Freg is indistinguishable for Z, since the simula-
tor’s “Register a Party” emulates its functionality exactly.

Since tans are chosen uniformly at random from an exponentially large space,
the probability of a tan being selected twice is negligible, since a PPT environment
Z can only cause polynomially many tans to be generated. Hence, the probability

45

of an abort in Game 11 was negligible. Removing this abort condition hence only
gives at most a negligible advantage in distinguishing Games 11 and 12.

Combining Propositions 1 through 11 shows that the real experiment and the
ideal experiment are computationally indistinguishable for any PPT distinguisher
Z. ut

B Definitions

We define the syntax and correctness for rerandomizable encryption ΣR =
(GenR,EncR,DecR,ReRand) in the following way.

Definition 1 (Rerandomizable PKE ΣR [PR07]).

– GenR is a randomized algorithm which outputs a public key pk and a corre-
sponding secret key sk.

– EncR is a randomized encryption algorithm which takes a plaintext m ∈M
and a public key and outputs a ciphertext.

– ReRand is a randomized algorithm which takes a ciphertext a outputs another
ciphertext.

– DecR is a deterministic decryption algorithm which takes a private key and a
ciphertext, and outputs either a plaintext or an error indicator ⊥.

For the property of correctness to hold we require ΣR to satisfy the following
conditions.

Definition 2 (Correctness of ΣR [PR07]).

– ∀m ∈M : DecR(sk,EncR(pk,m)) = m
– For every independently chosen (pk′, sk′)← GenR, the sets of honest generated

ciphertexts under pk and pk′ are disjoint, with overwhelming probability over
the randomness of GenR.

– For every plaintext m and every (honestly generated) ciphertext c← EncR(pk,m),
the distribution of ReRand(c) is identical to that of EncR(pk,m).

– For every (purported) ciphertext c and every c′ ← ReRand(c), we must have
DecR(sk, c′) = DecR(sk, c)

To fulfil the second correctness property, one can include the public key in all
ciphertexts and copy/check it during rerandomization/decryption. This ensures
that a ciphertext can only be decrypted under at most one key pair.

Definition 3 (Pseudorandom Generator PRG). Let l be a polynomial and
let G be a deterministic polynomial-time algorithm such that for any n and any
input s ∈ {0, 1}n the result G(s) is a string of length l(n). We say that G is a
pseudorandom generator if the following condition hold:

1. Expansion: For every n it holds that l(n) > n

46

2. Pseudorandomness: For any PPT algorithm D, there is a negligible func-
tion negl such that

|Pr[D(G(s)) = 1]− Pr[D(r) = 1]| ≤ negl(n)

where the first probability is taken over uniform choice of s ∈ {0, 1}n and the
randomness of D, and the second probability is taken over uniform choice of
r ∈ {0, 1}l(n) and the randomness of D.

A periodic n-time anonymous authentication is a scheme Σtok where users U
obtain e-token dispensers from the issuer I, in our case the registration server, and
each dispenser may only issue up to n anonymous and unlinkable e-tokens. For
more than n e-tokens a user is required to obtain a fresh dispenser. A designated
verifier V, in our case the submission server, is then able to verify each e-token.
As each user is allowed to upload only once a day the number of dispensable
tokens is set to n = 1, in which case the scheme from [CHK+06] solves exactly
the problem from [DDP06]. Nevertheless we decided to use the terminology from
[CHK+06] for the sake of generality. In the following we show a slightly simplified
version of the fully fledged definition from [CHK+06] as we do not require all of
the features.

Definition 4 (Periodic n-time Anonymous Authentication [CHK+06]).

– GenI(1k) is the key generation algorithm of the e-token issuer I. It outputs
a key pair (pkI , skI).

– GenU creates the user’s key pair (pkU , skU) analogously.
– Obtain(U(pkI , skU , n), I(pkU , skI , n)) is a protocol between a user U and an

issuer I. At the end of this protocol, the user U obtains an e-token dispenser
D, usable n times per time period.

– Show(U(D, pkI , t, n),V(pkI , t, n)) is a protocol between a user U and a verifier
V. The verifier outputs a token serial number (TSN) S and a transcript τ .
The user’s output is an updated e-token dispenser D′.

– Identify(pkI , S, τ, τ
′). Given two records (S, τ) and (S, τ ′) output by honest

verifiers in the Show protocol, where τ 6= τ ′, computes a value sU that can
identify the owner of the dispenser D that generated the TSN S.

There are several properties that an e-token dispenser Σtok is required to satisfy.
Again we will state the simplified variant that applies to our setting with a single
verifier V instead of multiple.

Definition 5 (Soundness of Σtok [CHK+06]). Given a honest issuer I, a
honest verifier is guaranteed that it will not accept more than n e-tokens from a
single e-token dispenser in a single time period. Let E be a knowledge extractor
that executes u Obtain protocols with all adversarial users and produces functions,
f1, · · · , fu with fi : T × I → S, where I is the index set [0, · · · , n − 1], T is the
domain of the time period identifiers and S is the domain of TSN’s. Running
through all j ∈ I, fi(t, j) produces all n TSNs for dispenser i at time t ∈ T.

We require that for every adversary the probability that an honest verifier will
accept S as a TSN of a Show protocol executed in time period t, where S 6= fi(t, j),
∀1 ≤ i ≤ u and ∀0 ≤ j < n is negligible.

47

Definition 6 (Identification of Σtok [CHK+06]). There exists an efficient
function φ with the following property.

Suppose the issuer and verifiers V1,V2 are honest. If V1 outputs (S, τ) and V2
outputs (S, τ ′) as the result of Show protocols, then Identify(pkI , S, τ, τ

′) outputs
a value sU , such that φ(sU) = pkU , the violator’s public key.

By saying that a user has reused an e-token, we mean that there exists (S, τ), (S, τ ′)
that are both output by honest verifiers.

Definition 7 (Anonymity of Σtok [CHK+06]). The adversary, acting as
the issuer, may run many Obtain with many honest users. Then this adversary
may invoke Show protocols with users of his choice, up to n times per time period
with the same user. The adversary should not be able to distinguish whether he
is indeed interacting with real users or with simulator S that predents to be real
users without knowing anything about them, including which users it is supposed
to be at any point in time, and without access to any secret or public key, or the
user’s e-token dispenser D.

C Security Extensions

C.1 Using Secret Sharing to Enforce a Lower Bound on Contact
Time

The DP3T document [T+20] proposes splitting the broadcasted identifiers with a
secret sharing scheme to ensure that malicious users cannot record identifiers that
they observe for less than a specified period of time (e.g. 15 minutes). However,
it does not specify how one would rotate such shared identifiers if one wishes
to switch to the next public identifier. Just stopping with one set of shares and
starting the next set of shares (of a different public identifier) would prevent
recording of contact if the contact happens during such an identity rotation.

To solve this issue, we propose to broadcast multiple public identities in
parallel with overlapping intervals. As an example we could use a 15-out-of-30
secret sharing scheme and always broadcast two identities, in such a way that
the new identity starts to be broadcast when the last identity has already had
15 shares broadcast. That way every contiguous interval of 15 minutes contains
enough shares of one identity to be able to reconstruct the identity.

Additionally, care has to be taken that an observer needs to know which
beacons belong to the same shared identifier, in order to choose the right shares
to combine.

A per-identity marker can be incorporated into the payload. It needs to be long
enough to make local collisions unlikely. In this situation the Bluetooth hardware
address should be rotated once per beacon to not provide any unnecessary
linkability between multiple identities.

Note that, due to the security of the secret sharing scheme, observing a
public identity requires being in proximity to the user’s device for approximately
15 minutes. This restrains the attacker’s ability to observe public identities at
specific times and places in the first place.

48

C.2 Broadcast Timing Side Channel

If the application sends broadcasts in strict, exact intervals, an attacker might
be able to link the two public identities by observing the offset of the broadcast
times to her own clock. For example, if an application sends a broadcast in
exact intervals of one minute and the attacker can observe that one device is
continuously broadcasting whenever the attacker’s clock is 10 seconds into the
current minute, the attacker may be able to link several broadcasts to the same
device even if the public identities being broadcast have changed in between. This
may be used to link public identities both if they are used in direct succession,
and if the attacker did not observe any broadcasts for a longer period of time.

To mitigate this attack, we propose to add random jitter to the starting
point for broadcasting identities. When applying jitter, care has to be taken to
add a few more shares to each identity to still ensure that the identity can be
reconstructed from any 15 minute interval. When broadcasting the identity as a
single beacon the jitter adds uncertainty to the observed exposure times.

When applying relative jitter, one can think of the jitter as a random pause
time between broadcasting identities. The user would start to send identity pidi

at i · δ +
∑i

j=0∆j . This way the jitter accumulates over time, and after a long
enough period without observation the starting point for broadcasting identities
will appear to be random.

As an example, consider 15-out-of-45 secret sharing, with every share being
broadcast in 1-minute intervals. When a broadcast is started a random time
between 15 and 30 minutes is chosen uniformly at random and after this delay the
next ID-broadcast is started. Note that with this change two or three identities
are being used simultaneously at every point in time. This ensures that in any
15 minute interval there is at least one public identifier broadcast completely
covering the interval. Additionally this jitter accumulates very quickly to destroy
the linkability of different broadcasted IDs.

D Our Formal Security Notion with Passive Server
Corruptions

In this section, we give a version of FCT(P, Pmat) which specifies the security
guarantees when server corruptions are allowed. All changes to the FCT in the
main body are in red. A strengthened simulator for this more refined security
notion is given in Appendix E.

FCT(P, Pmat)

State:
– Current epoch (elt, est) ∈ N× Z96 =: I.
– Set of corrupted parties Pcorrupted .
– Set of honest parties Phonest = P \ Pcorrupted .

49

– A sequence (Pinfected,i)i∈I of sets of infected parties, i.e. the history of
infected parties.

– Set of currently infected parties Pinfected

– A sequence of all contact graphs so-far (Gi = (Pi, Ei))i∈I , i.e. the global
meeting history.

– Current contact graph G = (P, E) = G(elt,est) and its pseudonymized
version G′ = (Q, E′)

– Parties at risk WP ⊆ P × N, which signifies which parties have encoun-
tered a positive participant (that generated a warning) in the last 14
long-term epochs and during which long-term epochs the encounters
took place.

– A sequence of edge sets (Êi)i∈I on Pi which does some bookkeeping
necessary to know who is to be warned. Let Ê be the edge set of the
current epoch.

Set Neighborhood/Infected:

1. Receive a contact graph G = (P, E) and a set of infected parties Pinfected

from party Pmat.

2. If the submission server or the warning server is corrupted and est =
0, select a random, injective mapping lt-pseudonymizeelt : Phonest →
{0, 1}2n. Extend it by lt-pseudonymizeelt(P) = P for all P ∈ Pcorrupted .

3. Add G to the global meeting history, and Pinfected to the history of
infected parties.

4. Set E′ = {(P0, P1) ∈ E | P0 ∈ Pcorrupted ∨ P1 ∈ Pcorrupted}.
5. For all α = (P0, P1) ∈ E′ with P0 ∈ Pcorrupted , P1 ∈ Phonest , replace α

with α′ = (P0, α).

6. Select a random, injective mapping pseudonymizei : Phonest ∪
(P × P) → {0, 1}2n where i = (elt, est). Extend it by
pseudonymizei(P) = P for all P ∈ Pcorrupted . Set E′ :=
{(pseudonymizei(x),pseudonymizei(y)) : (x, y) ∈ E′}, i.e. rename all
nodes in E′. Let Q be the set of nodes used in the set of edges E′.

7. Leak (Q, E′),Pinfected ∩ Pcorrupted to the adversary.

8. If the submission server is corrupted, or if both the
matching and the warning server are corrupted, leak
{(lt-pseudonymizeelt(x),pseudonymizei(x)) | x ∈ Phonest} to the
adversary.

9. Let Ê := (Phonest × Phonest) ∩ E.

10. Increment est (in Z96).

11. If est = 0 then increment elt and delete all (P, t) pairs from WP where
0 ≤ t ≤ elt − 14.

Send Broadcast:

1. Receive and ignore (sendBroadcast) from a participant P .

50

Broadcasts From Corrupted User:
1. Receive (sendBroadcast , t1, t2, P1, P2) from the adversary, with t1, t2 ∈

[elt− 14, elt]×Z96, P1, P2 ∈ Pcorrupted (with the meaning that P1 broad-
casts in the name of (i.e. the pids registered by) P2).

2. For each (P1, x) ∈ Et1 , add edge (P2, x) to Êt2 .

Replay/Relay:
1. Receive (relay , t, P ′1, P

′
2, P

′
3, P

′
4) from the adversary, where P ′1 ∈

pseudonymize(P), P ′2, P
′
3 ∈ Pcorrupted , P ′4 ∈ pseudonymize(Pcorrupted ×

Phonest).
2. Let Pj := pseudonymize−1i (P ′j) for j = 1, 2, 3, 4. (Note that P2 = P ′2,
P3 = P ′3.)

3. If (P1, P2) ∈ Et or if the submission server or the matching server
is corrupted, and, (P ′3, P

′
4) ∈ E′, let P̂4 ∈ P be the node such that

P4 = (P3, P̂4), and add the new edge (P1, P̂4) to Êt.

Handling Match Requests:
1. Receive (positive) from party P .
2. If P ∈ Pcorrupted , skip to step 9.
3. If P /∈ Pinfected , return. Otherwise, continue:
4. Let R := N∩ [elt− 14, elt). For each epoch i ∈ R×Z96 (the relevant time

period), determine the set ∆WPi (new parties at risk) of nodes P ′ such
that (P ′, P) ∈ Êi.

5. If the matching server is corrupted, then: For each epoch i ∈ R × Z96,
send pseudonymizei(P

′) of nodes P ′ ∈ ∆WPi to S.
6. If the matching server is corrupted, S is given the opportunity to replace

(for all i ∈ R×Z96 together) ∆WPi with Si as described in step 9 below.
If this happens, set ∆WPi = pseudonymize−1i (Si) as the set of parties
that will be warned for the current epoch.

7. If the warning server is (passively) corrupted, then: For each epoch e ∈ R,
send lt-pseudonymizee(P

′) of nodes P ′ ∈ ∆WP(e,i) for all i ∈ Z96 to S.
8. Skip to step 10.
9. Let lastInfected lt := max{i ∈ N : ∃j ∈ Z96, such that P ∈ Pinfected,(i,j)}.

(Let lastInfected lt := −∞ if this set is empty.) Let R := N ∩
[elt − 14, elt) ∩ [0, lastInfected lt]. Send (forceWarning) to the adver-
sary, asking for subsets Si of (the pseudonyms of) uncorrupted
parties which have been in proximity to a corrupted party dur-
ing epochs in R, i.e. Si ⊆ {q ∈ pseudonymizei(Phonest) | ∃q′ ∈
Pcorrupted where (pseudonymize−1i (q), q′) ∈ Ei}. If the submission or
the matching server are corrupted, Si can contain any honest party. Af-
ter the response, set ∆WPi = pseudonymize−1i (Si) as the set of parties
that will be warned for the current epoch.

10. For each i = (ilt , ist) ∈ R× Z96, add {(P ′, ilt) | P ′ ∈ ∆WPi} to the list
of active warnings WP.

51

Handling Warning Query:
1. Receive (query , t) from party P
2. If the warning server is corrupted, and P ∈ Phonest , send

(query , lt-pseudonymizet(P)) to S.
3. Return 1 if (P, t) ∈ WP, otherwise return 0.

E Adapted Simulator for Passive Server Corruptions

The pseudocode given in this section demonstrates that our protocol fulfills the
security notion given above. The differences to the simulator given in the main
version of this work are shown in red. They show how the additional information
the attacker can obtain by passively corrupting the servers affects the simulation.

Simulator S
State:
– Short term epoch est ∈ Z96 and long term epoch elt ∈ N. We write e for

(elt, est).
– Set of corrupted parties Pcorrupted .
– Set of infected corrupted parties (Pinfected)i.
– A sequence of all pseudonymized contact graphs so-far (G′i = (Qi, E

′
i))i,

i.e. a pseudonymized meeting history from the point of view of the
adversary.

– Current pseudonymized contact graph G′ = (Q, E′) = G′(elt,est).

– ListWL of active of warnings (wid, t) from corrupted parties to corrupted
parties.

– Issuer key pair for token dispensers (skI , pkI).
– The key pair (skW , pkW) of the simulated warning server.
– Set R, which records the information exchanged between corrupted par-

ties and the simulated parties by storing tuples (P,wid, elt, pid1, . . . pid96).
– A set H of tuples (pid, P, t) indicating broadcasts by corrupted parties.
– Tuple (L, t) which represents the current pending match request.
– A set Tcorrupted of tuples (tan, t, P) consisting of TANs, the day during

which each tan was generated and the party which requested it.
– In case the submission server is corrupted: A set Ψ of tuples

(pseudonym, t, pid)
– In case the warning server is corrupted: A set Φ of tuples

(lt-pseudonomizee(P),wid) for P ∈ Phonest , and long-term epochs e
and random warning ids wid.

Register a Party:
1. Upon (register , pkU) from P ∈ Pcorrupted for Freg.
2. Issue a new token dispenser for P like Freg does.

52

Next Epoch:
1. Upon receiving ((Q, E′),P ′infected) from FCT replace the current contact

graph and add it to the history of pseudonymized contact graphs.
2. If the submission server is corrupted, or if both the match-

ing and the warning server are corrupted, then: upon receiv-
ing {(lt-pseudonymizeelt(x),pseudonymizei(x)) | x ∈ Phonest}. If
est is 0, then for each pseudonym in the set generate a ran-
dom wid, sid = EncpkW (wid) and a random seed seed. Insert
(pseudonym,wid) into Φ (this will only be used, if the warning server
is corrupted). Generate {(sid′j , pidj)}j∈[1,··· ,96] with the help of seed.
Store (pseudonym, (elt, j), pidj) in Ψ . If the submission server is cor-
rupted, use the corresponding token dispenser to participate as U in
Show(U(D, pkI , elt, 1),V(pkI , elt, 1)) with the adversary acting as sub-
mission server and send (seed, sid) to the adversary acting as submission
server.

3. If the submission server and the matching server are honest, then, for
each honest node q ∈ Q, assign a fresh pid = H(x), where x is a random
element x ∈ C from the ciphertext space of ΣR. If the same pid is assigned
to two distinct nodes q 6= q′, abort. Otherwise, if the submission server is
corrupted look up the corresponding pid in Ψ and assign it to the honest
node q ∈ Q.
If the matching server is corrupted, but the submission and warning server
are honest, generate random ciphertexts sid (namely, draw a random wid
and encrypt it under the warning server’s public key pkW), send (sid, pid)
and elt as coming from the submission server to the adversary acting as
matching server, and assign pid = H(sid) to all honest nodes q ∈ Q.

4. Increment est (in Z96).
5. If est = 0 then increment elt and remove all entries (wid, t) from WL

where t ≤ elt − 14. In this case, send (newLongTermEpoch) to any
corrupted servers and then to all corrupted parties.

6. For each edge (P1, P2) ∈ E′, where P1 ∈ Phonest and P2 ∈ Pcorrupted ,
send the pid assigned to P1 to P2 on behalf of Fmat.

Upload from Corrupted User:
1. When P ∈ Pcorrupted wants to show a token, act as V and verify the

token.
2. If the token is correct (and not reused) receive (seed, sid) from P ∈
Pcorrupted for the Submission Server.

3. Compute sid′ and pid1, . . . , pid96 as prescribed by the protocol based on
sid, seed.

4. If any of pid1, . . . , pid96 is already assigned to an honest node, abort the
simulation.

5. Compute wid := Dec(skW , sid).
6. If there is a P ′ s.t. (P ′,wid, elt, pid1, . . . , pid96) ∈ R, return.

53

7. Otherwise, choose P ′ ∈ Pcorrupted with (P ′, ·, elt, ·, . . . , ·) 6∈ R. If such a
P ′ does not exist, abort the simulation.

8. For each (pid, P ′′, t) ∈ H, with pid = pidi (for an i ∈ Z96) send
(sendBroadcast , t, (elt, i), P

′′, P ′)

9. Store (P ′,wid, elt, pid1, . . . , pid96) in R.

Broadcast from Corrupted User:

1. Upon receiving (pid) from a participant P ∈ Pcorrupted for Fmat.

2. Insert (pid, P, e) into H.

3. For each (P2, ·, t, . . . , pidi = pid, . . .) ∈ R, send
(sendBroadcast , e, (t, i), P, P2) to FCT.

4. Determine the set of receivers of this broadcast, i.e. the set of corrupted
parties P ′ ∈ Pcorrupted such that (P, P ′) ∈ G′. For each such P ′ send
(pid) to P ′ as coming from Fmat.

5. Look up if one of the nodes in one of the G′i (or G′) was assigned pid.
If so, let P1 be the node, P2 be an arbitrary corrupted receiver of the
broadcast from P1 (If the submission server or the matching server is
corrupted, P2 does not have to exist, in that case choose P2 = P),
P3 = P , t be the corresponding epoch of G′i (or G′). For each target P4,
send (relay, t, P1, P2, P3, P4) to FCT.

Warning Request from Corrupted User:

1. Upon receiving (warningRequest) from P ∈ Pinfected (elt,est)
∩ Pcorrupted

for Fmed.

2. Generate a TAN tan ←$ {0, 1}2n.

3. If the matching server is corrupted, send (H(tan)) as coming from Fmed

to the adversary acting as matching server.

4. Add (tan, elt, P) to the list of valid tans Tcorrupted .

5. Send tan to P from Fmed.

Handle Match Request for Honest Parties:

1. Upon receiving {P ′} from FCT (which will only happen, if the matching
server is corrupted).

2. For {P ′} look up the corresponding {pid} in Q
3. Generate a TAN tan ←$ {0, 1}2n.

4. Insert tan into Thonest
5. Send (H(tan)) as coming from Fmed to the adversary acting as matching

server.

6. Send ({pid}, tan) (as coming from an anonymous channel) to the adver-
sary acting as matching server.

7. Remove tan from Thonest

54

Handle Match Request for Corrupted Parties:
1. Upon receiving (L, tan) from an arbitrary corrupted party for the Match-

ing Server, where L is a finite set of public identifiers.
2. Look up an entry (tan, t, P ′) ∈ Tcorrupted to find t and P ′.
3. Lookup up tan in Thonest . If it exists, remove it from Thonest and continue

with P ′ = ⊥, t = elt
4. If there is no entry (neither in Tcorrupted nor in Thonest), ignore the

request.
5. For each pid ∈ L try looking up pid inR. For each match with correspond-

ing warning identifier wid and long-term epoch t′, where elt−14 ≤ t′ ≤ t,
mark wid as at-risk by inserting (wid, t′) into WL. If the warning server
is corrupted, send {EncpkW (wid)} to the warning server.

6. Store (L, t) in the state.
7. If P ′ = ⊥ skip to step 11
8. Remove (tan, t, P ′) from Tcorrupted .
9. Send (positive) to FCT from P ′.

10. Skip to after step 11
11. Resume the waiting FCT so that it asks for forceWarning .

Handle Match Request for Warning Server:
1. Upon receiving {Pi} from FCT (which will only happen, if the warning

server is corrupted).
2. Look up (Pi,widi) in Φ. If the submission server is honest, it may be that

such an entry does not exist for Pi. In this case, generate widi uniformly
at random and insert it into Φ.

3. Send {EncpkW (widi)} to the warning server

Force a Warning:
1. Upon receiving (forceWarning) from FCT.
2. Find the corresponding set L which the corrupted party was trying to

send to the matching server and epoch t in the state.
3. Let R := N ∩ [elt − 14, elt) ∩ [0, t].
4. Let Si := ∅ for i ∈ R× Z96.
5. For each pid ∈ L: Search the graphs G′i (for i ∈ R × Z96) for a node q

labeled pid. If a node is found in graph G′i, insert q into Si.
6. Send the sets Si back to FCT.

Warning Query from Corrupted User:
1. Upon receiving (wid) from a participant P ∈ Pcorrupted for the Warning

Server.
2. If there is a t s.t. (wid, t) is in WL, return 1.
3. Else, for each (P ′, t′) with (P ′,wid, t′, ·, · · ·) ∈ R, send (query, t′) from

party P ′ to FCT, compute the logical or of all the replies from FCT to
P ′, and return the result to P .

4. If wid is neither in WL nor in R, return 0.

55

Warning Query Answer:
1. Upon receiving (query , lt-pseudonymizet(P)) from FCT (which will only

happen, if the warning server is corrupted).
2. Look up (lt-pseudonymizet(P),wid) in Φ and send wid to the warning

server.

56

	ConTra Corona: Contact Tracing against the Coronavirus by Bridging the Centralized–Decentralized Divide for Stronger Privacy This article is based on an earlier article: asiacrypt/BeskorovajnovDHKMS21, © IACR 2021 "426830A DOI"526930B . An extended abstract of this work appeared in mci/BeskorovajnovDHKMS21.

