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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

Manufacturers of high-precision products are facing 
growing pressure to reduce costs while producing at 
technological limits. This development is due to increased 
competition in global markets and a cross-industry rise in the 
demand for high-precision products [1-3] The required quality 
can often only be achieved by setting very tight tolerances for 
the individual components of the final product [3,4]. However, 
consistently producing those components within said tolerances 
is almost impossible with existing technological processes. 
Therefore, manufacturing deviations occur and result in non-
conforming components, which are either declared as scrap or 
reworked at additional time and cost. Furthermore, the 
combination of two or more conforming components can lead 
to a non-functional product, when the assembled components 
are close to their specification limits. [3-5] 

To avoid non-conforming components and enable the 
economical production of high-precision products from lower-
precision components, organizational approaches such as 
selective assembly or adaptive manufacturing exist. The basic 
idea of these advanced quality control strategies is the proactive 
avoidance of the aforementioned, unfavorable combinations by 
pairing counteracting components based on their measured 
features. [3,4,6] 

In global production networks (GPNs) however, the 
responsibility for maintaining tight tolerances is often passed 
on to the supplier. Additionally, quality control strategies 
cannot be applied across companies, often not even within the 
companies’ own production network, because of (measuring) 
data not being shared [1,6,7]. By means of supply chain 
collaboration, these unnecessary inefficiencies and costs can be 
reduced through a higher level of transparency by exchanging 
data and information within the GPN [2,8,9]. 
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reworked at additional time and cost. Furthermore, the 
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To avoid non-conforming components and enable the 
economical production of high-precision products from lower-
precision components, organizational approaches such as 
selective assembly or adaptive manufacturing exist. The basic 
idea of these advanced quality control strategies is the proactive 
avoidance of the aforementioned, unfavorable combinations by 
pairing counteracting components based on their measured 
features. [3,4,6] 

In global production networks (GPNs) however, the 
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on to the supplier. Additionally, quality control strategies 
cannot be applied across companies, often not even within the 
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The goal of this article is to introduce a new quality control 
strategy, named batch allocation, for the production of high-
precision products in global production networks. In this novel 
strategy, batches of different components are paired based on 
the statistical distributions of their quality-critical features 
before entering final assembly. 

Although the presented approach is enabled by a high degree 
of transparency within a successfully instated collaboration, the 
establishment of supply chain collaboration is outside of the 
scope of the article. However, the associated cost savings can 
be used to design incentives to steer existing supply chain 
partners towards a collaborative relationship for instance by 
compensating the supplier for additional measuring efforts 
[10,11]. 

2. State of the art 

The benefits of transparency and collaboration in GPNs 
have already been studied and demonstrated intensively in 
theory, especially for the so-called bullwhip effect [8,9,12-15]. 
Although industry solutions and platforms to implement 
collaboration and transparency exist [16-18], a low degree of 
collaboration in supply chain relationships can still be 
observed, and silo mentality prevails [19]. Reasons for this are 
chiefly a lack of trust or the fear of losing know-how and 
control [19,20]. Nonetheless, scholars are focusing on 
developing approaches to successfully initiate and maintain 
collaborative relationships [10,11]. However, there is no 
existing approach to improve the product quality of high-
precision products in GPNs by exchanging production data in 
a collaborative relationship. 

In literature, there are numerous approaches for managing 
quality and reducing scrap in the production of high-precision 
products with the help of quality control strategies (see e.g. [3-
5,21-34]). An overview of possible quality control strategies 
can be found in [4], which has been extended by [5]. Based on 
Fig.1, these strategies will be discussed in detail. 

 

Fig. 1. Overview of existing quality control strategies illustrated as quality 
control loops in production [4,5]. 

By categorizing the different strategies, a distinction can be 
made for both manufacturing (machining) and assembly 
strategies according to the degree of individualization. Based 
on the data provided by inline measurement technology, 
assembly can either be selective or individual. In selective 
assembly, the components are paired based on their affiliation 
to previously defined feature classes [5,23,24]. Scholars 
researching selective assembly, primarily focus on heuristics 

for solving the class selection algorithm [23,31,35], finding the 
ideal number of classes [34,36], or reducing surplus parts 32. 

Considering the individual assembly, components that best 
match each other are paired based on their specific feature 
characteristics [5,26]. Individual assembly offers a much more 
accurate compensation of counteracting effects, but the 
requirements concerning data traceability and the pairing of 
components are correspondingly higher [4,5]. 

Extending the control loop to the manufacturing of 
components there are again two ways to intervene 
corresponding to the degree of individualization: statistically 
adaptive or individually [4,5]. In statistically adaptive 
manufacturing, the process parameters are manipulated so that 
the mean value and therefore the statistical distribution of a 
specific batch is shifted, e.g., to produce a specific feature class 
for selective assembly [36]. In individual manufacturing a 
component is made to fit its previously measured individual 
counterpart [5]. 

The main prerequisite for the quality control strategies 
mentioned before is the availability of the necessary 
measurement data and complete data traceability [4,5]. 
Additionally, integrating product knowledge into production is 
of utter importance [6]. This provides knowledge on how a set 
of specific quality critical features affects the functional 
performance of the product. In the approach of [6], this is done 
by developing a functional model, which predicts the product 
function before the end-of-line (EoL) functional test based on 
in-line measurement data [5,6]. Component pairing can also be 
performed based on geometric features [3,4,37]. However, the 
latter is only possible for non-complex functional 
dependencies, like the axial backlash of two components. [2-4, 
15, 17] 

By knowing the functional dependencies, the control loop 
can be extended again with respect to the product-production 
co-design, especially the adaptation of tolerances [5]. For 
example, by feeding back the knowledge from production to 
development and allowing the integrated quality controller to 
compensate counteracting parts, the tight geometrical 
tolerances of the components can be widened while still 
maintaining functionality of the end product [5,38]. 

Despite the massive amount of research conducted in the 
area of selective assembly and adaptive manufacturing and in 
the area of GPNs and supply chain collaboration, there is not a 
single approach concerning advanced, data-based quality 
control strategies in GPNs or supply chains. While approaches 
concerning quality management in GPNs or supplier quality 
management exist (see e.g. [8,14,37,39-45]), those approaches 
rather focus on detecting errors before delivery to the final 
customer or identifying and developing quality critical 
suppliers than on actively avoiding defects by pairing 
components based on shared supplier data. 

3. Research approach 

To overcome the limitations mentioned above, we present a 
novel method to improve the production quality of high-
precision products in GPNs based on both, supplier, and 
internal data. In section 3.1 the underlying principle of the 
newly developed quality control strategy will be explained. 
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Afterwards the method will be formalized and a mathematical 
approach for solving the associated optimizing problem is 
presented in section 3.2. 

3.1. Introducing batch allocation 

Due to process variations, it can be assumed that the 
characteristics of quality-critical features fluctuate to a certain 
extent, resulting in batch-specific distributions of the quality 
critical features. The idea of batch allocation is to match the 
available batches of corresponding components based on the 
batch-specific distribution of the component’s quality critical 
features and the resulting influence on the product function (see 
Fig. 2). 

 

Fig. 2. Pairing corresponding component batches based on the distribution of 
the resulting influence on the product function 

Batch allocation is understood as a quality control strategy 
within the logistics processes prior to the assembly of the 
components (see Fig. 3). It is supposed to be implemented 
additionally to other manufacturing or assembly strategies 
introduced in section 2. If, for example, an individual assembly 
strategy is already deployed for the assembly of two quality 
critical components A and B, batch allocation provides the best 
available batch of component A to compensate for 
manufacturing variations of a given batch of component B. 
Therefore, it optimizes the probability of finding the right 
match and reduces the probability of surplus parts. 
Nevertheless, batch allocation can also be implemented 
without any other quality control strategy, but the outcome 
might be only slightly better and not worth the effort. A batch-
specific adaptive manufacturing strategy of component A 
based on the shared measuring data of the batches of 
component B would be another example of combining batch 
allocation with existing quality control strategies. 

 

Fig. 3: Underlying principle of batch allocation: determine the sequence of 
given component batches to improve compensation possibilities 

The basic mechanism of batch allocation is comparable to 
the underlying principle of selective assembly strategies: The 
classes in selective assembly can be seen as mutually exclusive 
batches. However, in selective assembly, all classes are 
available simultaneously in the assembly line, whereas with 
batch allocation, the pairing takes place prior to assembly and 
only one batch of each component is used in assembly, 
reducing inventories at the line. 

3.2. Formalization of the batch allocation problem 

As stated before, the batch allocation is performed based on 
the batch-individual distribution of components characteristics 
and their predicted influence on the product’s function. 
Following [6] a functional model 𝑓𝑓𝑓𝑓𝑞𝑞𝑞𝑞(𝐱𝐱𝐱𝐱𝒋𝒋𝒋𝒋) is used to predict the 
product function in a functional test point 𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄𝑄𝑄, where 𝐱𝐱𝐱𝐱𝑗𝑗𝑗𝑗 is 
the feature vector of the measuring data 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  of the quality 
critical features 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 for a given observation 𝑗𝑗𝑗𝑗 ∈ 𝐽𝐽𝐽𝐽 [6]: 

𝑦𝑦𝑦𝑦�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗 = 𝑓𝑓𝑓𝑓𝑞𝑞𝑞𝑞�𝒙𝒙𝒙𝒙𝑗𝑗𝑗𝑗� (1) 

The functional influence of a specific quality critical feature 
𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 can be identified by computing the sensitivity coefficient 
𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞,𝑖𝑖𝑖𝑖  as the partial derivative of the functional model of the 
functional test point 𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄𝑄𝑄 with respect to 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 [46]: 

𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞,𝑖𝑖𝑖𝑖 =  
𝜕𝜕𝜕𝜕𝑓𝑓𝑓𝑓𝑞𝑞𝑞𝑞
𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖

 
(2) 

The predicted influence of a complex component 𝐾𝐾𝐾𝐾  with 
more than one quality critical feature can be estimated by 
summing up the individual influences 𝑖𝑖𝑖𝑖 ∈ 𝐾𝐾𝐾𝐾 [46]: 

𝑓𝑓𝑓𝑓𝑞𝑞𝑞𝑞(𝒙𝒙𝒙𝒙𝐾𝐾𝐾𝐾,𝑗𝑗𝑗𝑗) ≈��𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 ∗ 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞,𝑖𝑖𝑖𝑖�
𝑖𝑖𝑖𝑖∈𝐾𝐾𝐾𝐾

 (3) 

To compare the functional influences of different 
components, the functional deviation of an observed 
component 𝐱𝐱𝐱𝐱𝐾𝐾𝐾𝐾,𝑗𝑗𝑗𝑗  from an ideal component is determined as 
follows, with µ𝑖𝑖𝑖𝑖  being the target value of a quality critical 
feature 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼: 

∆�𝑞𝑞𝑞𝑞(𝒙𝒙𝒙𝒙𝐾𝐾𝐾𝐾,𝑗𝑗𝑗𝑗) = ���𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − µ𝑖𝑖𝑖𝑖� ∗ 𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞,𝑖𝑖𝑖𝑖� = ∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐾𝐾𝐾𝐾
𝑖𝑖𝑖𝑖∈𝐾𝐾𝐾𝐾

 (4) 

For a given batch 𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 of component K interpreted as random 
variable, the probability mass function is defined as: 

𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡(∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐾𝐾𝐾𝐾) = 𝑃𝑃𝑃𝑃(𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 = ∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐾𝐾𝐾𝐾) (5) 

With C being the combination of component A and B, the 
probability mass function of the predicted functional deviation 
of the specific combination 𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 can be computed as  the 
convolution of the probability mass functions of 𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎 and 𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎 .  

𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐�∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐶𝐶𝐶𝐶� = 𝑃𝑃𝑃𝑃�𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 = ∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐶𝐶𝐶𝐶� (6) 
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                     = � 𝑃𝑃𝑃𝑃(𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎 = 𝑘𝑘𝑘𝑘)𝑃𝑃𝑃𝑃(𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎 = ∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐶𝐶𝐶𝐶 − 𝑘𝑘𝑘𝑘)
∞

𝑘𝑘𝑘𝑘=−∞

 

The objective of batch allocation is to optimize the quality 
of the product. High quality can be interpreted as a central and 
narrow distribution of the deviations from the functional target 
(see Fig. 4). Therefore, we propose to use the process capability 
index CpK of the EoL functional test, more specifically of the 
predicted resulting functional deviation of the component 
combination, in the objective function, for two reasons. First, 
the process capability index CpK, as being defined as the ratio 
of process limit proximity and tolerance range, considers the 
mean value and the standard deviation of a random variable. 
Second, quality managers can interpret the value based on their 
experience in statistical process control (SPC). 

 

Fig. 4. Illustration of the objective of the batch allocation optimization 
problem 

Hence, for a given set of batches n of each component, the 
objective function is to maximize the arithmetic mean of the 
process capability index CpK,q of all combinations over every 
possible permutation k in a functional test point 𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄𝑄𝑄: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥
𝑘𝑘𝑘𝑘=1…𝑛𝑛𝑛𝑛!
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𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾,𝑞𝑞𝑞𝑞 �𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐�∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐶𝐶𝐶𝐶�� = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
 

�
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑞𝑞𝑞𝑞 − 𝐸𝐸𝐸𝐸(𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐)

3�𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐)
;
𝐸𝐸𝐸𝐸(𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐) − 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑞𝑞𝑞𝑞

3�𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐)
� (8) 

In cases of multiple counteracting functional test points, a 
conflict of objectives arises. We propose to use a weighted sum 
approach to solve the conflict of objectives. The weights are 
computed as the relative proportion of the product being 
rejected in the specific functional test point regarding all rejects 
in the EoL functional test. Hence, the objective function for 
optimizing the batch allocation problem is defined as: 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑥𝑥𝑥𝑥
𝑘𝑘𝑘𝑘=1…𝑛𝑛𝑛𝑛!
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𝑛𝑛𝑛𝑛

𝑐𝑐𝑐𝑐=1

�𝑝𝑝𝑝𝑝𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐�∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐶𝐶𝐶𝐶��
𝑞𝑞𝑞𝑞∈𝑄𝑄𝑄𝑄

 (9) 

 
The batch allocation problem can be solved in multiple 

ways. Depending on the number of batches taken into account 
for each component, it can be either solved by comparing all 
possible combinations (brute-force) or by using genetic 

algorithms, particle swarm optimization or other heuristics to 
cope with the high complexity. 

Table 1. Nomenclature of the variables used. 

Nomenclature 
 
𝑓𝑓𝑓𝑓𝑞𝑞𝑞𝑞(𝐱𝐱𝐱𝐱𝑗𝑗𝑗𝑗) Functional model to predict the product 

function in a functional test point 𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄𝑄𝑄 
𝐱𝐱𝐱𝐱𝑗𝑗𝑗𝑗 Feature vector of the measuring data 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 for a 

given observation 𝑗𝑗𝑗𝑗 ∈ 𝐽𝐽𝐽𝐽 
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗  Measuring data of the quality critical features 

𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 for a given observation 𝑗𝑗𝑗𝑗 ∈ 𝐽𝐽𝐽𝐽  
𝐱𝐱𝐱𝐱 Feature vector of the quality critical features 

𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  
𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖  Quality critical features 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 
𝑐𝑐𝑐𝑐𝑞𝑞𝑞𝑞,𝑖𝑖𝑖𝑖 Sensitivity coefficient of quality critical 

feature 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 in the functional test point 𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄𝑄𝑄  
𝐱𝐱𝐱𝐱𝐾𝐾𝐾𝐾,𝑗𝑗𝑗𝑗 Feature vector of the measuring data 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 of the 

component-specific quality critical features for 
a given observation 𝑗𝑗𝑗𝑗 ∈ 𝐽𝐽𝐽𝐽 

𝑓𝑓𝑓𝑓𝑞𝑞𝑞𝑞(𝒙𝒙𝒙𝒙𝐾𝐾𝐾𝐾,𝑗𝑗𝑗𝑗) Predicted influence of a component 𝐾𝐾𝐾𝐾 with 
more than one quality critical feature 

∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐾𝐾𝐾𝐾 Functional deviation of an observed 
component 𝐱𝐱𝐱𝐱𝐾𝐾𝐾𝐾,𝑗𝑗𝑗𝑗 from an ideal component 

µ𝑖𝑖𝑖𝑖 Target value of a quality critical feature 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 
𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡(∆�𝑞𝑞𝑞𝑞,𝑗𝑗𝑗𝑗,𝐾𝐾𝐾𝐾) Probability mass function of given batch 𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 of 

component K interpreted as random variable 
𝐴𝐴𝐴𝐴𝑎𝑎𝑎𝑎 Given batch 𝑎𝑎𝑎𝑎 ∈ {1 …𝑛𝑛𝑛𝑛} of component A 
𝐵𝐵𝐵𝐵𝑎𝑎𝑎𝑎  Given batch 𝑏𝑏𝑏𝑏 ∈ {1 … 𝑛𝑛𝑛𝑛} of component B 
𝐶𝐶𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐 Resulting batch 𝑐𝑐𝑐𝑐 ∈ {1 … 𝑛𝑛𝑛𝑛} of the 

combination C of component A and B with c 
being the number of the object in the 
permutation 

𝑛𝑛𝑛𝑛 Number of observed batches for each 
component; also the number of objects in the 
permutation of a set of combinations C of the 
components A and B 

𝑘𝑘𝑘𝑘 Permutation of a set of combinations C of the 
components A and B with 𝑛𝑛𝑛𝑛! possible 
permutations 

𝐼𝐼𝐼𝐼 Set of quality critical features 
𝐽𝐽𝐽𝐽 Set of observations 
𝑄𝑄𝑄𝑄 Set of functional test points 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑞𝑞𝑞𝑞  Upper Specification Limit of the functional 

deviation in functional test point 𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄𝑄𝑄 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑞𝑞𝑞𝑞  Lower Specification Limit of the functional 

deviation in functional test point 𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄𝑄𝑄 
𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝𝐾𝐾𝐾𝐾,𝑞𝑞𝑞𝑞 Process capability index of the predicted 

resulting functional deviation of the 
component combination in functional test 
point 𝑞𝑞𝑞𝑞 ∈ 𝑄𝑄𝑄𝑄 

𝐸𝐸𝐸𝐸(𝑋𝑋𝑋𝑋) Expected value of a random variable X 
𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑋𝑋𝑋𝑋) Variance of a random variable X 
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4. Industrial use case 

This research work is based on the GPN for the production 
of injectors of a 1-tier automotive supplier (referred to as focal 
enterprise). Due to the high demands of injectors, production is 
subject to very tight geometrical manufacturing tolerances in 
the range of a few micrometers. Even small changes to quality-
critical features could result in non-compliance with the 
functional targets [47]. 

Fig. 5 provides a simplified overview of the injector 
production within the GPN. Two function-relevant components 
are considered. Component A is manufactured in-house, 
whereas component B is manufactured by a supplier. The 
batches of both components enter final assembly FIFO without 
batch allocation and Component B is joined without any 
selective assembly strategy (see 2). 

Specifically, it can be observed that components are 
declared as rejects after the EoL functional test at the supplier 
site due to very tight geometrical manufacturing tolerances. 
The observed scrap would normally not be observable from the 
focal enterprise's point of view. From the supplier's point of 
view, this means very high-quality costs and low delivery 
reliability, which in turn can be reflected on the focal 
enterprise's side in higher component prices and in costs due to 
production downtime, respectively. 

 

Fig. 5. Illustration of the process chain within the GPN of the industrial use 
case. 

By implementing batch allocation there is enormous 
potential for widening the specific component's tolerances so a 
large proportion of the rejects could be used without any loss 
of functionality of the injector. As this would enable the 
supplier to offer these parts at a lower price without any 
disadvantage, a win-win situation for the supplier and the focal 
enterprise arises. In addition, by implementing an individual 
assembly strategy with the corresponding injector components 
based on the shared component data, the focal enterprise's 
output can be increased further while reducing quality costs. 

Discrete event simulation studies conducted with 
Tecnomatix® Plant Simulation have shown a significant 
increase in the supplier's and focal enterprise’s first pass yield 
(FPY) resulting in potential cost savings of up to 2% of the 
injector's total cost for implementing batch allocation 
combined with the individual assembly of the corresponding 
component. However, only simple heuristics for allocating the 
batches have been used and fixed costs for implementing the 
quality strategies haven’t been taken into account, yet. 

5. Summary and outlook 

In this article, we introduced a novel approach to optimize 
the production quality of high-precision products in GPNs 
based on batch-specific predicted functional deviations. The 
novel quality control strategy batch allocation can use internal 
and supplier data to optimize the batch sequence of components 
entering assembly. As part of an industrial use case, the global 
production of high-precision injectors, we were able to perform 
first simulation studies, showing that a higher degree of 
transparency in supply chain collaboration yields a mutual 
benefit for the supplier and the focal enterprise by 
implementing batch allocation. 

In further studies, we aim at developing incentives based on 
the predicted cost savings of a higher degree of transparency to 
align interests towards a collaborative partnership by 
compensating the associated efforts of the supplier (e.g. costs 
for measuring and IT infrastructure). In the simulation study, 
we only used simple heuristics for solving the batch allocation 
problem. Hence, to further improve the results, solution 
algorithms used to find the ideal combination of classes in 
selective assembly problems will be analyzed to compute the 
ideal allocation of the available batches. 
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