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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract

Battery technology in combination with carbon-free energy presents a major paradigm shift for the future of the mobility and energy storage sector
and already creates an immense demand for large scale battery factories. However, current battery production sites still report considerable scrap
rates caused by insufficient process control and a lack of adequate production tolerances, which increase the cost and environmental impact of the
battery cells. The present work introduces a methodology which assist in defining model-based production tolerances by considering the impact
of varying process parameters on final cell properties in combination with production cost and cell revenue.
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1. Introduction

Electromobility is increasingly seen as a consistent strategy
towards reducing the contribution to climate change from the
transport sector. In this regard, the demand for battery cells
required is forecasted to increase from 282 GWh in 2020 to
2623 GWh in 2030, which can only be realized with a large
number of new battery cell factories [1]. The performance of
battery cells must continue to be improved and their production
cost must also be reduced to make battery-powered devices
marketable solutions. While the latter can be achieved through
large scale production and thus exploiting economies of scale,
the former can be achieved through innovative cell chemistry,
new cell formats and improvements in the production
process. The production process in particular still offers great
potential for improvement of battery cells, as it is a highly
complex system with heterogenous processes and numerous
cause-and-effect relations between process and structural
parameters along the process chain, many of which are not yet
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fully understood [2, 3]. In addition to the quantification of the
absolute influence of process parameters on the intermediate
product and the final battery cell performance, the influence
of the deviation of process parameters on the distribution of
structural parameters plays an important role. These distributed
structural parameters propagate along the process chain and
affect the final properties of the battery cells. Consequently,
when production tolerances for structural parameters can not
be fulfilled, intermediate or final products become scrap.
Currently, double-digit scrap rates for battery production are
reported which is also a direct consequence of insufficient
production precision for quality-critical processes [4]. While it
is evident that process capability for quality-critical processes
must be further improved, less critical processes might remain
unchanged if the production cost for improving precision
outweighs the benefit for the final quality of the battery cell.
When comparing the effects of production precision on the final
quality of the cells, the question arises as to how precisely the
individual processes must be set.

In the following, a methodology is presented which enables
model-based decision support for production tolerances by
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taking into account both production cost and the effects of
production on the final quality of the battery cell.

2. Technical background

2.1. Complexity of battery production

Battery cells are electrochemical energy storage systems.
The production process consists of a set of heterogenous
process steps which can be divided into electrode production,
cell assembly, and cell finishing (Figure 1). The production
chain combines processes from different backgrounds, such
as process, mechanical, and electrical engineering. While the
electrode production is mainly continuous, the cell assembly
and cell finishing are mainly discrete. The long process
chain exhibits a large amount of process parameters and
state variables for the machines (e.g. mixing intensity, foil
speed, temperature) as well as various structural parameters
and properties of the intermediate and final products (e.g.
porosity, coating thickness, energy density). The multitude of
heterogeneous influencing factors and the only recent history
for large scale applications causes that many effects along
the process chain are not fully discovered and understood
yet. Kwade et al. provide a comprehensive overview of the
current status and challenges for automotive battery production
technologies [2].
2.2. Quality improvement in battery production

A high product quality is a decisive aspect during each
production process and especially relevant for the automotive
battery production due to the high requirements towards their
performance and safety. Taguchi loss function suggest it should
be measured not by an acceptance rate but by the deviation
from a design target value since moving further away from the
design target means essentially a loss related to the product
[5]. The deviation in final product quality are caused i.e. by
the machine, the material, ambient conditions and the operator
[6]. Consequently, achieving higher product quality typically
requires more accurate machines, more skilled workers or
more controlled environments, all of which are associated with
higher production costs. Different qualitative and quantitative
approaches have been proposed to identify quality-critical
parameters in battery production. Westermeier introduced a
qualitative approach based on Failure Mode and Effect Analysis
which allows to identify cause-effect relations in complex
process chains such as battery production. The findings from
the qualitative insights can then be used as the basis for further
quantitative experiments [7].

In the last years, several data-based approaches were
published which help determine the quantitative impact of input
parameters on final cell properties. Schnell et al. compares
numerous data-mining methods (e.g. generalized linear model,
artificial neural networks, support vector regression) for the
prediction of final battery cell capacity before the formation
process [8]. Turetskyy et al. present a thorough concept on how
to acquire relevant data – both automated and manual data –
along the production line and then applies the Cross-industry
standard process for data mining (CRISP-DM) on the data
to rank the importance of different input parameters on final

cell properties [3]. Kirchhof et al. [9] and Kornas et al. [10]
further extend to the latest development in data-mining in
battery production by integrating both data analysis and expert
knowledge for ramp-up and production phase to improve fault
detection. While the above mentioned contributions focus on
the absolute impact of input parameters on final cell properties,
other works focus on the highly relevant aspect of deviating
process parameters, structural parameters and final battery cell
properties. Kornas and colleagues utilize process capability
indices for the identification of cause-effect relations and
desirability functions allowing for multi-criteria optimization
of different quality parameters. Further, Schnell et al. [8] and
Turetskyy et al. [11] introduce quality gate concepts in which
knowledge of the intermediate product features are used to
predict and – if necessary – alter the performance of future
battery cells.

Besides data-based approaches, there exist further
approaches based on mechanistic models of the production
processes and the battery cell. Thomitzek et al. [12] and
Schmidt et al. [13] describe a combined mechanistic process
chain simulation and pseudo-2-dimensional battery cell model
which is used to determine the impact of process parameter
deviations on battery cell properties. Other authors developed
a Coarse Gained Molecular Dynamics model to describe
the structure of the electrode and subsequently use a 3D,
respectively a 4D-resolved electrochemical performance model
at cell scale. This approach helps quantifying the effect of
particle assembly on battery performance with and without
including the production process [14, 15].

In conclusion, there exist a wide range of quality
management approaches which focus either on the absolute
impact of process/structural parameters on structural
parameters or battery cell properties. The importance of
parameter deviations has been addressed in a few data-based
and also mechanistical model-based approaches. While from
a product quality point of view, an ever higher production
process precision indeed can be a valid goal, the influence
of different deviating process parameters on the final battery
cell properties can vary immensely. When defining production
tolerances, those structural parameters need to be addressed
first which have a particular strong influence on the final
battery cell quality and/or can be implemented cost-effectively.
Altogether, there is a clear demand for a methodology which
enables a model-based identification of production tolerances
in battery production which considers both the necessary cost
and impact of more precise process parameters on final battery
cell properites.

3. Methodology

Model-based production tolerances can be identified when
the impact of the production precision can be related to the
fluctuation of battery cell properties. In addition, the impact of
decreasing or increasing production precision must be balanced
from both the manufacturing cost and the resulting battery cell
revenue (Figure 1).
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Fig. 1. Methodology for identification of production tolerances based on the
application of a manufacturing cost model and battery cell revenue model.

3.1. Process chain and battery cell model

In order to describe the influence of fluctuating process
parameters on battery cell properties, a combined process
chain and battery cell model is used, which was previously
presented in [12] and [13] (Figure 2). The process chain
model consists of different mechanistic process models, which
reflect the influence of process parameters of the machine on
the structural parameter of the intermediate/final product (e.g.
line load during calendering on coating thickness of coated
substrate). The result of the process chain model is a battery cell
characterized by structural parameters which serves as input for
the battery cell model. Thereafter, a three dimensional micro
structure model based on [16] first determines further effective
structural parameters (e.g. effective electric/ionic conductivity).
Subsequently, a pseudo-2-dimensional model is used on the
basis of these extended structural parameters to calculate
performance properties of the battery cell (e.g. energy density,
capacity). Since all models consider fluctuating parameters, the
effect of process inaccuracies on the structural parameters of the
intermediate products and further on the battery cell properties
can be regarded. The reference quantity of the combined
simulation approach is a single battery cell. Depending on
the resolution of the cell, either one or multiple values can
be considered to characterize the structure and the properties.
Using a simulative approach to describe the process-product
interdependencies provides a cost-effective solution to predict
the effects of production inaccuracies along the process chain
on the final battery cell properties.

Fig. 2. Combined process chain and battery cell model concept.

3.2. Manufacturing cost model

The manufacturing cost model examines each process of the
production chain individually and considers the precision of
the machine as a function of the investment and operational
machine cost (Figure 3). In general, it is assumed that a
more accurate machine, respectively a more accurate operation,
results in a higher overall machine costs (investment and
operation). The precision of the machine is described by the
standard deviation of the respective process parameter σPP,mach.
Different machines with different accuracies and cost (cmach)
can be considered for each process (Figure 3a). The machine
precision represents the base value for the process precision.
Besides the initial machine precision, also the operation of the
machine affects the precision of the process. In the following
three different factors (≥1) are examined which may decrease
the overall process precision. Each factor is multiplied to the
initial standard deviation σPP,mach,i, resulting in the final process
fluctuation σPP (Eq. 1).

First, the parameter design affects the precision of the
machine. Machines possess ideal design points where their
precision is highest (Figure 3b). Beyond these design points,
the precision of the machine might decrease. In addition, the
sensitivity around the selected process parameter affects the
overall machine precision. If possible, process parameters with
a low sensitivity (i.e. low gradient) to the precision should
be selected, since small deviations from the selected process
parameter do not cause greater deviation in precision. The
impact of the parameter design is considered by the factor fpd.
The parameter design also contributes to the operational cost
(cpd) since the process parameter typcially affects the power
demand of the machine (e.g. more electrical power required for
higher temperature or higher pressure).

Second, the operator can also affect the precision of the
process. While an experienced operator is more likely to
ensure a precise machine operation, personnel without prior
experience (very common in battery production) can cause
significant variations in precision, which is accounted for
by fopi (but can improve over time - see Figure 3c). In the
manufacturing cost model, the different experience level of the
machine operators are reflected by the labor cost cop.

Third, the maintenance of the machine and its impact on
the process precision is also considered. In general, machines
are maintained in regular intervals to ensure longlasting
functionality and precision. Otherwise machine precision
would decrease due to wear of machine components and

3
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machine supplies. If maintenance intervals are too long or are
not performed at all, it is likely that the original precision
of the machine will not be achieved after maintenance or
the machine precision will keep regressing (Figure 3d). This
time-dependent impact of machine wear and the maintenance
cost are considered by fma and cma.

Fig. 3. Manufacturing cost model consisting of four elements: a) selection in
machine cost, b) parameter design, c) operator, and d) maintenance.

Each machine typically possesses multiple process
parameters i, which is why multiple standard deviations σPP,i

can be generated. Consequently, the final precision of the
process parameters and the total cost of the machine and its
operation can be determined by:

σPPi = σPPmachi
· fpdi · fmai · fopi (1)

ctotal = cmach + cpd + cma + cop (2)

The different scenarios for each element of the
manufacturing cost model are combined to consider all
possible compositions of the process. Based on Eq. 1 and 2,
the respective standard deviation of the process parameter and
the total costs are determined. The total cost for the different
scenarios are considered for the definition of production
tolerances (Sec. 3.4). The standard deviation σPP,i feed as
input into the process chain simulation. There, the fluctuating
process parameters result in fluctuating structural parameters,
which in turn lead to fluctuating battery cell properties. A
representative period of simulation time must be considered for
the identification of production tolerances since the influence
of the operator and the maintenance changes the standard
deviation σPP,i over time.

3.3. Battery cell revenue model
Based on the results of the process chain and battery cell

simulation (Sec. 3.1), a distribution of differently performing
battery cells is generated. Accurate production processes lead to
a low fluctuation in the battery cell performance properties and
vice versa. These battery cells with fluctuating properties are

classified into different quality grades. High-performing battery
cells can be used for premium applications and thus be sold at
a higher price than low-performing ones. Battery cells that fall
below a selected property threshold are considered scrap and
do not generate a revenue but could potentially be recycled.
Depending on the throughput of the production chain, which
depends mainly on production speed of individual machines but
could also be extended by increasing the number of production
lines and bottlenecks, a total revenue for the battery cells is
generated. The revenue is affected by the production precision
and thus differs for the respective scenario.

3.4. Identification of production tolerances

Finally, the results from the manufacturing cost and battery
cell revenue model are combined to identify production
tolerances for each process parameter. While manufacturing
cost and revenue both rise with increasing production precision,
the revenue increase is typically limited, which results in
an optimum for the profit. The scenario with the highest
profit provides the suggestions for the machine cost, parameter
design, operator, and maintenance selection and essentially
predetermines the target production tolerances. When multiple
processes parameters are considered (either in a single machine
or in multiple machines), this profit-oriented approach helps
identifying the process parameter for which a reduction
of fluctuation is the most cost-effective. Furthermore, the
presented approach takes into account that only those structural
variations are reduced which have a direct influence on the
fluctuation of battery cell properties.

4. Use case

In the following, the developed methodology is applied to
the calendering process of the cathodes. During calendering,
the electrodes are compressed to increase energy density and
improve physical electrode properties (i.e. porosity, adhesion,
conductivity) [2]. Meyer et al. modeled the change in porosity
as a function of the process parameters line load qL and roll
temperature TR [17]:
ϵc = ϵc,0 ·

(
p + (1 − p) · exp

(
− qL

(µ0◦C − ξ · TR)
· Mc

))
(3)

where ϵc, ϵc,0, p, µ0◦C, ξ, and Mc represent the porosity
of the calendered electrode, the initial porosity, a compaction
factor, two empirical parameters to determine the compaction
resistance, and the mass loading. The coating thickness is
described by using a mass balance approach before and after
calendering:

hc = hdry ·
ρc,dry

(1 − ϵc) · ρs
(4)

where hc, hc,dry, ρc,dry, and ρs represent the coating thickness
after calendering respectively after the previous drying process,
the density of the dried electrode, and the density of the coating
material. Consequently, the machine precision is determined
by the process parameters line load and roll temperature. Both
process models are integrated in the process chain model with
process and structural parameters from Table 1.
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machine supplies. If maintenance intervals are too long or are
not performed at all, it is likely that the original precision
of the machine will not be achieved after maintenance or
the machine precision will keep regressing (Figure 3d). This
time-dependent impact of machine wear and the maintenance
cost are considered by fma and cma.

Fig. 3. Manufacturing cost model consisting of four elements: a) selection in
machine cost, b) parameter design, c) operator, and d) maintenance.

Each machine typically possesses multiple process
parameters i, which is why multiple standard deviations σPP,i

can be generated. Consequently, the final precision of the
process parameters and the total cost of the machine and its
operation can be determined by:

σPPi = σPPmachi
· fpdi · fmai · fopi (1)

ctotal = cmach + cpd + cma + cop (2)

The different scenarios for each element of the
manufacturing cost model are combined to consider all
possible compositions of the process. Based on Eq. 1 and 2,
the respective standard deviation of the process parameter and
the total costs are determined. The total cost for the different
scenarios are considered for the definition of production
tolerances (Sec. 3.4). The standard deviation σPP,i feed as
input into the process chain simulation. There, the fluctuating
process parameters result in fluctuating structural parameters,
which in turn lead to fluctuating battery cell properties. A
representative period of simulation time must be considered for
the identification of production tolerances since the influence
of the operator and the maintenance changes the standard
deviation σPP,i over time.

3.3. Battery cell revenue model
Based on the results of the process chain and battery cell

simulation (Sec. 3.1), a distribution of differently performing
battery cells is generated. Accurate production processes lead to
a low fluctuation in the battery cell performance properties and
vice versa. These battery cells with fluctuating properties are

classified into different quality grades. High-performing battery
cells can be used for premium applications and thus be sold at
a higher price than low-performing ones. Battery cells that fall
below a selected property threshold are considered scrap and
do not generate a revenue but could potentially be recycled.
Depending on the throughput of the production chain, which
depends mainly on production speed of individual machines but
could also be extended by increasing the number of production
lines and bottlenecks, a total revenue for the battery cells is
generated. The revenue is affected by the production precision
and thus differs for the respective scenario.

3.4. Identification of production tolerances

Finally, the results from the manufacturing cost and battery
cell revenue model are combined to identify production
tolerances for each process parameter. While manufacturing
cost and revenue both rise with increasing production precision,
the revenue increase is typically limited, which results in
an optimum for the profit. The scenario with the highest
profit provides the suggestions for the machine cost, parameter
design, operator, and maintenance selection and essentially
predetermines the target production tolerances. When multiple
processes parameters are considered (either in a single machine
or in multiple machines), this profit-oriented approach helps
identifying the process parameter for which a reduction
of fluctuation is the most cost-effective. Furthermore, the
presented approach takes into account that only those structural
variations are reduced which have a direct influence on the
fluctuation of battery cell properties.

4. Use case

In the following, the developed methodology is applied to
the calendering process of the cathodes. During calendering,
the electrodes are compressed to increase energy density and
improve physical electrode properties (i.e. porosity, adhesion,
conductivity) [2]. Meyer et al. modeled the change in porosity
as a function of the process parameters line load qL and roll
temperature TR [17]:
ϵc = ϵc,0 ·

(
p + (1 − p) · exp

(
− qL

(µ0◦C − ξ · TR)
· Mc

))
(3)

where ϵc, ϵc,0, p, µ0◦C, ξ, and Mc represent the porosity
of the calendered electrode, the initial porosity, a compaction
factor, two empirical parameters to determine the compaction
resistance, and the mass loading. The coating thickness is
described by using a mass balance approach before and after
calendering:

hc = hdry ·
ρc,dry

(1 − ϵc) · ρs
(4)

where hc, hc,dry, ρc,dry, and ρs represent the coating thickness
after calendering respectively after the previous drying process,
the density of the dried electrode, and the density of the coating
material. Consequently, the machine precision is determined
by the process parameters line load and roll temperature. Both
process models are integrated in the process chain model with
process and structural parameters from Table 1.
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Table 1. Process and structural parameters for calendering process models.
ϵc,0
[-]

p
[-]

qL

[N mm−1]
µ0◦C

[Nm g−1]
ξ

[Nm g−1 ◦C−1]
0.495 0.434 200 1270 2.57

TR

[◦C]
Mc

[kg m−2]
hdry

[µm]
ρc,dry

[g cm−3]
ρs

[g cm−3]
60 145.5 68.83 2.12 4.19

Three different precision levels are assumed for both process
parameters resulting in nine potential calendering machines
(Table 2). Higher process parameter precision requires a higher
invest.

Table 2. Calendering machine invest as a function of different process parameter
accuracies. Reference value for σTR and σqL = 10% from [23].

σTR = 2% σTR = 4% σTR = 6%
σqL = 2% 1,932,000 e 1,656,000 e 1,380,000 e
σqL = 4% 1,848,000 e 1,584,000 e 1,320,000 e
σqL = 6% 1,680,000 e 1,440,000 e 1,200,000 e

For parameter design, a roll temperature of 60◦C and a
line load of 200 N mm−1 are selected with an assumed fpd of
1.02, indicating that the machine precision operates close to
its optimum. Power demand and electricity price are 10 kW
respectively 0.1 e kWh−1. Three different operator settings
are considered with hourly labor cost of 50 e, 40 e, and
25 e. The first two describe experienced operators with a
fop of 1.0, respectively 1.1. The third operator assumes an
exponential improvement over time with an exponent of 0.01
and a final fop level of 1.1. Finally, a logistic function was
selected for the time-dependent maintenance impact fma, with
a maximum value of 3.0, a growth rate of 0.017 and an
additional factor for the expontential function of 2. Three
different maintenance intervals of 100, 180, and 365 days were
selected with maintenance cost of 5%, 3%, and 0% of the
relative machine invest.

Overall, nine machines, three operator settings, and three
maintenance plans are considered resulting in a total of 81
different scenarios with a simulation time of 365 days. Porosity
and coating thickness are passed on to the battery cell model
previously described in [13] to determine the properties (e.g.
volumetric energy density). Based on a calendering velocity of
30 m min−1, a production of 4 million battery cells is assumed.
Three different quality grades and a scrap are defined for the
distribution of the battery cells (Table 3).

Table 3. Classification and market price of battery cells.
Grade Energy density Cell price
Class III > 1850 Wh l−1 20.0 e
Class II > 1770 Wh l−1 18.5 e
Class I > 1720 Wh l−1 16.0 e
Scrap ≤ 1720 Wh l−1 0.0 e

Depending on the fluctuation of the process parameters
(input structural parameters in Eq. 3 and 4 are constant),
differently performing battery cells are generated for each
scenario. Figure 4 shows the different shares of the quality

grades depending on the scenario and the volumetric energy
density of Scenario 0 and 80. While the proportion of Class I
and Scrap battery cells increase with increasing imprecision,
the proportion of particularly high-performance cells also rises.
However, when the production processes become less precise
(e.g. Scenario 80), the share of battery cells with lower energy
densities exceeds the share of battery cells with higher energy
densities (distribution is left-skewed). The battery cells with
higher energy densities eventually reach the electro-chemical
limitations. Therefore, mean energy density decreases with
decreasing production precision.

Fig. 4. Share of different quality grades for the 81 scenarios (left) and battery
cell volumetric energy densities for the production scenario with the highest
(S0) and lowest (S80) precision (right). The vertical lines display the mean
volumetric energy density (blue and green) and the threshold for the battery
cell grades (grey lines).

Finally, the production tolerances for the calendering
process are identified by balancing revenue and calendering
cost. The highest profit was determined for the initial process
parameter precision of 2% for line load and 6% for roll
temperature indicating that the impact of the former is more
critical regarding production precision. Further, the most
inexperienced operator but the most frequent maintenance plan
was selected, reflecting the relative importance. The respective
process parameter precisions are determined as production
tolerances for the calendering process. Figure 5 illustrates the
revenue, profit, and calendering cost for the 81 scenarios. When
a standard deviation of 1.5% is exceeded a linear decrease in
revenue can be noticed. Standard deviations lower than 1.5%
show a nearly constant revenue meaning that an improvement in
production precision only provides little benefit. Consequently,
the target volumetric energy density and the respective relative
standard deviation are 1809 Wh l−1 and 1.06% resulting in a
final calendering cost, revenue, and profit of 1.68, 73.85, and
72.17 million e.

5. Conclusion and outlook

The presented methodology enables to identify the most
relevant drivers for variation in production processes providing
valuable insight on how to effectively improve the process.

A methodology is presented which enables to identify
economically-optimized production tolerances for the battery
production chain. For this purpose, manufacturing cost and
battery cell revenue are balanced in order to generate
the maximum profit. Manufacturing costs consider machine
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Fig. 5. Revenue, profit, and calendering cost for the 81 scenarios depending on
standard deviation of the volumetric energy density.

invest and operational cost (electricity demand, operator,
maintenance). Revenue is determined by classifying battery
cells according to their properties (e.g. volumetric energy
density). The impact of the production process on battery
cell properties is quantified using a combined process chain
and battery cell model. The production tolerances are derived
directly from the fluctuating process parameters that generate
the largest profit. The presented methodology allows to identify
the main drivers of variation in production processes and
provides valuable insights on how to effectively improve
the process. By applying the methodology, decision support
regarding the machine acquisition and operation can be
provided. Accordingly, production tolerances that are too
precise can be avoided. The methodology is applied to the
calendering process. The results indicate that a decreasing
production precision results in lower mean volumetric energy
densities since optimum energy density is limited and lower
volumetric energy density can continue to decrease downwards.
While the methodology is applied on a virtual production, it can
also be extended to real production lines.

In the future, the methodology will be extended to multiple
processes helping to identify which process precision needs to
be addressed first in order to decrease final property fluctuation.
Furthermore, the impact of not only fluctuating process but also
structural parameters needs to be examined to identify relevant
process-product interdependencies along the process chain.
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