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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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praxis, these models are specifically designed and implemented for particular management decisions, requiring significant one-time effort for 
model creation. This contribution utilizes the digital twin concept to facilitate production network models that are continuously synchronized 
with the examined production network to support several different management decisions. The approach structures data from existing information 
systems as a synchronized generic base model, which is used to create problem-specific executable models, thereby saving costs through repeated 
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1. Introduction 

In today's environment, producing companies face many 
challenges that require quick, decisive, and accurate decision 
making. Most of these companies operate global production 
networks consisting of several production sites around the 
world [1]. Due to these networks' ever-changing requirements 
referring to markets, factor costs, and political and legal factors, 
the networks have to be continuously adapted [2]. However, the 
complexity of the managerial decisions in production networks 
requires quantitative tools, ranging from data analytics through 
simulation and optimization to artificial intelligence [3]. Some 
of these tools, typically those used for regular decision-making 
processes, have been institutionalized and are used on a regular 
basis. Most decision-making support tools for strategic one-
time decisions are developed, implemented, validated, and used 
only once, which binds multiple experts and can take months 
[4].  Due to this delay in model creation and use, only long-term 
decisions with an appropriate preparation time can be supported 
with these models. The time constraints may even negatively 
influence experts' ability to validate and verify the models be-
fore use, leading to inaccurate results [5]. 

A possible solution for this issue is the digital twin concept. 
Digital twins denote the model-based representation of all as-
pects of a system [6]. In digital twins, a model complex of mul-
tiple interconnected models is used to describe the considered 
system. These models are constantly synchronized with the real 
system, allowing for the accurate prediction and even model-
based control of systems [7]. One of the first applications of 
digital twins was shown by NASA controlling complex aircraft 
[8]. Today they find increasing application in production sys-
tems, for example, to facilitate predictive maintenance, enable 
autonomous transportation fleets, and allow human-robot col-
laboration [9]. They are also used to plan and control produc-
tion systems, but have not yet been widely discussed for global 
production networks. This contribution proposes a conceptual 
framework for developing and using digital twins of global pro-
duction networks to facilitate decision-making. The framework 
describes a general structure, methods for model creation and 
synchronization, types of applications, and use cases for the 
digital twin.  It represents the outline of a digital twin that will 
be detailed further in future contributions. 

The remainder of this contribution is structured as follows: 
Section 2 provides an overview of relevant fundamentals and 
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1. Introduction 

In today's environment, producing companies face many 
challenges that require quick, decisive, and accurate decision 
making. Most of these companies operate global production 
networks consisting of several production sites around the 
world [1]. Due to these networks' ever-changing requirements 
referring to markets, factor costs, and political and legal factors, 
the networks have to be continuously adapted [2]. However, the 
complexity of the managerial decisions in production networks 
requires quantitative tools, ranging from data analytics through 
simulation and optimization to artificial intelligence [3]. Some 
of these tools, typically those used for regular decision-making 
processes, have been institutionalized and are used on a regular 
basis. Most decision-making support tools for strategic one-
time decisions are developed, implemented, validated, and used 
only once, which binds multiple experts and can take months 
[4].  Due to this delay in model creation and use, only long-term 
decisions with an appropriate preparation time can be supported 
with these models. The time constraints may even negatively 
influence experts' ability to validate and verify the models be-
fore use, leading to inaccurate results [5]. 

A possible solution for this issue is the digital twin concept. 
Digital twins denote the model-based representation of all as-
pects of a system [6]. In digital twins, a model complex of mul-
tiple interconnected models is used to describe the considered 
system. These models are constantly synchronized with the real 
system, allowing for the accurate prediction and even model-
based control of systems [7]. One of the first applications of 
digital twins was shown by NASA controlling complex aircraft 
[8]. Today they find increasing application in production sys-
tems, for example, to facilitate predictive maintenance, enable 
autonomous transportation fleets, and allow human-robot col-
laboration [9]. They are also used to plan and control produc-
tion systems, but have not yet been widely discussed for global 
production networks. This contribution proposes a conceptual 
framework for developing and using digital twins of global pro-
duction networks to facilitate decision-making. The framework 
describes a general structure, methods for model creation and 
synchronization, types of applications, and use cases for the 
digital twin.  It represents the outline of a digital twin that will 
be detailed further in future contributions. 

The remainder of this contribution is structured as follows: 
Section 2 provides an overview of relevant fundamentals and 



1270	 Martin Benfer  et al. / Procedia CIRP 104 (2021) 1269–1274
2 Martin Benfer, et al. / Procedia CIRP 00 (2021) 000–000 

the state of the art. Section 3 presents the general structure of 
the conceptual digital twin framework followed by a detailed 
discussion of the different aspects of the framework. Finally, 
section 4 provides a conclusion and discusses avenues for fu-
ture research. 

2. Fundamentals and State of the Art 

This section discusses relevant contributions to the state of the 
art of digital twins for global production networks. First, tasks 
within the management of global production networks are dis-
cussed. Second, exisiting types of quantiatative decision sup-
port tools are examined, as the digital twin can combine several 
of them. Finally, existing approaches to create a digital twin for 
configuration focused management decisions in global produc-
tion networks are presented. 

2.1. Management Tasks in Global Production Networks 

The core tasks in global production management can be sep-
arated into strategic, configurative, and coordinative tasks. Stra-
tegic tasks describe the definition of the production strategy in 
accordance with the business strategy. These decisions are 
long-term and act as guidelines for the next two categories. 
Configurative tasks directly impact the physical structure of the 
production network. These are medium- to long-term decisions 
depending on the aspects of the structure that are changed. Co-
ordinative tasks control the operative processes and product, 
material, and information flows in the production network. De-
cisions in this category are short to medium-term. [10] 

Many strategic tasks do not benefit much from the use of 
dedicated quantitative tools due to the degree of vagueness in 
these decision. Configurative and coordinative tasks, are more 
conductive to the application of these tools. Many coordinative 
task occur frequently and are well supported by existing deci-
sion-support systems. By contrast configurative tasks are typi-
cally less frequent and not supported with established tools. 
Thus, the framework and remainder of this contribution focus-
ses on configurative decisions. For the purposes of this contri-
bution, those tasks can be distinguished into network design, 
product and process allocation, and capacity and capability 
planning. 

Network design tasks, which may include the restructuring 
of the production network in its totality, the selection of new 
production locations, or the consolidation of existing sites, are 
irregular decisions that involve multiple functions of a com-
pany. The objectives pursued with such projects lie within the 
realm of production, like reducing costs and working capital, 
shortening lead times, or increasing resilience. Other objectives 
require interaction with other functions, such as decreasing en-
vironmental impact and improving product quality. Some lie  
outside of the influence of production network management,  
such as improving brand recognition, increasing service, or cap-
turing new markets. [10–12] 

Depending on the particular company's development cycles, 
product and process allocation tasks are more regularly per-
formed. They are triggered by newly developed products or 
production processes and determine where value creation pro-
cesses should be situated under incomplete information regard-
ing the new processes' costs. In these decisions, the network's 

production sites are typically assumed as fixed while the invest-
ment in equipment and personnel is evaluated. [13] 

Capacity and capability planning processes are similar to the 
previous category but appear even more regularly as they are 
typically part of the reoccurring planning processes. Here, the 
production capacities and process capabilities of the sites are 
planned based on projections of future demand. In this category, 
the degree of knowledge regarding process characteristics is 
higher than in the previous category. [14] 

2.2. Quantiatative Decision-Support Tools in Global 
Production Network Management 

Several different quantitative decision-support tools have 
found application in global production network management. 
Generally, models can be separated into descriptive, explana-
tory, predictive, and prescriptive models depending on the type 
of use. Descriptive models merely represent a considered sys-
tem describing its relevant attributes. Explanatory models ex-
plain the relationships within a system, whereas predictive 
models can infer future system states and behaviors, given a set 
of inputs. Finally, prescriptive models determine an advanta-
geous system configuration given a set of objectives. [15] 

Descriptive models in production networks include the com-
monly used information systems such as enterprise-resource-
planning (ERP) systems, product-data-management (PDM) 
systems, product-lifecycle-management (PLM) systems, com-
puter-aided-quality (CAQ) systems, and several others. An-
other noteworthy descriptive decision-support model type is the 
key-performance-indicator (KPI) dashboard. These dashboards 
are used as a monitoring tool to guide decision making and trig-
ger improvement projects. [16, 17] 

Explanatory models used in production network manage-
ment are analytical tools that are sometimes aggregated under 
big data analytics. These are used to examine and understand 
relationships between influences and the production network's 
performance. For example, analytical tools help to understand 
the relationship between outside events and demand fluctua-
tions, cultural influences and worker performance, or product 
configurations and processing time. [18] 

Predictive models are commonly used to project future in-
fluences like demands and material prices. For this purpose, a 
wide range of methods has been developed, from regression and 
meta/modeling methods to several simulation techniques like 
system dynamics simulations (SDS), agent-based simulations 
(ABS), and discrete event simulations (DES).  Predictive mod-
els are also used to predict the behavior of production networks 
themselves. A range of model types exists, from time-invariant 
mixed-integer modeling approaches, either asset or resource-
based, to time-variant DES to reflect the systems' behavior in 
different scenarios. Predictive models are often combined with 
comprehensive scenario analysis to infer configurations' perfor-
mance for a range of future developments and determine Pareto 
efficient set-ups. [17] 

As mentioned before, prescriptive models determine a favor-
able configuration given a set of objectives and conditions. Two 
types of methods can be distinguished, heuristics and opmiza-
tion methods. Heuristics quickly find beneficial solutions but 
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do not guarantee optimal solutions. Optimization methods de-
termine the absolute best solutions, but require particular prob-
lem formulations. Both have found application in the previ-
ously described tasks of production network management. 
However, they are hindered by the necessarily reductionist na-
ture of problem formulation that neglects aspects of the prob-
lem that do not lend themselves to quantitative descriptions. 
Thus, prescriptive models are often used in conjunction with 
more comprehensive predictive models, only solving parts of 
the overall problem. [19] 

2.3. Digital Twins in Production Management 

"A digital twin is the computerized counterpart of a physical 
system" [6]. The digital twin consists of one or multiple models 
reflecting the system's behavior based on domain knowledge 
and parameters describing the system's state. The distinction of 
a digital twin from a regular model is in the comprehensiveness 
of the representation and the synchronization with the real sys-
tem [20]. The synchronization is facilitated by capturing data 
from the real system at all times, structuring that data, and feed-
ing it to the digital twin. This data is referred to as the digital 
shadow [21]. 

In production systems, digital twins have found increasing 
application in the last years. Typically, the digital twins are 
bound to a specific asset or a product. Digital twins describe the 
state of production machines, the manufacturing process of 
complex products, internal logistic fleets' actions, and the con-
trol of entire production systems [7, 9, 22]. The extensive ap-
plication of digital twins is only possible due to increased con-
nectivity under the influence of industry 4.0 [23]. Increasingly, 
assets and products are connected to digital information sys-
tems, and sensors capture more aspects of production systems. 
The trend towards digitally connected devices in production is 
broadly discussed under the term cyber physical systems [21]. 
Combining all these systems' data can result in a digital shadow 
of production systems enabling various applications. Several 
works have proposed partial digital twins or product or process 
twins to improve production network management. Other 
works, on the contrary, have discussed the possibility of using 
a model framework for multiple applications through problem-
oriented abstraction [4]. 

While a wide variety of models and methods has been dis-
cussed to support production network management decision 
[19], these models are focused on one decision type and result 
in one time uses. The existing approaches to use models contin-
uously and in the form of digital twins are focused on regularly 
occurring decisions. 

3. A Conceptual Framework for Digital Twins of 
Production Networks 

The irregularity of many management tasks in production 
network management has so far limited digital twins' use. Dig-
ital twins can provide significant benefits when used regularly 
by enabling use without extensive modeling. Additionally, the 
models' continuous updating allows better model quality 
through dedicated calibration processes built into the models. 
However, as many of the previously discussed adaption tasks 

are one-time decisions, the impetus to create institutionalized 
digital twins is low. Therefore, this contribution proposes a 
novel digital twin framework to utilize the benefits of institu-
tionalized decision support tools for irregular decision types. 
This digital twin, illustrated in Fig. 1, will facilitate better and 
faster decision making, and help companies to react to the ever 
changing conditions.  

 

Fig. 1. Overall structure of the digital twin for production networks 

The integration of multiple decision-support models is facil-
itated by the separation of specific models from the digital 
twin's backbone. Fig. 1 illustrates that the digital twin is sepa-
rated into a base model and an application layer with several 
problem-specific models. The base model represents the pro-
duction network and structures relevant data points according 
to universal object types. It is created using data stored in the 
existing information systems of the company and its partners. 
It facilitates the digital twin's continuous updating and enables 
an archiving function that allows the application layer to access 
the network's older states. The application layer consists of a 
multitude of different models that are modular and serve vari-
ous management tasks. The two lower layers shown in Fig. 1, 
represent the production system itself and the information layer, 
which consists of the range of relevant information systems em-
ployed by the focal company. The different models the digital 
twin offers can be used in several use cases outside of the com-
mon optimization of a single problem solution. 

This new framework will enable the continued use of quan-
titative methods for production networks. The novelty of this 
approach lies in the separation of the model base layer and the 
application layer in conjunction with a set of different problem 
specific application models. Previous approaches to use quan-
titative models in global production networks either focused on 
a very specific type of problem or on generalist models that re-
quire significant adaption to be used for different problems [13, 
14]. Furthermore, the digital twin concept has been explored by 
several others focusing on products, machines and shopflor [6, 
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the state of the art. Section 3 presents the general structure of 
the conceptual digital twin framework followed by a detailed 
discussion of the different aspects of the framework. Finally, 
section 4 provides a conclusion and discusses avenues for fu-
ture research. 

2. Fundamentals and State of the Art 

This section discusses relevant contributions to the state of the 
art of digital twins for global production networks. First, tasks 
within the management of global production networks are dis-
cussed. Second, exisiting types of quantiatative decision sup-
port tools are examined, as the digital twin can combine several 
of them. Finally, existing approaches to create a digital twin for 
configuration focused management decisions in global produc-
tion networks are presented. 

2.1. Management Tasks in Global Production Networks 

The core tasks in global production management can be sep-
arated into strategic, configurative, and coordinative tasks. Stra-
tegic tasks describe the definition of the production strategy in 
accordance with the business strategy. These decisions are 
long-term and act as guidelines for the next two categories. 
Configurative tasks directly impact the physical structure of the 
production network. These are medium- to long-term decisions 
depending on the aspects of the structure that are changed. Co-
ordinative tasks control the operative processes and product, 
material, and information flows in the production network. De-
cisions in this category are short to medium-term. [10] 

Many strategic tasks do not benefit much from the use of 
dedicated quantitative tools due to the degree of vagueness in 
these decision. Configurative and coordinative tasks, are more 
conductive to the application of these tools. Many coordinative 
task occur frequently and are well supported by existing deci-
sion-support systems. By contrast configurative tasks are typi-
cally less frequent and not supported with established tools. 
Thus, the framework and remainder of this contribution focus-
ses on configurative decisions. For the purposes of this contri-
bution, those tasks can be distinguished into network design, 
product and process allocation, and capacity and capability 
planning. 

Network design tasks, which may include the restructuring 
of the production network in its totality, the selection of new 
production locations, or the consolidation of existing sites, are 
irregular decisions that involve multiple functions of a com-
pany. The objectives pursued with such projects lie within the 
realm of production, like reducing costs and working capital, 
shortening lead times, or increasing resilience. Other objectives 
require interaction with other functions, such as decreasing en-
vironmental impact and improving product quality. Some lie  
outside of the influence of production network management,  
such as improving brand recognition, increasing service, or cap-
turing new markets. [10–12] 

Depending on the particular company's development cycles, 
product and process allocation tasks are more regularly per-
formed. They are triggered by newly developed products or 
production processes and determine where value creation pro-
cesses should be situated under incomplete information regard-
ing the new processes' costs. In these decisions, the network's 

production sites are typically assumed as fixed while the invest-
ment in equipment and personnel is evaluated. [13] 

Capacity and capability planning processes are similar to the 
previous category but appear even more regularly as they are 
typically part of the reoccurring planning processes. Here, the 
production capacities and process capabilities of the sites are 
planned based on projections of future demand. In this category, 
the degree of knowledge regarding process characteristics is 
higher than in the previous category. [14] 

2.2. Quantiatative Decision-Support Tools in Global 
Production Network Management 

Several different quantitative decision-support tools have 
found application in global production network management. 
Generally, models can be separated into descriptive, explana-
tory, predictive, and prescriptive models depending on the type 
of use. Descriptive models merely represent a considered sys-
tem describing its relevant attributes. Explanatory models ex-
plain the relationships within a system, whereas predictive 
models can infer future system states and behaviors, given a set 
of inputs. Finally, prescriptive models determine an advanta-
geous system configuration given a set of objectives. [15] 

Descriptive models in production networks include the com-
monly used information systems such as enterprise-resource-
planning (ERP) systems, product-data-management (PDM) 
systems, product-lifecycle-management (PLM) systems, com-
puter-aided-quality (CAQ) systems, and several others. An-
other noteworthy descriptive decision-support model type is the 
key-performance-indicator (KPI) dashboard. These dashboards 
are used as a monitoring tool to guide decision making and trig-
ger improvement projects. [16, 17] 

Explanatory models used in production network manage-
ment are analytical tools that are sometimes aggregated under 
big data analytics. These are used to examine and understand 
relationships between influences and the production network's 
performance. For example, analytical tools help to understand 
the relationship between outside events and demand fluctua-
tions, cultural influences and worker performance, or product 
configurations and processing time. [18] 

Predictive models are commonly used to project future in-
fluences like demands and material prices. For this purpose, a 
wide range of methods has been developed, from regression and 
meta/modeling methods to several simulation techniques like 
system dynamics simulations (SDS), agent-based simulations 
(ABS), and discrete event simulations (DES).  Predictive mod-
els are also used to predict the behavior of production networks 
themselves. A range of model types exists, from time-invariant 
mixed-integer modeling approaches, either asset or resource-
based, to time-variant DES to reflect the systems' behavior in 
different scenarios. Predictive models are often combined with 
comprehensive scenario analysis to infer configurations' perfor-
mance for a range of future developments and determine Pareto 
efficient set-ups. [17] 

As mentioned before, prescriptive models determine a favor-
able configuration given a set of objectives and conditions. Two 
types of methods can be distinguished, heuristics and opmiza-
tion methods. Heuristics quickly find beneficial solutions but 

 Martin Benfer, et al. / Procedia CIRP 00 (2021) 000–000  3 

do not guarantee optimal solutions. Optimization methods de-
termine the absolute best solutions, but require particular prob-
lem formulations. Both have found application in the previ-
ously described tasks of production network management. 
However, they are hindered by the necessarily reductionist na-
ture of problem formulation that neglects aspects of the prob-
lem that do not lend themselves to quantitative descriptions. 
Thus, prescriptive models are often used in conjunction with 
more comprehensive predictive models, only solving parts of 
the overall problem. [19] 

2.3. Digital Twins in Production Management 
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system" [6]. The digital twin consists of one or multiple models 
reflecting the system's behavior based on domain knowledge 
and parameters describing the system's state. The distinction of 
a digital twin from a regular model is in the comprehensiveness 
of the representation and the synchronization with the real sys-
tem [20]. The synchronization is facilitated by capturing data 
from the real system at all times, structuring that data, and feed-
ing it to the digital twin. This data is referred to as the digital 
shadow [21]. 
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application in the last years. Typically, the digital twins are 
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state of production machines, the manufacturing process of 
complex products, internal logistic fleets' actions, and the con-
trol of entire production systems [7, 9, 22]. The extensive ap-
plication of digital twins is only possible due to increased con-
nectivity under the influence of industry 4.0 [23]. Increasingly, 
assets and products are connected to digital information sys-
tems, and sensors capture more aspects of production systems. 
The trend towards digitally connected devices in production is 
broadly discussed under the term cyber physical systems [21]. 
Combining all these systems' data can result in a digital shadow 
of production systems enabling various applications. Several 
works have proposed partial digital twins or product or process 
twins to improve production network management. Other 
works, on the contrary, have discussed the possibility of using 
a model framework for multiple applications through problem-
oriented abstraction [4]. 

While a wide variety of models and methods has been dis-
cussed to support production network management decision 
[19], these models are focused on one decision type and result 
in one time uses. The existing approaches to use models contin-
uously and in the form of digital twins are focused on regularly 
occurring decisions. 

3. A Conceptual Framework for Digital Twins of 
Production Networks 

The irregularity of many management tasks in production 
network management has so far limited digital twins' use. Dig-
ital twins can provide significant benefits when used regularly 
by enabling use without extensive modeling. Additionally, the 
models' continuous updating allows better model quality 
through dedicated calibration processes built into the models. 
However, as many of the previously discussed adaption tasks 

are one-time decisions, the impetus to create institutionalized 
digital twins is low. Therefore, this contribution proposes a 
novel digital twin framework to utilize the benefits of institu-
tionalized decision support tools for irregular decision types. 
This digital twin, illustrated in Fig. 1, will facilitate better and 
faster decision making, and help companies to react to the ever 
changing conditions.  

 

Fig. 1. Overall structure of the digital twin for production networks 

The integration of multiple decision-support models is facil-
itated by the separation of specific models from the digital 
twin's backbone. Fig. 1 illustrates that the digital twin is sepa-
rated into a base model and an application layer with several 
problem-specific models. The base model represents the pro-
duction network and structures relevant data points according 
to universal object types. It is created using data stored in the 
existing information systems of the company and its partners. 
It facilitates the digital twin's continuous updating and enables 
an archiving function that allows the application layer to access 
the network's older states. The application layer consists of a 
multitude of different models that are modular and serve vari-
ous management tasks. The two lower layers shown in Fig. 1, 
represent the production system itself and the information layer, 
which consists of the range of relevant information systems em-
ployed by the focal company. The different models the digital 
twin offers can be used in several use cases outside of the com-
mon optimization of a single problem solution. 

This new framework will enable the continued use of quan-
titative methods for production networks. The novelty of this 
approach lies in the separation of the model base layer and the 
application layer in conjunction with a set of different problem 
specific application models. Previous approaches to use quan-
titative models in global production networks either focused on 
a very specific type of problem or on generalist models that re-
quire significant adaption to be used for different problems [13, 
14]. Furthermore, the digital twin concept has been explored by 
several others focusing on products, machines and shopflor [6, 
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7], while it has received much less attention on the network 
level. The following sections discuss the aspects of the here pro-
posed framework in more detail. 

3.1. Information System Layer and Data Acquisition 

Several information systems are connected to the digital 
twin. They include standardized systems as well as proprietary 
systems only found in particular companies. For the application 
in a digital twin, the systems' data quality, data granularity, and 
updating cycles are considered. For the technical implementa-
tion, the accessibility of data is essential. In the following para-
graphs, the primary information systems serving as data sources 
for the digital twin are discussed. Fig. 2 displays the systems 
discussed here and the information types these systems can pro-
vide for a digital twin. The information types presented here in 
the upwards pointing arrows reflect typical information that can 
be important for the digital twin. Which of these are relevant 
depends on the selected applications and the data available at 
the company. 

 

Fig. 2. Core information systems for digital twins and their information types 

ERP systems present the leading source of information for 
the digital twin, as most configurative tasks are at least partially 
cost-focused. ERP systems store information with immediate 
reference to financial aspects of a business. Additionally ERP 
systems store master data describing the structure of products 
in the bill of materials (BOM). The digital twin utilizes ERP 
systems as the primary datasource supplemented by other sys-
tems informations. 

MES, as well as logistics management systems, are consid-
erably closer to the operative business in production and logis-
tics and capture data regarding these processes in higher gran-
ularity. These systems can be a valuable source to refine the 
parametrization of the modeled production processes. And val-
idate masterdata stored obtained from ERP systems. 

PDM and PLM systems contain information centered on the 
product. The information in these systems is created manually 
by product designers. These systems provide information re-
garding detailed product variants to the digital twin.  

Auxiliary systems like customer-relationship-management 
(CRM) systems, computer-aided-quality (CAQ) systems, and 

supply-chain-management (SCM) systems  may contain addi-
tional data regarding influences on production systems. By in-
tegrating them with the digital twin, more information regard-
ing specific demands, process quality, and supply situations can 
be gathered. 

Information systems owned by partners may be accessed 
based on existing contracts to coordinate the supply chain. In-
teresting information includes available capacity and projected 
processing times at suppliers as well as demand forecasts of 
customers. These data can only be integrated through specifi-
cally designed interfaces coordinated with the partners in the 
value chain. 

External sources of production-related data may enable a 
more comprehensive description of the production network. 
External sources may be databases for market developments, 
tax and tariff databases, logistics monitoring systems, resource 
market monitoring systems, employee availability databases, 
and others. These external data sources are connected to the 
digital twin based on the specific needs of particular decision 
problems. Additional data may be obtained by implementing 
data acquisition systems, such as a traceability system that cap-
tures product-related information. 

3.2. Base Model Layer and Time Variance Process 

As indicated before, the base model plays a central role in 
the digital twin. It aggregates information from the information 
system layer and structures it to enable access by the application 
layer. Additionally, the base model is responsible for the sys-
tem's variance over time, i.e., data calibration and the structur-
ing of system states. The following paragraphs discuss the 
structure of the base model and its different functions. 

The base model uses an ontology of production networks to 
structure information from multiple data sources. Depending on 
the company and use case either existing ontologies such as the 
CDM-Core ontology ,for example, can be used and extended, 
or a company specific ontology can be created. The classes 
within the ontology reflect the physical structure of production 
networks closely. The specific instances and their parameters 
are created automatically by the base model by crawling the 
available data sources. Fig. 3 displays key classes represented 
in the base model. The base model can be extended to facilityte 
new applications by adding new classes and parameters to the 
ontology. 

 

Fig. 3. Key classes of the base model 

Each parameter type of an object is connected to one or mul-
tiple data sources using a particular processing method. These 
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processing methods can be the simple referencing of a data 
point, the averaging of multiple points, or more sophisticated 
processes that consider multiple sources. Here technologies like 
process mining play a critical role in modeling characteristics 
of often repeated processes. For example, a production process 
can be characterized by analyzing and aggregating information 
about all of its occurrences. The creation of new data points 
may also trigger the creation of new object instances. 

Calibration mechanisms within the base model can ensure 
the data quality of the model. These mechanisms utilize multi-
ple data sources and compare their values to determine whether 
any data point is likely to be false. An example of this concept 
is checking the nominal processing time of a particular produc-
tion step specified in the BOM by comparing it to actual pro-
cessing times recorded in the MES. Depending on the magni-
tude of deviation, either automatic correction can be triggered, 
or manual assistance is required. The calibration mechanism 
can also detect changes in the system using a process mining 
approach when these changes are not reflected in the master 
data. In that case instance-based data points are compared with 
the existing master data and significant and sustained deviations 
from the master are detected. These changes can include shifts 
in average processing times, changes in worker availability or 
different order scheduling strategies. 

One of the main issues of continuously used production net-
work models is assuring the up-to-dateness of the model. Also, 
it can be beneficial to access older states of the network and 
experiment with them in some circumstances. In the base 
model, both object types and parameters can be marked as 
“state-relevant”. Changes in objects like 'product' or 'production 
process,' which frequently change without constituting a change 
of the network itself, are not considered state-relevant, while 
types like 'production equipment' are state-relevant. Any 
change in a state-relevant object or parameter creates a new net-
work state in the base model. The old version of the network is 
then archived. Over time, older versions can be clustered to 
save data and only store the most relevant production network 
changes. The application layer can access the different states of 
the network stored in the base model. Fig. 4 shows the base 
model's general functionality and its connections to other as-
pects of the digital twin. 

 

Fig. 4. Overview of the base model 

3.3. Application Layer and Abstraction Process 

Whereas the base layer facilitates the digital twin, the appli-
cation layer represents the connection to its users. The applica-
tion layer offers several models and methods to support deci-
sions in production networks. These methods can range from 
relatively simple mixed-integer models to DES, optimization, 
and artificial intelligence. The application layer is structured in 
a modular fashion, allowing users to create different types of 
applications on top of it. The following paragraphs explain the 
overall functionality of the application layer and its different 
aspects in detail. 

When creating a new application, the users determine a 
mode, an associated method, the considered part of the system, 
and the experiment's objectives. If possible, the system then 
creates an application that can be adapted according to the user's 
wishes. For this application built that requires an abstraction 
process of the base layer, the abstraction process proposed by 
Benfer et al. can be utilized [4]. The user can also choose to 
calculate different scenarios by adapting outside parameters. 
Fig. 5 shows the application creation process in detail. 

 

Fig. 5. Application model creation process 

The application modes refer to explanatory, predictive, or 
prescriptive modeling of the network. Several modeling tech-
niques are available for each mode, as shown in Fig. 6. To ef-
fectively use the models and limit computational times, it is cru-
cial to precisely delimit the scope of interest. That means that 
aspects of the system irrelevant to the current problem can be 
simplified. Additionally, the examination can be limited to a 
relevant part of the network, for example, by abstracting up-
stream production processes, excluding certain aspects of the 
product portfolio, or not considering some production sites. The 
application builder then limits the degree to which these aspects 
are modeled as much as possible while retaining accuracy in the 
rest of the model. 

 

Fig. 6. Model types and affiliated model techniques 

Finally, when creating an application, the user needs to de-
termine the relevant objectives of the examined problem. These 
objectives may include specific production goals like cost re-
duction, reduction of bound capital, delivery times, and quality 
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7], while it has received much less attention on the network 
level. The following sections discuss the aspects of the here pro-
posed framework in more detail. 
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Several information systems are connected to the digital 
twin. They include standardized systems as well as proprietary 
systems only found in particular companies. For the application 
in a digital twin, the systems' data quality, data granularity, and 
updating cycles are considered. For the technical implementa-
tion, the accessibility of data is essential. In the following para-
graphs, the primary information systems serving as data sources 
for the digital twin are discussed. Fig. 2 displays the systems 
discussed here and the information types these systems can pro-
vide for a digital twin. The information types presented here in 
the upwards pointing arrows reflect typical information that can 
be important for the digital twin. Which of these are relevant 
depends on the selected applications and the data available at 
the company. 
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reference to financial aspects of a business. Additionally ERP 
systems store master data describing the structure of products 
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erably closer to the operative business in production and logis-
tics and capture data regarding these processes in higher gran-
ularity. These systems can be a valuable source to refine the 
parametrization of the modeled production processes. And val-
idate masterdata stored obtained from ERP systems. 

PDM and PLM systems contain information centered on the 
product. The information in these systems is created manually 
by product designers. These systems provide information re-
garding detailed product variants to the digital twin.  

Auxiliary systems like customer-relationship-management 
(CRM) systems, computer-aided-quality (CAQ) systems, and 

supply-chain-management (SCM) systems  may contain addi-
tional data regarding influences on production systems. By in-
tegrating them with the digital twin, more information regard-
ing specific demands, process quality, and supply situations can 
be gathered. 

Information systems owned by partners may be accessed 
based on existing contracts to coordinate the supply chain. In-
teresting information includes available capacity and projected 
processing times at suppliers as well as demand forecasts of 
customers. These data can only be integrated through specifi-
cally designed interfaces coordinated with the partners in the 
value chain. 

External sources of production-related data may enable a 
more comprehensive description of the production network. 
External sources may be databases for market developments, 
tax and tariff databases, logistics monitoring systems, resource 
market monitoring systems, employee availability databases, 
and others. These external data sources are connected to the 
digital twin based on the specific needs of particular decision 
problems. Additional data may be obtained by implementing 
data acquisition systems, such as a traceability system that cap-
tures product-related information. 

3.2. Base Model Layer and Time Variance Process 

As indicated before, the base model plays a central role in 
the digital twin. It aggregates information from the information 
system layer and structures it to enable access by the application 
layer. Additionally, the base model is responsible for the sys-
tem's variance over time, i.e., data calibration and the structur-
ing of system states. The following paragraphs discuss the 
structure of the base model and its different functions. 

The base model uses an ontology of production networks to 
structure information from multiple data sources. Depending on 
the company and use case either existing ontologies such as the 
CDM-Core ontology ,for example, can be used and extended, 
or a company specific ontology can be created. The classes 
within the ontology reflect the physical structure of production 
networks closely. The specific instances and their parameters 
are created automatically by the base model by crawling the 
available data sources. Fig. 3 displays key classes represented 
in the base model. The base model can be extended to facilityte 
new applications by adding new classes and parameters to the 
ontology. 

 

Fig. 3. Key classes of the base model 

Each parameter type of an object is connected to one or mul-
tiple data sources using a particular processing method. These 
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processing methods can be the simple referencing of a data 
point, the averaging of multiple points, or more sophisticated 
processes that consider multiple sources. Here technologies like 
process mining play a critical role in modeling characteristics 
of often repeated processes. For example, a production process 
can be characterized by analyzing and aggregating information 
about all of its occurrences. The creation of new data points 
may also trigger the creation of new object instances. 

Calibration mechanisms within the base model can ensure 
the data quality of the model. These mechanisms utilize multi-
ple data sources and compare their values to determine whether 
any data point is likely to be false. An example of this concept 
is checking the nominal processing time of a particular produc-
tion step specified in the BOM by comparing it to actual pro-
cessing times recorded in the MES. Depending on the magni-
tude of deviation, either automatic correction can be triggered, 
or manual assistance is required. The calibration mechanism 
can also detect changes in the system using a process mining 
approach when these changes are not reflected in the master 
data. In that case instance-based data points are compared with 
the existing master data and significant and sustained deviations 
from the master are detected. These changes can include shifts 
in average processing times, changes in worker availability or 
different order scheduling strategies. 

One of the main issues of continuously used production net-
work models is assuring the up-to-dateness of the model. Also, 
it can be beneficial to access older states of the network and 
experiment with them in some circumstances. In the base 
model, both object types and parameters can be marked as 
“state-relevant”. Changes in objects like 'product' or 'production 
process,' which frequently change without constituting a change 
of the network itself, are not considered state-relevant, while 
types like 'production equipment' are state-relevant. Any 
change in a state-relevant object or parameter creates a new net-
work state in the base model. The old version of the network is 
then archived. Over time, older versions can be clustered to 
save data and only store the most relevant production network 
changes. The application layer can access the different states of 
the network stored in the base model. Fig. 4 shows the base 
model's general functionality and its connections to other as-
pects of the digital twin. 

 

Fig. 4. Overview of the base model 

3.3. Application Layer and Abstraction Process 

Whereas the base layer facilitates the digital twin, the appli-
cation layer represents the connection to its users. The applica-
tion layer offers several models and methods to support deci-
sions in production networks. These methods can range from 
relatively simple mixed-integer models to DES, optimization, 
and artificial intelligence. The application layer is structured in 
a modular fashion, allowing users to create different types of 
applications on top of it. The following paragraphs explain the 
overall functionality of the application layer and its different 
aspects in detail. 

When creating a new application, the users determine a 
mode, an associated method, the considered part of the system, 
and the experiment's objectives. If possible, the system then 
creates an application that can be adapted according to the user's 
wishes. For this application built that requires an abstraction 
process of the base layer, the abstraction process proposed by 
Benfer et al. can be utilized [4]. The user can also choose to 
calculate different scenarios by adapting outside parameters. 
Fig. 5 shows the application creation process in detail. 

 

Fig. 5. Application model creation process 

The application modes refer to explanatory, predictive, or 
prescriptive modeling of the network. Several modeling tech-
niques are available for each mode, as shown in Fig. 6. To ef-
fectively use the models and limit computational times, it is cru-
cial to precisely delimit the scope of interest. That means that 
aspects of the system irrelevant to the current problem can be 
simplified. Additionally, the examination can be limited to a 
relevant part of the network, for example, by abstracting up-
stream production processes, excluding certain aspects of the 
product portfolio, or not considering some production sites. The 
application builder then limits the degree to which these aspects 
are modeled as much as possible while retaining accuracy in the 
rest of the model. 

 

Fig. 6. Model types and affiliated model techniques 

Finally, when creating an application, the user needs to de-
termine the relevant objectives of the examined problem. These 
objectives may include specific production goals like cost re-
duction, reduction of bound capital, delivery times, and quality 
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rates, but also system complexity, uncertainty and risks, sus-
tainability, and greenhouse gas emissions or others. 

After the model creation, it can be calibrated using the base 
model's recordings ensuring it provides accurate results. 

3.4. Potential Use-Cases for the Digital Twin 

Several use-case types for the digital twin exist. Here, four 
types of use-cases enabled by the digital twin are discussed in 
detail. Additionally, the benefits the digital twin provides for 
these use cases is highlighted. 

Issue-based use describes the classical application of quan-
titative models in production network management: A specific 
problem is identified, and an ideal solution for this problem is 
required. In this case, a specific prescriptive or predictive model 
can be designed to examine the problem closely. The much-
shortened turnaround time of models using the digital twin al-
lows more iterations of the model to consider factors from other 
company functions that the model can not represent. Also, sit-
uations where decision times are shorter, like disruption events, 
could be supported using the digital twin. 

Exploratory use describes employing an existing model to 
find beneficial configurations or see how the system reacts to 
external changes. This type of use requires a model that exist 
prior to the decisionmaking process, but may give decision-
makers an improved understanding of their production network 
and its behavior. 

Diagnostic use defines using models to replicate a past situ-
ation and explain the observed behavior of the system to deduct 
knowledge regarding future behavior and to target change pro-
cesses within the production network. 

Alerting use means creating a model that continuously runs 
in the background and triggers an alert when changes to the real 
system result in a predetermined unwished state or behavior. 
Based on this alert, projects to change the configuration of the 
network and adapt it can be started. 

4. Conclusion and Outlook 

This contribution proposed a framework for a digital twin of 
production networks. The digital twin consists of two primary 
parts, the base model layer and the application layer, facilitating 
its utility for several management tasks in global production 
networks. The framework can serve as an outline of digital 
twins and may act as a discussion point for digital twins in pro-
duction network management. 

Future works need to examine the role of calibration for such 
twins more closely, consider different application model types 
in conjunction with the digital twin, and discuss integration 
strategies for digital twins within the organization. Further-
more, inter-company aspects of such digital twins need to be 
studied more closely. 
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