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Deep material networks (DMN) are a promising piece of technology for accelerating concurrent multiscale simulations.
DMNs are identified by linear elastic pre-computations on representative volume elements, and serve as high-fidelity surro-
gates for full-field simulations on microstructures with inelastic constituents. The offline training phase is independent of
the online evaluation, such that a pre-trained DMN may be applied for varying material behavior of the constituents. In this
contribution, we investigate a two-scale component simulation of industrial complexity accelerated by DMNs. To this end, a
DMN is solved implicitly at every Gauss point to include the microstructure information into the macro simulation.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Introduction

Many common engineering materials used for industrial applications, e.g., fiber reinforced composites or polycrystals, feature
a spatially varying, complex microstructure. To harness the full potential of such materials, the microstructure information
needs to be accounted for in mechanical simulations on the component scale. For this purpose, concurrent multiscale methods
couple simulations on the micro- and macroscale. However, these approaches come with considerable computational costs
which quickly become prohibitive for increasingly complex components.

As a remedy, a variety of approaches, ranging from model-order reduction techniques to machine learning approaches, were
developed focusing on speeding up the micro simulation. In this work, we focus on so called deep material networks [1–3], a
specific data-driven approach. A DMN serves as a surrogate model for full-field simulations on the microscopic scale. DMNs
can be used in concurrent multiscale simulations giving rise to the so called FE-DMN [4] method.

2 Direct deep material networks

A two-phase direct DMN consists of a perfect, ordered binary tree of depth K, where every node of the tree is represented by
a two-phase laminate, see Fig. 1(a) for a schematic. The DMN topology is uniquely determined by the laminates’ directions
of lamination n⃗ =
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, which represent a re-parameterization of the

laminates’ volume fractions.
To identify the free parameters n⃗ and w⃗, the DMN is trained on linear elastic data alone by solving the optimization

problem
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s.t. w⃗ ≥ 0. (1)

Here, C1, C2 denote the sampled linear elastic training data, C̄ the computed effective stiffness, and DMNL (C1,C2, n⃗, w⃗)
represents the DMN’s linear elastic homogenization function. Fig. 1(a) illustrates the propagation of input stiffnesses C1, C2

through the binary tree to obtain the predicted effective stiffness. After the training, i.e., during the online evaluation, the free
parameters n⃗, w⃗ remain fixed, and the DMN’s predicted effective stress σ̄ is computed for nonlinear constituent materials by
solving the balance of linear momentum in every laminate simultaneously.

3 Numerical results

As an example, we investigate a connecting rod made from a metal matrix composite [5], see Fig. 2. The microstructure of
the metal matrix composite comprises 30 vol-% linear elastic ceramic particles (E = 400GPa, ν = 0.2), embedded into an
aluminium matrix, which we assume to be governed by J2-elastoplasticiy with power-law hardening

σY = σ0 + kεmp (2)

and with E = 75GPa, ν = 0.3, σY = 75MPa, k = 416MPa and m = 0.3895.
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2 of 2 Section 8: Multiscales and homogenization

First, we sample N = 800 tuples of (orthotropic) input stiffnesses {(Cs
1,Cs

2)}Ns=1 and compute the corresponding effective
stiffnesses C̄s with an FFT-based computational homogenization code [6]. We train a deep material network with K = 8 layers
for 36 000 epochs by means of accelerated stochastic gradient descent [7]. In Fig. 1(b), the loss J over the training epochs is
shown. We observe that the loss is decreasing in a non-monotonic fashion due to a learning rate modulation commonly used
in machine learning.
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Fig. 1: A two-phase direct DMN and results for the offline training and the online evaluation

After the training, we assign the above mentioned material behavior to the ceramic inclusions and the aluminum matrix
and investigate the effective response of the considered metal matrix composite on the microscopic level. We compute the
effective stress with an FFT-based computational homogenization code [6] and compare the former to the effective stress
predicted by the DMN. In the 11-direction, a complete stress-strain hysteresis is simulated with a strain amplitude of ε̄ = 1%
in 80 equidistant load steps, see Fig. 1(c). As can be observed, the DMN is able to predict the strongly nonlinear effective
stress of the metal matrix composite with reasonable error. Regarding the computational costs, the DMN is able to provide a
speed-up over the FFT-based computational homogenization code by a factor of 105.

vo
n
M
is
es

st
re
ss

σ
v
m

in
M
P
a

0

20

40

60

80

100

120

140

160

F

Fig. 2: Von Mises stress dis-
tribution in a concurrent two-
scale simulation of a connect-
ing rod made from a metal ma-
trix composite. At every Gauss
point, a DMN is solved implic-
itly.

In the next step, we turn our attention to a component-scale simulation of industrial com-
plexity. We implement the DMN as an implicit user-material (UMAT) subroutine in ABAQUS.
We mesh the connecting rod by 120 000 quadratic tetrahedron elements. At each Gauss point,
a DMN is integrated implicitly. We apply a load of F = 20 kN in 10 equidistant loading steps.
We observe a stable convergence behavior of the FE simulation, requiring 19 total Newton it-
erations. The former does not come as a surprise, since the algorithmic tangent of the DMN
is computed analytically. Computing on 96 threads in parallel, the simulation takes about 20
minutes to complete, requiring about 18GB of DRAM.

4 Conclusion
Our results indicate that deep material networks enable two-scale simulations of structures with
industrial complexity with moderate hardware requirements. In this way, the FE-DMN method
represents a strong candidate for realizing concurrent multiscale simulations for industrial ap-
plications.
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