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Abstract: During atrial fibrillation, cardiac tissue undergoes different remodeling processes at dif-
ferent scales from the molecular level to the tissue level. One central player that contributes to
both electrical and structural remodeling is the myofibroblast. Based on recent experimental evi-
dence on myofibroblasts’ ability to contract, we extended a biophysical myofibroblast model with
Ca2+ handling components and studied the effect on cellular and tissue electrophysiology. Using
genetic algorithms, we fitted the myofibroblast model parameters to the existing in vitro data. In
silico experiments showed that Ca2+ currents can explain the experimentally observed variability
regarding the myofibroblast resting membrane potential. The presence of an L-type Ca2+ current can
trigger automaticity in the myofibroblast with a cycle length of 799.9 ms. Myocyte action potentials
were prolonged when coupled to myofibroblasts with Ca2+ handling machinery. Different spatial
myofibroblast distribution patterns increased the vulnerable window to induce arrhythmia from
12 ms in non-fibrotic tissue to 22 ± 2.5 ms and altered the reentry dynamics. Our findings suggest
that Ca2+ handling can considerably affect myofibroblast electrophysiology and alter the electrical
propagation in atrial tissue composed of myocytes coupled with myofibroblasts. These findings
can inform experimental validation experiments to further elucidate the role of myofibroblast Ca2+

handling in atrial arrhythmogenesis.

Keywords: myofibroblast; fibrosis; atrial fibrillation; calcium handling

1. Introduction

Non-myocyte cells are the major population in cardiac tissue (60–70% of cells). In
healthy and diseased myocardium, this population is predominantly comprised of cardiac
fibroblasts [1]. Once fibroblasts differentiated into myofibroblasts, they are responsible for
maintaining the myocardial extracellular matrix homeostasis, which consists mainly of
collagen [2–4]. Collagen is present in a meager amount in the adult heart [5]. However,
due to aging and different pathologies, such as atrial fibrillation (AF), collagen deposit in
the cardiac tissue is markedly increased, known as fibrosis [6,7].

Myofibroblast electrophysiology is not clearly described yet; however, several ex-
perimental studies have identified protein expression of different ion channels in their
membrane (Table 1). Although myofibroblasts are known as non-excitable cells, several
studies have shown NaV1.5 sodium channel protein expression [8–10] and recently also the
expression of CaV1 subfamily proteins, which mediate the L-type Ca2+ current [9,11,12]. In
the last years, there have been a considerable number of studies looking at the role of Ca2+

signaling in myo-/fibroblast physiology, and in fibrosis-associated cardiac diseases [13–16].
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Table 1. Reported cardiac myo-/fibroblast ion channels from different locations and species.

Type of Ion Channel Ion Channel/Protein Cell Types

Voltage-gated Na+ Nav1.2; Nav1.5; Nav1.9 Human ventricular fibroblast [17];
human atrial fibroblast [8–10]

Voltage-gated K+ Kv4.1, Kv4.2, Kv4.3, Kv6.2 Human ventricular fibrob last [17];
human atrial fibrob last [9]

K+ inward rectifier Kir2.1 Human ventricular fibroblast [17]; dog
ventricular fibroblast [18]

Voltage-gated Ca2+ Cav1.2, Cav1.3 Human ventricular fibroblast [11];
human atrial fibroblast [9]

ATP-activated K+ SUR2/Kir6.1 Mice ventricular fibroblast [19]; rat
ventricular fibroblast [20]

Ca2+-activated K+ KCa1.1, KCa3.1 Human ventricular fibroblast [17];
human atrial fibroblast [21]

Voltage-Gated Cl− ClCN3 Human ventricular fibroblast [17]

Store-operated Ca2+ or
Receptor-operated Ca2+ Orai1/STIM1

Rat atrial fibroblast [16]; Human
ventricular fibroblast [22]; Rat ventricular

fibroblast [23]

TRP TRPC3 [24] TRPV4 [25] TRPM1 [9]
TRPM7 [12,26] TRPA1 [12]

Rat ventricular fibroblast [24,25]; Human
atrial fibrob last [9,12,26]

Voltage-gated Ca2+ channels are an essential part of the cellular electrical machinery,
playing a key role in the activation of the sarcoplasmic reticulum channels, contractility,
proliferation, and apoptosis of the cell [27,28]. Myofibroblasts exhibit α-smooth muscle
actin [29,30] and have been demonstrated to be able to contract [15,31,32], thus indicating a
functional Ca2+ handling machinery underlying excitation-contraction coupling [12,21,33].

Furthermore, myofibroblasts can be electrically coupled to myocytes via gap junctions
and alter the action potential characteristics [28,34–37]. They can affect the electrical prop-
agation in cardiac tissue during AF or in AF-remodeled tissue and potentially increase
arrhythmia propensity [38–40]. Key targets of AF upstream therapies are structural changes
in the atria, ion channels, and gap junctions [41]. Thus, understanding the role that myofi-
broblasts play during AF is crucial for improving efficacy of current and future therapies.

Computational models can help understand the mechanisms underlying physical and
physiological phenomena at different scales. In silico experiments have the advantage of
providing complete control over a wide range of parameters, which in experimental setups
are often hard or even impossible to achieve [42]. As a complementary research approach,
they can provide insight into the myofibroblast electrophysiology through well-controlled,
quantitative experiments that can inform and motivate future in vitro or in vivo studies.
Optimization algorithms allow fitting model parameters to in vitro data to study effects
on ion channel kinetics [43] and cellular electrophysiology [44,45]. At the tissue level,
several studies showed that different patterns and clusters of fibrosis alter the electrical
propagation in the cardiac tissue and change the dynamics of reentrant activity [40,46,47].

In this study, we introduce the L-type Ca2+ ionic current and a potential intracellular
Ca2+ handling machinery into the Koivumäki et al. myofibroblast model [10]. Model
parameters of the nonlinear system’s ionic channels are fitted to experimental data using
a genetic optimization algorithm. We hypothesize that coupling the fitted myofibroblast
model with Ca2+ handling to an atrial myocyte affects the action potential under electrical
remodeling due to persistent atrial fibrillation. We further hypothesize that such changes on
the cellular level affect arrhythmia vulnerability at the tissue level when fibrotic infiltration
is present.

2. Materials and Methods
2.1. Myocyte Electrophysiology and Persistent Atrial Fibrillation Remodeling

Human atrial myocyte electrophysiology was represented by the mathematical for-
mulation proposed by Skibsbye et al. [48]. Electrical remodeling due to persistent atrial
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fibrillation was introduced by changing the maximum conductance of the sodium channel
(gNa), L-type Ca2+ channel (gCaL), transient potassium channel (gto), ultra-rapid potassium
channel (gsus), slow delayed-rectifier potassium current (gKs), rapid delayed-rectifier potas-
sium current (gKr), inward potassium rectifier (gK1), Ca2+ activated potassium channel
(gKCa), the sodium-calcium exchanger maximum current (kNaCa), the sarcoplasmic reticulum
Ca2+ ATPase (SERCA) pump, and ryanodine receptors (RyR), and specific Ca2+ handling
parameters, such as phospholamban (PLB), sarcolipin (SLN), and the cellular volume as
suggested by Skibsbye et al. [48].

2.2. Myofibroblast Electrophysiology

The mathematical formulation of fibroblast electrophysiology is based on Koivumäki
et al. [10], modified to represent the electrophysiology of a human atrial myofibroblast [40],
which in this study is referred to as the baseline myofibroblast model (Figure 1a).
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using openCARP [51] were carried out for the entire population to observe the model 
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Figure 1. Three different cellular models to explore the effects of myofibroblast Ca2+ handling.
(a) Baseline myofibroblast model without Ca2+. (b) Myofibroblast model including the L-type Ca2+

current. (c) Myofibroblast model including the L-type Ca2+ current and an intracellular Ca2+ han-
dling system.

ICaL parameters (Figure 1b) were fitted to reproduce the experimental data reported by
Bae et al. [11]. In the absence of specific experimental data, we assumed that myofibroblasts
exhibit a similar phenotype as the myocytes in the regions in which they differentiate.
Thus, the intracellular Ca2+ handling system was taken from the Courte-manche et al. [49]
human atrial myocyte model (Figure 1c). Parameters of the nonlinear. system for Ca2+

handling were fitted to reproduce a physiological state that reflects the experimental values
for the transmembrane potential and the current traces for INa and ICaL [8–10,12,50].

Figure 2 shows a scheme of the process used to fit the myofibroblast model to the
in vitro data. Eleven parameters from the myofibroblast model (“genes” in the genetic
optimization algorithm) were assigned random values within the prescribed range to
produce the first population. The initial values were constrained to ±5% of their original
value in order to constrain the values within a physiological range. Then, single cell.
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simulations using openCARP [51] were carried out for the entire population to observe
the model behavior after 10,000 ms of simulation without stimulation. The value of the
transmembrane potential, [K+]i, and [Ca2+]i were then evaluated according to the fitness
function (Equation (1)) under consideration of long term stability of the ionic model by
evaluating the last 100 samples (N).

F = ωr·
1
N

N

∑
∣∣∣RMPpred − RMP

∣∣∣+ ωk·
1
N

N

∑
∣∣∣[K+

]
ipred

−
[
K+
]

i

∣∣∣+ ωca·
1
N

N

∑
∣∣∣∣[Ca2+

]
ipred

−
[
Ca2+

]
i

∣∣∣∣, (1)

where F is the fitness function, ωr, ωk, and ωca are the weighting coefficients, N is
the number of samples, RMP is the transmembrane potential, [K+]i is the intracellular
potassium concentration, and [Ca2+]i is the calcium intracellular concentration.
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Figure 2. Scheme of the genetic algorithm. Available in vitro data were used as an input to fit the
model parameters. The population is comprised of individuals (A1 to Am) with different parameter
values representing the “genes” (P1 to Pn, n=11). After the transmembrane potential was simulated
for all individuals, the fitness function (F) was evaluated. If the error was less than 0.1, the algorithm
terminated. Otherwise, it continued by selecting the fittest individuals and allowing crossover and
mutation of the genes to generate the next generation population. The process continued until the
convergence condition was met.

If the sum of the weighted absolute error was less than 0.1, the algorithm was termi-
nated, providing the parameters of the fittest model. Weights (ωr 1/mV, ωk 1/mMol, and
ωca 1/mMol) were the same for transmembrane potential, [K+]i, and [Ca2+]i. Otherwise,
the algorithm continued by selecting the fittest parameter sets and allowing a 0.8 fraction
of crossover and mutation rate (following a Gaussian distribution with 0 mean) between
the genes of the selected individuals to create the next generation. The process continued
until the convergence condition was met.

2.3. In Silico Experimental Protocol

In silico experiments of isolated cells were carried out in order to quantify the effect
of the electrical coupling between myocytes and myofibroblasts with ICaL and the Ca2+

handling system. Different numbers of myofibroblasts (3, 6, or 9) were coupled to a single
myocyte [10,52,53]. The coupling conductance between the myocyte and the myofibroblasts
was set to 0.5 nS [38,40]. The myocyte action potential duration at 90 percent repolarization
(APD90) was measured in an S1–S2 dynamic pacing protocol to obtain the restitution curve.

Tissue simulations were carried in a patch of 50 mm × 50 mm × 3 mm with a central
fibrotic area (radius 10 mm) featuring 11 different fibrosis patterns. The patterns were
generated as Perlin noise [54], which is used in computer-generated imagery to generate
realistic textures [55]. These textures were used to distribute the myofibroblasts following



Cells 2021, 10, 2852 5 of 15

the fibrotic patterns (Figure 5) observed in MRI and histological cuts from interstitial and
patchy fibrotic tissue [56,57]. For each pattern, five myofibroblast densities were generated
(10%, 20%, 40%, 60%, and 90%). Myofibroblast were assigned to an element and density
was computed as the total number of elements in the central area. Thus, 55 different
fibrosis patterns were obtained in total to account for the variability of the fibrotic clusters
and myofibroblast density distribution. The entropy H of the central fibrotic region was
measured as a metric of the fibrosis pattern irregularity:

H = −∑
k

Pk · log2(Pk) (2)

where H is the entropy of the central fibrotic area, k is the number of levels (0(myocyte) or 1
(myofibroblast)), and p is the probability associated with said binary level.

Tissue conduction velocity was set to 43.39 cm/s [58,59] to represent values reported
in patients with persistent atrial fibrillation by adjusting the monodomain conductivity
ratio between the longitudinal, transversal, and normal direction in a tissue strand to
achieve plane wave conduction velocity. Myofibroblast conductivity was half with respect
to the myocyte conductivity [38,40,60].

All meshes had an average edge length of 100 µm to study the electrical dynamics
due to the hetero cellular coupling. The tissue was stimulated from one side to simulate
a planar wave propagation during sinus rhythm with 10 pulses at a basic cycle length of
1000 ms to reach a limit cycle. Additionally, a second stimulus was introduced to induce
an arrhythmia via a cross-field protocol and quantify the tissue’s vulnerable window. The
vulnerable window was defined as the total time when a reentry activity was initiated
by the cross-field stimulus and maintained for more than 2 s of simulated time. Fibrotic
clusters were defined as the areas where all elements of fibrosis were connected. The
Euclidean distance between the cluster centroids was measured. Monodomain simulations
were performed using a time step of 1 µs to account for the stiff differential equations of
the ionic models. All simulations were performed using openCARP. [51].

3. Results
3.1. Myofibroblast Electrophysiology

The genetic algorithm fitted the 11 parameters of the ionic model (Table 2) in order to
reproduce experimental results of INa [9] and ICaL [11] (Figure 3a), and the resting membrane
potential [2,9,12] (Figure 3b). The resulting set of parameters (Table 2) represents a model
that reached a steady state with no stimulation. Long-term stability was tested using two
different approaches, quiescent steady-state without stimulating the myofibroblast and
reaching a limit cycle when stimulating the cell with a train of 100 pulses at a basic cycle
length of 1000 ms.

Table 2. Myofibroblast model parameters including ICaL with the intracellular Ca2+ handling system ionic conductance
modifications.

gKv
(nS/pF)

gK1
(nS/pF)

gNa
(nS/pF)

gNab
(nS/pF)

gNaK
(nS/pF)

gCaL
(nS/pF)

gCab
(nS/pF)

kNaCa
(nS/pF)

kpCa
(nS/pF)

rKv
(nS/pF)

sKv
(nS/pF)

1.34 1.79 0.73 2.39 0.84 0.48 0.57 2.55 1.0 14.04 16.21

An in silico patch-clamp experiment was conducted in order to measure the maxi
mal current at different potentials. The fitted ICaL current reproduced the results from Bae
et al. [11], as depicted in Figure 3a. The transmembrane voltage course without pacing
for the three myofibroblast models is depicted in Figure 3b. When ICaL was added to the
baseline myofibroblast model, the myofibroblast exhibited a maximum diastolic potential
of –34 mV. This potential was not a stable resting membrane potential, but the addition of
the ICaL current to the baseline model made the myofibroblast exhibit spontaneous activity
with a cycle length of 799.9 ms. The diastolic depolarization rate measured over the first
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100 ms time interval (DDR100) was 62.60 mV/s. When in addition to ICaL an intracellular
Ca2+ handling system was added, the automaticity of the cell ceased and a stable resting
membrane potential of –46 mV was reached.

Cells 2021, 10, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Myofibroblast electrophysiology including the ICaL current and the intracellular Ca2+ han-
dling system. (a) In silico patch-clamp experiment for ICaL (top) and comparison (bottom) with in 
vitro data (dots) from [11]. (b) Transmembrane potential of three different non-paced models: base-
line model (blue), myofibroblast with ICaL (red), and myofibroblast with ICaL and intracellular Ca2+ 

handling (yellow). 

When a single myocyte was coupled to different numbers of myofibroblasts (includ-
ing ICaL and the intracellular Ca2+ handling system), the myocyte action potential duration 
was affected. Control myocyte APD90 was shortened from 180 ms and when coupling to 
3, 6, or 9 myofibroblasts, 110 ms, 70 ms, and 50 ms, respectively. Myocyte APD90 with 
AF electrical remodeling was 130 ms. When coupled to 3, 6, or 9 myofibrob-lasts, it was 
prolonged to 163 ms, 168 ms, and 185 ms, respectively (Figure 4a). Myocyte action po-
tential amplitude was reduced from 129.09 mV (non-coupled) to 127.84 mV, 124.94 
mV, 118.91 mV, and 109.14 mV for 1, 3, 6, and 9 coupled myofibroblasts, respectively. 
Additionally, the action potential maximal upstroke change (dV/dtmax), for control myo-
cytes, was increased from 119.3 mV/s (non-coupled) to 120.1 mV/s when coupled to 9 
myofibroblasts. AF-remodeled myocyte dV/dtmax was slightly reduced from 111.5 mV/s 
(non-coupled) to 110.9 mV/s when coupled to 9 myofibroblasts. 

The myocyte resting membrane potential was depolarized (from –74 mV to –60 mV) 
when coupled to 9 myofibroblasts. Additionally, APD90 restitution curve maximum slope 
was increased for 1, 3, and 6 coupled myofibroblasts (3.59, 3.69, and 3.79, respectively) in 
comparison to the slope of the uncoupled AF-remodeled myocyte (2.97). However, the 
slope was flattened when coupled to 9 myofibroblasts (slope of 1.83) (Figure 4b). 
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handling system. (a) In silico patch-clamp experiment for ICaL (top) and comparison (bottom) with
in vitro data (dots) from [11]. (b) Transmembrane potential of three different non-paced models:
baseline model (blue), myofibroblast with ICaL (red), and myofibroblast with ICaL and intracellular
Ca2+ handling (yellow).

When a single myocyte was coupled to different numbers of myofibroblasts (including
ICaL and the intracellular Ca2+ handling system), the myocyte action potential duration was
affected. Control myocyte APD90 was shortened from 180 ms and when coupling to 3, 6, or
9 myofibroblasts, 110 ms, 70 ms, and 50 ms, respectively. Myocyte APD90 with AF electrical
remodeling was 130 ms. When coupled to 3, 6, or 9 myofibrob-lasts, it was prolonged to
163 ms, 168 ms, and 185 ms, respectively (Figure 4a). Myocyte action potential amplitude
was reduced from 129.09 mV (non-coupled) to 127.84 mV, 124.94 mV, 118.91 mV, and
109.14 mV for 1, 3, 6, and 9 coupled myofibroblasts, respectively. Additionally, the action
potential maximal upstroke change (dV/dtmax), for control myocytes, was increased from
119.3 mV/s (non-coupled) to 120.1 mV/s when coupled to 9 myofibroblasts. AF-remodeled
myocyte dV/dtmax was slightly reduced from 111.5 mV/s (non-coupled) to 110.9 mV/s
when coupled to 9 myofibroblasts.

The myocyte resting membrane potential was depolarized (from –74 mV to –60 mV)
when coupled to 9 myofibroblasts. Additionally, APD90 restitution curve maximum slope
was increased for 1, 3, and 6 coupled myofibroblasts (3.59, 3.69, and 3.79, respectively) in
comparison to the slope of the uncoupled AF-remodeled myocyte (2.97). However, the
slope was flattened when coupled to 9 myofibroblasts (slope of 1.83) (Figure 4b).
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3.2. Tissue Simulations

Figure 5 depicts three different patterns with three different entropy values. Patterns of
myofibroblast infiltration that resemble interstitial fibrosis had a higher entropy compared
to the patterns of myofibroblast infiltration that resemble patchy fibrosis. The elongated
patterns resembling interstitial fibrosis with a considerable number of gaps in the central
area of the tissue are more complex, which increases the entropy value. Clusters of patchy
fibrosis have a more regular distribution of myofibroblasts, giving lower entropy values.
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patchy fibrosis.

Tissue-level simulations revealed that myofibroblasts change reentry dynamics de-
pending on their density and pattern. Fibrosis patterns with high entropy (interstitial
fibrosis) increased the tissue vulnerability to reentrant activity (Figure 6 first row). Tis-
sue vulnerability was increased due to the slow conductive fibrotic area, which acts as a
conduction block when interstitial fibrosis has a density higher than 40%. Patterns with
mean entropy values (resembling a transition from interstitial fibrosis to patchy fibrosis)
stabilize reentrant activity. Due to the distance between fibrotic clusters (mean distance
1.2 ± 0.2 mm), the non-fibrotic islands can act as exit points that appear as focal activity.
Patchy fibrosis with low entropy did not markedly exhibit exit points for the reentrant
activity (Figure 6 last row) but stabilized the reentrant activity around the fibrotic area.
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Figure 6. Snapshots of the transmembrane potential at different time instances for three different
fibrosis patterns with 20% myofibroblast density (black areas in the left column represent myofibrob-
lasts). White arrows indicate the reentry trajectory, and the white star shows the exit point of the
reentry. Reentrant activity was initiated by a cross-field stimulus. The top row shows the reentry
around the fibrotic region of high entropy that resembles interstitial fibrosis. The middle row shows
the reentrant activity with an exit point due to the separation of the clusters with a mean entropy
value that resembles disperse patchy fibrosis. The bottom row shows reentrant activity around an
area of low entropy that resembles a pattern of patchy fibrosis.

Tissue vulnerability mainly depended on the myofibroblast density independent from
the infiltration pattern. Increasing myofibroblast density increased the vulnerable window
(Figure 7): from 12 ms (non-fibrotic tissue) to 14 ± 1.78 ms, 20 ± 1.13 ms, 18 ± 0.92 ms,
15 ± 1.28 ms, and 14 ± 0.83 ms for 10%, 20%, 40%, 60%, and 90%, respectively.
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4. Discussion

In this work, we have introduced a human atrial myofibroblast model, which includes
the L-type Ca2+ and an intracellular Ca2+ handling system. This model is based on in vitro
data and assumptions following Occam’s razor when no specific data were available. In
silico experiments using this new model can help to explore and potentially understand the
electrophysiology of the human atrial myofibroblast. We showed that intracellular calcium
handling can tip the scales of cellular automaticity and that myofibroblast infiltration
patterns can promote and maintain reentrant activity.

Our fitting methodology yielded a myofibroblast model with long-term stability that
is able to reproduce patch-clamp experiment recordings from in vitro data. Despite the lack
of data, the model yielded physiological transmembrane potential courses in accordance
with different experimental works [9,61].

Ca2+ signaling has been described as a pathway of fibroblast proliferation and differ-
entiation [62]. In vitro and in vivo studies showed that the number of myofibroblasts and
collagen in rat hearts were reduced by blocking L/T-type Ca2+ channels [63–65]. These
studies suggest that Ca2+ ion channels and intracellular Ca2+ handling plays an essential
role in the electrophysiology of myofibroblasts and the development of cardiac fibrosis.
Nevertheless, the specific effect of voltage-gated Ca2+ channels and their impact on myofi-
broblast electrophysiology has not yet been fully described. In our study, using in silico
experiments and based on the notion that myofibroblasts can contract, we were able to
study the effect of the expression of L-type Ca2+ voltage-channel and the intracellular Ca2+

handling system on myofibroblast electrophysiology. We observed two different behaviors:
first, the presence of L-type Ca2+ current triggers automatic activity in isolated myofibrob-
lasts. Second, the presence of the intracellular Ca2+ handling system, which was composed
of the sarcoplasmic reticulum and the Ca2+ SERCA pump, stops this automaticity and leads
to a steady-state with a resting membrane potential of –46 mV, which is in accordance with
experimentally reported values [9,38,53,61]. Human sinus node cells, which also exhibit
automaticity, showed a diastolic depolarization rate (DDR100) of around 76 mV/s and a
cycle length of around 828 ms [66–68]. The myofibroblast model with only the L-type Ca2+

channel had a DDR100 of 62.60 mV/s and a cycle length of 799.9 ms, which could poten-
tially trigger ectopic activity [69]. Automaticity in the myofibroblast model was driven by
a membrane clock formed by incomplete inactivation of the ICaL current. This mechanism
is different from a funny current-driven membrane clock observed in pacemaker cells
as part of a coupled clock [70]. In cardiac pacemaker cells, automaticity is driven by the
interplay of membrane and calcium clock in contrast [71]. The observed automaticity is
a result of the in vitro data used in the fitting algorithm which show no complete ICaL
inactivation at hyperpolarized membrane voltages. Complete inactivation would likely
stop automaticity but would not be in line with the available in vitro data. The addition of
L-type Ca2+ current and intracellular Ca2+ handling system to the myofibroblast model
showed a different effect when coupled to a single myocyte. A previous study [40] showed
that the myofibroblast baseline model shortens the APD90. Our results showed a prolonga-
tion of the APD90 when increasing the number of coupled myofibroblasts. Nattel et al. [72]
reviewed the importance of Ca2+ for the function of the atrial cardiomyocytes and its
relation to AF. In this study, we present how Ca2+ can alter the electrophysiology of the
human atrial myofibroblast. In particular, myofibroblast automaticity was only observed in
the absence of Ca2+ handling machinery. While the relevance of myofibroblast automaticity
for atrial ectopy is unclear [50], abnormal disrupted Ca2+ handling could be a contributor
to arrhythmia triggers and help to understand arrhythmogenicity and may hold potential
for future therapeutic approaches [14].

Tissue simulations showed that not only could the myofibroblast infiltration affect
the arrhythmia vulnerability [73,74], but also the fibrosis pattern can play a role in the
initiation and maintenance of reentrant activity [46,47,54,75]. Sridhar et al. [76] have shown
the role that fibroblast infiltration plays regarding the onset of arrhythmia due to the
increase of anisotropy in the tissue. In another study, Kazbanov et al. [77] showed that
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diffuse fibrosis patterns promote the onset of arrhythmia. The fitted myofibroblast model
has altered the tissue window vulnerability compared to a previous study [40] where the
vulnerable window was similar for different densities of myofibroblasts. The observed
mechanism underlying the widening of the vulnerable window in our simulations was a
slowing of conduction. Additionally, a shortening of the vulnerable window was observed
when the tissue became less excitable due to high densities of myofibroblasts, which led
to a block in conduction as previously observed [40]. In combination, our results show a
biphasic behavior of the tissue vulnerable window as observed by other studies [40,78]. It
is worth noting that when the myofibroblast density increases, the vulnerability of tissue is
decreased due to conduction blocks created by high density clusters of myofibroblasts.

Our results show that patterns that resemble low degree patchy fibrosis with low
entropy did not markedly affect the tissue vulnerability [79]. However, patterns with mean
entropy values that correspond to a cluster of fibrosis with a separation distance between
centroids of 1.2 ± 0.2 mm did promote reentrant activity and exhibit exit points that could
be identified as focal points [80]. In addition, when entropy values increased and fibrosis
was interstitial, the reentrant activity was maintained around the fibrotic area. Maintenance
of reentry around interstitial fibrosis is due to the depolarization of the central area which
slows down conduction [73] and does not create zig-zag propagation paths observed in
fibrosis with mainly collagen [46].

Based on reports that myofibroblasts can contract [15,31,32] and the hypothesis that
they express a similar phenotype as the myocytes in the region in which they differenti-
ate [81–83], we developed an extended myofibroblast model. The extended myofibroblast
model explores one possible way of Ca2+ entry via the L-type Ca2+ channel to the intra-
cellular medium and the intracellular Ca2+ handling. Nevertheless, Ca2+ signaling in
the myo-/fibroblast has been shown to be mostly mediated by TRP channels. Different
studies suggest that under the presence of TGF-β1, myofibroblast TRPM7 channels are
activated and contribute to Ca2+ influx [13,26,84]. Du et al. [26] have shown that TRPM7
channels are important for the differentiation of fibroblasts into myofibroblasts and play
a role in fibrogenesis in human AF. TRPM7 channels are activated by a decrease in the
free Mg2+ concentration. However, the role of low Mg2+ in patients with AF has not yet
been clarified [84–86]. In this study, we considered the L-type Ca2+ current as the primary
contributor to Ca2+ influx and did not consider any changes in the Mg2+ concentration.
Another possible Ca2+ entry could be via CRAC channels (Orai/STIM), which are essen-
tial regulators of intracellular Ca2+ homeostasis in different cells of the cardiovascular
system [87]. Camacho-Londoño et al. [88] reported that Orai channels Ca2+ entry may
be mediated via the activation of angiotensin II-induced signaling cascades in cardiac
fibroblasts but have not reported the effect on the myofibroblast electrophysiology or
the effect on electrical propagation. These findings are a motivation to further study the
influence of Ca2+ in the differentiation of fibroblasts in the cardiac tissue and their impor-
tance for cardiac arrhythmias. The scarcity of experimental data is the main limitation
of this work, rendering independent validation of the myofibroblast electrophysiology
impossible at the current stage. As such, this study should be considered hypothesis-
generating, aims to stimulate discussion in the scientific community, and hopes to inform
future experimental work.

We did not consider paracrine effects [12,14,79], which are likely present during the
inflammatory process as one of the pathways that triggers fibroblast differentiation to
myofibroblasts or the effect of collagen that might affect dynamics of the reentrant activ-
ity [52,89]. In addition, it will be of great interest to study how the ratio of electrically
coupled fibroblasts and myofibroblasts in cardiac tissue can alter the dynamics of atrial
fibrillation [90]. Moreover, the proposed model in this study could potentially be used
as a basis to study the mechano-electrical properties of myofibroblasts and their effect
on the atrial tissue during AF. Additionally, the Courtemanche et al. [49] mathematical
formulation of intracellular calcium handling was used due to the smaller number of
parameters compared with the Koivumäki et al. [91] mathematical formulation of intra-
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cellular calcium handling that would increase the level of uncertainty due to the higher
number of parameters which are still under study in the myofibroblast electrophysiology.
Quantitative data to inform the choice of their values are mostly lacking. Moreover, we did
not consider the influence of the atrial anatomy, which might change the dynamics of the
reentrant activity [92,93].

5. Conclusions

In silico models can integrate the available in vitro data on myofibroblast elec- trophys-
iology and provide additional insight based on them. Ca2+ handling in the myofibroblast
alters the cellular electrophysiology and prolongs the action potential when coupled to
an atrial myocyte. If only the L-Type Ca2+ membrane channel is added, myofibroblasts
exhibit sustained automaticity. Tissue simulations show that myofibroblast infiltration
increases the vulnerability of the tissue to arrhythmia and that different fibrosis patterns
change the dynamics of the reentrant activity. Future experiments based on these findings
will further elucidate the role of calcium in the myofibroblast and the electromechanical
effects of coupling between myofibroblasts and myocytes.
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