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ABSTRACT: With drive towards a green energy sector and significant cost reduction of photovoltaic (PV) technology, 
global PV capacity has increased multi folds in the last decade. PV power increases the variability of power supply due to 
the sun’s changing position and weather volatility. Battery systems tackle these problems. For an optimized battery charging 
management, accurate PV energy forecasts are vital. The present work compares five 1-day-ahead PV power prediction 
models for a PV array of 8.64 kWp at KIT with 30° tilt and a 15° eastward orientation. The power prediction is used for 
intelligent battery charging management. The models are the offline persistence forecast (PF), an online forecast based on 
numerical weather prediction (NWP) and the machine-learning based offline Facebook prophet (FBP), support vector 
regression (SVR) and multilayer perceptron (MLP). According to the needs of intelligent battery charging management, 
the hourly PV energy forecast for the rest of the day is evaluated and compared for the different methods. The prediction 
methods are configurable for arbitrary inclinations and orientations. To the knowledge of the authors, FBP is compared for 
the first time to other models in the context of PV prediction. The results are evaluated for one year of data between March 
2020 and February 2021. When comparing the performance of the models for different times of the day, SVR and MLP 
outperform the other models around noon, while the PF and most of the time NWP and FBP outperform the SVR and MLP 
in the morning and evening. When evaluating the models over one year, SVR outperforms the other model’s power and 
energy prediction. At the same time, the other models have similar power prediction performance, but varying energy 
prediction performance. When evaluating the models over the meteorological seasons, there are striking differences of the 
models’ performance. The SVR performs mostly best but is outperformed by the NWP in spring. At the same time, the 
NWP performs worst in winter. This is associated to reasons of spatial resolution of the NWP data. With the two best 
models SVR and MLP, it is shown that endogenous values generally suffice, while the partial outperformance of the NWP 
still motivates for a further investigation into the use of exogenous input. 
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1 INTRODUCTION AND LITERATURE REVIEW 
 
Photovoltaic (PV) power increases globally and has 
environmental and economic benefits. Its variable 
availability can be tackled by battery systems. Optimal 
battery charging management requires accurate energy 
forecasts [1]. The PV field of KIT Campus North with 
102 PV arrays provides an attractive data basis for the 
research on power prediction. The power prediction is 
transformed into an energy forecast that serves the battery 
load management of a Li-ion battery system coupled to a 
PV array. The battery is charged so that it is full before 
sunset to prevent aging. Furthermore, the energy forecast 
is used to estimate the state of charge and state of health 
for batteries in advance [2]. Solar irradiation and resulting 
PV power can be predicted in several ways. While some 
methods use exogenous inputs such as the ambient 
temperature from a global forecasting system (GFS [3]) 
(“online” forecasts) [4, 5] others only use data collected on 
site (“offline” forecasts) [6, 7]. While the latter often use 
statistical methods in form of different time series analyses 
methods (persistence forecast (PF)), the former typically 
use numerical weather prediction (NWP) models. A 
combination of methods in order to merge advantages is 
common [8] but it has also been shown that univariate 
forecasting can achieve similar or even better accuracy 
compared to multivariate models [9, 10]. The PF as well 
as the NWP are based on physical equations that calculate 
the PV power output through considering the sun’s 
position and radiation onto the tilted and specifically 
oriented PV array [11]. The difference between PF and 
NWP is the calculation of the global horizontal irradiance 
and using historical data in case of the PF [11] while using 

irradiance, albedo and ambient temperature from the GFS 
in case of the NWP [11, 12, 13]. 

In recent years, research has increasingly dealt with 
the application of machine learning (ML) in order to more 
accurately forecast the PV power and take advantage of 
patterns in historical data [14]. Popular and common 
approaches include support vector regression (SVR) and 
artificial neural networks (ANN), specifically deep 
learning methods [15]. SVR is the most extensively used 
ML algorithm in the field of PV power forecasting [9] 
because of its ability to find non-linear relationships and 
the small number of parameters to tune which is less likely 
to overfit the data [10]. Another approach is the time series 
model called Facebook prophet (FBP) which is faster than 
other statistical methods [16] and has shown promising 
results for PV forecasting [16]. In search of an optimal 
application of ML to PV forecasts, comparisons are 
regularly made [17, 18, 19] to find the best model, whereas 
the findings differ. To the knowledge of the authors, FBP 
is compared for the first time to other models in the context 
of PV prediction. 

 
The present work introduces and compares five 1-day-

ahead PV power prediction models for an example PV 
array, namely an online forecast based on NWP which 
uses exogenous and multivariate input and the offline, 
univariate PF, ML based FBP, SVR and multilayer 
perceptron (MLP) that only use endogenous input. The 
models’ advantages and disadvantages are examined as 
well as their results compared and evaluated. The results 
are evaluated regarding the error metrics MAE and RMSE 
for specific times of the day, over the course of one year 
as well as for the meteorological seasons. 
 



 
 
2 DATA INPUT 
 

The 1 MWp PV field of KIT Campus North located at 
49.1°N and 8.44°E provides an extensive dataset of several 
years of measured PV data at 1 second resolution. Here, a 
8.64 kWp PV array with 30° tilt and a 15° eastward 
orientation has been chosen to train and test the different 
models. The considered meteorological seasons are 
divided into spring (March to May), summer (June to 
August), autumn (September to November) and winter 
(December to February). The time range of spring 2020 till 
winter 2020/2021 is considered. 

 
 

3 FUNDAMENTALS 
 
3.1 Physical Principles 

The PV power is calculated using the direct irradiance 
Idir excluding the incident angle losses contained in the 
incident angle modifier IAMb [20], the diffuse irradiance 
Idif [21, 22] and the ground diffuse (reflected) irradiance 
Iref [13] in the plane of the PV array, as in 

𝑃PV = 𝜂
PV
∙ 𝐴PV ∙ (𝐼𝐴𝑀b ∙ 𝐼dir + 𝐼dif + 𝐼ref) (1) 

where ηPV denotes the efficiency of the PV array and APV 
denotes the PV panel size. A more detailed overview can 
be found in [23]. The global irradiance from which the 
direct and diffuse irradiance is derived as well as other 
parameters are obtained depending on the offline or online 
approach and are therefore explained in subsections 4.1 
and 4.2 respectively. 
 
3.2 Machine Learning and Time-Series Forecasting 

In Machine-learning (ML), PV power time series 
forecasting can be viewed as a supervised regression 
problem [24]. In this work, only the past values of the time 
series as endogenous values are used. So called direct 
multi-step ahead methods are applied. 

Deep Learning is a subfield of ML and uses artificial 
neural networks (ANNs) as its basic structure. The ANN 
comprises an input and output layer as well as a variable 
number of hidden layers. The layers consist of neurons, 
also called nodes or units. The most fundamental form of 
an ANN is a feed-forward network where the information 
flow happens in a forward direction [25]. 

An essential part of building an ML model is the 
training of the model minimizing a loss function while 
using training data and afterwards testing the model on 
unseen testing data. 
 
3.3 Energy Forecast 

The energy forecast uses the forecasted power values 
P(t). The expected energy E(ti) for the rest of the day at 
time point ti corresponds with the integration of the power 
P(t) from ti until the end of the day T, as in: 

𝐸(𝑡i) =  ∫𝑃(𝑡) 𝑑𝑡

𝑇

𝑡i

 

 
 

(2) 

 
 
 

 
 
4 FORECASTING MODELS 

 
4.1 Persistence Forecast 

The Persistence Forecast (PF) model is an offline 
model that only uses endogenous parameters. It is based 
on the physical equations explained in section 3.1 and 
assumes persisting weather conditions for a specific time 
horizon [1, 4]. In this work, a day-ahead prediction PPF is 
made by scaling the clear-sky power curve of the predicted 
day PCS,T, as described in Equation (3) 

𝑃PF = 𝑘PF ∙ 𝑃CS,T (3) 

with the scaling factor kPF based on the generated PV 
energy of the previous day EReal,T-1  and the PV energy 
ECS,T-1 that would have been generated on a clear-sky day, 
as described in Equation (4) 

𝑘PF =
𝐸Real,T−1

𝐸CS,T−1
 (4) 

The clear-sky power curve PCS,T is calculated using 
Equation (1). As the PF model only has access to offline 
parameters, the global horizontal irradiance is calculated 
using the approaches in [26, 27] as further explained in 
[11]. The albedo is calculated using the equations in [13, 
21]. 

Advantages of the PF model are its independency on 
exogenous variables or larger datasets, its simplicity, 
robustness and short computing times of less than one 
minute. Disadvantage is its reduced accuracy for the 
1-day-ahead prediction. 

 
4.2 Numerical Weather Prediction 

The Numerical Weather Prediction (NWP) model is an 
online forecasting model that uses the exogenous inputs 
ambient temperature, global horizontal irradiance and 
albedo coefficient. The NWP is based on the Global 
Forecasting System (GFS) provided open-source by [3]. 
Similar to the PF, the calculation of PV power is based on 
Equation (1), while the PV efficiency ηPV is calculated 
depending on the GFS’s predicted ambient temperature 
[28]. The global horizontal irradiance and the albedo 
coefficient are taken from the GFS’s data and are handled 
using the equations in [21, 26]. The diffuse irradiance 
comprises the differentiation between a twilight zone 
before sunrise and after sunset using the equations in [21, 
22] and times of direct sunlight using the equations in [21, 
29]. 

The NWP data is updated every 6 h and its data is 
available in a 1-hour temporal resolution and a 0.25° 
spatial resolution. In this work, the midnight update is used 
for the 24 h day-ahead prediction. 

Advantages of the NWP are the possibility to use a 
vast range of predicted parameters. Disadvantages are its 
need for an online connection, the large GFS files that need 
to be downloaded and processed and therefore increased 
computing times of one to two hours for this work’s NWP 
model. 

 
4.3 Facebook Prophet Algorithm 

The Facebook Prophet Algorithm (FBP) is a univariate 
time series forecasting tool and uses only offline time 
series PV power data as an input. FBP is based on an 
additive regression model stated as described in [16] 

𝑦(𝑡) = 𝑔(𝑡) + 𝑠(𝑡) + ℎ(𝑡) + 𝑒(𝑡) (5) 



Table I: Choice of FBP parameters 

Parameter Value 

growth linear 
seasonality mode multiplicative 

change point prior scale 10 
fourier order 15 

with the time-dependent functions for trends g(t), periodic 
changes s(t), irregular predictable occasions h(t) and 
independent identically distributed noise e(t) (see 
Equation (5)). Advantages of the FBP are, that the 
statistical method is relatively simple and robust to 
outliers, missing values and sudden changes. 
Disadvantages are its dependency on larger datasets [16]. 
In this work, the parameters were tuned using manual 
tuning, also known as exhaustive search, on training data. 
An input of the prior 3 months’ data showed to be optimal. 
This work’s FBP model needs 2.5 minutes to load the 
input data and about 40 seconds to calculate. The 
optimized parameters are as shown in Table I. 

 
4.4 Support Vector Regression 

Support Vector Regression (SVR) is a supervised ML 
technique for regression analysis. Here, only offline PV 
power data is used as input. SVR is able to handle non-
linear data using a kernel function, a set of mathematical 
functions, which model the input data into a higher 
dimensional space. Goal is to find a hyperplane (decision 
boundary) in an n-dimensional space that classifies the 
data points. SVRs are based on so called maximum-margin 
classifiers as the distance of the data points closest to the 
hyperplanes (support vector) is maximized and therefore 
the optimal orientation and location of the hyperplane is 
achieved. At the core of the technique, the distance 
between the data points outside a permitted marginal error 
ɛ, so called slack variables ξ and ξ*, are minimized, as in 
[30] 

min(
1

2
‖𝑤‖2 + 𝐶∑|𝜉

i
|

𝑛

𝑖=1

) 

 𝑠. 𝑡. |𝑦i − 𝑤i𝑥i| ≤ 𝜀 + |𝜉i| 

(6) 

with the target y, the features x, the weight w and the 
tunable penalty of error term C (see Equation (6)). The 
parameters were tuned using random search optimization 
with the search space ‘rbf’-kernel, C = [0.1, 0.5, 1, 10, 16], 
the tube-defining ɛ = [0.01, 0.1, 1], the kernel coefficient 
γ = [0.1, 0.01, 1, 10, 100, 1000]. The parameters were 
tuned on the basis of 1.3 years and 11 days input data 
predicting according days in winter and summer. The 
optimized parameters are shown in Table II. Furthermore, 
a training data set of the prior 6 months of PV power data 
of the predicted day showed to be optimal. SVR is the most 
extensively used ML algorithm in the field of PV power 
forecasting [9] because of its ability to find non-linear 
relationships and the small number of parameters that have 
to be tuned. Therefore, it is less likely to overfit the data 
[10]. Furthermore, this work’s SVR needs about 5 minutes  

Table II: Choice of SVR parameters 

Parameter Value 

kernel rbf 
C 16 
γ 0.01 
ɛ 0.1 

 

 
Figure  1: Basic principle of the SVR model. All errors 
outside an error tolerance ɛ are optimized towards the 
regression line. 

for processing the input data while the algorithm itself 
needs about 12 seconds. A disadvantage is, that it depends 
on larger datasets. 

 
4.5 Multilayer Perceptron 

Multilayer Perceptrons (MLPs) are feed-forward 
ANNs with one or more hidden layers of non-linearly-
activating nodes. The hidden layers consist of so called 
perceptrons which are multiple input single output units 
processing binary data z with a chosen non-linear 
activation function f. The unit input x is multiplied by 
weights w which are adjusted during the training phase in 
order to minimize the output error. For each unit, the basic 
principle looks as follows, where a bias is added for a non-
zero output as described in Equation (7) [31] 

 

𝑧 =

{
 

 0, ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖𝑎𝑠
𝑚

𝑖=1
< 0

1, ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑖𝑎𝑠
𝑚

𝑖=1
≥ 0

 

 
�̂� = 𝑓(𝑧) 

(7) 

 
with ŷ being the output of the unit. MLPs learn via 
backpropagation in order to adjust the unit weights for 
minimizing the error of the overall output calculated as 
described in Equation (8) 

Ɛ(𝑛) =  
1

2
∑𝑒𝑗

2(𝑛)

𝑗

 (8) 

The number of hidden units and layers has to be optimized 
and tuned [32]. Figure  2 shows the basic operating 
principle of the MLP model for the 1-day-ahead PV power 
prediction. The input data has an hourly resolution. 

ANNs are popular deep learning algorithms for PV 
power forecasting that are currently further investigated in 
literature [6, 32]. At the same time it is difficult to 
determine the high number of hyper-parameters [33] and 
the MLP depends on larger datasets. The MLP used in this 
work needs about 5 minutes to load the input data and 
about 4 minutes to apply the MLP algorithm. After a first 
manual tuning, the hyper-parameters were further 
optimized using random search optimization. The 
parameters were tuned on the basis of 1.3 years and 
11 days input data predicting according days in winter and 
summer. The search space includes 3 input neurons, 2 
hidden layers, 2 to 40 neurons in the hidden layers, “adam” 
optimizer and the “relu” and “softplus” activation 
functions. The optimized hyper-parameters are found in 
Table III. Furthermore, a training data set of the prior 
6 months of PV power data of the predicted day showed to 
be optimal. 



 
Figure  2: Basic operating principle of the MLP model. 
The timestamp t and lagged power from 1 and 2 days prior 
(P(t-T) and P(t-2T)) are used as inputs for the input layer. 
The values are processed via the hidden layers and the 
output error is calculated. The weights are tuned via 
backpropagation [31]. 
 
Table III: Choice of MLP parameters 

Parameter Value 

optimizer adam 
neurons in input layer 3 

neurons in hidden layer 1 18 
neurons in hidden layer 2 26 

activation functions relu, softplus 
neurons in output layer 1 

epochs 11688 
batch size 10000 

 
5 DATA PRE- AND POST-PROCESSING 
 

FBP processes the data automatically while SVR and 
MLP need feature engineering [24]. Date time features 
including hours of the day as well as the power value of a 
previous time step, called lag feature, are chosen. 
Furthermore, the data is transformed via standardization 
and normalization. After prediction, the results are 
inversely transformed again. For SVR, the lag 
combination of power P(t-T) is chosen, where t-T denotes 
the value one-day prior. For MLP, the combination of 
P(t-T) and P(t-2T) performed slightly better. The input 
data has a 1-hour resolution. 

Prediction data outside the sunrise and sunset times (at 
nighttime) were set to zero so that the models are only 
compared for relevant times of PV power generation. 

 
6 EVALUATION METRICS 
 
6.1 Mean Absolute Error 

The mean absolute error MAE shows the mean 
absolute deviation of the prediction values y from the 
actual values x for each time point t and the time range n. 
The MAE is less sensitive towards outliers. 

𝑀𝐴𝐸 =  
∑ |𝑦(𝑡) − 𝑥(𝑡)|𝑛
𝑡=1

𝑛
 (9) 

 
6.2 Root Mean Square Error 

The root mean square error RMSE is more sensitive 
towards outliers as it regards the square of the deviations, 
as in: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦(𝑡) − 𝑥(𝑡))2𝑛
𝑡=1

𝑛
 (10) 

 

 

 
Figure  3: Exemplary measured and predicted power on 
three days in summer 2020 (upper panel) and winter 2021 
(lower panel) comparing the FBP, SVR, MLP, PF and 
NWP model. 
 
7 RESULTS 
 
7.1 Real and Predicted Power in Winter and Summer 

Before comparing the models via error metrics, 
example days in summer and winter are shown to give a 
first impression on the different models and their differing 
ability to react to weather patterns. 

Figure  3 (upper panel) shows three exemplary days in 
summer 2020 with the real power in kW as the black curve 
and the different models in colors. The fluctuating real 
power curves on June 22nd and June 23rd indicate moving 
clouds, otherwise there are long time periods of clear-sky 
conditions with a peak power of 7 kW due to the PV 
array’s tilt and orientation. Comparing the daily changing 
performance of models, the FBP model adapts too slowly 
to the almost clear-sky conditions, ranging between 
4.7 kW on June 22nd and 6.5 kW on June 24th. The SVR 
model performs well and only underestimates the power 
of June 22nd and June 24th by about 0.5 kW to temporarily 
1.5 kW. The MLP model underestimates all three days by 
1.5 to 2 kW. The PF model predicts the power well as 
there are little weather changes and nearly persisting 
weather conditions. The NWP model also performs well 
and only underestimates the power of June 22nd by 
1.2 kW. 

Figure  3 (lower panel) shows three exemplary days in 
winter 2020/2021. Here, the real power fluctuates highly. 
The first exemplary day, January 8th, shows the typical 
power pattern for a day with a thick cloud layer with a 
maximum PV power of 0.8 kW. January 9th shows 
changing clouds with an occasional increase in solar 
irradiance with a PV power up to 4.5 kW. January 10th 



shows even more solar irradiance with an initial lack of 
light in the morning and early noon and a peak power of 
6 kW. Here, the reduced peak power of about 6 kW is 
obvious due to winter time. For these three days, the 
models’ adaptability to weather changes is required. The 
FBP model again adapts too slowly and underestimates the 
power of January 9th and January 10th by up to 4.5 kW. 
The SVR model predicts the power well. The MLP model 
predicts the power well, too, but underestimates the power 
on January 10th by far with a difference of 4.5 kW. The PF 
model does not cope with the weather changes well as the 
assumption of persisting weather conditions of the 
previous day do not hold true. Therefore, the PF model 
overestimates the power by 0.8 kW (January 8th) and 
underestimates the power by 4 kW (January 9th) and by 
3.4 kW (January 10th). The NWP model also mostly 
underestimates the power by an average of 2.4 kW but 
performs better than the PF model. 
 
7.2 Real and Predicted Energy in Winter and Summer 

According to Equation (2), the energy is calculated for 
each power curve. As a result, Figure  4 (upper panel) 
shows the energy prediction on three exemplary days in 
summer. Again, there are significant differences between 
the models. The SVR and PF predict the energy similarly 
well under- or overestimating the energy at maximum by 
5 kWh. The MLP and FBP perform continuously bad, 
underestimating the generated energy by up to 15 kWh. 

Figure  4 (lower panel) shows the energy prediction on 
three exemplary days in winter. The most accurate energy 
prediction is performed by the SVR model under- or 
overestimating the energy at maximum by 1 kWh. The 
FBP and PF perform worst, under- or overestimating the 
energy up to 10 kWh. Most notably, the PF does not adapt 
due to the high differences in weather conditions between 
each day. 

Both the power and energy forecasts on the exemplary 
days give the motivation to find which model works best 
under what circumstances. 
 
7.3 Comparison of PF, NWP, FBP, SVR and MLP 

The model comparison comprises two approaches. 
First, the errors of the power prediction is calculated from 
spring 2020 till winter 2020/2021 over one year for the 
time of the day (see Equations (9) and (10)). 

Figure  5 shows the corresponding model errors over 
the day. Due to the lack of normalization, it is not possible 
to compare a model with itself for different times of the 
day. The focus lies on the comparison of the different 
models with each other. It stands out that there are 
differences between the morning, noon and evening times. 

Figure  5 (upper panel) shows the MAE of the power 
predictions’ error over the day. During noon time between 
8 am and 3 pm (UTC), SVR performs best with a MAE of 
around 1 kW, followed by the MLP, NWP and lastly the 
FBP and PF models with a MAE of up to 1.75 kW. 
Strikingly, the performance of the models turns around at 
morning and evening times between about 4 am to 8 am 
(UTC) and 3 pm to 8 pm (UTC). Here, the PF and NWP 
model work best in the morning and the PF model in the 
evening, which indicates that a prediction based on 
physical equations has an advantage calculating sunrise 
and sunset times with more accuracy than machine-
learning models can, although the FBP model is similarly 
good at detecting the regularities. The worst performance 
is observed for the MLP model with a MAE of up to 
0.5 kW. 

 

 
Figure  4: Exemplary measured and predicted energy for 
the remaining day on three days in summer 2020 (upper 
panel) and winter 2021 (lower panel) comparing the FBP, 
SVR, MLP, PF and NWP. 

Table IV: Errors over one year for each model 

 PF NWP FBP SVR MLP 
MAE (kW) 0.51 0.47 0.55 0.42 0.51 
RMSE (kW) 1.15 1.05 1.12 0.88 1.01 
MAE (kWh) 4.83 3.65 4.89 1.81 3.21 
RMSE (kWh) 9.24 7 8.49 3.8 5.98 

Figure  5 (lower panel) shows the RMSE of the power 
predictions’ error over the day. The course is similar to that 
of the MAE with the SVR model performing best during 
the day with a RMSE up to 1.5 kW. During noon time, the 
PF model shows to be more prone to outliers and performs 
slightly worse than the FBP. Similarly, the NWP is more 
prone to outliers than the MLP. The difference between the 
RMSE of the MLP and NWP is about 0.1 kW higher than 
that of the MAE. Still, there are high differences in the 
models at mornings and evenings, where the PF and NWP 
models based on physical equations and the FBP model 
with its ability to detect patterns perform better than the 
SVR and MLP models. Here, the difference in RMSE is 
more noticeable in the morning than the evening. The bad 
performance of the MLP increases from a MAE of about 
0.5 kW to a RMSE of about 0.8 kW and shows to be 
derived especially from outliers. 

In a second approach, the errors (see Equations (9) and 
(10)) of the power and energy are calculated over time 
ranges, namely the different meteorological seasons and 
one year. 

Table IV shows the errors of power and energy 
forecasts for the entire year under consideration. It is 
obvious that the SVR model outperforms all other models 
irrespective of the power or energy prediction with a MAE  



 

 
Figure  5: Error of the power prediction calculated over 
one year (spring 2020 – winter 2020/2021) for specific 
times of the day. 

of 0.42 kW and 3.8 kWh and a RMSE of 0.88 kW and 
3.8 kWh. Concerning the power prediction, PF, NWP, 
FBP and MLP perform in a similar range with a MAE of 
about 0.5 kW. The energy prediction shows higher 
differences in performance, where the MLP model 
performs second best, followed by the NWP, FBP and 
lastly PF model with a MAE of 4.83 kWh and RMSE of 
9.24 kWh. 

In order to evaluate the accuracy of the models in more 
detail, the MAE and RMSE are also calculated for the 
different meteorological seasons. 

Figure  6 (upper panel) shows the MAE of the power 
prediction over the different seasons. It is striking that the 
performance of the models can differ a lot depending on 
the time of the year. While the NWP model performs best 
in spring and summer with a MAE of 0.42 kW and 0.5 kW 
respectively, it performs worst in winter with about 
0.52 kW. A similar contrast is observed for the MLP 
model which performs worst and second worst in spring 
and summer with 0.74 kW and 0.66 kW respectively, 
while it performs second best in autumn and winter with 
0.4 and 0.28 kW respectively. The bad performance of the 
MLP in spring and summer indicates that the high errors 
observed in the morning and evening in Figure  5 are 
mostly to be related to the spring and summer time. In 
general, the PF and FBP model perform rather bad, while 
the PF’s MAE is slightly better than that of the FBP. The 
SVR model performs overall well and best for autumn and 
winter with 0.35 and 0.18 kW respectively. 

Figure  6 (lower panel) shows the RMSE of the power 
prediction over the different seasons. The difference of the 
course of the RMSE to the one of the MAE are to be found 
in a slightly better performance of the MLP and SVR with 
a RMSE between 0.1 kW and 0.35 kW lower than the  

 

 
Figure  6: Error of the power prediction calculated for 
different seasons, namely spring, summer, autumn and 
winter 2020/2021. 

respectively worst performing model, while the PF model 
performs slightly worse now representing the worst 
performing model in spring, autumn and winter with 
1.36, 1.12 and 0.89 kW respectively. This indicates, that 
MLP and SVR are less prone to outliers, whereas PF is. 
The NWP model shows a decline in performance in winter 
from a difference of 0.2 kW MAE to 0.35 kW RMSE to the 
next best model which indicates that the NWP is more 
prone to outliers especially in winter. It is to be assumed 
that the partly bad performance of the NWP is related to 
spatial differences in the accuracy of the GFS data. 
Overall, the SVR model generally performs best again 
with a RMSE of 1.11, 1.0, 0.8 and 0.53 kW in spring, 
summer, autumn and winter respectively, with only the 
NWP model performing better in spring with 0.96 kW. 

Figure  7 (upper panel) shows the MAE of the energy 
prediction over the different seasons. Similar to the error 
values over one year, the seasonal evaluation of the energy 
prediction shows stronger differences between the models.  
Especially the PF model worsens compared to the FBP 
model with a MAE of 5.8 kWh, 4.7 kWh and 3.5 kWh in 
spring, autumn and winter respectively and only  
outperforms the FBP model in summer with a MAE of 
5.6 kWh compared to 6.4 kWh for the FBP. The MLP and 
SVR model clearly improve and the SVR model 
strengthens its superiority with a MAE of 1.6 kWh, 
1.1 kWh and 0.85 kWh in summer, autumn and winter 
respectively, except for spring time, where the NWP still 
performs best with 2.85 kWh compared to 3.6 kWh for the 
SVR. The SVR’s improvement is most apparent in 
summer and autumn. 

Figure  7 (lower panel) shows the RMSE of the energy 
prediction over the different seasons. The development 
and stronger clarity of model differences is similar to that 
of the MAE where again the PF model shows to deal worse  



 

 
Figure  7: Error of the energy prediction calculated for 
different seasons, namely spring, summer, autumn and 
winter 2020/2021. 

with outliers with a RMSE of 11.5 kWh, 9 kWh and 7 kWh  
in spring, autumn and winter respectively, where only the 
FBP model is worse in summer with 10.2 kWh, while the 
SVR does not seem to be much affected by outliers with a 
RMSE of 6.5 kWh, 2.8 kWh, 2 kWh and 1.95 kWh in 
spring, summer, autumn and winter respectively, only 
outperformed by the NWP model in spring with a RMSE 
of 5.8 kWh. 
 
 
8 CONCLUSION AND OUTLOOK 
 

The present work introduces different 1-day-ahead PV 
power prediction models for a PV array of 8.64 kWp at 
KIT with a tilt of 30° and an eastward orientation of 15°. 
The considered models namely the persistence forecast 
(PF), numerical weather prediction (NWP), Facebook 
prophet algorithm (FBP), support vector regression (SVR) 
and multilayer perceptron (MLP) are compared. 

There is a striking difference of performance offered 
by the above-mentioned models during noon, morning and 
evening. The SVR and MLP models outperform the other 
models at noon, while the PF, (most of the time) NWP and 
FBP outperform the SVR and MLP at morning and 
evening times. 

An evaluation over one year shows the SVR to be 
outstanding, while the model could not outperform the 
NWP model in spring. Other than the SVR, all other 
models have similar power prediction performance and 
only the energy prediction shows differences. The MLP 
performs second best, followed by NWP, FBP and lastly 
PF. 

It is shown that an evaluation of the models’ accuracy 
for the meteorological seasons throughout a considered 

year from spring 2020 till winter 2020/2021 shows 
significant differences of the models’ performance 
depending on the time of the year. The strong differences 
in the NWP model’s accuracy indicate a spatial influence 
of the GFS data and motivate for a differentiated use of the 
model depending on the location. 

It is expected that with further tuning of the MLP’s 
hyper-parameters, it’s performance during morning and 
evening could be increased. 

With the two overall most accurate models SVR and 
MLP, it is shown that endogenous values generally suffice, 
while the partial outperformance of the NWP still 
motivates for a further investigation into the use of 
exogenous input. 

Concluding, it makes sense to look at the differences 
in times of the day and seasons, as different models 
perform differently well for different times of the day and 
year. The advantages of the different models can therefore 
temporally be combined into according hybrid models. 

As the PV predictions are used for battery charging 
management, further investigations into intraday-forecasts 
are necessary. An according PF and NWP model is already 
available at the institute and will be further evaluated. 

This will be part of future work. 
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