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Abstract. Structure-preserving algorithms exhibit superior long-run numerical stability in nonlinear

solid and elasto-multibody dynamics. This paper provides time integrators for large flexible dynamic

systems combining the carrier-sliding contact pair between two beams. The time integrators maintain

some of the structural characteristics, which include the momentum, energy, symplecity et al. In research

of the beam modeling, the director-based geometrically exact beam formulation has been compared

with the three-dimensional absolute nodal coordinate beam formulation, which is also widely used in

dynamic modeling of slender structures. The sliding contact transition between adjacent elements on

the sliding line has been finely considered to keep the continuity of the sliding contact. The structure-

preserving method has been embedded into the numerical solvers for dynamic analysis. The advantage of

the structure-preserving methods over the time-decaying methods on energy and momentum preserving

properties has been demonstrated in the dynamic analysis for the flexible beams that undergo sliding

contact.

1 INTRODUCTION

The situation where two bodies are hinged together and relative sliding occurs on the constraint surface

is commonly used in slender suspension-cable system or flexible deployable structure. One of the diffi-

culties in dynamic modeling refers to the description of the large rotation degrees of freedom in relative

motion, especially when the contact relationship not only relies on the rigid modes of connection points

but also the overall configuration in the deformed state. In the sliding contact pair, the contact node on

the slave element is fixed, for example, on one tip, while the contact node can be located anywhere on
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the sliding line of the master element. Therefore, the sliding constraint is closely related to the dynamic

description of the flexible body.

An efficient formulation for the large deformable finite element is based on the non-angle-based parame-

ters in the director field [1, 2]. The director-based formulation leads to an objective and path-independent

orientation description, with which the design of numerical integration schemes for large displacements

or strain problems is allowed to inherit the unconditional stability from linear regime.

Traditional numerical integration algorithms usually ignore the physical characteristics inherited from

the continuous system. The numerical results distort the practical motion with the accumulation of nu-

merical errors. Structure-preserving methods preserve some of the invariant geometric structures by

identifying the corresponding properties such as the energy, momentum or symplectic form in the de-

signing of the integrators. Gonzalez [7] introduced a definition of discrete directional derivative to con-

struct the second-order conserving integration schemes, which lays the foundation of energy-momentum

conserving algorithms used in nonlinear finite element analysis. Gonzalez [8] applied this method to

elastodynamics for compressible and incompressible models. Muñoz and Jelenić [9] developed the

incrementally based conserving algorithms for sliding joints modeled with the three-dimensional ge-

ometrically exact beams and analysed the preservation of energy and momentum. Leyendecker et al.

[10] derived the energy-consistent time integration combined with the discrete null space size reduction

method for semi-discrete nonlinear equations of motion. Romero [11] proved the possibility of con-

structing an infinite number of consistent and conserving methods by means of choosing the appropriate

stress algorithmic definition for hyper-elastic materials. Due to the fact that conserving algorithms show

superior performance in nonlinear dynamic analysis, they have been widely integrated in the simulations

involving rigid body, slender cable/beam, shell, membrane and so forth. Betsch [12] summarized the

development of energy-momentum algorithms, which are systematically implanted into the discrete me-

chanical systems. Gebhardt et al. [13] put forward an object-oriented programming structure to study

the dynamics of complex composite materials with a robust energy preserving/dissipative, momentum

preserving method. Orden [14] discussed the symmetry-preserving conditions for the energy-momentum

schemes designed on the basis of several expressions for discrete derivatives.

In this work, the aim is to improve the accuracy and stability of the numerical simulations for the con-

strained large flexible multi-body system. Considering the simple sliding contact joint, the typical config-

uration is established. We derive the director-based geometrically exact beam interpolated with quadratic

B-spline in geometry to describe the flexible body system. we extend the energy-momentum time inte-

gration to the sliding joint constraint system with the involvement of the additional non-generalized

intermediate coordinate.

2 DIRECTOR-BASED GEOMETRICALLY EXACT BEAM FORMULATION WITH SMALL

STRAIN MEASURE

We first consider the kinematics of the geometrically exact beam with rectangular cross-section in di-

rector fields. The orientation of the beam cross-section is represented by the rotationless triad vectors.

The triad vectors that are attached to the centroid of cross-section are denoted as (DDD1,DDD2,DDD3) ∈ ℜ3 in

the reference configuration and (ddd1,ddd2,ddd3) ∈ ℜ3 in the current configuration according to Fig. 1. The

components along every triad compose the local coordinate system ΘΘΘ = (θ1
,θ2

,θ3) ∈ ℜ3 for the ma-
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Figure 1: Beam configuration in different deformed states

terial point in beam. The set of the director triads are mutually orthonormal and can be related to the

space-fixed inertial Cartesian frame (EEE1,EEE2,EEE3) ∈ ℜ3 by the rotation tensor RRR

dddI = RRR(s, t)EEE I, RRR = dddI ⊗EEE I (1)

In order to maintain the cross-section rigidity, the mutual orthonormality is obtained by introducing the

six independent internal constraints

ΦΦΦint(dddk) =

























1
2
(ddd1 ·ddd1 −1)

1
2
(ddd2 ·ddd2 −1)

1
2
(ddd3 ·ddd3 −1)

ddd1 ·ddd2

ddd1 ·ddd3

ddd2 ·ddd3

























= 000 (2)

The position vector of the material point in the current deformed configuration is given as follows

xxx(θα
,s, t) = ϕϕϕ(s, t)+θαdddα(s, t) (3)

where α = 2,3 are the indexes of the material coordinates on the cross-section and ϕϕϕ(s, t) represents the

space curve of centroids. The material coordinates do not change with the rigid motion and deformation.

We then derive the deformation gradient using the partial derivatives of position vectors in deformed con-

figuration with respect to those in undeformed configuration and the gradient tensor can be decomposed

as

FFF =
∂xxx

∂XXX
=

∂xxx

∂θθθ

[

∂XXX

∂θθθ

]−1

(4)

where the Jacobian matrix ∂XXX
∂θθθ is the orthogonal matrix. Substituting Equ. (3) into Equ. (4), the deforma-

tion gradient is rewritten as

FFF = (ϕϕϕ
,s +θαdddα,s −ddd1)⊗DDD1 +dddI ⊗DDDI (5)
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where the pure stretch vector can be extracted from the first term in Equ. (5) as

aaa = ϕϕϕ
,s +θαdddα,s −ddd1 (6)

In this research, we are interested in developing the consistent constitutive law for the large deformation

in three-dimensional continuum. As the linear elastic constitutive law is subjected to the small strain

assumption, the large deformation will be transformed to a small strain description. It is achieved by

eliminating some of the higher-order nonlinear terms in the strain expression. This strain approximation

is based on the commonly used Green-Lagrange strain tensor in the standard form

EEE =
1

2
(FFFT FFF − III) (7)

Inserting Equ. (5) and Equ. (6) into Equ. (7), the Green-Lagrange strain tensor is expanded in detail as

EEE =
1

2
[(aaa ·aaa)DDD1 ⊗DDD1 +2(aaa ·dddI)DDDI ⊗DDD1] (8)

The large strain tensor given in matrix form is

EEE =
1

2





(aaa ·aaa)+2aaa ·ddd1 aaa ·ddd2 aaa ·ddd3

aaa ·ddd2 000 000

aaa ·ddd3 000 000



 (9)

In order to make the strain tensor compatible with the consistent constitutive formulation, the higher-

order terms expanded from (θαdddα,s)
T(θαdddα,s) are dropped and hence the reduced strain vector becomes

ÊEE =
1

2





(ϕϕϕ
,s ·ϕϕϕ,s −1)+2θαdddα,s ·ϕϕϕ

,s

2(ϕϕϕ
,s ·ddd2 +θ3ddd3,s ·ddd2)

2(ϕϕϕ
,s ·ddd3 +θ2ddd2,s ·ddd3)



 (10)

From a physical standpoint, the small strain vector ÊEE could be transformed to the generalized strain

vector εεε related by the matrix of cross-section parameters which determines the location of the material

point. The transformation reads

ÊEE = D̂DDεεε (11)

where the transformation matrix is

D̂DD =





1 0 0 0 θ3 θ2

0 1 0 −θ3 0 0

0 0 1 θ2 0 0



 (12)

and the generalized strain vector εεε contains the strain components with material description which spec-

ifies the axial, shear, torsional and bending strain in the following expressions

εεε =

















ε

γ2

γ3

κ1

κ2

κ3

















=

















1
2
(ϕϕϕ

,sϕϕϕ,s −1)

ϕϕϕ
,s ·ddd2

ϕϕϕ
,s ·ddd3

ddd2,s ·ddd3

ϕϕϕ
,s ·ddd3,s

ϕϕϕ
,s ·ddd2,s

















(13)
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3 SIMPLE SLIDING JOINT CONSTRAINT

E1

E2

E3

d1

(j)

(i)d2
(i)

d3
(i)

it

jt

kt

Figure 2: Kinematics of the sliding joint

Fig. 2 shows the kinematics of the sliding joint between the two connection points respectively on the

very flexible beam i and j. The simple sliding joint is similar to the local spherical joint with the relative

displacements restricted by three position constraint equations, while the relative rotations are allowed

in three-dimensional space. The vector ϕϕϕi denotes the global position of the contact point on the two-

end-fixed beam i, and its position on the beam center line is decided by the arc-length parameter si. The

contact point on the one-end-free beam j is selected at the tip where the arc-length parameter s j = 0, and

ϕϕϕ j denotes the global tip position. The relative displacement ϕϕϕi j is restricted by the following bilateral

constraint equations

ϕϕϕi j = ϕϕϕi(s)−ϕϕϕ j(0) = 000 (14)

For smoothly spatial discretization, the approximation of the position of any point on the beam centerline

can be calculated with basis functions in the IGA interpolation

ϕϕϕh(s, t) =
ne

∑
A=1

NNNA(s)ϕϕϕA(t) (15)

where in this research, NNNA(s) are obtained by the quadratic B-spline curve and are analogous to the shape

function used in the finite element methods. ϕϕϕA(t) are the control points on position level. Similarly the

approximated director triads are expressed by

dddh
k(s, t) =

ne

∑
A=1

NNNA(s)dddA
k (t), k = 1,2,3 (16)

With the B-spline geometry description, the internal control points do not always lie on the practical

space curve. The joint positions in Equ. (14) are replaced by the discrete version of position vectors in

Equ. (15). Accordingly, the kinematic constraints relating to the control points on sliding elements are

re-written as

ϕϕϕi jh =
nei

∑
A=1

NNNiA(s)ϕϕϕiA(t)−
ne j

∑
A=1

NNN jA(0)ϕϕϕ jA(t) = 000 (17)
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Then, the virtual work of the inertia force for the semi-discrete model is given by

Gh
dyn(qqq

h
,δqqqh) =

∫
V0

ne

∑
A,B=1

ρδqqqAT
NANBM̃MM

AB
q̈qqBdV (18)

and the virtual work done by the internal force is given by

Gh
int(qqq

h
,δqqqh) =

∫
V0

δÊEE
h
· ŜSS

h
dV (19)

The complete virtual work of constraint forces includes the following two parts

Gh
λ({qqqh

,s,λλλ},{δqqqh
,δs,δλλλ}) = G

int,h

λ +G
s,h

λ (20)

where

G
int,h

λ =
ne

∑
A=1

δλλλ
int,A ·ΦΦΦint,A(dddA

k )+
ne

∑
A=1

δdddA
k ·ΦΦΦ

int,AT

dddk
λλλ

int,A
(21)

and
G

s,h

λ = δλλλ
s ·ΦΦΦs(qqqA

,qqqB
,s)+δqqqA ·ΦΦΦsT

qqqAλλλ
s,A +δqqqB ·ΦΦΦsT

qqqBλλλ
s,B +δs ·ΦΦΦsT

s λλλ
s,s

(22)

The equilibrium of the discrete weak form for the constrained equations of motion reads

Gh({qqq,s,λλλ},{δqqq,δs,δλλλ}) = Gh
dyn +Gh

int +Gh
λ −Gh

ext = 0 (23)

4 STRUCTURE-PRESERVING NUMERICAL METHOD

In this section, we construct the energy-momentum scheme for the discrete DAEs. The energy-momentum

integrator is an extension of the exact momentum conserving algorithm [3]. To ensure that the numer-

ical integration performs reliably in long-term time stepping, the system energy is controlled to be a

conserved property.

In the state space, the position and velocity coordinates are approximated according to the midpoint

rule which conserves the generalized momenta along the solution trajectory. For both the generalized

and non-generalized intermediate coordinates, the predictions for the next step is expanded through the

average values on velocity level as

qqqn+1 −qqqn ≈ hq̇qqn+ 1
2
=

h

2
(q̇qqn+1 + q̇qqn)

sssn+1 − sssn ≈ hṡssn+ 1
2
=

h

2
(ṡssn+1 + ṡssn)

(24)

And similarly, the velocity coordinates are approximated by the average accelerations

q̇qqn+1 ≈ q̇qqn +hq̈qqn+ 1
2
, ṡssn+1 ≈ ṡssn +hs̈ssn+ 1

2 (25)
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The average accelerations correspond to the resultant generalized forces at the mid-time configuration.

Inserting the approximated kinematic variables from Equ. (24)-(25) into the dynamic equations, the

discrete numerical model with additional constrained force equations are given by

MMM (q̇qqn+1 − q̇qqn) = h(QQQa −∇qqqUe)|n+ 1
2
−hΦΦΦT

qqq |n+ 1
2
λλλn+1

ΦΦΦT
sss |n+ 1

2
λλλn+1 = 000

ΦΦΦ(qqqn+1,sssn+1) = 000

(26)

As for the midpoint rule, the mid-time generalized forces can be obtained from the standard gradients

of energy functions, for example ∇qqqUe(qqqn+ 1
2
). However, in the energy-momentum scheme (Equ. (26)),

the mid-time gradient ∇qqqUe|n+ 1
2

is approximated by the discrete gradient ∇̄qqqUe (qqqn,qqqn+1) expanded as

follows

∇qqqUe|n+ 1
2
= ∇̄qqqUe (qqqn,qqqn+1) =

∂εεεT

∂qqq
(qqqn+ 1

2
)DUe(εεεn+ 1

2
) (27)

with the average strain measure εεεn+ 1
2
= 1

2
(εεεn + εεεn+1) 6= εεε(qqqn+ 1

2
).

The specific energy contributed by the constraint enforcement is defined as λλλ ·ΦΦΦ(qqq,sss) using the Lagrange

multiplier method. Instead of being treated as the system variables, the discrete Lagrange multipliers

λλλn+1 can be directly solved from the Newton iterations. Then, the approximation of the mid-time con-

strained forces are obtained from the discrete derivatives of the constrain equations respectively relative

to the generalized coordinate qqq and the non-generalized coordinate sss

ΦΦΦqqq|n+ 1
2
=

[

∇̄qqqΦΦΦint(qqqn,qqqn+1)

∇̄qqqΦΦΦs({qqqn;sssn},{qqqn+1;sssn+1})

]

(28)

ΦΦΦsss|n+ 1
2
= ∇̄sssΦΦΦ

s({qqqn;sssn},{qqqn+1;sssn+1}) (29)

where the Jacobian matrix ∇̄qqqΦΦΦint = DqqqΦΦΦint , ∇̄qqqΦΦΦs = DqqqΦΦΦs and ∇̄sssΦΦΦ
s = DsssΦΦΦ

s are

DqqqΦΦΦint,A(qqqn+ 1
2
) =































0001×3 dddAT
1(n+ 1

2
)

... ...

0001×3 ... dddAT
2(n+ 1

2
)

...

0001×3 ... ... dddAT
3(n+ 1

2
)

0001×3 dddAT
2(n+ 1

2
)

dddAT
1(n+ 1

2
)

...

0001×3 dddAT
3(n+ 1

2
)

... dddAT
1(n+ 1

2
)

0001×3 ... dddAT
3(n+ 1

2
)

dddAT
2(n+ 1

2
)































(30)

DqqqΦΦΦs({qqqn+ 1
2
;sssn+ 1

2
}) =

[

... NA(sn+ 1
2
)III3 0003×9 ... 0003×1 ... −NB(0)III3 0003×9 ...

]

(31)

DsssΦΦΦ
s({qqqn+ 1

2
;sssn+ 1

2
}) =

[

nei

∑
A=1

NNNiA
s (sn+ 1

2
)ϕϕϕiA

n+ 1
2

]

(32)
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Sphere joint

Gravity

Lumped mass

(-1.5, 0, 0)

(1.5, 1.0, 0)

(1.5, 1.0, 1.0)

A = 1e-4m2         E = 1e6Pa

I = 8.33e-10m4   G = 3e5Pa 

 = 800kgm-3

X

Y

Z

B

A

C

M

Figure 3: Initial configuration and parameters

5 NUMERICAL ANALYSIS

In the first example, the free falling case takes place in the three-dimensional space. The initial positions

of the two beams and the structure and material parameters are listed in the Fig. (3). The beam AB is

fixed into the space by the sphere joints at both ends. The sliding beam CM is parallel to axis Z and is

undeformed in the initial configuration. The beam CM not only slides along AB but also swing in the

perpendicular plane YZ. A lumped mass with 1 kg is attached to the free tip M and falls freely under the

effect of gravity (ggg = [0.0,−9.80665,0.0]T).

This is a typical case that was successively studied by Sugiyama et al. [4], Mũnoz and Jelenı́c [5],

Gerstmayr and Shabana [6] to verify the numerical and dynamic properties of the large flexible model. In

this case, the geometrically exact beam models with different orders of Gaussian integral are qualitatively

compared with the ANCF model to study the model convergence. The time step size of the energy-

momentum time integrator is selected as a constant value 1e-3s.

In Fig. (4), we carefully compare the convergence rate of beam formulations as the discretization of

carrier beam continues to be refined. For reduced order beam elements, the overall trajectories of lumped

mass in Fig. (4 (b)) are the closest to each other in the change of mesh refinement. The trajectory starts

to converge from 1+4 meshing in the three sets of models, while it is more consistent with the converged

trajectory in the final stage in Fig. (4 (b)). Moreover, the tip lumped mass in geometrically exact beams

swings back more at the end of converged trajectory compared with the absolute nodal coordinate beam,

which reflects larger flexible deformation in the former converged models.

-1.5 -1.0 -0.5 0.0 0.5 1.0
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(a) Full order GE beam
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(b) Reduced order GE beam
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Figure 4: Comparison of positions of lumped mass
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 ANC beam 1+1

Figure 5: Comparison of positions of the lumped mass, 1+1 meshing

The curves of sliding position along beam AB is shown in Fig. (5). With the 1+1 meshing, the contact

joint moves at different speeds. The sliding joint on the full order GE beam first reaches the bottom,

which is consistent with the previous comparisons of large deformation.

Next, the numerical performance of the energy-momentum integrator is compared with the structural

integrators and the mid-point rule. The time step sizes of all time integrators are set as 1e-3s and the

numerical dumping parameters in the structural integrators are α=−0.1 (HHT), γ= 0.5,β= 0.25 (New-

mark).

Fig. (6) displays the evolution of total energy in each case. The total energy calculated with the energy-

momentum integrator conserves the best in both meshing cases compared with the other three algorithms.

The energy blow-up observed in curves indicates the instability of the Newmark method and the HHT
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(a) 1+1 meshing
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(b) 1+4 meshing

Figure 6: Total energy, h = 1e-3
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method for high-nonlinear problems. In the case of 1+1 meshing, no contact transition occurs between

elements. Therefore, the balance of the time-discrete equations of motion can be guaranteed as long as

the iteration converges.

Once the beam is divided into multiple elements, contact transitions between the adjacent elements oc-

curs. As the contact transition occurs in the 1+4 meshing, the numerical equilibrium suffers from the

discontinuities caused by the jumping between elements. But, even though the energy fluctuates more

severely, the energy-momentum integrator and the mid-point rule show better robustness, while the New-

mark and HHT integrator successively fail to converge at around 0.3s and 0.6s. The conserving properties

remain exactly conserved only when the sliding motion occurs within a single element. Besides, there ex-

ists the divergence of total energy using mid-point rule, while the energy-momentum integrator performs

the best, even though the error of physical discretization cannot be resolved in the numerical model.

6 CONCLUSIONS

The nonlinear modeling and computation of the large deformable body with sliding joint constraint are

proposed in this research. Based on the linear elastic theory, the large deformation is transformed to

a small strain measure that can be compatible with the constitutive law. The director-based geometri-

cally exact beam shows good convergence and efficiency with IGA description when the simple sliding

constraint is implemented between the carrier beam and the sliding beam. Obviously, physical errors ag-

gravate the accumulation of numerical errors and unconditional stability can not be ensured in the strong

nonlinear cases. Compared with the structural integrators, the structure-preserving algorithms exhibit

relatively superior numerical stability when the discontinuous contact transition occurs.
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