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Abstract. The design of structure-preserving integrators is dealt with in the framework of a discrete

model problem for large-strain thermo-viscoelasticity. The evolution equations pertaining to the model

problem are cast in the framework of GENERIC. The GENERIC formalism provides an ideal foundation

for the design of energy-momentum-entropy (EME) consistent time-stepping schemes. An analogous

approach can be applied to the full continuum model for large-strain thermo-viscoelasticity.

1 INTRODUCTION

A thermodynamic system’s evolution equations can be cast in the General Equation for Non-

Equilibrium Reversible Irreversible Coupling (GENERIC) framework. GENERIC was developed by

Grmela and Öttinger [1–3] and ensures the fulfilment of the two fundamental laws of thermodynamics.

The first GENERIC-based structure-preserving numerical method has been developed by Romero

[4] in the context of a discrete model problem for thermo-elasticity. Similarly, in the present work we

make use of a discrete model problem for thermo-viscoelasticity to outline the development of energy-

momentum-entropy (EME) consistent time-stepping schemes. Despite its simplicity, the model problem

serves to convey main ideas of the design of EME methods for the full continuum model of large-strain

thermo-viscoelasticity which has been recently addressed in [5].

While GENERIC-based numerical methods for continuum formulations of thermo-mechanically cou-

pled solids have been dealt with in [6–11], various related discrete model problems have been the subject

of previous work. For example, structure-preserving integrators have been developed in the context of a

thermoelastic double pendulum [4, 12, 13], a thermo-viscoelastic element [14, 15], a thermo-viscoelastic

double pendulum [8], and a thermo-elasto-plastic element [16].

These works proved an increased numerical stability and accuracy of structure-preserving time-

stepping schemes in comparison to standard integrators such as the the mid-point rule. However, their

practicability strongly depends on the choice of the thermodynamic variable. Choosing the entropy or

the internal energy as thermodynamic variable, requires the transformation of the constitutive relations,

which can be cumbersome or even impossible. The choice of the temperature can instead lead to a

complex structure of the resulting integrator.
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Mielke [17] exploited the advantageous transformation properties of GENERIC by introducing a gen-

eralized thermodynamic variable. This approach makes possible the free choice of the thermodynamic

variable from among the entropy, temperature and internal energy. Recent developments of structure-

preserving numerical methods in [5, 10, 11, 13, 16] benefit from the possibility to use other thermo-

dynamic variables than the entropy which has placed a severe restriction on earlier GENERIC-based

schemes such as those in [4, 6, 12].

An overview of the article is as follows. Section 2 introduces the thermo-viscoelastic model problem

along with the state variables including the generalized thermodynamic variable. Section 3 summarizes

the GENERIC-based formulation and points out its built-in thermodynamic correctness. This is the

starting point for the formulation of a numerical time integration scheme based on the mid-point rule

in Section 4. The mid-point integrator is evaluated with the choice of the entropy and temperature as

thermodynamic state variable. Combining the GENERIC-based formulation with the discrete derivative

due to Gonzalez [18] eventually yields the general formulation of EME schemes in Section 5. Numerical

results shed light on the numerical properties of the present schemes.

2 MODEL PROBLEM: THERMO-VISCOELASTIC DOUBLE PENDULUM

The model problem at hand is depicted in Figure 1. The thermo-viscoelastic double pendulum con-

sists of a thermo-spring and a generalized Maxwell element. The latter arranges a thermo-spring in

parallel with a thermo-Maxwell element consisting of a spring in series with a damper. The thermo-

spring attaches a point mass m1 to a fixed point. The generalized Maxwell element connects m1 to a

second point mass m2. The placement of the two masses is described by generalized position vectors

q1,q2 ∈ R
3. Each element has length λα = ||qα||, (α = 1,2). The element’s natural length is denoted by

λ0
α. The point masses’ conjugate momenta are denoted by pα ∈ R

3. An internal variable γ2 is used to

describe the viscoelastic material behaviour of the generalized Maxwell element (cf. Figure 1).

To each thermo-element there is associated a free Helmholtz energy function ψα. In particular, for the

thermo- spring, ψ1 = ψ1(λ1,θ1), while for the thermo-Maxwell element, ψ2 = ψ2(λ2,θ2). Here, θα is

the absolute temperature of the respective thermo-element. The element’s entropy sα and internal energy

uα can now be introduced in the usual way through a Legendre transformation. For more background in-

m2

u
eq
1

γ2

λ2 − γ2

λ2 = ‖q2‖

g

η

u
neq
2

u
eq
2

m2

e1

e2

e3

λ1 = ‖q1‖

κ(θ1 − θ2)

m1

Figure 1: The thermo-viscoelastic double pendulum

2



V.S. Valdes y Beck, M. Schiebl and P. Betsch

formation on relevant thermodynamic relationships we refer to [11, 17]. In particular, upon introduction

of the generalized thermodynamic variable τα ∈ {sα,θα,uα}, the element’s absolute temperature can be

written in the form

θα =
∂ταuα

∂ταsα
. (1)

The model problem is complemented by (i) an evolution equation for the internal variable γ2, and (ii) a

law for the heat flux evoked by the temperature difference between the two thermo-elements.

The evolution in time of the present system in a time interval I = [0,T ] is described by the state vector

z, which takes the form

z =
[

qT
1 , qT

2 , pT
1 , pT

2 , τ1 , τ2 , γ2

]T
. (2)

The state space S contains all admissible configurations and is given by

S =
{

z ∈
(

R
ndim ×R

ndim ×R
ndim ×R

ndim ×R×R×R

)

, q1 6= 0, q2 6= 0
}

(3)

with ndim ∈ {2,3}, being the spatial dimension.

3 GENERIC-BASED FORMULATION

The initial value problem governing the time-evolution of z : I → S can now be formulated in the

framework of GENERIC. Accordingly, the system’s time evolution is essentially charcterized by four

building blocks. These correspond to the two generators E : S →R and S : S →R, being the total energy

and total entropy of the system and the two linear operators L, M : S → R
dim(z)×dim(z). Here, L is the

Poisson matrix and M the dissipative matrix. Now GENERIC states that

ż = żrev + żirr = L(z)∇E(z)+M(z)∇S(z) . (4)

Accordingly, the linear operator L acts on the gradient of the total energy ∇E(z) and yields a vector

żrev corresponding to the system’s reversible evolution. The irreversible contribution to the system’s

evolution żirr is composed of the linear operator M and the gradient of the total entropy ∇S(z). The

initial conditions z(t = 0) = z0 complete the initial value problem.

For reasons of thermodynamic consistency, the following degeneracy or non-interaction-conditions

have to be met

L∇S = 0 (5)

M∇E = 0 .

The Poisson and dissipative matrices have to comply with additional requirements. The first has to be

skew symmetric, while the second has to be symmetric and positive semidefinite. Energy conservation

as per first law of thermodynamics is achieved through the second degeneracy condition (5)2 and the

Poisson matrix’s skew symmetry:

Ė(z) = ∇E(z) · ż = ∇E(z) ·L(z)∇E(z)+∇E(z) ·M(z)∇S(z) = 0 . (6)
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Note that the present problem constitutes a closed system since (i) no external loads act, and (ii) the

system is thermally insulated. Thus the total energy is indeed a conserved quantity as stated by (6). The

second law of thermodynamics states entropy-production and is ensured by the first degeneracy condition

(5)1, together with the dissipative matrix’s requirements of symmetry and positive semidefiniteness. It

follows as

Ṡ(z) = ∇S(z) · ż = ∇S(z) ·L(z)∇E(z)+∇S(z) ·M(z)∇S(z) (7)

= ∇S(z) ·M(z)∇S(z)≥ 0 .

It can be shown that the Poisson matrix L and dissipative matrix M are given by

L(z) =





















0 0 1 0 0 0 0

0 0 0 1 0 0 0

−1 0 0 0 Lp1,τ1
0 0

0 −1 0 0 0 Lp2,τ2
0

0 0 −Lτ1,p1
0 0 0 0

0 0 0 −Lτ2,p2
0 0 0

0 0 0 0 0 0 0





















(8)

with

Lp1,τ1
= LT

τ1,p1
=

[

∂s1

∂τ1

]−1
∂s1

∂q1

(9)

Lp2,τ2
= LT

τ2,p2
=

[

∂s2

∂τ2

]−1
∂s2

∂q2

and

M(z) =





















0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 Mτ1,τ1
Mτ1,τ2

0

0 0 0 0 Mτ2,τ1
Mτ2,τ2

Mτ2,γ2

0 0 0 0 0 Mγ2,τ2
Mγ2,γ2





















(10)

with

Mτ1,τ1
=

[

∂s1

∂τ1

]−2

κ
θ2

θ1

(11)

Mτ1,τ2
= Mτ2,τ1

=−κ

[

∂s1

∂τ1

]−1[
∂s2

∂τ2

]−1

Mτ2,τ2
=

[

∂s2

∂τ2

]−2

η−1θ2
−1

[

∂u2

∂γ2

]2

+

[

∂s2

∂τ2

]−2

κ
θ1

θ2

Mτ2,γ2
= Mγ2,τ2

=−

[

∂s2

∂τ2

]−1

η−1 ∂u2

∂γ2

Mγ2,γ2
= η−1θ2 .
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The total energy for the system at hand consists of the kinetic energy T , in addition to the total internal

energy U = u1 +u2 and the potential V due to gravity:

E(z) = T (p1,p2)+u1(q1,τ1)+u2(q2,τ2,γ2)+V (q1,q2) . (12)

The total entropy corresponds to

S(z) = s1(q1,τ1)+ s2(q2,τ2,γ2) . (13)

The gradients of the total energy (12) and the total entropy (13) complete the evolution equations (4)

∇E(z) =





















































∂u1

∂q1

+
∂V

∂q1

∂u2

∂q2

+
∂V

∂q2

1

m1

p1 −
1

m1

p2

−
1

m1
p1 +

m1 +m2

m1m2

p2

∂u1

∂τ1

∂u2

∂τ2

∂u2

∂γ2





















































∇S(z) =













































∂s1

∂q1

∂s2

∂q2

0

0
∂s1

∂τ1

∂s2

∂τ2

∂s2

∂γ2













































. (14)

According to (7), the total entropy is a non-decreasing function of time. We further remark that

Ṡ = Dcond +Dint ≥ 0 (15)

where the dissipation due to heat conduction is given by

Dcond = κ
[θ2 −θ1]

2

θ1θ2

≥ 0 (16)

while

Dint = θ−1
2

∂u2

∂γ2

η−1 ∂u2

∂γ2

≥ 0 . (17)

is the dissipation due to inelastic (viscous) deformation.

4 NUMERICAL INTEGRATION APPLYING THE MID-POINT RULE

This section deals with the numerical integration of the evolution equation (4) by means of the mid-

point rule. The time interval I = [0,T ] is discretized into finite time intervals In = (tn−1, tn) with time

5
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step size ∆t = tn+1 − tn. The functional values at time tn are denoted by (•)n and at time tn+1 by (•)n+1.

Application of the mid-point rule yields

zn+1 − zn

∆t
= L(zn+ 1

2
)∇E(zn+ 1

2
)+M(zn+ 1

2
)∇S(zn+ 1

2
) (18)

It can be shown that the mid-point rule conserves symmetries and correctly displays the total entropy,

when using the entropy as thermodynamic variable (see [5, 11] for further details). Thus in the following

this integrator is referred to as (ME)s (Momentum-Entropy). The selection of the internal energy as

thermodynamic variable yields a correct energy behavior, therefore in this case the integrator is denoted

as (EM)u (Energy-Momentum). However, the temperature as thermodynamic variable is not able to

fulfil any of the two laws of thermodynamics, therefore it results in the (M)θ integrator. For a detailed

explanation we refer to [19].

In the numerical simulations the mid-point integrator is evaluated for the choice of the entropy and

temperature as thermodynamic variable (i.e. the (ME)s and (M)θ integrator), respectively. The free

Helmholtz energy function is chosen similarly to [4] with

ψ̄ = ψ̄
eq
1 (λ1,θ1)+ ψ̄

eq
2 (λ2,θ2)+ ψ̄

neq
2 (λ2,θ2,γ2) . (19)

It is composed of the spring’s free energy function

ψ̄
eq
α (λα,θα) =

µ
eq
α (θα)

2
ln2

(

λα

λ0
α

)

−β(θα −θre f ) ln

(

λα

λ0
α

)

+ c0
α

(

θα −θre f −θα ln

(

θα

θre f

))

(20)

and the Maxwell element’s free energy function

ψ̄
neq
α (λα,θα,γα) = βv

αψ̄
eq
α (λα,θα)+µ

neq
α (θα)γ

2
α −βv

αγα
∂ψ̄

eq
α (λα,θα)

∂λα
. (21)

The spring’s stiffness µ
eq
α (θ), the stiffness of the Maxwell element µ

neq
α (θ), as well as the viscosity pa-

rameter η are temperature-dependent and follow as

µ
eq
α (θ) = µ

eq
α,cst −µ

eq

α,θ(θ−θre f )

µ
eq
α (θ) = µ

neq
α,cst −µ

neq

α,θ(θ−θre f )

η = ηcst exp

[

ηθ

(

1

θ
−

1

θre f

)]

with

µ
eq
α,cst ,µ

eq

α,θ > 0

µ
eq
α,cst ,µ

neq

α,θ > 0

ηcst ,ηθ > 0 .

(22)

Here, c0
α, θre f , β and βv denote the specific heat capacity, reference temperature and coupling parameters.

The employed simulation parameters are summarized in Table 1. Within the time interval of I = [0,20]
s, three different constant time step sizes of ∆t ∈ {0.005,0.12,0.18} s are applied. The initial conditions

are chosen as:

θ0
1 = 280 K, θ0

2 = 350 K, q0
1 =





1

0

0



m, q0
2 =





3

0

0



m, p0
1 =





0

0

0



Ns, q0
2 =





0

0

−1



Ns, γ0
2 = 0 m.
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−4 −2 0 2 4 6

−6

−4

−2

0 t = 0s

t = 0.5s

t = 1st = 1.5s

t = 2s

x [m]

z
[m

]

(ME)
s

- ∆t=0.005 s

Figure 2: Motion of the double pendulum in the time interval I = [0,2] s

Table 1: Numerical data for the thermo-viscoelastic double pendulum

Mass m1 1 m2 1 kg

Natural length λ0
1 1 λ0

2 2 m

Spring stiffness µ
eq
1,cst 200 µ

eq
2,cst 200 J

µ
eq
1,θ 0.5 µ

eq
2,θ 0.5 JK−1

Maxwell element stiffness - - µ
neq
2,cst 5 Jm−2

- - µ
neq
2,θ 0.1 J/m2K

Specific heat capacity c0
1 10 c0

2 10 JK−1

Viscosity - - ηcst 100 Nsm−1

- - ηθ 10 K

Thermal conductivity k 1 JK−1s−1

Reference temperature θre f 300 K

Coupling parameter β 0.02 JK−1

βv 0.5 m−2

Gravitational vector g [0,0,−9.81]T ms−2

Newton tolerance 10e-8 -

The trajectories of the double pendulum’s point masses in a time interval I = [0,2] s are displayed in

Figure 2. Figure 3 (top) illustrates the system’s total energy. The solution for the small time step size

∆t = 0.005 s is nearly identical for both integrators and approximately energy conserving. Applying the

intermediate time step size ∆t = 0.12 s results in small fluctuations. The large time step size ∆t = 0.18

s displays a sharp increase in the course of the total energy, which points out a possible loss of stability.

This results in an ‘energy blow-up’ when applying larger time step sizes.
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Figure 3: Total energy (top) and entropy (bottom) in entropy and temperature variables for the mid-point integrator

The course of the total entropy appears to be approximately the same for the choice of either the en-

tropy or the temperature as thermodynamic variable when using small time step sizes (Figure 3 bottom).

Only for ∆t = 0.18 s the solution diverges, being especially significant when using the temperature as

state variable. Although Figure 3 (bottom) seems to comply with the second law of thermodynamics, the

incremental change of the entropy shows that only the (ME)s integrator is able to fulfil the second law

of thermodynamics. The choice of the temperature as thermodynamic variable leads to a decrease of the

total entropy and therefore violates the second law.

The lack of control over the energy and entropy is clearly evident when examining the course of the

Lyapunov function (Figure 4) as criterion for numerical stability. The Lyapunov function is calculated

by

V = E −θre f S . (23)

Thus, numerical stability is characterized by a steadily decreasing Lyapunov function. This is clearly

violated for large time steps.
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Figure 4: Lyapunov function in entropy and temperature variables for the mid-point integrator

The evolution of the length, temperature and internal variable display nonphysical behaviour for large

time step sizes. This can be expected, judging from the violation of the first and second law of thermo-

dynamics.

5 STRUCTURE-PRESERVING NUMERICAL INTEGRATION

Energy-momentum-entropy time-stepping schemes are thermodynamic consistent and symmetry pre-

serving. Applying the discrete gradient operator D(•)(zn+1,zn) due to Gonzalez [18], the discrete version

of GENERIC (4) can be written as

zn+1 − zn

∆t
= L(zn+1,zn)DE(zn+1,zn)+M(zn+1,zn)DS(zn+1,zn) . (24)

Here L(zn+1,zn) and M(zn+1,zn) are second-order approximations of their continuous counterparts eval-

uated by employing the discrete gradient operator. The discrete gradient of a function f (z) can be viewed

as second-order perturbation of the mid-point gradient. That is,

Df(zn+1,zn) = ∇ f (zn+ 1
2
)+O(∆t2) (25)

More details about discrete gradients and their use in the design of GENERIC-based EME schemes can

be found in [5, 10].

The EME time-stepping scheme is evaluated for the choice of the entropy and the temperature as ther-

modynamic variable, leading to corresponding integrators denoted by (EME)s and (EME)θ, respectively.

The numerical simulations are displayed with the large time step size ∆t = 0.18 s, for which the midpoint

rule yielded unphysical results.

As expected, the EME schemes respect the two fundamental laws of thermodynamics, independent of

the time step size. That is, the total energy is conserved (up to numerical round-off) and the total entropy

is steadily increasing with time. This physically correct behavior of the EME schemes is accompanied

by enhanced numerical stability as can be observed from the course of the Lyapunov function shown in

Figure 5.
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Figure 5: Lyapunov function in entropy and temperature variables for the EME integrator
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Figure 6: Internal variable (bottom) in entropy and temperature variables for the EME integrator

The time-evolution of the internal variable (Figure 6) and both length and temperature variables (Fig-

ure 7) is practically identical for both EME integrators under consideration.
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Figure 7: Element length and temperature in entropy and temperature variables for the EME integrator

As seen, the EME integrators are structure-preserving, as well as significantly more precise and nu-

merically stable than the mid-point rule. Either in entropy or temperature variables, the EME integrators

yield practically identical results.
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2. Öttinger, H. C. & Grmela, M. Dynamics and thermodynamics of complex fluids - II. Illustrations

of a general formalism. PHYSICAL REVIEW E 56, 6633–6655 (1997).
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