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Abstract. One of the most popular mixed finite elements is the enhanced assumed strain (EAS) approach.

However, despite numerous advantages there are still some open issues. Three of the most important,

namely robustness in nonlinear simulations, hourglassing instabilities and sensitivity to mesh distortion,

are discussed in the present contribution. Furthermore, we propose a novel Petrov-Galerkin based EAS

method. It is shown that three conditions have to be fulfilled to construct elements that are exact for a

specific displacement mode regardless of mesh distortion. The so constructed novel element is locking-

free, exact for bending problems, insensitive to mesh distortion and has improved coarse mesh accuracy.

1 INTRODUCTION

In the early days of the finite element method (FEM) it was soon discovered that low-order displacement

based elements cannot be used efficiently due to severe locking, which denotes numerically induced too

stiff behavior compared to “correct” results. A plethora of remedies has subsequently been developed

to circumvent this issue. The two main groups are reduced integration with stabilization in explicit

simulations and mixed finite elements1 in implicit simulations, which are the focus of the present work.

One of the most popular mixed finite elements is the enhanced assumed strain (EAS) approach which

is based on a Hu-Washizu functional and was first proposed by Simo and Rifai [2] for linear and Simo

and Armero [3] for nonlinear problems, respectively. The EAS approach is a mathematically sound

justification for the earlier introduced popular incompatible mode models [4]. Among the many advan-

tages of the method the probably most important one is its strain-driven format which facilitates simple

implementation of complex nonlinear material models. This makes EAS elements especially interesting

compared to assumed stress (AS) [5, 6] which work extremely well in linear problems but require inverse

stress-strain relations that rarely exist for nonlinear material models (see e.g. [7, 8]).

Despite all benefits and wide application in practical engineering simulations there are still some open

issues and possibilities for improvement of EAS elements. Three of which are discussed in the present

work. The first topic concerns robustness in nonlinear simulations by which we denote the size of ap-

plicable load steps and number of Newton-Raphson (NR) iterations necessary to obtain convergence. In

1We denote with a mixed approach any problem from which fields may be removed without loosing the well-definedness of

the problem (cf. [1]).
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comparison to the AS method, the robustness of EAS elements is poor. This topic is dealt with in depth

in the work of Pfefferkorn et al. [8]. Second, spurious hourglassing instabilities still occur in case of

elasto-plastic simulations as summarized e.g. by Hille et al. [9]. Finally, EAS elements are sensitive to

mesh distortion which is in accordance with MacNeal’s theorem [10]. The latter two issues are in fact

not only a problem of EAS elements but concern a wide range of other mixed approaches.

The purpose of the present work is twofold. First, the three open issues mentioned above will be ex-

plained in more detail including some recent progress. Second, an unsymmetric (i.e. Petrov-Galerkin)

EAS method is proposed in order to overcome the limitations by MacNeal’s theorem and tackle the third

open issue. The key idea is to use a Petrov-Galerkin ansatz in the sense of the unsymmetric FEM method

which was proposed by Rajendran and Liew [11] for displacement based finite elements. A comprehen-

sive overview of the method can be found in [12] and [13]. For the novel unsymmetric EAS method

we derive three conditions that have to be fulfilled in order to obtain exact solutions for specific dis-

placement modes. Satisfying these conditions for AS stress modes, leads to a locking-free finite element

that is mesh-distortion insensitive. In order to facilitate this, the actual choice of ansatz functions for

the novel EAS element is closely related to the approach of Huang et al. [14]. However, in contrast to

aforementioned reference the present framework is much more generally applicable and can for instance

easily be extended to 3D problems.

The present contribution is divided into five sections. Section 2 covers details of the three open issues.

In Section 3 the new unsymmetric EAS approach is proposed starting with the three conditions that have

to be fulfilled for exact FE solutions in Section 3.1. Afterwards, Section 3.2 covers the ansatz functions

used for the novel element. Numerical investigations comparing the present approach to well established

elements follow in Section 4 before the conclusions are drawn in Section 5.

2 OPEN ISSUES ON THE EAS METHOD

2.1 Robustness in Newton-Raphson iterations

The first open issue concerning EAS elements, which is addressed in this contribution, is their lack

of robustness in nonlinear Newton-Raphson (NR) iterations. Poor robustness is characterized by the

necessity of small load steps and a high number of NR-iterations to obtain convergence. Thus, in this

sense, robustness also implies numerical efficiency, since less costly matrix factorizations are necessary.

Robustness is thoroughly addressed in the recent work by Pfefferkorn et al. [8].

In the present work, we consider the simple clamped beam example2 shown in Fig. 1 for a detailed

examination of the phenomenon. Comparison of the required number of NR-iterations nNR for the AS

element Q1/S5 (see e.g. [7]) and the standard nonlinear EAS element Q1/E4 [3] reveals the poor behavior

of the latter in terms of robustness.

A simple remedy for that behavior is based on the mixed integration point (MIP) method (see Magisano

et al. [15]), which is extended to EAS elements in [8]. The so modified element with increased robustness

is denoted Q1/E4-MIP. In case of the St.Venant-Kirchhoff material this element exhibits the same robust

results as Q1/S5 in this example. However, Q1/E4-MIP’s robustness is still inferior to Q1/S5’s for the

Neo-Hookean material model and does not even converge in some cases. Finding a robust EAS element

for nonlinear material models is thus the first challenge for EAS element development in the future.

2A thorough description of the example is given in Pfefferkorn et al. [8], where the present results are taken from.
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F = Ẽ · t3/L3,

ν = variable

104 106
5

10

15

K

to
ta

l
n

N
R

104 106
5

10

15

K
to

ta
l

n
N

R

Q1/S5

Q1/E4

Q1/E4-MIP

Figure 1: Clamped beam example to examine robustness. Problem setup with geometry and boundary conditions

(top). Required number of NR-iterations nNR in dependence of the bulk modulus K = E/(3− 6ν) with one load

step for St. Venant-Kirchhoff (bottom left) and a Neo-Hookean (bottom right) material (see [8]) .

2.2 Hourglass instabilities

The second open issue are spurious hourglass instablities of EAS elements in nonlinear simulations,

which are already mentioned in the conclusion of the seminal publication by Simo and Armero [3]. The

work of Wriggers and Reese [16] provides the first thorough explanation of the phenomenon for element

Q1/E4 [3] in case of a hyperelastic block under compression. Fortunately, there is a relatively simple

fix to overcome this problem in hyperelasticity. The solution is to use the transpose of the originally

used Wilson-Modes as ansatz for the enhanced field (see [17, 18], element Q1/E4T). However, a similar

hourglassing phenomenon occurs in elasto-plastic simulations under tension as shown in Fig. 2. It

depicts results of a simple plane strain necking example (see e.g. [18, 19, 20]). This test illustrates that

regardless of choice of ansatz functions there is hourglassing for EAS element. In fact, hourglassing in

elasto-plastic simulations is not only a problem of EAS elements but concerns other mixed elements such

as the one by Armero [19] as well. This is shown in detail in the work of Hille et al. [9].

So far, to the best knowledge of the authors, the only “solutions” to this problem require artificial sta-

bilization terms (see e.g. for EAS elements [18, 21]) or lead to elements that lock (see e.g. [20]) and

are therefore not satisfactory. Finding an hourglassing-free EAS element, that does not lock, is thus the

second open issue in this overview.

2.3 Sensitivity to mesh distortion

The final issue concerns sensitivity of EAS elements to mesh distortion. Once more a simple example

(see e.g. [2, 22]) shown in Fig. 3 allows to investigate this problem. The linear elastic clamped beam is

subjected to a pure bending moment and meshed with two elements. Parameter s controls the degree of

distortion of the specimen. Both the AS element Q1/S5 [5] and the EAS element Q1/E4 [2] are able to

give the analytic result δ = 1 in case of a rectangular mesh (s = 0). However, in case of distorted meshes

the performance drops substantially.
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Figure 2: Hourglassing patterns in a 2D elasto-plastic necking simulation. Results for Q1/E4 (left) and Q1/E4T

(right) [20].
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Figure 3: Mesh distortion test (2D). Setup (left) and normalized displacement in dependence of distortion s (right).

This issue is not only a problem of the two mixed elements considered here but of every finite element

that has a symmetric stiffness matrix (i.e. Bubnov-Galerkin approach). This fundamental relation has

been proven by MacNeal [10] in 1992. MacNeal’s Theorem implies, that no element can simultaneously

pass the patch test and be exact in higher order problems (e.g. bending) unless the stiffness matrix is

unsymmetric. Thus, every approach based on the Bubnov-Galerkin ansatz can only yield minor im-

provements which is in accordance with progress in literature (see, among many others, [21, 22]). The

only way to circumvent this issue is to make the element’s stiffness matrix unsymmetric by using e.g. a

Petrov-Galerkin approach. This is the key idea of the unsymmetric FEM which was first proposed by Ra-

jendran and Liew [11]. However, for low-order elements it is not straightforward to find suitable ansatz

spaces. This leads to either extremely complicated ansatz functions, which include material parameters

[13, 23], or elements that require many internal degrees of freedom and are often not applicable in 3D

problems [14].

The remainder of this work is about a way to construct low-order elements on the basis of the EAS

framework, which do not require material parameters for their ansatz spaces, are straightforward to

construct and are insensitive to mesh distortion.

3 UNSYMMETRIC EAS ELEMENTS

3.1 Conditions for mesh distortion insensitive EAS elements

Before we propose the actual unsymmetric EAS element in Section 3.2 we derive in this section three

conditions which have to be fulfilled in order for an element to be exact for a specific displacement mode3

u∗. Corresponding to u∗, the usual relations determine the strains ε∗ = ∇s
x u∗, stresses σ∗ = C : ε∗, and

3Usually a linear combination of polynomial expressions.
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Figure 4: Single finite element Ωe embedded in linear elastic continuum.

tractions t∗ = σ∗n∗ where C is the elasticity tensor.

To that end we consider in analogy to the method in [10] a single finite element Ωe with boundary ∂Ωe

embedded into a linear elastic continuum B0 (see Fig. 4). The weak form of a single EAS element [2] is

given by
∫

Ωe
∇s

x vh,e : σh,e dV +Πext(v
h,e) = 0, (1a)

∫
Ωe

ẽh,e : σh,e dV = 0, (1b)

where vh,e and ẽh,e are the test functions of the displacements and enhanced strains, respectively. The

discrete constitutive stresses σh,e =C : (∇s
x uh,e+ ε̃h,e) are computed via Hooke’s-law from the trial func-

tions for the displacements uh,e and enhanced strains ε̃h,e. Moreover, the contribution of external forces

is given by

Πext(v
h,e) =−

∫
Ωe

vh,e ·bh,e dV −
∫

∂Ωe
vh,e · th,e dA. (2)

Instead of the usual approach of selecting vh,e and uh,e as well as ẽh,e and ε̃h,e form the same ansatz spaces

(Bubnov-Galerkin), we now choose them independently (Petrov-Galerkin). This allows to derive three

conditions which have to be fulfilled in order to obtain an exact FE solution.

The first condition follows from the fact, that we only consider a single element. In order to get correct

solutions in case of larger FE-meshes it has to be ensured that the inter-element continuity is maintained.

That is the case if nodal equilibrium is exactly fulfilled regardless of the element’s geometry. The test

functions for the displacements have to be chosen appropriately in order to fulfill this condition, which

is a fundamental result of FE-design (see e.g. [1]).

The other two conditions can be derived by rearranging (1). Under the assumption that the discrete

external forces bh,e and th,e can exactly represent the continuum counterparts b∗=−divσ∗ and t∗=σ∗n∗,

we can recast (2) by virtue of the divergence theorem in the form

Πext(v
h,e) =−

∫
Ωe

vh,e ·b∗ dV −
∫

∂Ωe
vh,e · t∗ dA =−

∫
Ωe

∇s
x vh,e : σ∗ dV . (3)

Inserting this result into (1a) yields
∫

Ωe
∇s

x vh,e :
(

σh,e −σ∗
)

dV = 0. (4)
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Since vh,e is not arbitrary due to the first condition discussed above, equation (4) can only be fulfilled

in general if σh,e = σ∗, which has to be ensured by the ansatz spaces for uh,e and ε̃h,e. A final condition

follows from inserting σh,e = σ∗ into (1b). This yields

∫
Ωe

ẽh,e : σ∗ dV = 0, (5)

which implies that the test function for the enhanced strains ẽh,e must be L2-orthogonal to σ∗. This final

condition is essentially an extension of the orthogonality condition which is necessary for the classical

EAS element in order to fulfill the patch test [2].

Summarizing these considerations we have three conditions, which have to be fulfilled in order to con-

struct an unsymmetric EAS element that is exact for a chosen mode u∗:

C1 The test functions vh,e must fulfill nodal equilibrium regardless of element geometry and neigh-

boring elements.

C2 The ansatz for the discrete stress σh,e, which is computed from uh,e and ε̃h,e, must include the

stresses σ∗.

C3 The test function for the enhanced strains ẽh,e must be L2-orthogonal to σ∗ (see (5)).

3.2 Element design

3.2.1 Choice of analytic modes

Before choosing the ansatz spaces for the test and trial functions of the displacements and the enhanced

strain field, it is necessary to define the analytic modes u∗, to which the element is fitted. In this section

we only consider four-node quadrilateral 2D elements4. This implies that there are eight degrees of

freedom in the 2D case and the element can thus be fitted to a maximum of eight analytic modes.

As pointed out by Cen et al. [23] there is unfortunately a fundamental problem. It is impossible to

incorporate fully quadratic displacements since that requires twelve displacement modes. Furthermore,

every element should fulfill the important patch test condition [1] which essentially means that all six

linear displacement modes must be included in the element’s space. Thus, of the eight modes available,

only two can be chosen freely instead of the six necessary for fully quadratic solutions. These modes

must be chosen with care in order to maximize the element’s performance.

In many engineering applications, bending problems are of the utmost importance. This is why we

propose to use the assumed stress modes introduced by Pian and Sumihara [5] as analytic modes. These

five modes include, apart from the two pure bending modes around the element axes, also the three

constant stress patch test modes. Together with the three rigid body modes this adds up to the eight

available ones. The only change made to the modes from [5] is using a skew coordinate frame as proposed

by Wisniewski and Turska [24]. Ultimately this yields the analytic modes

σ∗ = J0σ̂∗(ξ̄)JT
0 , σ̂∗

v =





1 0 0 ξ̄2 0

0 1 0 0 ξ̄1

0 0 1 0 0



 (6)

43D elements are considered in the numerical investigation in Section 4.
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Figure 5: Higher order parent element with internal nodes (hollow dots), standard nodes (full dots) and skew

coordinate system.

where J0 is the Jacobian of the isoparametric map xh,e(ξ) = ∑I NI(ξ)xI evaluated at the element’s cen-

troid, ξ denotes the coordinates of the reference element and NI are the standard bi-linear Lagrangian

shape functions. Moreover,

ξ̄ = J−1
0

(

xh,e −x0

)

(7)

are the skew coordinates where x0 = xh,e(ξ = 0) is the element’s centroid.

3.2.2 Ansatz functions

The construction of ansatz functions for the present element follows the recent unsymmetric incompatible

mode approach by Huang et al. [14]. However, in contrast to aforementioned reference, the present

method is easily extended to 3D (see Section 4) and requires less internal degrees of freedom due to the

serendipity parent element.

The key idea for the ansatz functions is to consider a higher order parent element [14] as shown in Fig.

5. On top of the usual four nodes of the quadrilateral element (full dots), there are four serendipity like

internal nodes (hollow dots) that are only used on element level. Starting from that basis we now propose

a way to fulfill conditions C1 to C3.

In order to fulfill condition C1 it is necessary for the test functions of the displacements to enable nodal

equilibrium. This is exactly what the isoparametric concept was developed for (see e.g. [1]). Thus,

we use the usual bi-linear Lagrangian shape functions NI =
1
4
(1+ξIξ)(1+ηIη) to approximate the test

functions vh,e.

Next we consider condition C3. To fulfill it we start with the serendipity modes N5 to N8 associated with

the internal nodes. Their derivatives are used to approximate intermediate enhanced strains given by

iẽh,e =
1

jh,e
J−T

0 sym

(

8

∑
I=5

αI ⊗∇ξN̂I

)

J−1
0 . (8)

Unfortunately, these modes do not fulfill (5) in general. However, it is possible to ensure (5) by an

orthogonalization procedure. First, the special approximations of (6) and (8) allow to simplify (5) in the

form
∫

Ωe

iẽh,e : σ∗ dV =
∫

Ω̂

iêh,e
v · σ̂∗

v dΩ̂ = 0. (9)
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The next step is to apply Gram-Schmidt orthogonalization to the enhanced strains5. This yields the actual

ansatz for the enhanced strains in the form

ê
h,e
v,I = iê

h,e
v,I −

5

∑
k=1

∫
Ω̂

iê
h,e
v,I · σ̂

∗
v,k dΩ̂

∫
Ω̂

σ̂∗
v,k · σ̂

∗
v,k dΩ̂

σ̂∗
v,k, ẽh,e =

1

jh,e
J−T

0 êh,eJ−1
0 . (10)

The final condition, that needs to be fulfilled, is condition C2. It requires that linear stresses in the

physical space (see (6)) can be exactly represented. Corresponding displacements need thus to be fully

quadratic. For this purpose, isoparametric ansatz functions are not suitable since they cannot represent

fully quadratic polynomials in the physical space in case of distorted meshes due to the rational-valued

transformation. However, metric shape functions, which were proposed for unsymmetric elements by

Rajendran and Liew [11], allow fully quadratic polynomials in the physical space regardless of mesh

distortion. For the serendipity type parent element we compute these functions in the skew-coordinate

frame as proposed by Xie et al. [13]. Using the skew frame is necessary in order to obtain isotropic and

frame-invariant ansatz functions. Note that the linear transformation (7) preserves the fully quadratic

polynomials in the physical space.

With these ansatz functions at hand we now have an EAS element that is insensitive to mesh distortion

and exact in pure bending problems. This is shown in detail in the numerical investigation in Section

4. Furthermore, the present approach can easily be applied with the very same steps in 3D simulations,

which is in contrast to the work of Huang et al. [14].

4 NUMERICAL INVESTIGATIONS

This section covers 3D numerical benchmarks comparing the novel unsymmetric EAS element proposed

in Section 3, which is denoted H1U/IM-S6, to standard linear mixed elements. In particular the EAS

elements H1/E9 (3D extension of [2]) and HA1/E12, which is the linear version of the element proposed

in [22], are considered. Furthermore, we use the AS element with 18 stress modes H1/S18 by Pian and

Tong [6] and the three-field mixed pressure element H1/P0 by Simo et al. [25] for comparison. All results

reported in this section for 3D-problems can qualitatively also be observed in 2D simulations.

4.1 Patch test

The first example is the classical patch test in the form described in [22]. All elements tested fulfill this

basic test. For the present element this follows from the choice of analytic modes (6). Since the AS

modes include constant stress modes, element H1U/IM-S fulfills the patch test by construction.

4.2 Isotropy and invariance test

This test, which is taken from [13], can be used to test if the element satisfies two fundamental conditions,

namely isotropy and frame invariance. The geometry and boundary conditions of the test are shown in

Fig. 6. The first condition concerns isotropy which denotes if the element is invariant to orientation of the

local reference element axes ξηζ in relation to the local system X̄Ȳ Z̄. It can be checked by rearranging the

local node numbering EDOF. Second, frame invariance is given if the element is invariant with respect

5The modes of σ̂∗ are in general not orthogonal to each other and need to be orthogonalized in a first step.
6IM stands for incompatible mode and S denotes the serendipity type parent element.
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Figure 6: Setup of isotropy and invariance test in 3D.
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Figure 7: Mesh distortion test (3D). Setup (left) and normalized displacement in dependence of distortion s (right).

to rotation of the global coordinate system XY Z in relation to the local coordinates X̄Ȳ Z̄. Invariance is

checked by changing the angle between the global coordinates XY Z and the local coordinates X̄Ȳ Z̄.

The results are evaluated by measuring the displacements of node C. Since it neither changes with

rotation nor with node-numbering, all elements tested, especially the novel H1U/IM-S, pass this test.

4.3 Mesh distortion test

This test has already been used in Section 2.3 to demonstrate MacNeal’s Theorem [10]. Here, we con-

sider a 3D equivalent with dimensions L = 10, h = 2 and b = 1 shown in Fig. 7. Again, displacement δ

is normalized using the analytic result and plotted in dependence of the distortion s on the right of Fig.

7. Since coincident nodes (s = 5) are not allowed in order to compute the metric shape functions, this

state had to be excluded and the maximum distortion is set to s = 4.9.

As predicted by MacNeal’s Theorem, none of the Bubnov-Galerkin mixed finite elements is able to

predict exact displacements with the exemption of no distortion. The performance drops quickly with

higher values of s. Of the symmetric elements, H1/P0 exhibits the worst results since shear locking is

not alleviated. The clearly best results are obtained with element H1U/IM-S. It shows perfect results

regardless of mesh distortion, since it was designed for this pure bending problem. This is in line with

other low-order unsymmetric finite elements (see e.g. [13, 14, 23]). However, in contrast to [13, 23],

the element here does not need material parameters for its ansatz functions and can be extended to 3D

problems, which is not obvious with the element proposed in [14].
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4.4 Cooks membrane

The final test is the famous Cook’s membrane benchmark which is included here as described in detail in

[22]. Fig. 8 shows the setup and results of the test. To consider nearly incompressible material behavior

the material parameters are chosen as E = 2261.2 and ν = 0.49547.

Due to the complex deformation state in this example, it is not possible to obtain exact solutions with

any finite element. However, the plot in Fig. 8 shows that the novel element H1U/IM-S exhibits the best

performance especially for coarse meshes. In case of fine meshes the difference becomes smaller but the

unsymmetric approach still exhibits the best results.

Unfortunately, the improved coarse mesh accuracy comes with a price. Comparing the time spent for

solving the linear equation system using MATLAB’s “\”-solver for elements H1U/IM-S and H1/E9 shows

that the unsymmetric element needs up to 4.74 times longer in case of fine meshes with 64×64×8 el-

ements (more than 114,000 DOFs). Furthermore, the 27-point Gauss-quadrature and complex computa-

tion of shape functions further increase numerical cost. However, since H1U/IM-S allows using coarser

meshes due to the improved accuracy, it might outweigh the additional computational effort necessary

for the unsymmetric system.

5 CONCLUSION

In the present work we proposed a novel linear low-order unsymmetric finite element based on the EAS

framework. Starting from the weak form for EAS elements [2] three conditions have been derived, that

allow to construct an element which is exact for an arbitrary displacement mode.

On this basis we developed a EAS element, which is exact for the classical assumed stress modes [5, 6].

The novel element is free from locking, exact for pure bending problems, insensitive to mesh distortion

and has improved coarse mesh accuracy. In contrast to most existing low-order unsymmetric elements

it does not require material parameters to compute the ansatz functions and it is easily applicable in 3D

simulations.

Drawbacks of the element are related to computational cost. First, the unsymmetric FEM always requires

a more costly linear solver. Second, the higher order internal serendipity modes require many enhanced

degrees of freedom (36 in 3D) and a higher order Gauss-quadrature, which makes the element routine

itself expensive.

10
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In future works, the first goal should be to reduce the number of internal degrees of freedom as well as

the order of Gauss-quadrature. Secondly, an extension of the current framework to nonlinear problems

would be of the utmost interest.
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