KIT | KIT-Bibliothek | Impressum | Datenschutz

Energy-momentum scheme for nonlinear thermo-electro-elastodynamics

Franke, Marlon; Ortigosa, R.; Gil, A. J.; Hille, Moritz


The present contribution aims at the consistent discretisation of nonlinear, coupled thermoelectro-elastodynamics. In that regard, a new one-step implicit and thermodynamically consistent energymomentum integration scheme for the simulation of thermo-electro-elastic processes undergoing large deformations will be presented. The consideration is based upon polyconvexity inspired, constitutive models and a new tensor cross product algebra, which facilitate the design of the so-called discrete derivatives. The discrete derivatives are fundamental for the algorithmic evaluation of stresses and other derived variables like entropy density or the absolute temperature leading to a structure preserving integration scheme. In particular, recently published works of the authors concerning consistent time integration of large deformation thermo-elastodynamics and electro-elastodynamics are combined to a unified integration scheme. Numerical computations demonstrate the stability and conservation properties of the proposed energy-momentum scheme.

Verlagsausgabe §
DOI: 10.5445/IR/1000141924
Veröffentlicht am 17.01.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Mechanik (IFM)
Publikationstyp Proceedingsbeitrag
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 2696-6999
KITopen-ID: 1000141924
Erschienen in 14th WCCM-ECCOMAS Congress 2020: Collection of papers presented at the 14th edition of the WCCM-ECCOMAS, virtual congress, January, 11-15, 2021. Ed.: F. Chinesta
Verlag Scipedia S.L.
Schlagwörter Coupled problems, thermo-electro-elastodynamics, finite deformations, energy-momentum scheme, finite element method
Nachgewiesen in Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page