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Abstract. Local reliability sensitivity methods aim at determining the partial derivatives of the failure

probability or the reliability index with respect to model parameters. For efficient local reliability based

sensitivity analysis, it is important to avoid repeated evaluations of the performance function. To this end,

an extension of the moving particles method to local reliability based sensitivity analysis is presented that

is completely based on the already evaluated samples for the reliability estimate and thus avoids repeated

evaluations of the performance function. In order to further reduce the variance of the estimator and

to increase the efficiency, a multilevel variant of the estimator is proposed. The method is discussed in

detail and illustrated by means of examples.

1 INTRODUCTION

Reliability based sensitivity analysis investigates the dependence of the failure probability on model

parameters. In this study, the relevant model parameters are distribution parameters related to the prob-

abilistic characterization of the model input. For sensitivity analysis, local and global approaches can

be distinguished. Local reliability sensitivity analysis methods compute the partial derivatives of the

failure probability or the reliability index with respect to model parameters. Global reliability sensitivity

analysis aims at determining the influence of a model parameter on the failure probability over the entire

range of possible values for this parameter. It is often based on Sobol’ indices.

In [11], local reliability based sensitivity analysis is considered and partial derivatives of the failure

probability by means of importance sampling are computed without any additional evaluations of the

performance function. This approach is extended in [9] to subset simulation by computing partial deriva-

tives of the conditional probabilities for each of the subsets.

Here, the reliability analysis is carried out by the moving particles method, cf. [10], where a threshold

is associated to each sample, samples are moved to new positions in the design space and the number of

moves for the initial samples (the particles) to reach the failure region are counted and yield an estimator

for the failure probability, which is based on a Poisson process. The estimator is of comparable accuracy

and efficiency as the subset simulation estimator. For local reliability based sensitivity analysis, it is

important to avoid repeated evaluations of the performance function. To this end, an extension of the
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moving particles method to local reliability based sensitivity analysis is presented. It is shown that the

method is not only completely based on the already evaluated samples for the reliability estimate and

thus avoids repeated evaluations of the performance function, but that it can be carried out after the last

move of a particle and just once after the reliability estimation has been carried out.

The paper is organized in five sections. After the introduction, a brief outline of the moving particles

method is given. Following this, local reliability sensitivity analysis is integrated in the moving particles

method and it is shown that only a single postprocessing step is required which is carried out when the

last particle has been moved into the failure domain. Finally, the accuracy and efficiency of the proposed

method is investigated by examples and conclusions are drawn.

2 BRIEF OUTLINE OF THE MOVING PARTICLES METHOD

Structural reliability analysis is concerned with the computation of the failure probability

PF =
∫

g(x)<0
p(x,θ)dx, (1)

where the real valued function g(x), x ∈ R
n, denotes the performance function of the structure, p(x,θ) is

the probability density function of those structural parameters that are assumed to be random variables

and θ contains the parameters of the probability distributions. The limit state function g(x) = 0 separates

the safe domain {x ∈ R
n : g(x) > 0} from the failure domain F = {x ∈ R

n : g(x) < 0}. In engineering

applications, the failure probability is small and direct Monte Carlo simulation for its estimation requires

a huge number of evaluations of the performance function and thus a large computational effort.

In order to reduce the computational effort, importance sampling and importance splitting have been

widely applied to the estimation of rare events [8]. Importance sampling estimates the occurrence of rare

events by generating samples from an alternative distribution and correcting for the bias by the introduc-

tion of weights. The success of this method relies on the quality of the importance sampling density,

which is efficiently constructed in an adaptive way.

Importance splitting allows estimating small failure probabilities efficiently, even for problems that in-

volve a high-dimensional vector of input random variables [8]. The general idea of importance splitting

is to discard samples that are too far away from a threshold and to regenerate new samples from the

remaining ones. In order to maintain the independence of the samples, Markov Chain Monte Carlo sim-

ulation starting from remaining samples is frequently employed.

For time-independent problems, subset simulation [1] is a very efficient method for a wide range of

applications. This method considers nested subsets generated by levels of the performance function.

These nested subsets yield a multiplicative decomposition of the failure probability in larger conditional

probabilities. For the estimation of these conditional probabilities, conditional samples are generated by

means of Markov Chain Monte Carlo simulation.
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The moving particles algorithm [3] can be considered as a special case of subset simulation with a

maximum number of subsets. It starts with an initial Monte Carlo simulation (MCS) with N samples

x
(1)
j ∈ R

n, j = 1, ...,N, distributed according to the probability density function p(x,θ). The values

g(x
(1)
j ), j = 1, ...,N, of the N samples are ranked. These initial samples (the particles) are then moved

to the failure region by the following procedure: For the sample with the maximum value of the perfor-

mance function (thus furthest away from a limit state), a Markov chain Monte Carlo simulation (MCMC)

is carried out starting from one of the other samples and the next state of the Markov chain is accepted,

if the value of the performance function can be reduced. The Markov chain can be generated either by

application of the classical Metropolis-Hastings algorithm or by direct sampling from a normal transition

kernel and requires a burn-in period in order to maintain independence of the samples. This algorithm

is repeated and stops if all the particles have been moved into the failure domain. The total number of

moves MT is counted.

Interpreted as a special case of subset simulation with a maximum number of domains, each move of

a particle gives rise to a subset Fi = {x ∈ R
n : g(x) < gi}, i = 1, ...,MT , where gi = max1≤ j≤N g(x

(i)
j ),

i = 1, ...,MT , denotes the maximum value of the performance function of the N particles x
(i)
j , j = 1, ...,N,

when carrying out the ith move. For the conditional probability

Pi = P(G < gi|G < gi−1), (2)

where for simplicity, the random variable g(X) is abbreviated by G, one finds the estimator

P̂i =
N −1

N
, (3)

because only one particle is moved per each iteration step of the algorithm. F0 = R
n together with Fi,

i = 1, ...,MT , is a finite sequence of nested subsets and

F =
MT⋂
i=0

Fi. (4)

Therefore, one finds for the failure probability

PF =
MT

∏
i=1

P(Fi|Fi−1) =
MT

∏
i=1

Pi (5)

and thus

P̂F =

(

N −1

N

)MT

(6)

is an estimator for PF .

In addition, this algorithm has the advantage that the number of moves of the particles is a Poisson

distributed random variable that can be directly related to the failure probability PF . Thus, properties of

the Poisson distribution can be used to analyze the algorithm. For each initial sample j, j = 1, ...,N, the
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number M j of moves until it reaches the failure region is counted. As has been shown in [3], the number

of moves to get an initial sample into the failure region follows a Poisson distribution with parameter

λ =− logPF . The estimator for the parameter of the Poisson distribution is obtained from λ = E[M] as

λ̂ =
∑N

j=1 M j

N
=

MT

N
. (7)

In order to obtain an unbiased estimate, it is mandatory that the trajectories of the Poisson process

generated from the initial samples remain independent until the samples finally reach the failure domain.

In [10], two means are proposed to maintain the independence:

• Burn-in: The Markov chain simulation is carried out with a burn-in period. The burn-in should

ensure the independence of the candidate and the seed of the Markov chain.

• Seed avoidance: Repeated use of the same starting point for the Markov chain should be avoided.

Once a sample has been used as starting point, the sample and its offspring should not be used as

starting point again.

3 LOCAL RELIABILITY SENSITIVITY ANALYSIS WITH THE MOVING PARTICLES METHOD

3.1 Singlelevel version

Applying the product rule to equation (5), one finds for the partial derivative of the failure probability

with respect to θ:

∂PF

∂θ
= PF

MT

∑
i=1

1

Pi

∂Pi

∂θ
. (8)

With

P(G < gi−1) =
∫

Ig<gi−1
(x)p(x)dx (9)

and

Pi = P(G < gi|G < gi−1) =
∫

Ig<gi
(x)

Ig<gi−1
(x)p(x)

P(G < gi−1)
dx, (10)

where the indicator function is given by

Ig<gi
(x) =

{

1, if g(x)< gi,

0, otherwise,
(11)

the partial derivative of the conditional probability Pi is given by

∂Pi

∂θ
=

∂

∂θ

∫
Ig<gi

(x)
Ig<gi−1

(x)p(x)

P(G < gi−1)
dx

=
∫

Ig<gi
(x)

Ig<gi−1
(x)

P(G < gi−1)

∂p(x)

∂θ
dx−

∫
Ig<gi

(x)
Ig<gi−1

(x)p(x)

P(G < gi−1)2

∂P(G < gi−1)

∂θ
dx

=
∫

Ig<gi
(x)

1

P(G < gi−1)

∂p(x)

∂θ
dx−

∫
Ig<gi

(x)
p(x)

P(G < gi−1)2

∂P(G < gi−1)

∂θ
dx,

(12)
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as gi < gi−1 and thus Ig<gi
(x)Ig<gi−1

(x) = Ig<gi
(x). The last expression can also be written as

∂Pi

∂θ
= EG<gi−1

[Ig<gi
(x)

∂ ln p(x)

∂θ
]− Pi

P(G < gi−1)

∂P(G < gi−1)

∂θ
. (13)

The expression in the last term involves the partial derivative of the probability related to a set of larger

bound, namely Fi−1. Analogously to equation (8), we find the expression

∂P(G < gi−1)

∂θ
= P(G < gi−1)

i−1

∑
j=1

1

Pj

∂Pj

∂θ
(14)

for this partial derivative. In summary, the expression for the partial derivative of the conditional proba-

bility Pi with respect to θ reads

∂Pi

∂θ
= EG<gi−1

[Ig<gi
(x)

∂ ln p(x)

∂θ
]−

i−1

∑
j=1

1

Pj

∂Pj

∂θ
. (15)

Inserting this expression into equation (8) and observing that P̂1 = P̂2 = ... = P̂MT
yields a telescoping

sum, such that the estimator for the sensitivity of the failure probability is obtained as

ˆ∂PF

∂θ
=

(

N −1

N

)MT−1
(

1

N

N

∑
j=1

Ig<gMT
(x

(MT )
j )

∂ ln p(x)

∂θ

∣

∣

∣

∣

x=x
(MT )
j

)

. (16)

Thus, the score function
∂ ln p(x)

∂θ , cf. [7], is evaluated and averaged for the remaining N − 1 particles

before the move of the last particle into the failure domain.

For the n-dimensional normal probability density function

p(x,µ,Σ) =
1

√

(2π)n det(Σ)
exp(−1

2
(x−µ)T Σ−1(x−µ)) (17)

the partial derivatives with respect to µ and Σ yield the expressions

∂ ln p(x,µ,Σ)

∂θ
= Σ−1(x−µ) (18)

for θ = µ and

∂ ln p(x,µ,Σ)

∂θ
=−Σ−1 +

1

2
(Σ−1 ◦ I)+Σ−1(x−µ)(x−µ)T Σ−1 − 1

2
(Σ−1(x−µ)(x−µ)T Σ−1 ◦ I) (19)

for θ = Σ, where ◦ denotes the Hadamard product and I the n×n identity matrix.
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Table 1: Distribution parameters for the random variables in example 1.

q [N/m] ℓ [m] AC [m2] EC [N/m2] AS [m
2] ES [N/m2]

mean value 20000 12 0.04 2×1010 9.82×10−4 1×1011

std. dev. 1400 0.12 0.0048 1.2×109 5.892×10−5 6×109

3.2 Multilevel version

Due to the rather low number of particles on which the estimator is built, the coefficient of variation

can be rather high. In this regard, a multilevel approach [5] helps to reduce the coefficient of variation

and thus to further improve the efficiency of the sensitivity analysis. To this end, consider a series of

approximations {gi(x)}, i = 0, ...,n, for the performance function g(x), where the index i is related to an

approximation parameter h (e.g. stepsize, mesh parameter) and gn(x) = g(x).

The expectation

EG<gMT −1
[Ig<gMT

∂ ln p(x)

∂θ
] (20)

that has to be estimated in (16) is written as a telescoping sum

EG0<gMT −1
[Ig0<gMT

∂ ln p(x)

∂θ
]+

n

∑
i=1

EGi−1<gMT −1
[Igi<gMT

∂ ln p(x)

∂θ
− Igi−1<gMT

∂ ln p(x)

∂θ
]. (21)

The idea of the multilevel method is to estimate each the expectations of the level differences in the tele-

scoping sum separately. This method is efficient, if the variance of the estimators for the level differences

is lower than that of the singlelevel estimator, so that less evaluations with the high fidelity and possibly

expensive performance function gn(x) have to be carried out, cf. [2].

4 EXAMPLES

4.1 Example 1: Roof truss

Consider the truss structure shown in Figure 1, cf. also [9]. The top boom and the compression bars are

made of reinforced concrete (cross section area AC, Young’s modulus EC), while the bottom boom and

the tension bars are made of steel (cross section area AS, Young’s modulus ES). The concentrated load P

represents a constant distributed load q that is applied on the roof truss and thus P = qℓ
4

. The parameters

q, ℓ, AC, EC, AS and ES are assumed to be independent normally distributed random variables. Table 1

displays the mean values and standard deviation of the random variables which are the same as in [9].

If the displacement of the top node should not exceed 3 cm, the limit state function reads

g(q, ℓ,AC,EC,AS,ES) = 0.03− qℓ2

2

(

3.81

ACEC

+
1.13

ASES

)

(22)

Table 2 summarizes the results for the estimated failure probability and the obtained sensitivities with

respect to the distribution parameters. In order to be able to compare the influence of the parameters, it
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Figure 1: Roof truss structure.

also states the elasticity, which is given by
θ

PF

∂PF

∂θ
, (23)

cf. [4]. The initial number of samples, i.e. the particles, has been set to 2000. The relative error has been

computed with respect to results obtained by Monte Carlo simulation and published in [9].

The results indicate that the mean values, notably the mean length ℓ and the mean distributed force q are

most influential on the failure probability. The approximation error is rather low. The proposed method

based on just 2000 samples is as exact as a Monte Carlo simulation with 107 samples. This clearly

demonstrates the efficiency of the proposed method. Also, most of the coefficients of variation (c.o.v.)

are rather low. However, it was noted that for the sensitivity of the failure probability with respect to

the length ℓ and the Young’s modulus of concrete EC, the coefficient of variation is slightly increased. A

possible reason could be the fact that the proposed method computes an average on the 2000 samples,

which is a rather low number.

4.2 Example 2: One storey one bay elastoplastic frame

This example deals with a series system consisting of four failure modes that lead to nearly the same first

oder reliability index β. Consider the elastoplastic frame structure shown in Figure 2. The four potential

failure modes yield the performance functions

g1 = 2M1 +2M3 −4.5S,

g2 = 2M1 +M2 +M3 −4.5S,

g3 = M1 +M2 +2M3 −4.5S,

g4 = M1 +2M2 +M3 −4.5S,

(24)

cf. [9]. The performance function is thus given by the minimum of these four functions:

g(M1,M2,M3,S) = min(g1,g2,g3,g4). (25)
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Table 2: Example 1: Failure probability and sensitivity of the failure probability with respect to the distribution

parameters.

PF
∂PF

∂mq

∂PF

∂mℓ

∂PF

∂mAC

∂PF

∂mEC

∂PF

∂mAS

∂PF

∂mES

estimate 0.00937 1.10e-5 0.0403 -2.110 -3.71e-12 -186 -1.81e-12

elasticity 23.5 51.9 -9.1 -8.0 - 19.6 -19.5

c.o.v. 0.05 0.05 0.08 -0.06 -0.08 -0.07 -0.06

rel. error [%] 0.5 0.7 0.9 1.0 1.2 0.1 0.6

∂PF

∂σq

∂PF

∂σℓ

∂PF

∂σAC

∂PF

∂σEC

∂PF

∂σAS

∂PF

∂σES

estimate 1.57e-5 0.0182 2.5047 1.93e-12 204 1.99e-12

elasticity 2.4 0.2 1.3 0.2 1.3 1.3

c.o.v. 0.06 0.22 0.08 0.20 0.09 0.09

rel. error [%] 2.9 1.4 1.3 3.4 0.8 1.0

Mi, i = 1, ..,3 and S are assumed to be independent normally distrbuted random variables. For Mi,

i = 1, ...,3, a mean value of 5.2872 and a standard deviation of 0.1492 is assumed, while for S, the mean

value was 3.8378 and the standard deviation 0.3853, so that the reliability index β for each of the failure

modes is 3.334 for the first failure mode and 3.364 for the others.

Figure 2: One storey one bay elastoplastic frame.

The results for the estimated failure probability and the obtained sensitivities are collected in Table 3.

The initial number of samples, i.e. the particles, has been set to 2000. Again, the relative error has been

computed with respect to Monte Carlo simulation results with 107 samples published in [9].

As Table 3 demonstrates, the mean values and the standard deviation related to the applied force S in-

fluence the failure probability most. The approximation error is always less than 2%. This confirms

the findings of the previous example that the proposed method is very efficient and as exact as a highly

accurate Monte Carlo simulation with 107 samples. As in the previous example, some of the coefficients
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Table 3: Example 2: Failure probability and sensitivity of the failure probability with respect to the distribution

parameters.

PF
∂PF

∂mM1

∂PF

∂mM2

∂PF

∂mM3

∂PF

∂mS

estimate 0.0182 -0.0387 -0.0236 -0.038 0.1132

elasticity -11.2 -6.9 -11.0 23.9

c.o.v. 0.05 -0.11 -0.18 -0.13 0.04

rel. error [%] 0.4 1.4 1.3 0.5 0.1

∂PF

∂σM1

∂PF

∂σM2

∂PF

∂σM3

∂PF

∂σS

estimate 0.0177 0.0195 0.0171 0.2318

elasticity 0.1 0.2 0.1 4.9

c.o.v. 0.29 0.3 0.34 0.05

rel. error [%] 1.2 0.6 3.0 0.1

Table 4: Example 3: Failure probability and sensitivity of the failure probability with respect to the distribution

parameters. a) Uncorrelated random variables, b) Correlated random variables with ρ = 0.5.

a)

ρ = 0 PF
∂PF

∂m
∂PF

σ

estimate 1.35e-3 4.44e-2 1.32e-2

c.o.v. 0.069 0.069 0.083

rel. error [%] 0.3 0.1 1.0

b)

ρ = 0.5 PF
∂PF

∂m
∂PF

σ

estimate 0.336 0.514 0.156

c.o.v. 0.024 0.027 0.70

rel. error [%] 0.1 0.1 1.3

of variation are slightly increased (notably for the sensitvities with respect to the standard deviation of

the parameters Mi, i = 1, ...,3).

4.3 Example 3: High-dimensional problem

This example deals with a component reliability problem of dimension 100. The performance function

is given by

g(X) =
1

1000+∑100
i=1 Xi

− 1

1000+3
√

100
, (26)

where the 100 random variables are normal with mean m = 0 and standard deviation σ = 1, cf. [6]. Two

cases are considered: (a) the random variables are independent, (b) all random variables are correlated

with correlation coefficient ρ = 0.5.

As Table 4 indicates, the high dimension of the vector of random parameters does not affect the accuracy
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of the obtained results. Also the correlation of the random variables seems to have no influence on the

accuracy. However, it is observed that for the estimator of the partial derivative of the failure probability

with respect to the standard deviation, the coefficient of variation is larger than for the uncorrelated case.

4.4 Example 4: Multilevel method

As a first test for the multilevel local reliability based sensitivity analysis, consider the performance

functions

gi(X) = (3+(11− i)/100)−X , i = 1, ...,10, (27)

for a standard normal random variable X . Figure 3 displays the relative errors and the standard deviation

for the estimates of PF , ∂PF

∂m
and ∂PF

∂σ . It is clearly seen that the three quantities converge to the single

level result for n = 10. The relative errors are of similar magnitude and decrease with nearly the same

velocity. Moreover, the multilevel approach clearly reduces the standard deviation of the estimates. The

standard deviation of the singlelevel estimator (which is approximately equal to that of the estimator of

level 1) is much larger than that of the level differences.
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Figure 3: Relative error and standard deviation for the estimates of PF , ∂PF

∂m
and ∂PF

∂σ , linear performance function.

Next, the heat equation with random heat source is studied. Consider the linear stochastic partial differ-

ential equation

du =
∂2u

∂x2
dt +θudt +σdWt (28)

with parameters θ and σ, where dW are the increments of a standard cylindrical Wiener process

Wt =
∞

∑
k=1

W k
t sin(kπx), (29)

and W k
t are standard independent Brownian motions.

The boundary conditions are u(x = 0, t) = u(x = 1, t) = 0 and the initial condition reads

u(x,0) =
√

2
∞

∑
k=1

sin(kπx), (30)
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so that the solution of the stochastic partial differential equation decouples and can be written as

u(x, t) =
√

2
∞

∑
k=1

uk(t)sin(kπx), (31)

where the coefficients uk(t) are described by the linear stochastic ordinary differential equations

duk = (−π2k2 +θ)ukdt +σdW k
t . (32)

Their solutions at time t are

uk(t) = exp((−π2k2 +θ)t)+ξk
t , (33)

where ξk
t is a normal random variable with mean zero and variance

σ2(1− exp(2(−π2k2 +θ)t))

2(π2k2 −θ)
. (34)

Failure is assumed to occur if u(x = 0.5, t = T ) is larger than a given threshold. In the following, θ = 1,

σ= 1 and T = 1 were set. The solution of the stochastic partial differential equation (28) is approximated

by truncating the solution (31) at k = kmax. Different values i for kmax lead then to approximations gi(ξ)
of the performance function g(ξ).

Figure 4 displays the relative errors and the standard deviation for the estimates of PF , ∂PF

∂m
and ∂PF

∂σ .

Again, the relative error decreases quickly; however, it was noticed that the relative error for the sensitiv-

ity with respect to the mean value of the random variables is quite large for the first levels. Concerning

the standard deviation, the example confirms the previous findings that the multilevel method is able

to reduce the standard deviation of the estimates. In this example, the reduction is much larger for the

estimates of the probability of failure than for the those of the sensitvities. For all three quantities, the

standard deviation decreases with increasing number of levels.
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Figure 4: Relative error and standard deviation for the estimates of PF , ∂PF

∂m
and ∂PF

∂σ , heat equation with random

heat source.
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5 CONCLUSIONS

In this paper, local reliability based sensitivity analysis based on the moving particles method has been

introduced. It has been shown that the sensitivity analysis can be carried out in a single postprocessing

step after the last particle has been moved into the failure domain.

The examples demonstrate that the proposed method yields accurate estimates for the partial derivatives

of the failure probability with respect to the distribution parameters of the random variables. However,

due to the low number of particles on which the estimator is built, the coefficient of variation can be

rather high. In this regard, the proposed multilevel method helps to reduce the standard deviation of the

estimator and thus to further improve the efficiency of the sensitivity analysis.
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