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Abstract. To meet future climate goals, the efficiency of combustion devices has to be increased.
This requires a better understanding of the underlying physics. The simulation of turbulent
flames is a challenge because of the multi-scale nature of combustion processes: relevant length
scales span over five orders of magnitude and time scales over more than ten. Because of this, the
direct numerical simulation (DNS) of turbulent flames is only possible on large supercomputers.
A DNS solver for chemically reacting flows implemented in the open-source framework Open-
FOAM is presented. The thermo-chemical library Cantera is used to compute detailed transport
coefficients based on kinetic gas theory. The multi-scale nature of time scales, which are much
lower for the combustion chemistry than for the flow, are bridged by an operator splitting
approach, which employs the open-source solver Sundials to integrate chemical reaction rates.
Because the direct simulation of turbulent flames has to be performed on supercomputers, spe-
cial care has been taken to improve the computational performance. A tool was developed
which generates highly optimized C++ source code for the computation of chemical reaction
rates. Additionally, a load balancing approach specifically made for the computation of chemical
reaction rates is employed. In total, these optimizations can reduce total simulation times by
up to 70 %. The accuracy of the new solver is assessed from different canonical testcases: 2D
and 3D Taylor-Green vortex simulations show that the solver can reach up to fourth order con-
vergence rates and that results differ by less than 1 % when compared to spectral DNS codes.
Molecular diffusion and chemical reaction rates are compared to solutions of 1D flames from
Cantera, showing perfect agreement.
The solver is used to simulate the Sydney/Sandia burner. The simulation is performed on
one of Germany’s largest supercomputer on 28 800 CPU cores, employing 150 million cells and
a chemical reaction mechanism with 19 species and about 200 reactions. Comparison with
experimental data shows excellent agreement for time averaged and RMS values.
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1 INTRODUCTION

The detailed simulation of turbulent flames is an important task for advancing our understanding
of combustion processes and going toward a sustainably energy supply in the future. However,
combustion phenomena are governed by a large range of length and time scales, which makes
it a multi-scale problem: The residence time of reacting gases in combustion devices may be
in the order of seconds, while fast chemical reactions occur on time scales ten orders of mag-
nitudes below. Likewise, there are many orders of magnitudes separating the total dimensions
of the combustion device and the smallest time scales in the turbulent flow field. Because of
this, direct numerical simulation (DNS) of turbulent flames is only possible on today’s largest
supercomputers.
To address these problems, a reacting flow solver has been implemented in the open-source CFD
framework OpenFOAM [1]. Compared to OpenFOAM’s standard solvers, which do not support
the calculation of detailed diffusion coefficients, the new solver is coupled to the open-source
library Cantera [2]. This makes it possible to compute transport coefficients (heat conductivity,
diffusion coefficients and viscosity) for each chemical species from kinetic gas theory.
Because the solver is mainly used for large-scale parallel simulations, a number of performance
optimizations have been implemented. By using detailed chemical mechanisms, the combustion
process is described by a large number of chemical species and chemical reactions. Computing
the chemical reaction rates for each species therefore requires a large percentage of the total
simulation time. To overcome this, three important optimizations have been realized: First,
a special open-source tool for integrating stiff ordinary differential equations, Sundials [3] is
used to decouple the computation of chemical reaction rates from the calculation of the flow
field (operator splitting). Secondly, a converter tool has been developed which automatically
generates highly optimized C++ source code to compute chemical reaction rates. Lastly, a
load balancing approach is implemented which specifically targets the computation of chemical
reaction rates by forming pairs of processes that share their workload. These three optimizations
lead to significant savings in computing time and help to better utilize the hardware of modern
supercomputers.
The work concludes by presenting two validation cases, a canonical one-dimensional flame
and the classical three-dimensional Taylor-Green vortex, and an application of the solver to
a laboratory-scale turbulent flame.

2 NUMERICAL IMPLEMENTATION

The solver is implemented in the OpenFOAM framework. OpenFOAM is used to solve the
governing equations while Cantera is used to compute detailed transport properties. The details
are given below and further information can be found in [4, 5, 6, 7, 8, 9]. The solver has thus
far been validated and used in a number of works [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27].

2.1 Governing Equations

The governing equations (assuming ideal gases and perfect mixtures) are implemented as follows:
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• Conservation of total mass:
∂ρ

∂t
+∇ · (ρ~u) = 0 (1)

ρ is the density, t time and ~u the fluid velocity.
• Conservation of momentum:

∂(ρ~u)

∂t
+∇ · (ρ~u~u) =−∇p+∇ · τ+ρ~g (2)

p is the pressure, ~g the gravitational acceleration. The viscous stress tensor τ is computed
for a Newtonian fluid using the Stokes assumption:

τ = µ

(

∇~u+(∇~u)T
−

2

3
I∇ ·~u

)

(3)

where I is the identity tensor and µ the dynamic viscosity.
• Conservation of species mass:

∂(ρYk)

∂t
+∇ · (ρ(~u+~uc)Yk) = ω̇k −∇ ·~jk, k = 1 . . .N −1 (4)

Yk is the mass fraction of species k and ω̇k its reaction rate. N is the number of species.
The correction velocity ~uc forces the sum of all diffusive fluxes ~jk to be zero:

~uc =−

1

ρ ∑
k

~jk (5)

• Conservation of energy: The transport of energy is formulated in terms of the total sensible
enthalpy hs +

1
2
~u ·~u:

∂
(
ρ(hs +

1
2
~u ·~u)

)

∂t
+∇ ·

(

ρ~u(hs +
1

2
~u ·~u)

)

=−∇ ·~̇q+
∂p

∂t
−∑

k

h◦kω̇k (6)

with
−∇ ·~̇q = ∇ ·

(
λ

cp

∇hs

)

−∑
k

∇ ·

(
λ

cp

hs,k∇Yk

)

︸ ︷︷ ︸

=∇·(λ∇T )

−∑
k

∇ ·

(

hs,k~̂jk

)

(7)

λ is the heat conductivity of the mixture, cp the isobaric heat capacity and T the tem-
perature. Viscous work ∇ · (τ ·~u), potential energy ρ~g ·~u, radiation and the Dufour effect
are neglected. The sensible enthalpy hs,k of species k and the sensible enthalpy of the
mixture hs for ideal gases is

hs,k = hk −h◦k , hs = ∑
k

Ykhs,k (8)

and h◦k ≡ hk(298 K) is the enthalpy of formation of species k. The corrected diffusive mass
flux ~̂jk is

~̂jk = ~jk −Yk ∑
k

~jk (9)
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and Fourier’s second law ∇ · (λ∇T ) is rewritten (assuming ideal gases and that all species
have the same temperature) in order to obtain the first term on the r.h.s. of Eq. 7, which
can be discretized implicitly.

2.2 Coupling with Cantera

The computation of the transport coefficients (diffusion coefficients, heat conductivities and
viscosities for each species) is done with Cantera, while OpenFOAM solves the governing equa-
tions above, according to Fig. 1. In this way, mixture-averaged diffusion based on the Curtiss-
Hirschfelder approximation as well as full multi-component diffusion can be used in the simula-
tions.

Figure 1: Coupling of OpenFOAM with Cantera. OpenFOAM solves the governing equations while
Cantera computes detailed transport coefficients for molecular diffusion.

3 OPTIMIZATION OF REACTION RATE COMPUTATION

Because combustion is described by a large number of chemical species and reactions, the com-
putation of chemical reaction rates can make up a large portion of the total simulation times.

3.1 Operator Splitting

In order to decouple the small time scales of the chemical reactions from the large time scales of
the flow, chemical reaction rates are integrated over the simulation time step assuming that each
cell in the computational domain is a perfectly stirred reactor. The integration is performed
with the open-source tool Sundials, which is specifically optimized for this kind of integration.
Compared to OpenFOAM’s built-in integrators, this can reduce computing times by several
orders of magnitudes. For more information, see [8, 22].

3.2 Automated Code Generation

The information about chemical reactions is usually given to the simulation software in form of
a text file. This file contains the parameters, like Arrhenius constants A, b, Ea, for each chemical
reaction:

kr = AT b exp

(
−Ea

RT

)

(10)

kr is the rate constant of reaction r, T the temperature, R the universal gas constant, A the
pre-exponential frequency factor, b the temperature exponent and Ea the activation energy. At
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the start of the simulation, this text file is read and the chemical reaction rates are computed
based on the data. However, in many detailed reaction mechanisms, many of the computations
can be avoided. For example, in the popular GRI 3.0 [28] reaction mechanism, more than one
hundred reactions have zero activation energy, meaning that the computation of exponential
term in Eq. 10 can be omitted.
Therefore, a converter tool has been developed that reads in the text file containing the infor-
mation about the chemical reactions, deletes unnecessary computations like the one described
above, reorders species and reactions to create easily vectorizable loops and lays out all data
linearly in memory to avoid cache misses. Using these optimized chemistry routines together
with the Sundials integrator CVODE leads to large savings in computing time, compared to
the default methods implemented in OpenFOAM’s standard solver reactingFoam, as shown in
Fig. 2. For more information about this topic, see [7, 9, 29].

Figure 2: Time required to compute chemical reaction rates. Three cases on the left are OpenFOAM’s
default methods, case on the right is the automatically generated chemistry code together with Sundials
CVODE solver [9, 29].

3.3 Load Balancing

Because the chemical reaction rates are computed decoupled from the flow using iterative ODE
solvers, a load-imbalance can be created. When the computational domain is decomposed into
sub-domains for parallel computation, there may be some processes that have to simulate large
parts of the flame, while other processes might have sub-domains which contain no part of
the flame at all. Because of this, a special load balancing implementation has been devised
which communicates the workload of processes to form pairs of processes. One process in the
pair has a low workload while the other has high workload. The workload is then shared
between the processes. Even though the theoretical speedup is limited by a factor of two, the
implementation creates a low number of additional MPI connections, which is beneficial for large-
scale parallel simulations. For more information about the load balancing, see [6]. Together with
the aforementioned optimizations, simulation times can be reduced with the new solver by 70 %.
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Figure 3: One-dimensional flame results compared to a reference solution computed with Cantera [5].

4 VALIDATION

4.1 1D Model Flame

A canonical validation case for flames is the one-dimensional, steady-state premixed flame. The
computational setup consists of an inlet with the premixed fuel/air mixture and an outlet for
the burnt gases. In the middle of the domain, a flame burns. Figure 3 compares the profiles of
selected species from the results of the optimized solver with a reference solution by Cantera for
a methane/air flame. For more information about this setup, see [5].

4.2 Numerical Accuracy

Another test case for a non-reacting flow is the classical Taylor-Green vortex. It can be used
to assess the numerical accuracy of solvers. An initial velocity field places vortices in a three-
dimensional box, which then decay into a pseudo-turbulent flow. Figure 4 shows the dissipation
rate over time inside that box. The black dashed line is a reference solution from a spectral DNS
code. Using OpenFOAM’s cubic discretization yields comparable results to the spectral DNS
solution on the same mesh, while the central difference (CD) and first order upwind schemes

Figure 4: Dissipation rate over time inside the computational domain. Compared are OpenFOAM
simulations with different discretization schemes with a spectral DNS [5].
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Figure 5: Snapshot of the temperature field on a 2D cutting plane from the simulation of the Sydney/San-
dia flame [5].

would result in less accurate solutions. It is therefore highly recommended to use OpenFOAM’s
cubic scheme for simulations with a need for high accuracy. For more information about the
Taylor-Green case, see [5].

5 APPLICATION: SYDNEY/SANDIA FLAME

A well documented and experimentally investigated turbulent flame of laboratory scale is the
Sydney/Sandia flame [30, 31, 32]. Using the new solver, a quasi-DNS of this flame has been
conducted and a database consisting of 10 TB of data has been created. Figure 5 shows a
snapshot of the temperature field on a two-dimensional cutting plane.

5.1 Numerical Setup

The numerical domain contains of 150 000 000 cells. The mesh is locally refined and the smallest
resolution is 10 µm. A reaction mechanism with 19 chemical species and 200 chemical reactions is

Figure 6: Parallel scaling efficiency of the simulation of the Sydney/Sandia flame on one of Germany’s
fastest supercomputers with the OpenFOAM based DNS solver [9, 29, 23].
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employed to model the combustion process. Spatial gradients are discretized with OpenFOAM’s
fourth order interpolation scheme cubic and for the temporal discretization, a second order
implicit Euler method is used. For more details about the setup, see [5, 14, 10].
The simulation has been conducted on Germany’s fastest supercomputer at the time, HAZEL HEN
at the High Performance Computing Center in Stuttgart. The simulation was run with up to
28 800 CPU cores and has shown very good parallel scaling (see Fig. 6).

5.2 Comparison with Experimental Results

Because the Sydney/Sandia flame has been experimentally investigated, the simulation results
can be directly compared with the experimental data. Figure 7 shows mean and rms values
of temperature, mixture fraction Z and oxygen mass fraction at different axial positions (x/D,
D is the nozzle diameter). Apart from the deviation of mixture fraction near the nozzle, the
simulation results are mostly within experimental uncertainties.

Figure 7: Comparison of experimental data and simulation results for the Sydney/Sandia flame [9, 29, 23].

6 CONCLUSIONS

An OpenFOAM based solver for the direct numerical simulation of reacting flows has been pre-
sented. The solver extends OpenFOAM’s capabilities in several aspects: First, the new solver
is coupled to the open-source library Cantera to allow the computation of detailed diffusion
coefficients for each chemical species. Second, the solver contains a number of performance
optimizations, making it suitable to perform massively parallel simulations on today’s super-
computers.
The computation of chemical reaction rates is sped up by using a highly efficient integrator, Sun-
dials, which outperforms OpenFOAM’s default solvers. A converter tool has been implemented

8



T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, D. Trimis

that generates highly optimized C++ code that accelerates the reaction rate computations
without affecting accuracy. Lastly, a new load balancing method for chemical reaction rate
computations for highly parallel applications has been introduced. In total, the new solver can
save over 70 % of the total simulation time this way.
The solver and its accuracy have been validated with a number of canonical test cases. From
one-dimensional flames, to the three-dimensional Taylor-Green vortex case to comparison with
experimental results of turbulent flames. Deviations to Cantera’s reference solution for the 1D
flame and to the spectral DNS code for the Taylor-Green vortex case are below 1 %. In addition,
the solver shows excellent parallel scaling behavior, which has been tested with up tp 28 800 CPU
cores.
In conclusion, the new solver has been shown to be valuable tool for studying turbulent com-
bustion on large parallel supercomputers.

ACKNOWLEDGMENTS

This work was supported by the Helmholtz Association of German Research Centres (HGF)
and performed on the national supercomputer Cray XC40 Hazel Hen at the High Performance
Computing Center Stuttgart (HLRS) and ForHLR II funded by the Ministry of Science, Research
and the Arts Baden-Württemberg and DFG (“Deutsche Forschungsgemeinschaft”).

REFERENCES

[1] OpenCFD, OpenFOAM: The Open Source CFD Toolbox. User Guide Version 1.4,
OpenCFD Limited. Reading UK, Apr. 2007.

[2] D. Goodwin, H. Moffat, and R. Speth, “Cantera: An object-oriented software toolkit
for chemical kinetics, thermodynamics, and transport processes,” 2017. http://www.can-
tera.org.

[3] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and
C. S. Woodward, “Sundials: Suite of nonlinear and differential/algebraic equation solvers,”
ACM Transactions on Mathematical Software (TOMS), vol. 31, no. 3, pp. 363–396, 2005.

[4] T. Zirwes, T. Häber, F. Zhang, H. Kosaka, A. Dreizler, M. Steinhausen, C. Hasse, A. Stagni,
D. Trimis, R. Suntz, and H. Bockhorn, “Numerical Study of Quenching Distances for Side-
wall Quenching Using Detailed Diffusion and Chemistry,” Flow, Turbulence and Combus-
tion, 2020. doi.org/10.1007/s10494-020-00215-0.

[5] T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, and
D. Trimis, “Quasi-dns dataset of a piloted flame with inhomogeneous inlet conditions,”
Flow, Turb. and Combust., vol. 104, pp. 997–1027, 2019. doi.org/1007/s10494-019-00081-5.

[6] T. Zirwes, F. Zhang, P. Habisreuther, J. Denev, H. Bockhorn, and D. Trimis, “Optimizing
load balancing of reacting flow solvers in openfoam for high performance computing,” in
Proc. of 6th ESI OpenFOAM User Conference, vol. 6, 2018.

[7] T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Detailed
transport and performance optimization for massively parallel simulations of turbulent com-

9



T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, D. Trimis

bustion with OpenFOAM,” in 13th OpenFOAM Workshop, vol. 13, OpenFOAM Workshop,
2018.

[8] F. Zhang, H. Bonart, T. Zirwes, P. Habisreuther, H. Bockhorn, and N. Zarzalis, “Direct nu-
merical simulation of chemically reacting flows with the public domain code OpenFOAM,”
in High Performance Computing in Science and Engineering ’14 (W. Nagel, D. Kröner, and
M. Resch, eds.), pp. 221–236, Springer Berlin Heidelberg, 2015. doi.org/10.1007/978-3-319-
10810-0_16.

[9] T. Zirwes, F. Zhang, J. A. Denev, P. Habisreuther, and H. Bockhorn, “Automated code
generation for maximizing performance of detailed chemistry calculations in openfoam,” in
High Performance Computing in Science and Engineering’17, pp. 189–204, Springer, 2018.
doi.org/10.1007/978-3-319-68394-2_11.

[10] M. Hansinger, T. Zirwes, J. Zips, M. Pfitzner, F. Zhang, P. Habisreuther, and H. Bockhorn,
“The Eulerian stochastic fields method applied to large eddy simulations of a piloted flame
with inhomogeneous inlet,” Flow, Turbulence and Combustion, vol. 105, pp. 837–867, 2020.
doi.org/10.1007/s10494-020-00159-5.

[11] T. Zirwes, F. Zhang, Y. Wang, P. Habisreuther, J. Denev, Z. Chen, H. Bockhorn, and
D. Trimis, “In-situ Flame Particle Tracking Based on Barycentric Coordinates for Studying
Local Flame Dynamics in Pulsating Bunsen Flames,” in Proceedings of the Combustion
Institute, vol. 38, Elsevier, 2020. doi.org/10.1016/j.proci.2020.07.033.

[12] Y. Wang, H. Zhang, T. Zirwes, F. Zhang, H. Bockhorn, and Z. Chen, “Ignition
of dimethyl ether/air mixtures by hot particles: Impact of low temperature chemi-
cal reactions,” in Proceedings of the Combustion Institute, vol. 38, Elsevier, 2020.
doi.org/10.1016/j.proci.2020.06.254.

[13] F. Zhang, T. Zirwes, T. Häber, H. Bockhorn, D. Trimis, and R. Suntz, “Near Wall Dynamics
of Premixed Flames,” in Proceedings of the Combustion Institute, vol. 38, Elsevier, 2020.
doi.org/10.1016/j.proci.2020.06.058.

[14] T. Zirwes, F. Zhang, P. Habisreuther, M. Hansinger, H. Bockhorn, M. Pfitzner, and
D. Trimis, “Identification of Flame Regimes in Partially Premixed Combustion from a
Quasi-DNS Dataset,” Flow, Turbulence and Combustion, 2020. doi.org/10.1007/s10494-
020-00228-9.

[15] M. Steinhausen, Y. Luo, S. Popp, C. Strassacker, T. Zirwes, H. Kosaka, F. Zentgraf,
U. Maas, A. Sadiki, A. Dreizler, and C. Hasse, “Numerical investigation of local heat-
release rates and thermo-chemical states in sidewall quenching of laminar methane and
dimethyl ether flames,” Flow, Turbulence and Combustion, 2020. doi.org/10.1007/s10494-
020-00146-w.

[16] T. Zirwes, F. Zhang, T. Häber, and H. Bockhorn, “Ignition of combustible mixtures by
hot particles at varying relative speeds,” Combust. Sci. Tech., vol. 191, pp. 178–195, 2019.
doi.org/10.1080/00102202.2018.1435530.

[17] T. Zirwes, F. Zhang, A. Jordan, P. Habisreuther, H. Bockhorn, and D. Trimis, “Lagrangian
tracking of material surfaces in reacting flows,” in OpenFOAM Workshop, vol. 15, 2020.

10



T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, D. Trimis

[18] F. Zhang, T. Zirwes, P. Habisreuther, and H. Bockhorn, “Effect of unsteady stretch-
ing on the flame local dynamics,” Combust. Flame, vol. 175, pp. 170–179, 2017.
doi.org/10.1016/j.combustflame.2005.028.

[19] F. Zhang, T. Baust, T. Zirwes, J. Denev, P. Habisreuther, N. Zarzalis, and H. Bock-
horn, “Impact of infinite thin flame approach on the evaluation of flame speed using
spherically expanding flames,” Energy Technology, vol. 5, no. 7, pp. 1055–1063, 2017.
doi.org/10.1002/ente.201600573.

[20] F. Zhang, T. Zirwes, P. Habisreuther, H. Bockhorn, D. Trimis, H. Nawroth, and C. O.
Paschereit, “Impact of combustion modeling on the spectral response of heat release
in LES,” Combustion Science and Technology, vol. 191, no. 9, pp. 1520–1540, 2019.
doi.org/10.1080/00102202.2018.1558218.

[21] T. Zirwes, F. Zhang, P. Habisreuther, H. Bockhorn, and D. Trimis, “Large-Scale
Quasi-DNS of Mixed-Mode Turbulent Combustion,” PAMM, vol. 19, no. 1, 2019.
doi.org/10.1002/pamm.201900420.

[22] T. Zirwes, “Effect of stretch on the burning velocity of laminar and turbu-
lent premixed flames,” Master’s thesis, Karlsruhe Institute of Technology, 2016.
doi.org/10.5445/IR/1000094585.

[23] T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Enhancing
OpenFOAM’s performance on HPC systems,” in High Performance Computing in Science
and Engineering ’19 (W. Nagel, D. Kröner, and M. Resch, eds.), Springer Berlin Heidelberg,
2019. doi.org/10.1007/978-3-030-13325-2_13.

[24] T. Häber, T. Zirwes, D. Roth, F. Zhang, H. Bockhorn, and U. Maas, “Numerical simu-
lation of the ignition of fuel/air gas mixtures around small hot particles,” Zeitschrift für
Physikalische Chemie, vol. 231, no. 10, pp. 1625–1654, 2017. doi.org/10.1515/zpch-2016-
0933.

[25] T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, H. Bockhorn, and D. Trimis, “Detailed
transport and performance optimization for massively parallel simulations of turbulent com-
bustion with openfoam,” in The 13th OpenFOAM Workshop, vol. 13, 2018.

[26] F. Zhang, T. Zirwes, P. Habisreuther, and H. Bockhorn, “A DNS Analysis of the Evaluation
of Heat Release Rates from Chemiluminescence Measurements in Turbulent Combustion,”
in High Performance Computing in Science and Engineering ’16 (W. Nagel, D. Kröner, and
M. Resch, eds.), pp. 229–243, Springer, 2016. doi.org/10.1007/978-3-319-47066-5_16.

[27] F. Zhang, T. Zirwes, H. Nawroth, P. Habisreuther, H. Bockhorn, and C. O.
Paschereit, “Combustion-generated noise: An environment-related issue for future
combustion systems,” Energy Technology, vol. 5, no. 7, pp. 1045–1054, 2017.
doi.org/10.1002/ente.201600526.

[28] G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman,
R. Hanson, S. Song, W. G. Jr., V. Lissianski, and Z. Qin, “Gri 3.0 reaction mechanism.”
http://www.me.berkeley.edu/gri_mech.

[29] T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, and H. Bockhorn, “Improved vectorization

11



T. Zirwes, F. Zhang, P. Habisreuther, J.A. Denev, H. Bockhorn, D. Trimis

for efficient chemistry computations in OpenFOAM for large scale combustion simulations,”
in High Performance Computing in Science and Engineering ’18 (W. Nagel, D. Kröner, and
M. Resch, eds.), pp. 209–224, Springer Berlin Heidelberg, 2018. doi.org/10.1007/978-3-030-
13325-2_13.

[30] A. Masri, “Partial premixing and stratification in turbulent flames,” Proceedings of the
Combustion institute, vol. 35, no. 2, pp. 1115–1136, 2015.

[31] S. Meares and A. R. Masri, “A modified piloted burner for stabilizing turbulent flames of
inhomogeneous mixtures,” Combust.d Flame, vol. 161, no. 2, pp. 484–495, 2014.

[32] S. Meares, V. Prasad, G. Magnotti, R. Barlow, and A. Masri, “Stabilization of piloted
turbulent flames with inhomogeneous inlets,” Proceedings of the Combustion Institute,
vol. 35, no. 2, pp. 1477–1484, 2015.

12


