

Analysis of QUENCH-20 Test with ASTEC V2.2.b

Name: Onur Murat Supervisor(s): Dr. Victor Hugo Sanchez Espinoza, Prof. Robert Stieglitz

INSTITUTE for NEUTRON PHYSICS and REACTOR TECHNOLOGY (INR)

Karlsruhe Institute of Technology

Outline

- Introduction
- Motivation
- QUENCH-20 Test
 - Test Facility
 - Selected Fuel Bundle (SVEA-96 OPTIMA2)
 - Test Transient
- Numerical Tool: ASTEC
 - ASTEC Model of QUENCH-20 Test Section
 - ASTEC Model of QUENCH-20 Heated Rod
 - Boundary Conditions
 - ASTEC Predictions of QUENCH-20 Test
- Conclusion

Introduction

- In case of long term LOCA in severe accident scenarios core uncovery occurs.
- Without heat removal capacity:
 - Heat-up in the core
 - Oxidation of metals by steam (more heat-up)
 - Hydrogen release by oxidation
 - Cladding deformation and loss of geometry
 - Fission product release
- Produced heat and degraded core leads corium and melt material corium threats:

IN VESSEL and EX-VESSEL

Released H2+Non-condensable gasses threats: EX-VESSEL

Prediction of in vessel phenomena is important for SAFETY

Introduction

Not only oxidation process but also eutectic interactions are crucial for severe accident in vessel progression.

Motivation

Are BWR type reactors different than PWRs?

BWRs contains: More Zr (water channel boxes) More Fe (absorber blades) B_4C (absorber blades)

Oxidation more Heat more H₂

Chemical reaction	Energy release
$Zr + 2H_2O \rightarrow ZrO_2 + 2H_2$	$\Delta H = 6.4 \text{ MJ/kg}_{Zr}$
$_{2}$ Fe + $_{3}$ H $_{_{2}}$ O \rightarrow Fe $_{_{2}}$ O $_{_{3}}$ + $_{3}$ H $_{_{2}}$	Not significant
$B_4C + 8H_2O \rightarrow 2B_2O_3 + CO_2 + 8H_2$	$\Delta H = 15 \text{ MJ/kg}_{B4C}$

Adequate models are necessary in order to predict the source terms during severe accident transients and improve severe accident management.

- BWR Specific structures (Canister, absorber blades)
- Eutectic interaction of BWR structures and their relocation models
- Heat transfer models of BWR structures

QUENCH Test Facility

In order to develop adequate models and validate severe accident codes for core degradation QUENCH experiments designed.

Test facility enclosed and pressurized around 2 bar. Steam and Ar flow introduced from bottom and steam, Ar and hydrogen (produced from oxidation) flow upward outside of the bundle.

$$\begin{array}{l} B_4C + 7H_2O(g) \leftrightarrow 2B_2O_3 + CO(g) + 7H_2(g) \\\\ B_4C + 8H_2O(g) \leftrightarrow 2B_2O_3 + CO_2(g) + 8H_2(g) \\\\ B_4C + 6H_2O(g) \leftrightarrow 2B_2O_3 + CH_4(g) + 4H_2(g) \end{array}$$

- Quench water supplied from the bottom of the section with constant flow rate and temperature.
- Temperature control provided for bundle head and off-gas pipe in order to mitigate condensation in test section.

6 09.12.2021

Onur Murat – Analysis of QUENCH-20 Test with ASTEC V2.2.b 26th International QUENCH Workshop, 06-09 Dec 2021

Institute for Neutron Physics and Reactor Technology

26th International QUENCH Workshop, 06-09 Dec 2021

QUENCH-20 Test Transient

QUENCH-20 Test consist of three phases which are pre oxidation, transient and quench:

- Pre-oxidation phase: Superheated steam and Ar gasses (600-700 K) employed to the system from bottom. System pressure was 2 bar.
- **Transient phase**: Electric power increased. Steam and Ar flow maintained until quench phase.
- Quench phase: After transient case, 50 g/s quench water delivered to the bundle from bottom at room temperature.

Numerical Tool: ASTEC Code

Accident Source Term Evaluation Code

- European reference software for severe accidents.
- ASTEC simulates all sequences from initiating event to discharge of radioactive materials during core melt down accidents of LWRs.
- ASTEC has modular structure to implement physical models.
- Each module handles the part of the reactor and phenomena in there.

ASTEC Model of QUENCH-20 Fuel Bundle and Test Section

ASTEC Model of QUENCH-20 Heated Rod

09.12.2021 Onur Murat – Analysis of QUENCH-20 Test with ASTEC V2.2.b 26th International QUENCH Workshop, 06-09 Dec 2021

Boundary Conditions (1/2)

Described boundary conditions are employed according to QUENCH-20 test measurements:

Electrical power generated for 24 heated rod one by one in the bundle by using test power output.

Electrical power is not same for Group-1 and Group-2 and rod distribution is not homogenous.

- Pressure boundary condition takes role at the top.
- Temperature and flow rate of steam and argon gasses at the inlet of the bundle introduced.
- Quench water temperature and flow rate takes action for quench phase.

Boundary Conditions (2/2)

Described boundary conditions are employed according to QUENCH-20 test measurements:

- Temperature of cooling jacket along the its height defined.
- Cooling water was defined for the bottom face of cladding material of heated rods.

14 09.12.2021

Karlsruhe Institute of Technology

Institute for Neutron Physics and Reactor Technology

ASTEC Predictions of QUENCH-20 Test (1/5)

Onur Murat – Analysis of QUENCH-20 Test with ASTEC V2.2.b 26th International QUENCH Workshop, 06-09 Dec 2021

ASTEC Predictions of QUENCH-20 Test (2/5)

16 09.12.2021

Onur Murat – Analysis of QUENCH-20 Test with ASTEC V2.2.b 26th International QUENCH Workshop, 06-09 Dec 2021

ASTEC Predictions of QUENCH-20 Test (3/5)

17 09.12.2021

Onur Murat – Analysis of QUENCH-20 Test with ASTEC V2.2.b 26th International QUENCH Workshop, 06-09 Dec 2021

ASTEC Predictions of QUENCH-20 Test (4/5)

Onur Murat – Analysis of QUENCH-20 Test with ASTEC V2.2.b 26th International QUENCH Workshop, 06-09 Dec 2021

ASTEC Predictions of QUENCH-20 Test (5/5)

QUENCH-20 total H_2 amount = 57.4 g B₄C oxidation contribution = 10 g

ASTEC prediction total H_2 amount = 53.4 g B_4 C oxidation contribution = 9.48 g

Further detailed informations: Onur Murat, Victor Sanchez Espinoza, Shisheng Wang, Juri Stuckert, *Preliminary validation of ASTEC V2.2.b with QUENCH-20 BWR bundle experiment*, Nuclear Engineering and Design 370 (2020)

19 09.12.2021

Onur Murat – Analysis of QUENCH-20 Test with ASTEC V2.2.b 26th International QUENCH Workshop, 06-09 Dec 2021

Karlsruhe Institute of Technology

Institute for Neutron Physics and Reactor Technology

QUENCH-20 Post Test Pictures

Karlsruhe Institute of Technology

Institute for Neutron Physics and Reactor Technology

Conclusion

- Considering the geometrical modeling pecularities axial temperature of structures are in acceptable manner.
- Total amount of hydrogen generation, including B4C oxidation, are in good agreement with test readings.
- Shroud failure was not observed in the ASTEC model.
 - Inhomogenity of structural placement in the test section and eutectic interactions which based on the how close the metallic structures are reason for that.
- Correct geometrical representation and placement of Blades (Slab) and Fuel Channel Box (Rectangular) are necessary.
 - There was no radiative heat transfer model for reactangular fuel boxes for version V2.2.b.
 - Definition of absorber material inside slab blades are not possible, which means no eutectic interaction, no material relocation due to eutectic interactions.