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enabled the emergent paradigm of con-
ducting research in materials acceleration 
platforms (MAP)[5,6]. Within these MAPs 
different research tasks are accelerated 
and integrated to efficiently address the 
ever increasing complexity of materials 
optimization through targeted mate-
rials synthesis, processing, analysis, and 
insight generation.[7]

Demonstrations of autonomous work-
flows to date,[8–11] have been based on a 
single instrument in a single laboratory.[12] 
This limited purview of the autonomous 
experimentation is rooted in the laboratory 
middleware in which orchestration of the 
laboratory hardware occurs within a single 
computer-instrument pairing.[11] Some 
notable examples include ChemOS,[12] 
which in principle is capable of distrib-
uting work across different machines 
through the ROS[13] backend. This inar-
guably powerful software does however 
impose complex software dependencies 
that grow with increased purview of the 
experimental platform. While commer-
cial software such as LabView by National 

Instruments can facilitate programming for instrument auto-
mation, it does not meet the needs of the MAP community 
due to its incompatibility with the open-source development 
of version-controlled software. In instances where there is no 
(official) application programming interface (API) for a device, 
or an instrument’s software driver must continually evolve with 

Materials acceleration platforms (MAPs) operate on the paradigm of integrating 
combinatorial synthesis, high-throughput characterization, automatic analysis, 
and machine learning. Within a MAP, one or multiple autonomous feedback 
loops may aim to optimize materials for certain functional properties or to 
generate new insights. The scope of a given experiment campaign is defined 
by the range of experiment and analysis actions that are integrated into the 
experiment framework. Herein, the authors present a method for integrating 
many actions within a hierarchical experimental laboratory automation 
and orchestration (HELAO) framework. They demonstrate the capability of 
orchestrating distributed research instruments that can incorporate data 
from experiments, simulations, and databases. HELAO interfaces laboratory 
hardware and software distributed across several computers and operating 
systems for executing experiments, data analysis, provenance tracking, and 
autonomous planning. Parallelization is an effective approach for accelerating 
knowledge generation provided that multiple instruments can be effectively 
coordinated, which the authors demonstrate with parallel electrochemistry 
experiments orchestrated by HELAO. Efficient implementation of autonomous 
research strategies requires device sharing, asynchronous multithreading, and 
full integration of data management in experimental orchestration, which to the 
best of the authors’ knowledge, is demonstrated for the first time herein.
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1. Introduction

Ever increasing performance demands necessitate the accelera-
tion of materials science and chemistry.[1,2] Progress within the 
Materials Genome Initiative,[3] advances in high-throughput 
experimentation,[4] and proliferation of machine learning have 
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hardware advancements, ROS and LabView can incur substan-
tial overhead in software management.

Modular software design facilitates community sharing of 
techniques across sub-fields. For example, organic chemistry 
uses tailored languages,[14] to express research tasks in a human 
and computer readable format.[15,16] Sharing of experimental 
control techniques across such domains requires a high level of 
modularity in conjunction with the data management-informed 
design of the experimental control framework.

In addition to the necessity of being able to orchestrate a 
multitude of laboratory instruments, there is a critical need to 
be able to trace back all undertaken steps that lead to the acqui-
sition of data or synthesis of a material,[14,17] beyond FAIR[18] 
guidelines. Experiment provenance management is critical 
for enabling reproduction of an experiment.[19] Such reproduc-
tions or more general sharing of experiment protocols can be 
enabling of the computer automation of laboratory devices via 
drivers that provide an abstraction layer between the central 
software and hardware. If these criteria are met, autonomous 
inter-laboratory workflows[7] can be deployed and motivate the 
discretization of an experimental provenance into its elemen-
tary instrumental actions. We therefore view the levels of exper-
iment abstraction to be hierarchical in nature.

The hierarchical laboratory automation and orchestration 
framework was built with the goals of being able to integrate 
any laboratory device for which a software driver is available or 
can be written, and to enable any configuration of the devices 
including serial and parallel experimentation, sharing of equip-
ment across multiple instruments, and orchestration of mul-
tiple measurements in multiple laboratories. To facilitate con-
tinued adoption of active learning in experiment workflows, 

the framework is designed for facile switching between human 
and machine-based experiment selection. The framework 
adopts a data management wherein all gathered data and all 
instructions are stored in a “FAIR” way, giving the instruction 
data the same level of attention as the resulting measurement 
data. For these requirements to be met, we seek a software 
framework for communicating with devices hosted or operated 
on different computers (i.e., some instruments are mutually 
exclusive to be connected on a PC due to driver constraints). 
We seek to be platform independent and minimize additional 
requirements such as extensive software dependencies.

In the present work we describe the hierarchical experi-
mental laboratory automation and orchestration (HELAO) 
framework to address the needs of next-generation experi-
ments. At a high level, the modularity of HELAO is built upon 
a widely used web framework called fastAPI[20] as shown in 
Figure 1. The main design idea is to represent every device 
of an instrument as a (asynchronous) web server (Figure  1, 
right side). Basic functions of devices are exposed to and bun-
dled by actions, which themselves are again web servers. Only 
these actions are called by an orchestrator executing experi-
ments on one or multiple instruments (Figure 1, left side). For 
future proofness, HELAO was developed in python 3.8+ with 
type hinting and pydantic type validation. The modular design 
allows for the integration of arbitrary devices, including those 
operated through OPC-UA.[21]

The design guidelines and protocols necessary to orchestrate 
instrumentation in the laboratory are outlined in the following 
sections, together with a detailed description of the individual 
constituents. We demonstrate the orchestration of an active 
learning run on two instruments and deposited the resulting 

Figure 1.  A schematic representation of HELAO where experiments are executed by sequentially calling actions which are high level wrappers for lower 
level driver instructions. Communication goes hierarchically down from the orchestrator level to actions, which may however communicate among 
each other, to the lowest level of drivers which can only communicate with actions. The orchestrator, actions, and drivers are all exposing python class 
functions through a web interface allowing for highly modular and distributed hosting of each item. Experiments are encoded as python dictionaries (a 
data type) containing a sequence of events (SOE) that outlines in which the actions are to be executed. Many experiments form a process. All actions 
require parameters and metadata that are all echoed back.
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data including all instructions and the code at github.com/
helgestein/helao-pub.

2. Results

2.1. Implementation of Hardware Drivers

The aim of HELAO is to be a universal laboratory automation 
framework, democratizing accelerated experimental research 
workflows. To this end, the two laboratories at the California 
Institute of Technology (Caltech) and Karlsruhe Institute of 
Technology (KIT) started to implement major hardware com-
ponents amenable for automatization. In Table 1, all currently 
implemented hardware drivers are listed. During develop-
ment of these drivers, it became apparent that there exist two 
major types of drivers based on whether their function calls 
are natively blocking or non-blocking. Those with non-blocking 
operations typically accept an instruction, execute it, and 
require the user to ask if the current operation is finished.

A special class of devices is auxiliary (aux) devices. These 
are broadly defined as software “devices” used, for example, 
for data analysis, regression, and prediction. These aux drivers 
could in principle be written for any python interfaceable soft-
ware or hardware which is necessary for a special experiment, 
for example, background inference algorithms[22] or special 
machine learning models.[23]

With the devices available at the time of writing this manu-
script, highly complex instruments have and are being built, 
whose detailed descriptions will be the subject of future work. As 
an initial example of the scope of the present HELAO implemen-
tations, the operated instruments are comprised of the devices 
shown in Table 1 that include four scanning droplet cells (SDCs) 
at Karlsruhe Institute of Technology (KIT) (each consisting of 
lang, autolab, pump, force, aux, kadi), one SDC at Caltech (galil, 

gamry), a coupled Raman and FTIR spectrometer (owis, ocean, 
arcoptix, aux, kadi), a battery cycler (arbin, aux), and a coin cell 
assembly system (mecademic, rail, arbin, arduino, aux).

2.2. Hardware-in-the-Loop Active Learning

A hardware-in-the-loop demonstration run of HELAO is shown 
in Figure 2. The instrument is copied two times where one 
setup was run in a fume hood and another one was run in a 
glove box. The two instruments share a common learner and 
optimizer, which are controlled along with both instruments 
by a single orchestrator. An example video of a parallel active 
learning run can be found in the Supporting Information. To 
demonstrate the operation and identification of a known global 
maximum, the potentiostat driver in each instrument was 
replaced by a synthetic data generator. This synthetic driver 
returns a scaled Schwefel function[24] depending on the posi-
tion where the SDC touches down on a substrate, providing the 
source data with which the active learning server identifies the 
next target substrate position 3.

The active learning run is stopped once a threshold value 
(top percentile) is found. Actions in this run consist of, for 
example, “move to waste”, “remove the droplet”, “move to 
sample offset”, “move to the defined point”, “move down 
to substrate”, “get output value”, “predict the next best posi-
tion using active learning algorithm.” The hdf5 file gener-
ated during this run was recorded on 05.10.2021 and has been 
uploaded to KaDI4Mat upon completion of the session under 
the records 20287 and 20280. Public release of the dataset[25] 
with the https://doi.org/10.6084/m9.figshare.16798177.v1 had 
been triggered on 09.10.2021. The hdf5 file for this run may 
also be found in the Supporting Information.

One experiment takes ≈108 s. Depending on the number of 
datapoints the learning step requires more time. During the 

Table 1.  Currently implemented devices in the laboratories at KIT and Caltech. Instruments built from this include scanning droplet cells, high-
throughput spectrometers, and a battery assembly robot. The extreme modularity allows us to mix and match any of these devices by simply defining 
a sequence of events, that is, to build an integrated SDC and spectrometer or a sample exchange robot without code changes to HELAO. For each 
device we note the communication protocol and the physical quantity being controlled and/or measurement. We also note whether the instrument is 
“natively blocking” meaning that the device is unable to process new commands until the currently running command is finished.

Device name Type Communication Measures/Controls Manufacturer Natively blocking

lang Motion .net API Position Lang GmbH No

galil Motion, IO TCP/IP Position Galil Motion Control Inc. No

owis Motion Serial commands Position Owis GmbH No

mecademic Motion Python TCP/IP API Position, state Mecademic Ltd. no

rail Motion TCP/IP Position Jenny Science AG No

autolab Potentiostat .net API Electrochemistry Methrohm Autolab B.V. Yes

gamry Potentiostat .dll for serial communication Electrochemistry Gamry Instruments Inc. Yes

arbin Potentiostat autohotkey Electrochemistry Arbin Inc. No

pump Pumping Serial commands n.a. CAT engineering GmbH No

arcoptix Spectroscopy .dll api IR spectra arcoptix S.A. Yes

ocean Spectroscopy Raman Python package Raman spectra ocean insights GmbH Yes

force force sensing Serial commands Force ME Meßsysteme GmbH n/a

arduino Relays, I/O Python package n.a. arduino No

kadi Data management Python package n.a. KIT Yes

aux Machine learning and analysis Python package n.a. n.a. Yes
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measurement, all data is constantly logged from all devices 
and subsequently uploaded to the data management repository 
(KaDI4Mat). The overall time required for the entire run was 
a little less than 3 h and allows for a fine-grained analysis of 
what action consumes the most experimental time as shown in 
Figure 3. From this analysis, it is for instance evident that motor 
movement between measurements consumes a substantial frac-
tion of the experimental time, motivating efforts to enable faster 
movement. With 3856 s for the sequential run there is a signifi-
cant speed up when the experiment is run in parallel where the 
instrument 1 (in the fume hood) takes 2041 s and the instrument 
2 requires 2424 s to complete. As is evident from these numbers 
the speedup is a little less than 2× for a parallel active learning 
run as asynchronous locks and the machine learning consume 
some of the time. To the best of our knowledge this is the first 
demonstration of an active learning run involving two spatially 
distributed instruments involving more than one operational PC.

In this demonstration, the two instruments perform the 
same type of measurement in the same search space with the 
same active learning acquisition function, which is a simplifica-
tion of our vision of enabling the active learning to incorporate 
multiple types of data and to make distinct decisions’ poli-
cies for each instrument.0 For example, a property-measuring 
instrument and a structure-measuring instrument could be 
effectively combined for an accelerated structure–property 
mapping. This concept requires an active learning framework 
that chooses different targets for property and for structure 

measurements while unifying the distinct data sources. HELAO 
is designed to deploy such advanced modes of experimentation 
as the field of autonomous materials research evolves.

3. Discussion

Herein we present a versatile, stable, and modular approach 
to laboratory automatization that offers capabilities to deploy 
autonomous experimentation in materials science. The frame-
work was built using modern asynchronous programming and 
operates in a safe hierarchical layout. State of the art server-based 
communication between laboratory devices is used to ensure 
maximum modularity and reusability of devices across instru-
ments and laboratories. Higher level sequences requiring the 
interaction within one or among several devices are wrapped in 
actions that are exposed as web servers. This design allows for a 
distributed operation across computers and locations, in addition 
to being resilient against single machine crashes.

Through utilization of a facile underlying web framework like 
fastAPI and pydantic type annotation, documentation to most 
functions is autogenerated. This design allows users also to quickly 
adopt new devices and actions without the need of installing clients 
or servers, as drivers and actions can be called through python’s 
built in “request” package or even through the auto generated web 
documentation. Moreover, this allows any HELAO action-driver 
pair to be called by virtually any other software as users develop 

Figure 2.  Schematic drawing of the HELAO hardware-in-the-loop active learning run with two instruments running parallel and the corresponding 
actions, drivers, and orchestrator. The red dashed lines illustrate drivers that were removed from HELAO for the demonstration presented herein, 
where the pumps were not operated and the potentiostat, which would typically provide the primary measurement data, was replaced by a synthetic 
data driver that returns a function value from the Schwefel function depending on the visited substrate position. The active learning action and driver 
are shared among the instruments/threads.
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orchestrators to employ complementary modes of research. If 
users wish to deploy active learning to a device that does not accept 
standard web requests like OPC-UA (often encountered in indus-
trial settings) fastAPI compatible wrappers can be built.

This high degree of modularity and interoperability is only 
possible through a very lightweight design that puts relatively 
few restrictions on the user compared to middleware like ROS or 
ChemOS. Other competing softwares and frameworks are ARES 
OS that is currently only demonstrated to operate on a single 
computer instrument pairing. Another mature and great alterna-
tive to the lightweight implementation of HELAO is the bluesky 
project.[26] Bluesky works with similar hardware abstraction ideas 
like HELAO, but puts significantly more constraints on a user 
and is, in our view, more built around streamlining the research 
process as a whole. However, orchestrating multiple instruments  

in parallel has not been demonstrated by any other labora-
tory automation framework. These parallelization efforts will 
be increasingly impactful with development of optimizers that 
incorporate uncertainty and multiple optimization strategies.[27]

The framework is built with the goal of being fully FAIR 
compliant and allows users to rerun an experiment without 
much or any overhead. We view this degree of data manage-
ment to be FAIR+. By logging every possible parameter along 
the entire research process, it is possible to extract utiliza-
tion figures, find bugs, and determine bottlenecks in high-
throughput experimentation. Direct interfacing with data 
management software has been demonstrated, to the best of 
our knowledge, for the first time in an autonomous research 
environment. All data gathered during the active learning ses-
sions has been automatically uploaded upon the completion of 
the session and is publicly available at figshare[25] and from the 
Supporting Information of this manuscript. Within the uni-
versity network all recorded data is made publicly available by 
default without an embargo period as a statement to encourage 
more data sharing. HELAO is demonstrated to be stable and 
versatile and is published under the LGPL license at https://
github.com/helgestein/helao-dev. Stand-alone example config-
urations with reference driver implementations and a how-to 
guide of writing custom drivers are available alongside docu-
mentation thereof as part of the public code repository.

The parallel active learning run with hardware-in-the loop of 
HELAO demonstrates for the first time that two (and techni-
cally unlimited more) spatially separated instruments in a mate-
rials science laboratory are capable of collaboratively optimizing 
together for faster discovery. Contributions and collaborations 
with and by the community to expand the hardware support for 
HELAO is therefore warmly welcome. Future efforts will aim 
to bridge HELAO with methods from theoretical materials’ sci-
ence to build modular physics-informed instrumentation and 
autonomous feedback loops connecting laboratories.

4. Experimental Section
Design Guidelines and Protocols: From the bottom-up hardware 

perspective, a research instrument is an assembly of devices. A device is 
a piece of laboratory equipment, defined as the largest “thing” that has a 
dedicated communication stream, that is, a multi-channel potentiostat, 
or a motor control board.

Devices are typically shipped with a driver that enables access to 
some or all its functions, that is, measuring a current. From the top-
down perspective, a user or operator wishes to perform a series of 
experiments, which are each a list of actionable events defined as 
“actions” in HELAO. The actions are to be executed in a particular order 
with predefined or variable parameters and/or designed on-the-fly via a 
decision policy. In this latter case, evaluation of the decision policy can 
be viewed as a particular type of action whose execution impacts future 
actions. The instructions for an experimental campaign are given to an 
orchestrator, which governs their sequential execution from a queue. 
Each action is materialized by the drivers, thereby completing the top-
to-bottom instrument framework. Everything that happens to or on that 
instrument originates within the orchestrator.

In order for the ensemble of devices to operate in concert as a single 
instrument, it is convenient to assemble the various elements listed 
above into a single software framework. Hierarchically from bottom to 
top, each device driver (internally communicating through, for example, 
serial, TCP/IP commands, or a dynamic link library) is exposed through 

Figure 3.  a) Time spent at each action for a sequential and a parallel run 
with two instruments; b) total time spent per run. The time spent does 
not form a perfectly straight line as some actions need different time (i.e., 
movements are shorter or longer). The inset shows the parallel run and 
highlights visited points in black and red depending on whether they were 
visited by instrument 1 or 2. The sequence of events for each measure-
ment is typically the order shown in the horizontal axis of (a).
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a uvicorn[28] web server through fastAPI. Construction of actionable 
functions (“actions”) are constructed from the API calls exposed by the 
drivers, where each action may involve multiple API calls.

An example of an action to pump a mixture of three fluids would 
therefore be “initiated” by the orchestrator calling the respective action. 
This action then calls the pump driver server. Internally the driver server 
is sequentially called by the mixture action as the hardware requires us 
to first initialize each pump channel, prime the pumps, and only then 
turn the pumps on. The orchestrator will receive a nested reply from the 
action that entails all information exchanged, down to the lowest level, 
that is, initialization, priming, execution.

A rigorous commitment to data management is foundational to this 
framework’s implementation. Requests to the driver and action servers 
track all functions called, as well as all (echoed) input parameters and 
outputs of those functions. The orchestrator tracks additional metadata, 
such as the time at which an action was performed or the point on 
a substrate at which an experiment was conducted, in addition to 
accepting arbitrary custom metadata. All of these are then automatically 
saved (redundantly), in the native file format (if applicable), and in 
an hdf5 file together with the parameters and metadata. Methods for 
depositing the hdf5 file into institutional repositories like KaDI4Mat[29] 
or MEAD[19] repositories are automatically executed after each session. 
From KaDI4Mat,[29] experimental data can be accessed internally but 
also be shared with the community through materials cloud or to inform 
simulations through AIIDA.[30,31]

Due to each element of the authors’ software framework being a 
server, a very high degree of modularity is achieved. This allows, for 
instance, a single instance of a device to fulfill requests from multiple 
action servers sequentially. This type of resource sharing requires the 
actions to be programmed to ingest calls from multiple orchestrators, 
for example by notifying the orchestrators of the un/availability of each 
action. A more straightforward implementation of resource sharing is 
for a single orchestrator to govern multiple instruments with a shared 
piece of equipment, which they demonstrate herein. More generally, this 
design allows for distributed hosting of devices on different machines, 
potentially dispersed around the globe.

Drivers and Driver Servers: Any (autonomous) experimental workflow 
consists of smaller organizational units, that is, a SDC[32] instrument 
consists of several hardware devices such as motors, a force sensor, 
pumps, and a potentiostat. In addition, there are software devices such 
as data analysis and experimental design. All of these devices need to 
be able to receive commands, perform the instruction, and reply with 
measurement data or a status and echo back the input parameters. With 
respect to the orchestrator, interaction with an analysis or active learning 
module is equivalent to that of a hardware device, motivating virtual and 
physical devices to be implemented in the same manner.

Driver Server Design: Drivers provide the lowest-level interaction with 
devices based on the elementary communication commands for the 
respective device, for example, connect, disconnect, query the device 
status, or read data. Some drivers are therefore more complex than 
others, as some devices offer direct python APIs whilst others require 
development of python wrappers or source code. Positively notable 
examples are for instance python drivers offered by Mecademic or 
Palmsens offering well-documented software development kits (SDKs). 
Each device is paired to a dedicated driver server. Calling driver functions 
can only be done through the web-based API by sending web requests, 
enabling software modularity that mimics hardware modularity wherein 
devices can be reconfigured into new instruments.

Driver Parameters: Drivers accept parameters, which are validated 
through pydantic data types that inherit from the pydantic’s BaseModel. 
This automatically annotated and type-hinted validation scheme allows 
users to assess how a request should be formatted in order to receive 
a desired device behavior. Additionally, the pedantic validation scheme 
ensures proper data handling, easing data management downstream. 
Traceability and ease in debugging are ensured by each driver server 
echoing all provided input parameters alongside the output data. For this 
purpose, the return object from any server including drivers is a python 
dictionary (an unsorted data type containing key value pairs) containing 

two keys for the input parameters and output data. The parameter key is 
described by its name, the value(s), and optionally a physical unit. The 
data key contains data, which contains the data acquired or derived from 
the device. These python dictionaries play a signal role between different 
organizational units, for example calling the pump requires specification 
of volume, speed, and direction. The response from the pump (a device 
acting but not measuring) is the entire serial string communication 
response (potentially containing valuable error messages) from the 
pump as output. The units returned for pumping are for instance speed 
in microliters per minute, total volume in microliters, and a binary flag 
for forward versus backward pumping direction.

Actions and Action Servers Design: Hierarchically above drivers, 
actions wrap one or many driver functions such that the action function 
has a name and parameters that are meaningful for the deployment 
of the device(s) in a particular type of experiment. This provides an 
abstraction layer where two action functions can be programmed in 
different labs using different devices/drivers, enabling shared higher-
level code that calls the action functions. Similar to driver servers, 
actions also expose their functionalities as servers and again are not 
limited to a single instrument. Communication with multiple device 
drivers is intended for when knowing what multiple devices are needed 
to realize a single physical action, such as motor actuation with feedback 
from a force sensor. To manage shared driver/device-level resources, 
direct communication between drivers is forbidden, requiring any such 
message passing to occur via the action server.

Action Parameters: Similar to driver servers, the return statement of 
an action server is a python dictionary containing the parameters and 
data. The output from an action can be customized for the specific use 
case, but is generally the aggregate return statements received from all 
driver server calls downstream. After execution of the relevant action 
function, the return statements of the called actions will be received by 
the orchestrator as the highest level of this hierarchy.

A major advantage of driver/action distinction is the possibility of 
multiple operating computers sharing one device. Any failures on a 
higher level (i.e., computer crash and/or program failure of the deployed 
visualizer or orchestrator) do not affect the operation of an instrument.

This design also facilitates the resolution of hardware conflicts and 
smart instrument communication, since some simultaneously-executing 
actions could logically cause a contradiction. Therefore, a driver blocks 
further execution until the current request has been fulfilled. For instance, 
when the force sensor is measuring the amount of applied force as an 
action, this action server will block execution of subsequent actions 
until the current action is finished, which is implanted by awaiting (an 
asynchronous function call) the response from the force sensor driver. 
After the awaited response is received, the next action will be called. This 
locked execution of sequential instructions allows for a safe operation 
without the need of a state machine. An alternative implementation would 
require a state machine on the highest level, thus violating the design 
principle that dictates little to no changes upon addition of new hardware.

Orchestrator/Local and External Database: The highest level in the 
framework is the orchestrator, which sends out instructions to actions 
from a list of experiments to be performed, where the orchestrator also 
holds the sequence of actions and the respective parameters needed to 
perform each experiment. The orchestrator server accepts experiments 
through an API function called addExperiment, which adds an 
experiment to a list that is executed in the first-in-first-out order. Upon 
exhaustion of experiments from the process, the orchestrator remains 
online and awaits the next experiment(s). In total, initializing a HELAO 
session involves launching n  + m  + 1 servers, where n is the number 
of devices in the system and m is the number of action servers. In the 
standard configuration, each driver is controlled by its own action server 
(m = n). Alternatively, an action server may govern multiple devices or a 
driver may be directly incorporated into an action server (m < n). Based 
on an instrument-specific configuration file, a launch script governs the 
initialization of each server. If two copies of an instrument exist, they 
require unique configuration files with unique IP addresses, such that 
deploying HELAO for a cloned instrument can be achieved by updating 
the IP addresses in a copy of the configuration file.
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Defining a Process: The main purpose of the orchestrator is the 
execution of a list of (dynamically editable) experiments from the 
process as well as data management. For defining a sequential 
experiment involving multiple devices, experiments need to be specified 
by a sequence of what actions are to be executed in a particular order 
with all necessary parameters. An instrument is factually defined by the 
devices called in a sequence of events. An experiment is defined by a 
python dictionary containing two dictionary keys: the Sequence of Events 
(SOE) key, which contains an ordered list outlining the exact order in 
which actions are to be executed and the “params” key containing all 
necessary parameters for any of the actions outlined in the SOE. As 
actions may be called multiple times they are numbered sequentially 
in the SOE. Calling an action through the orchestrator requires four 
parts: the name of the action, the desired function, a number which 
indicates the n-th time that we call that specific action within a SOE 
and the thread number (e.g., “motor/moveAbs-3:1” for calling the third 
absolute movement of a motor belonging to thread 1). Thread numbers 
are important for deploying active learning across multiple instruments. 
Two or more instruments/threads run independent of each other until 
some action requires input from all threads or a SOE is finished.

The parameters for actions are stored under the “MoveAbs-3” key in 
the parameter dictionary and contains the specific values for running 
that particular action (i.e., dx = 2 mm, dy = 3 mm, dz = 0 mm).

Defining a Session: To start and end a session lasting for one or more 
experiments the first and last actions to be called are the “start” and 
“finish” actions, natively implemented within the orchestrator (i.e., not 
as servers), hence being called native actions. The data acquired within 
a session is locally stored in a single hdf5 file that is then uploaded 
to KaDI4Mat upon calling the “finish” action. Storing data locally and 
uploading it at the end of a session has been shown to be significantly 
faster and avoids reliance on the speed or availability of the master 
database, which may not be directly controlled by the lab running the 
experiments. An illustrative example for this design choice is when we 
measured a series of Raman spectra and performed the upload after 
taking each spectrum. Whilst each spectrum only took a second to 
measure, the upload time was comparable, forcing instrument down 
time that was remedied by asynchronous data uploading.

Data Analysis and Machine Learning Servers: A goal of HELAO is to 
enable active learning accelerated experiments across a wide range of 
laboratory instruments. Active learning does however require automatic 
data analysis and machine learning based suggestion of the next best 
subsequent experiment.

These two functionalities are implemented as servers in HELAO. 
On a high level, active learning within the HELAO framework is simply 
the alteration of parameters of an action by some suggestion of an 
algorithm. The parameter to be changed in a subsequent experiment is 
referred to as the “target”. The algorithm needs to have access to all 
(analyzed) data to suggest the target. This “source” data needs to be 
well posed for the machine learning algorithm, which typically requires 
analysis of the raw data. The automated data analysis in HELAO is again 
a server-action. A unique aspect of an analysis server is its required 
access to raw data, which is implemented by using pointers to the 
location in the orchestrator memory of where relevant data (the source 
data) is stored. Likewise, the server dedicated to machine learning for 
active learning needs to be pointed to the input and output values of 
the analyzed data. Inside the active learning action, the datasets are 
aggregated on-the-fly from the orchestrator temporary storage (what 
is later the hdf5 file being uploaded). A target can be specified from a 
list of candidates or be freely decided by the algorithm, depending on 
the chosen optimizer, and upon receiving the target the orchestrator 
updates and runs the pending measurement action.

These functionalities allow for autonomous operation where the user 
only has to define the budget of active learning runs, pointers to the 
input and output values, and the choice of optimizer and the estimator.

The active learning server can be equipped with a broad range 
of optimizers and regression algorithms. Also, several acquisition 
functions have been implemented including expected improvement 
(EI) and probability of improvement (POI). We envision the possibility 

for incorporating different fidelity sources by adaption of optimizers 
that can handle different fidelities, which is an active area of machine 
learning research where advancements can be readily incorporated into 
HELAO.

As some ML algorithms require significant computational resources 
within a thread and some actions are data-transfer intensive, servers may 
become unresponsive. To solve this issue, the most computationally 
expensive tasks like machine learning can be wrapped inside a celery[33] 
server. Celery is a server-based framework capable of distributing high 
workloads across compute clusters. We empirically observed this 
necessity for long running active learning runs with a high degree of 
freedom.

Visualizer: On the same hierarchical level of the orchestrator is the 
visualizer, which can be viewed as a “read only” orchestrator that has 
global access and does not store data. This server can display the live 
data of, for example, electrochemical test measurements or Raman 
spectroscopy to assess data quality during a run.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
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