
www.advmatinterfaces.de

2101987  (1 of 8) © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

Research Article

Enabling Modular Autonomous Feedback-Loops in
Materials Science through Hierarchical Experimental
Laboratory Automation and Orchestration

Fuzhan Rahmanian, Jackson Flowers, Dan Guevarra, Matthias Richter,
Maximilian Fichtner, Phillip Donnely, John M. Gregoire,* and Helge S. Stein*

DOI: 10.1002/admi.202101987

enabled the emergent paradigm of con-
ducting research in materials acceleration
platforms (MAP)[5,6]. Within these MAPs
different research tasks are accelerated
and integrated to efficiently address the
ever increasing complexity of materials
optimization through targeted mate-
rials synthesis, processing, analysis, and
insight generation.[7]

Demonstrations of autonomous work-
flows to date,[8–11] have been based on a
single instrument in a single laboratory.[12]
This limited purview of the autonomous
experimentation is rooted in the laboratory
middleware in which orchestration of the
laboratory hardware occurs within a single
computer-instrument pairing.[11] Some
notable examples include ChemOS,[12]
which in principle is capable of distrib-
uting work across different machines
through the ROS[13] backend. This inar-
guably powerful software does however
impose complex software dependencies
that grow with increased purview of the
experimental platform. While commer-
cial software such as LabView by National

Instruments can facilitate programming for instrument auto-
mation, it does not meet the needs of the MAP community
due to its incompatibility with the open-source development
of version-controlled software. In instances where there is no
(official) application programming interface (API) for a device,
or an instrument’s software driver must continually evolve with

Materials acceleration platforms (MAPs) operate on the paradigm of integrating
combinatorial synthesis, high-throughput characterization, automatic analysis,
and machine learning. Within a MAP, one or multiple autonomous feedback
loops may aim to optimize materials for certain functional properties or to
generate new insights. The scope of a given experiment campaign is defined
by the range of experiment and analysis actions that are integrated into the
experiment framework. Herein, the authors present a method for integrating
many actions within a hierarchical experimental laboratory automation
and orchestration (HELAO) framework. They demonstrate the capability of
orchestrating distributed research instruments that can incorporate data
from experiments, simulations, and databases. HELAO interfaces laboratory
hardware and software distributed across several computers and operating
systems for executing experiments, data analysis, provenance tracking, and
autonomous planning. Parallelization is an effective approach for accelerating
knowledge generation provided that multiple instruments can be effectively
coordinated, which the authors demonstrate with parallel electrochemistry
experiments orchestrated by HELAO. Efficient implementation of autonomous
research strategies requires device sharing, asynchronous multithreading, and
full integration of data management in experimental orchestration, which to the
best of the authors’ knowledge, is demonstrated for the first time herein.

F. Rahmanian, J. Flowers, M. Fichtner, H. S. Stein
Helmholtz Institute Ulm (HIU)
Helmholtzstr. 11, 89081 Ulm, Germany
E-mail: helge.stein@kit.edu

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/admi.202101987.

F. Rahmanian, J. Flowers, H. S. Stein
Karlsruhe Institute of Technology (KIT)
Institute of Physical Chemistry (IPC)
Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
D. Guevarra, M. Richter, P. Donnely,[+] J. M. Gregoire
Division of Engineering and Applied Science
and Liquid Sunlight Alliance (LiSA)
California Institute of Technology (Caltech)
Pasadena, CA 91125, USA
E-mail: gregoire@caltech.edu
M. Fichtner
Karlsruhe Institute of Technology (KIT)
Institute of Nanotechnology (INT)
P.O. Box 3640, D-76021 Karlsruhe, Germany

1. Introduction

Ever increasing performance demands necessitate the accelera-
tion of materials science and chemistry.[1,2] Progress within the
Materials Genome Initiative,[3] advances in high-throughput
experimentation,[4] and proliferation of machine learning have

[+]Present address: Carleton College, Northfield, MA, USA

© 2022 The Authors. Advanced Materials Interfaces published by
Wiley-VCH GmbH. This is an open access article under the terms of the
Creative Commons Attribution-NonCommercial License, which permits
use, distribution and reproduction in any medium, provided the original
work is properly cited and is not used for commercial purposes.

Adv. Mater. Interfaces 2022, 2101987

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadmi.202101987&domain=pdf&date_stamp=2022-01-06

www.advancedsciencenews.com
www.advmatinterfaces.de

2101987  (2 of 8) © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

hardware advancements, ROS and LabView can incur substan-
tial overhead in software management.

Modular software design facilitates community sharing of
techniques across sub-fields. For example, organic chemistry
uses tailored languages,[14] to express research tasks in a human
and computer readable format.[15,16] Sharing of experimental
control techniques across such domains requires a high level of
modularity in conjunction with the data management-informed
design of the experimental control framework.

In addition to the necessity of being able to orchestrate a
multitude of laboratory instruments, there is a critical need to
be able to trace back all undertaken steps that lead to the acqui-
sition of data or synthesis of a material,[14,17] beyond FAIR[18]
guidelines. Experiment provenance management is critical
for enabling reproduction of an experiment.[19] Such reproduc-
tions or more general sharing of experiment protocols can be
enabling of the computer automation of laboratory devices via
drivers that provide an abstraction layer between the central
software and hardware. If these criteria are met, autonomous
inter-laboratory workflows[7] can be deployed and motivate the
discretization of an experimental provenance into its elemen-
tary instrumental actions. We therefore view the levels of exper-
iment abstraction to be hierarchical in nature.

The hierarchical laboratory automation and orchestration
framework was built with the goals of being able to integrate
any laboratory device for which a software driver is available or
can be written, and to enable any configuration of the devices
including serial and parallel experimentation, sharing of equip-
ment across multiple instruments, and orchestration of mul-
tiple measurements in multiple laboratories. To facilitate con-
tinued adoption of active learning in experiment workflows,

the framework is designed for facile switching between human
and machine-based experiment selection. The framework
adopts a data management wherein all gathered data and all
instructions are stored in a “FAIR” way, giving the instruction
data the same level of attention as the resulting measurement
data. For these requirements to be met, we seek a software
framework for communicating with devices hosted or operated
on different computers (i.e., some instruments are mutually
exclusive to be connected on a PC due to driver constraints).
We seek to be platform independent and minimize additional
requirements such as extensive software dependencies.

In the present work we describe the hierarchical experi-
mental laboratory automation and orchestration (HELAO)
framework to address the needs of next-generation experi-
ments. At a high level, the modularity of HELAO is built upon
a widely used web framework called fastAPI[20] as shown in
Figure 1. The main design idea is to represent every device
of an instrument as a (asynchronous) web server (Figure 1,
right side). Basic functions of devices are exposed to and bun-
dled by actions, which themselves are again web servers. Only
these actions are called by an orchestrator executing experi-
ments on one or multiple instruments (Figure 1, left side). For
future proofness, HELAO was developed in python 3.8+ with
type hinting and pydantic type validation. The modular design
allows for the integration of arbitrary devices, including those
operated through OPC-UA.[21]

The design guidelines and protocols necessary to orchestrate
instrumentation in the laboratory are outlined in the following
sections, together with a detailed description of the individual
constituents. We demonstrate the orchestration of an active
learning run on two instruments and deposited the resulting

Figure 1.  A schematic representation of HELAO where experiments are executed by sequentially calling actions which are high level wrappers for lower
level driver instructions. Communication goes hierarchically down from the orchestrator level to actions, which may however communicate among
each other, to the lowest level of drivers which can only communicate with actions. The orchestrator, actions, and drivers are all exposing python class
functions through a web interface allowing for highly modular and distributed hosting of each item. Experiments are encoded as python dictionaries (a
data type) containing a sequence of events (SOE) that outlines in which the actions are to be executed. Many experiments form a process. All actions
require parameters and metadata that are all echoed back.

Adv. Mater. Interfaces 2022, 2101987

www.advancedsciencenews.com
www.advmatinterfaces.de

2101987  (3 of 8) © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

data including all instructions and the code at github.com/
helgestein/helao-pub.

2. Results

2.1. Implementation of Hardware Drivers

The aim of HELAO is to be a universal laboratory automation
framework, democratizing accelerated experimental research
workflows. To this end, the two laboratories at the California
Institute of Technology (Caltech) and Karlsruhe Institute of
Technology (KIT) started to implement major hardware com-
ponents amenable for automatization. In Table 1, all currently
implemented hardware drivers are listed. During develop-
ment of these drivers, it became apparent that there exist two
major types of drivers based on whether their function calls
are natively blocking or non-blocking. Those with non-blocking
operations typically accept an instruction, execute it, and
require the user to ask if the current operation is finished.

A special class of devices is auxiliary (aux) devices. These
are broadly defined as software “devices” used, for example,
for data analysis, regression, and prediction. These aux drivers
could in principle be written for any python interfaceable soft-
ware or hardware which is necessary for a special experiment,
for example, background inference algorithms[22] or special
machine learning models.[23]

With the devices available at the time of writing this manu-
script, highly complex instruments have and are being built,
whose detailed descriptions will be the subject of future work. As
an initial example of the scope of the present HELAO implemen-
tations, the operated instruments are comprised of the devices
shown in Table 1 that include four scanning droplet cells (SDCs)
at Karlsruhe Institute of Technology (KIT) (each consisting of
lang, autolab, pump, force, aux, kadi), one SDC at Caltech (galil,

gamry), a coupled Raman and FTIR spectrometer (owis, ocean,
arcoptix, aux, kadi), a battery cycler (arbin, aux), and a coin cell
assembly system (mecademic, rail, arbin, arduino, aux).

2.2. Hardware-in-the-Loop Active Learning

A hardware-in-the-loop demonstration run of HELAO is shown
in Figure 2. The instrument is copied two times where one
setup was run in a fume hood and another one was run in a
glove box. The two instruments share a common learner and
optimizer, which are controlled along with both instruments
by a single orchestrator. An example video of a parallel active
learning run can be found in the Supporting Information. To
demonstrate the operation and identification of a known global
maximum, the potentiostat driver in each instrument was
replaced by a synthetic data generator. This synthetic driver
returns a scaled Schwefel function[24] depending on the posi-
tion where the SDC touches down on a substrate, providing the
source data with which the active learning server identifies the
next target substrate position 3.

The active learning run is stopped once a threshold value
(top percentile) is found. Actions in this run consist of, for
example, “move to waste”, “remove the droplet”, “move to
sample offset”, “move to the defined point”, “move down
to substrate”, “get output value”, “predict the next best posi-
tion using active learning algorithm.” The hdf5 file gener-
ated during this run was recorded on 05.10.2021 and has been
uploaded to KaDI4Mat upon completion of the session under
the records 20287 and 20280. Public release of the dataset[25]
with the https://doi.org/10.6084/m9.figshare.16798177.v1 had
been triggered on 09.10.2021. The hdf5 file for this run may
also be found in the Supporting Information.

One experiment takes ≈108 s. Depending on the number of
datapoints the learning step requires more time. During the

Table 1.  Currently implemented devices in the laboratories at KIT and Caltech. Instruments built from this include scanning droplet cells, high-
throughput spectrometers, and a battery assembly robot. The extreme modularity allows us to mix and match any of these devices by simply defining
a sequence of events, that is, to build an integrated SDC and spectrometer or a sample exchange robot without code changes to HELAO. For each
device we note the communication protocol and the physical quantity being controlled and/or measurement. We also note whether the instrument is
“natively blocking” meaning that the device is unable to process new commands until the currently running command is finished.

Device name Type Communication Measures/Controls Manufacturer Natively blocking

lang Motion .net API Position Lang GmbH No

galil Motion, IO TCP/IP Position Galil Motion Control Inc. No

owis Motion Serial commands Position Owis GmbH No

mecademic Motion Python TCP/IP API Position, state Mecademic Ltd. no

rail Motion TCP/IP Position Jenny Science AG No

autolab Potentiostat .net API Electrochemistry Methrohm Autolab B.V. Yes

gamry Potentiostat .dll for serial communication Electrochemistry Gamry Instruments Inc. Yes

arbin Potentiostat autohotkey Electrochemistry Arbin Inc. No

pump Pumping Serial commands n.a. CAT engineering GmbH No

arcoptix Spectroscopy .dll api IR spectra arcoptix S.A. Yes

ocean Spectroscopy Raman Python package Raman spectra ocean insights GmbH Yes

force force sensing Serial commands Force ME Meßsysteme GmbH n/a

arduino Relays, I/O Python package n.a. arduino No

kadi Data management Python package n.a. KIT Yes

aux Machine learning and analysis Python package n.a. n.a. Yes

Adv. Mater. Interfaces 2022, 2101987

https://doi.org/10.6084/m9.figshare.16798177.v1

www.advancedsciencenews.com
www.advmatinterfaces.de

2101987  (4 of 8) © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

measurement, all data is constantly logged from all devices
and subsequently uploaded to the data management repository
(KaDI4Mat). The overall time required for the entire run was
a little less than 3 h and allows for a fine-grained analysis of
what action consumes the most experimental time as shown in
Figure 3. From this analysis, it is for instance evident that motor
movement between measurements consumes a substantial frac-
tion of the experimental time, motivating efforts to enable faster
movement. With 3856 s for the sequential run there is a signifi-
cant speed up when the experiment is run in parallel where the
instrument 1 (in the fume hood) takes 2041 s and the instrument
2 requires 2424 s to complete. As is evident from these numbers
the speedup is a little less than 2× for a parallel active learning
run as asynchronous locks and the machine learning consume
some of the time. To the best of our knowledge this is the first
demonstration of an active learning run involving two spatially
distributed instruments involving more than one operational PC.

In this demonstration, the two instruments perform the
same type of measurement in the same search space with the
same active learning acquisition function, which is a simplifica-
tion of our vision of enabling the active learning to incorporate
multiple types of data and to make distinct decisions’ poli-
cies for each instrument.0 For example, a property-measuring
instrument and a structure-measuring instrument could be
effectively combined for an accelerated structure–property
mapping. This concept requires an active learning framework
that chooses different targets for property and for structure

measurements while unifying the distinct data sources. HELAO
is designed to deploy such advanced modes of experimentation
as the field of autonomous materials research evolves.

3. Discussion

Herein we present a versatile, stable, and modular approach
to laboratory automatization that offers capabilities to deploy
autonomous experimentation in materials science. The frame-
work was built using modern asynchronous programming and
operates in a safe hierarchical layout. State of the art server-based
communication between laboratory devices is used to ensure
maximum modularity and reusability of devices across instru-
ments and laboratories. Higher level sequences requiring the
interaction within one or among several devices are wrapped in
actions that are exposed as web servers. This design allows for a
distributed operation across computers and locations, in addition
to being resilient against single machine crashes.

Through utilization of a facile underlying web framework like
fastAPI and pydantic type annotation, documentation to most
functions is autogenerated. This design allows users also to quickly
adopt new devices and actions without the need of installing clients
or servers, as drivers and actions can be called through python’s
built in “request” package or even through the auto generated web
documentation. Moreover, this allows any HELAO action-driver
pair to be called by virtually any other software as users develop

Figure 2.  Schematic drawing of the HELAO hardware-in-the-loop active learning run with two instruments running parallel and the corresponding
actions, drivers, and orchestrator. The red dashed lines illustrate drivers that were removed from HELAO for the demonstration presented herein,
where the pumps were not operated and the potentiostat, which would typically provide the primary measurement data, was replaced by a synthetic
data driver that returns a function value from the Schwefel function depending on the visited substrate position. The active learning action and driver
are shared among the instruments/threads.

Adv. Mater. Interfaces 2022, 2101987

www.advancedsciencenews.com
www.advmatinterfaces.de

2101987  (5 of 8) © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

orchestrators to employ complementary modes of research. If
users wish to deploy active learning to a device that does not accept
standard web requests like OPC-UA (often encountered in indus-
trial settings) fastAPI compatible wrappers can be built.

This high degree of modularity and interoperability is only
possible through a very lightweight design that puts relatively
few restrictions on the user compared to middleware like ROS or
ChemOS. Other competing softwares and frameworks are ARES
OS that is currently only demonstrated to operate on a single
computer instrument pairing. Another mature and great alterna-
tive to the lightweight implementation of HELAO is the bluesky
project.[26] Bluesky works with similar hardware abstraction ideas
like HELAO, but puts significantly more constraints on a user
and is, in our view, more built around streamlining the research
process as a whole. However, orchestrating multiple instruments

in parallel has not been demonstrated by any other labora-
tory automation framework. These parallelization efforts will
be increasingly impactful with development of optimizers that
incorporate uncertainty and multiple optimization strategies.[27]

The framework is built with the goal of being fully FAIR
compliant and allows users to rerun an experiment without
much or any overhead. We view this degree of data manage-
ment to be FAIR+. By logging every possible parameter along
the entire research process, it is possible to extract utiliza-
tion figures, find bugs, and determine bottlenecks in high-
throughput experimentation. Direct interfacing with data
management software has been demonstrated, to the best of
our knowledge, for the first time in an autonomous research
environment. All data gathered during the active learning ses-
sions has been automatically uploaded upon the completion of
the session and is publicly available at figshare[25] and from the
Supporting Information of this manuscript. Within the uni-
versity network all recorded data is made publicly available by
default without an embargo period as a statement to encourage
more data sharing. HELAO is demonstrated to be stable and
versatile and is published under the LGPL license at https://
github.com/helgestein/helao-dev. Stand-alone example config-
urations with reference driver implementations and a how-to
guide of writing custom drivers are available alongside docu-
mentation thereof as part of the public code repository.

The parallel active learning run with hardware-in-the loop of
HELAO demonstrates for the first time that two (and techni-
cally unlimited more) spatially separated instruments in a mate-
rials science laboratory are capable of collaboratively optimizing
together for faster discovery. Contributions and collaborations
with and by the community to expand the hardware support for
HELAO is therefore warmly welcome. Future efforts will aim
to bridge HELAO with methods from theoretical materials’ sci-
ence to build modular physics-informed instrumentation and
autonomous feedback loops connecting laboratories.

4. Experimental Section
Design Guidelines and Protocols: From the bottom-up hardware

perspective, a research instrument is an assembly of devices. A device is
a piece of laboratory equipment, defined as the largest “thing” that has a
dedicated communication stream, that is, a multi-channel potentiostat,
or a motor control board.

Devices are typically shipped with a driver that enables access to
some or all its functions, that is, measuring a current. From the top-
down perspective, a user or operator wishes to perform a series of
experiments, which are each a list of actionable events defined as
“actions” in HELAO. The actions are to be executed in a particular order
with predefined or variable parameters and/or designed on-the-fly via a
decision policy. In this latter case, evaluation of the decision policy can
be viewed as a particular type of action whose execution impacts future
actions. The instructions for an experimental campaign are given to an
orchestrator, which governs their sequential execution from a queue.
Each action is materialized by the drivers, thereby completing the top-
to-bottom instrument framework. Everything that happens to or on that
instrument originates within the orchestrator.

In order for the ensemble of devices to operate in concert as a single
instrument, it is convenient to assemble the various elements listed
above into a single software framework. Hierarchically from bottom to
top, each device driver (internally communicating through, for example,
serial, TCP/IP commands, or a dynamic link library) is exposed through

Figure 3.  a) Time spent at each action for a sequential and a parallel run
with two instruments; b) total time spent per run. The time spent does
not form a perfectly straight line as some actions need different time (i.e.,
movements are shorter or longer). The inset shows the parallel run and
highlights visited points in black and red depending on whether they were
visited by instrument 1 or 2. The sequence of events for each measure-
ment is typically the order shown in the horizontal axis of (a).

Adv. Mater. Interfaces 2022, 2101987

https://github.com/helgestein/helao-dev
https://github.com/helgestein/helao-dev

www.advancedsciencenews.com
www.advmatinterfaces.de

2101987  (6 of 8) © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

a uvicorn[28] web server through fastAPI. Construction of actionable
functions (“actions”) are constructed from the API calls exposed by the
drivers, where each action may involve multiple API calls.

An example of an action to pump a mixture of three fluids would
therefore be “initiated” by the orchestrator calling the respective action.
This action then calls the pump driver server. Internally the driver server
is sequentially called by the mixture action as the hardware requires us
to first initialize each pump channel, prime the pumps, and only then
turn the pumps on. The orchestrator will receive a nested reply from the
action that entails all information exchanged, down to the lowest level,
that is, initialization, priming, execution.

A rigorous commitment to data management is foundational to this
framework’s implementation. Requests to the driver and action servers
track all functions called, as well as all (echoed) input parameters and
outputs of those functions. The orchestrator tracks additional metadata,
such as the time at which an action was performed or the point on
a substrate at which an experiment was conducted, in addition to
accepting arbitrary custom metadata. All of these are then automatically
saved (redundantly), in the native file format (if applicable), and in
an hdf5 file together with the parameters and metadata. Methods for
depositing the hdf5 file into institutional repositories like KaDI4Mat[29]
or MEAD[19] repositories are automatically executed after each session.
From KaDI4Mat,[29] experimental data can be accessed internally but
also be shared with the community through materials cloud or to inform
simulations through AIIDA.[30,31]

Due to each element of the authors’ software framework being a
server, a very high degree of modularity is achieved. This allows, for
instance, a single instance of a device to fulfill requests from multiple
action servers sequentially. This type of resource sharing requires the
actions to be programmed to ingest calls from multiple orchestrators,
for example by notifying the orchestrators of the un/availability of each
action. A more straightforward implementation of resource sharing is
for a single orchestrator to govern multiple instruments with a shared
piece of equipment, which they demonstrate herein. More generally, this
design allows for distributed hosting of devices on different machines,
potentially dispersed around the globe.

Drivers and Driver Servers: Any (autonomous) experimental workflow
consists of smaller organizational units, that is, a SDC[32] instrument
consists of several hardware devices such as motors, a force sensor,
pumps, and a potentiostat. In addition, there are software devices such
as data analysis and experimental design. All of these devices need to
be able to receive commands, perform the instruction, and reply with
measurement data or a status and echo back the input parameters. With
respect to the orchestrator, interaction with an analysis or active learning
module is equivalent to that of a hardware device, motivating virtual and
physical devices to be implemented in the same manner.

Driver Server Design: Drivers provide the lowest-level interaction with
devices based on the elementary communication commands for the
respective device, for example, connect, disconnect, query the device
status, or read data. Some drivers are therefore more complex than
others, as some devices offer direct python APIs whilst others require
development of python wrappers or source code. Positively notable
examples are for instance python drivers offered by Mecademic or
Palmsens offering well-documented software development kits (SDKs).
Each device is paired to a dedicated driver server. Calling driver functions
can only be done through the web-based API by sending web requests,
enabling software modularity that mimics hardware modularity wherein
devices can be reconfigured into new instruments.

Driver Parameters: Drivers accept parameters, which are validated
through pydantic data types that inherit from the pydantic’s BaseModel.
This automatically annotated and type-hinted validation scheme allows
users to assess how a request should be formatted in order to receive
a desired device behavior. Additionally, the pedantic validation scheme
ensures proper data handling, easing data management downstream.
Traceability and ease in debugging are ensured by each driver server
echoing all provided input parameters alongside the output data. For this
purpose, the return object from any server including drivers is a python
dictionary (an unsorted data type containing key value pairs) containing

two keys for the input parameters and output data. The parameter key is
described by its name, the value(s), and optionally a physical unit. The
data key contains data, which contains the data acquired or derived from
the device. These python dictionaries play a signal role between different
organizational units, for example calling the pump requires specification
of volume, speed, and direction. The response from the pump (a device
acting but not measuring) is the entire serial string communication
response (potentially containing valuable error messages) from the
pump as output. The units returned for pumping are for instance speed
in microliters per minute, total volume in microliters, and a binary flag
for forward versus backward pumping direction.

Actions and Action Servers Design: Hierarchically above drivers,
actions wrap one or many driver functions such that the action function
has a name and parameters that are meaningful for the deployment
of the device(s) in a particular type of experiment. This provides an
abstraction layer where two action functions can be programmed in
different labs using different devices/drivers, enabling shared higher-
level code that calls the action functions. Similar to driver servers,
actions also expose their functionalities as servers and again are not
limited to a single instrument. Communication with multiple device
drivers is intended for when knowing what multiple devices are needed
to realize a single physical action, such as motor actuation with feedback
from a force sensor. To manage shared driver/device-level resources,
direct communication between drivers is forbidden, requiring any such
message passing to occur via the action server.

Action Parameters: Similar to driver servers, the return statement of
an action server is a python dictionary containing the parameters and
data. The output from an action can be customized for the specific use
case, but is generally the aggregate return statements received from all
driver server calls downstream. After execution of the relevant action
function, the return statements of the called actions will be received by
the orchestrator as the highest level of this hierarchy.

A major advantage of driver/action distinction is the possibility of
multiple operating computers sharing one device. Any failures on a
higher level (i.e., computer crash and/or program failure of the deployed
visualizer or orchestrator) do not affect the operation of an instrument.

This design also facilitates the resolution of hardware conflicts and
smart instrument communication, since some simultaneously-executing
actions could logically cause a contradiction. Therefore, a driver blocks
further execution until the current request has been fulfilled. For instance,
when the force sensor is measuring the amount of applied force as an
action, this action server will block execution of subsequent actions
until the current action is finished, which is implanted by awaiting (an
asynchronous function call) the response from the force sensor driver.
After the awaited response is received, the next action will be called. This
locked execution of sequential instructions allows for a safe operation
without the need of a state machine. An alternative implementation would
require a state machine on the highest level, thus violating the design
principle that dictates little to no changes upon addition of new hardware.

Orchestrator/Local and External Database: The highest level in the
framework is the orchestrator, which sends out instructions to actions
from a list of experiments to be performed, where the orchestrator also
holds the sequence of actions and the respective parameters needed to
perform each experiment. The orchestrator server accepts experiments
through an API function called addExperiment, which adds an
experiment to a list that is executed in the first-in-first-out order. Upon
exhaustion of experiments from the process, the orchestrator remains
online and awaits the next experiment(s). In total, initializing a HELAO
session involves launching n + m + 1 servers, where n is the number
of devices in the system and m is the number of action servers. In the
standard configuration, each driver is controlled by its own action server
(m = n). Alternatively, an action server may govern multiple devices or a
driver may be directly incorporated into an action server (m < n). Based
on an instrument-specific configuration file, a launch script governs the
initialization of each server. If two copies of an instrument exist, they
require unique configuration files with unique IP addresses, such that
deploying HELAO for a cloned instrument can be achieved by updating
the IP addresses in a copy of the configuration file.

Adv. Mater. Interfaces 2022, 2101987

www.advancedsciencenews.com
www.advmatinterfaces.de

2101987  (7 of 8) © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

Defining a Process: The main purpose of the orchestrator is the
execution of a list of (dynamically editable) experiments from the
process as well as data management. For defining a sequential
experiment involving multiple devices, experiments need to be specified
by a sequence of what actions are to be executed in a particular order
with all necessary parameters. An instrument is factually defined by the
devices called in a sequence of events. An experiment is defined by a
python dictionary containing two dictionary keys: the Sequence of Events
(SOE) key, which contains an ordered list outlining the exact order in
which actions are to be executed and the “params” key containing all
necessary parameters for any of the actions outlined in the SOE. As
actions may be called multiple times they are numbered sequentially
in the SOE. Calling an action through the orchestrator requires four
parts: the name of the action, the desired function, a number which
indicates the n-th time that we call that specific action within a SOE
and the thread number (e.g., “motor/moveAbs-3:1” for calling the third
absolute movement of a motor belonging to thread 1). Thread numbers
are important for deploying active learning across multiple instruments.
Two or more instruments/threads run independent of each other until
some action requires input from all threads or a SOE is finished.

The parameters for actions are stored under the “MoveAbs-3” key in
the parameter dictionary and contains the specific values for running
that particular action (i.e., dx = 2 mm, dy = 3 mm, dz = 0 mm).

Defining a Session: To start and end a session lasting for one or more
experiments the first and last actions to be called are the “start” and
“finish” actions, natively implemented within the orchestrator (i.e., not
as servers), hence being called native actions. The data acquired within
a session is locally stored in a single hdf5 file that is then uploaded
to KaDI4Mat upon calling the “finish” action. Storing data locally and
uploading it at the end of a session has been shown to be significantly
faster and avoids reliance on the speed or availability of the master
database, which may not be directly controlled by the lab running the
experiments. An illustrative example for this design choice is when we
measured a series of Raman spectra and performed the upload after
taking each spectrum. Whilst each spectrum only took a second to
measure, the upload time was comparable, forcing instrument down
time that was remedied by asynchronous data uploading.

Data Analysis and Machine Learning Servers: A goal of HELAO is to
enable active learning accelerated experiments across a wide range of
laboratory instruments. Active learning does however require automatic
data analysis and machine learning based suggestion of the next best
subsequent experiment.

These two functionalities are implemented as servers in HELAO.
On a high level, active learning within the HELAO framework is simply
the alteration of parameters of an action by some suggestion of an
algorithm. The parameter to be changed in a subsequent experiment is
referred to as the “target”. The algorithm needs to have access to all
(analyzed) data to suggest the target. This “source” data needs to be
well posed for the machine learning algorithm, which typically requires
analysis of the raw data. The automated data analysis in HELAO is again
a server-action. A unique aspect of an analysis server is its required
access to raw data, which is implemented by using pointers to the
location in the orchestrator memory of where relevant data (the source
data) is stored. Likewise, the server dedicated to machine learning for
active learning needs to be pointed to the input and output values of
the analyzed data. Inside the active learning action, the datasets are
aggregated on-the-fly from the orchestrator temporary storage (what
is later the hdf5 file being uploaded). A target can be specified from a
list of candidates or be freely decided by the algorithm, depending on
the chosen optimizer, and upon receiving the target the orchestrator
updates and runs the pending measurement action.

These functionalities allow for autonomous operation where the user
only has to define the budget of active learning runs, pointers to the
input and output values, and the choice of optimizer and the estimator.

The active learning server can be equipped with a broad range
of optimizers and regression algorithms. Also, several acquisition
functions have been implemented including expected improvement
(EI) and probability of improvement (POI). We envision the possibility

for incorporating different fidelity sources by adaption of optimizers
that can handle different fidelities, which is an active area of machine
learning research where advancements can be readily incorporated into
HELAO.

As some ML algorithms require significant computational resources
within a thread and some actions are data-transfer intensive, servers may
become unresponsive. To solve this issue, the most computationally
expensive tasks like machine learning can be wrapped inside a celery[33]
server. Celery is a server-based framework capable of distributing high
workloads across compute clusters. We empirically observed this
necessity for long running active learning runs with a high degree of
freedom.

Visualizer: On the same hierarchical level of the orchestrator is the
visualizer, which can be viewed as a “read only” orchestrator that has
global access and does not store data. This server can display the live
data of, for example, electrochemical test measurements or Raman
spectroscopy to assess data quality during a run.

Supporting Information
Supporting Information is available from the Wiley Online Library or
from the author.

Acknowledgements
This work contributes to the research performed at CELEST (Center for
Electrochemical Energy Storage Ulm-Karlsruhe) and was partly funded
by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under Germany´s Excellence Strategy – EXC 2154 – Project
number 390874152. This project has also received funding from the
European Union’s Horizon 2020 research and innovation program under
grant agreement No 957189. Design of software architecture at Caltech
was supported by the Liquid Sunlight Alliance, which is supported by
the U.S. Department of Energy (DOE), Office of Science, Office of Basic
Energy Sciences (BES), Fuels from Sunlight Hub under Award Number
DE-SC0021266. The authors would like to thank Ephraim Schoof for
developing the KaDI4Mat API and helping in the initial interfacing
with data management. They would like to thank KIT IAM for hosting
KaDI4Mat.

Open access funding enabled and organized by Projekt DEAL.

Conflict of Interest
The authors declare no conflict of interest.

Author Contributions
H.S.S. and J.M.G conceived the idea and designed the first
software layout. H.S.S. developed the first drivers and server-based
communication protocols. F.R., J.F., D.G., M.R., and P.D. implemented
drivers, wrote actions, and conducted the experiments. F.R. implemented
drivers pertaining to SDC and deployed machine learning algorithms
to HELAO. J.F. integrated these contributions into the orchestrator. All
authors reviewed the manuscript.

Data Availability Statement
The data that support the findings of this study are openly available in
[figshare] at [https://doi.org/10.6084/m9.figshare.16798177.v1], reference
number [16798177].

Adv. Mater. Interfaces 2022, 2101987

www.advancedsciencenews.com
www.advmatinterfaces.de

2101987  (8 of 8) © 2022 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH

Keywords
laboratory automation, materials acceleration, high-throughput
experimentation, data management

Received: October 12, 2021
Revised: November 21, 2021

Published online:

[1]	 K. Alberi, M. B. Nardelli, A. Zakutayev, L. Mitas, S. Curtarolo, A. Jain,
M. Fornari, N. Marzari, I. Takeuchi, M. L. Green, M. Kanatzidis,
M. F. Toney, S. Butenko, B. Meredig, S. Lany, U. Kattner, A. Davydov,
E. S. Toberer, V. Stevanovic, A. Walsh, N.-G. Park, A. Aspuru-Guzik,
D. P. Tabor, J. Nelson, J. Murphy, A. Setlur, J. Gregoire, H. Li,
R. Xiao, A. Ludwig, et al., J. Phys. Appl. Phys. 2019, 52, 013001.

[2]	 J.-P. Correa-Baena, K. Hippalgaonkar, J. van Duren, S. Jaffer,
V. R. Chandrasekhar, V. Stevanovic, C. Wadia, S. Guha,
T. Buonassisi, Joule 2018, 2, 1410.

[3]	 M. L. Green, C. L. Choi, J. R. Hattrick-Simpers, A. M. Joshi,
I. Takeuchi, S. C. Barron, E. Campo, T. Chiang, S. Empedocles,
J. M. Gregoire, A. G. Kusne, J. Martin, A. Mehta, K. Persson,
Z. Trautt, J. Van Duren, A. Zakutayev, Appl. Phys. Rev. 2017, 4, 011105.

[4]	 E. J. Amis, X. D. Xiang, J. C. Zhao, MRS Bull. 2002, 27, 295.
[5]	 Materials Acceleration Platform—Accelerating Advanced Energy

Materials Discovery by Integrating High-Throughput Methods with
Artificial Intelligence. 109, http://mission-innovation.net/wp-con-
tent/uploads/2018/01/Mission-Innovation-IC6-Report-Materials-
Acceleration-Platform-Jan-2018.pdf.

[6]	 M. Aykol, J. S. Hummelshøj, A. Anapolsky, K. Aoyagi, M. Z. Bazant,
T. Bligaard, R. D. Braatz, S. Broderick, D. Cogswell, J. Dagdelen,
W. Drisdell, E. Garcia, K. Garikipati, V. Gavini, W. E. Gent,
L. Giordano, C. P. Gomes, R. Gomez-Bombarelli, C. B. Gopal,
J. M. Gregoire, J. C. Grossman, P. Herring, L. Hung, T. F. Jaramillo,
L. King, H.-K. Kwon, R. Maekawa, A. M. Minor, J. H. Montoya,
T. Mueller, et al., Matter 2019, 1, 1433.

[7]	 H. S. Stein, J. M. Gregoire, Chem. Sci. 2019, 10, 9640.
[8]	 K. F. Jensen, C. W. Coley, N. S. Eyke, Angew. Chem., Int. Ed. 2020,

59, 22858.
[9]	 C. W. Coley, N. S. Eyke, K. F. Jensen, Angew. Chem., Int. Ed. 2020,

59, 23414.
[10]	 T. Dimitrov, C. Kreisbeck, J. S. Becker, A. Aspuru-Guzik, S. K. Saikin,

ACS Appl. Mater. Interfaces 2019, 11, 24825.
[11]	 P. Nikolaev, D. Hooper, F. Webber, R. Rao, K. Decker, M. Krein,

J. Poleski, R. Barto, B. Maruyama, npj Comput. Mater. 2016, 2,
16031.

[12]	 L. M. Roch, F. Häse, C. Kreisbeck, T. Tamayo-Mendoza,
L. P. E. Yunker, J. E. Hein, A. Aspuru-Guzik, Sci. Rob. 2018, 3,
eaat5559.

[13]	 M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, A. Ng, Proc. of the IEEE Intl. Conf. on Robotics and Auto-
mation (ICRA), Workshop on Open Source Robotics, Kobe, Japan,
May 2009.

[14]	 I. M. Pendleton, G. Cattabriga, Z. Li, M. A. Najeeb, S. A. Friedler,
A. J. Norquist, E. M. Chan, J. Schrier, MRS Commun. 2019, 9,
846.

[15]	 P. S. Gromski, J. M. Granda, L. Cronin, Trends Chem. 2020, 2, 4.
[16]	 P. S. Gromski, A. B. Henson, J. M. Granda, L. Cronin, Nat. Rev.

Chem. 2019, 1, 119.
[17]	 I. E. Castelli, D. J. Arismendi-Arrieta, A. Bhowmik, I. Cekic-Laskovic,

S. Clark, R. Dominko, E. Flores, J. Flowers, K. U. Frederiksen,
J. Friis, A. Grimaud, K. V. Hansen, L. J. Hardwick, K. Hermansson,
L. Königer, H. Lauritzen, F. L. Cras, H. Li, S. Lyonnard, H. Lorrmann,
N. Marzari, L. Niedzicki, G. Pizzi, F. Rahmanian, H. Stein, M. Uhrin,
W. Wenzel, M. Winter, C. Wölke, T. Vegge, arXiv:2106.01616 [cond-
mat.mtrl-sci] 2021.

[18]	 M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne, J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo,
O. Dumon, S. Edmunds, C. T. Evelo, R. Finkers, A. Gonzalez-Beltran,
A. J. G. Gray, P. Groth, C. Goble, J. S. Grethe, J. Heringa, P. A. C. ’t
Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok, et al., Sci. Data 2016, 3,
160018.

[19]	 E. Soedarmadji, H. S. Stein, S. K. Suram, D. Guevarra,
J. M. Gregoire, npj Comput. Mater. 2019, 5, 79.

[20]	 FastAPI, https://fastapi.tiangolo.com/#license (accessed: June 2021).
[21]	 Home Page, https://opcfoundation.org/ (accessed: June 2021).
[22]	 S. E. Ament, H. S. Stein, D. Guevarra, L. Zhou, J. A. Haber,

D. A. Boyd, M. Umehara, J. M. Gregoire, C. P. Gomes, npj Comput.
Mater. 2019, 5, 77.

[23]	 B. Rohr, H. S. Stein, D. Guevarra, Y. Wang, J. A. Haber, M. Aykol,
S. K. Suram, J. M. Gregoire, Chem. Sci. 2020, 11, 2696.

[24]	 F. Häse, M. Aldeghi, R. J. Hickman, L. M. Roch, M. Christensen,
E. Liles, J. E. Hein, A. Aspuru-Guzik, arXiv:2010.04153 [stat.ML]
2020.

[25]	 HDF5 Files, https://figshare.com/s/1578223bbf5ddde605af
[26]	 D. Allan, T. Caswell, S. Campbell, M. Rakitin, Synchrotron Radiat.

News 2019, 32, 19.
[27]	 M. Aldeghi, F. Häse, R. J. Hickman, I. Tamblyn, A. Aspuru-Guzik,

arXiv:2103.03716 [math.OC] 2021.
[28]	 The Uvicorn Project, https://www.uvicorn.org/
[29]	 N. Brandt, L. Griem, C. Herrmann, E. Schoof, G. Tosato, Y. Zhao,

P. Zschumme, M. Selzer, Data Sci. J. 2021, 20, 8.
[30]	 L. Talirz, S. Kumbhar, E. Passaro, A. V. Yakutovich, V. Granata,

F. Gargiulo, M. Borelli, M. Uhrin, S. P. Huber, S. Zoupanos,
C. S. Adorf, C. W. Andersen, O. Schütt, C. A. Pignedoli,
D. Passerone, J. VandeVondele, T. C. Schulthess, B. Smit, G. Pizzi,
N. M. Marzari, Sci. Data 2020, 7, 299.

[31]	 G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, Comput.
Mater. Sci. 2016, 111, 218.

[32]	 The Potential of Scanning Electrochemical Probe Microscopy and
Scanning Droplet Cells In Battery Research - Daboss - Electrochemical
Science Advances - Wiley Online Library https://chemistry-europe.
onlinelibrary.wiley.com/doi/full/10.1002/elsa.202100122 (accessed:
October 2021).

[33]	 The Celery Project, https://celeryproject.org/ (accessed: October
2021).

Adv. Mater. Interfaces 2022, 2101987

http://mission-innovation.net/wp-content/uploads/2018/01/Mission-Innovation-IC6-Report-Materials-Acceleration-Platform-Jan-2018.pdf
http://mission-innovation.net/wp-content/uploads/2018/01/Mission-Innovation-IC6-Report-Materials-Acceleration-Platform-Jan-2018.pdf
http://mission-innovation.net/wp-content/uploads/2018/01/Mission-Innovation-IC6-Report-Materials-Acceleration-Platform-Jan-2018.pdf
https://fastapi.tiangolo.com/#license
https://opcfoundation.org/
https://figshare.com/s/1578223bbf5ddde605af
https://www.uvicorn.org/
https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/elsa.202100122
https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/elsa.202100122
https://celeryproject.org/

