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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Tool condition monitoring in machining reduces downtimes, maximizes productivity rate and improves the quality of the end-product. However, 
it still poses a challenge due to the complex non-stationary character of the tool wear and the several uncertainties coming from the machining 
processes. Recent studies provide new strategies for indirect tool monitoring. Unfortunately due to the unbalance between big amounts of data, 
low accuracy and high complexity they are not feasible in an industrial environment. The present research work proposes a strategy for tool 
condition monitoring during turning of Ti-6Al-4V using acoustic emission signals and the chip segmentation frequency as measurement variable. 
Three different approaches for wear estimation using different AE-data processing methods are presented. Through their combination, a strategy 
for qualitative and quantitative tool wear monitoring is proposed.  
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1. Introduction 

Signal processing of acoustic emission (AE) is a well-
established technique for process and tool condition monitoring 
(TCM) due its high sensitivity, the wide information contained 
in the MHz frequency band and the recent advances in 
computational technology that allow a real-time processing. 
AE sensors capture the elastic waves generated by the rapid 
release of energy from local sources within the workpiece [1]. 
During the cutting process, these waves propagate through the 
structural elements of the machine, the tool and the workpiece 
generating significant information like chip segmentation 
frequency (fcs), workpiece surface quality and tool health. 
Kishawy et al. [2] recently published an extensive review of the 
AE-signal processing techniques most used for monitoring the 
features mentioned above during conventional cutting 
processes. The tool wear is usually quantitatively estimated 
during the process using the AE-signal energy of the full 
spectrum of frequencies as key indicator. This strategy is time 
consuming and lacks accuracy when several tool wear 

mechanisms manifest at the same time. For this reason, this 
work seeks an alternative to monitoring the full spectrum of 
frequencies and the process energy. Machining of titanium 
alloys under conventional cutting conditions produces chips 
with sawtooth form due to periodic strain localization caused 
by the prevalence of thermal softening over strain 
hardening [3]. The chip formation frequency feature was used 
by Zanger et al. during the broaching process of Ti-6Al-4V to 
predict tool wear and residual stresses [4]. 

In this work, tool wear monitoring during longitudinal 
turning of Ti-6Al-4V is carried out using AE sensors and the 
chip segmentation frequency is used as indicator variable. First, 
an experimental set-up is presented based on structure borne 
sensors and microphones placed next to the cutting edge. Next, 
several chip formation analysis techniques are introduced to 
investigate the relation between process parameters and chip 
segmentation frequency. Finally, different signal processing 
methods in time and frequency domain are described and their 
application potential for qualitative and quantitative tool wear 
prediction is discussed. 

 

Available online at www.sciencedirect.com 

ScienceDirect 
Procedia CIRP 00 (2021) 000–000 

  
     www.elsevier.com/locate/procedia 
   

 

 

2212-8271 © 2021 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 18th CIRP Conference on Modeling of Machining Operation 

18th CIRP Conference on Modeling of Machining Operations 

Chip segmentation frequency based strategy for tool condition monitoring 
during turning of Ti-6Al-4V 

Germán Gonzáleza,*, Daniel Schwärb, Eric Segebadea, Michael Heizmannb, Frederik Zangera 
awbk Institute of Production Science, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany 

bInstitute of Industrial Information Technology (IIIT), Karlsruhe Institute of Technology (KIT), Hertzstr. 16, 76187 Karlsruhe, Germany 

* Corresponding author. Tel.: +49-721-608-46316; fax: +49-721-608-45004. E-mail address: german.gonzalez@kit.edu 

Abstract 

Tool condition monitoring in machining reduces downtimes, maximizes productivity rate and improves the quality of the end-product. However, 
it still poses a challenge due to the complex non-stationary character of the tool wear and the several uncertainties coming from the machining 
processes. Recent studies provide new strategies for indirect tool monitoring. Unfortunately due to the unbalance between big amounts of data, 
low accuracy and high complexity they are not feasible in an industrial environment. The present research work proposes a strategy for tool 
condition monitoring during turning of Ti-6Al-4V using acoustic emission signals and the chip segmentation frequency as measurement variable. 
Three different approaches for wear estimation using different AE-data processing methods are presented. Through their combination, a strategy 
for qualitative and quantitative tool wear monitoring is proposed.  
 
© 2021 The Authors. Published by ELSEVIER B.V. 
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the 18th CIRP Conference on Modelling of Machining Operations 
Keywords:  Condition monitoring; wear; acoustic emission; segmentation frequency.

1. Introduction 

Signal processing of acoustic emission (AE) is a well-
established technique for process and tool condition monitoring 
(TCM) due its high sensitivity, the wide information contained 
in the MHz frequency band and the recent advances in 
computational technology that allow a real-time processing. 
AE sensors capture the elastic waves generated by the rapid 
release of energy from local sources within the workpiece [1]. 
During the cutting process, these waves propagate through the 
structural elements of the machine, the tool and the workpiece 
generating significant information like chip segmentation 
frequency (fcs), workpiece surface quality and tool health. 
Kishawy et al. [2] recently published an extensive review of the 
AE-signal processing techniques most used for monitoring the 
features mentioned above during conventional cutting 
processes. The tool wear is usually quantitatively estimated 
during the process using the AE-signal energy of the full 
spectrum of frequencies as key indicator. This strategy is time 
consuming and lacks accuracy when several tool wear 

mechanisms manifest at the same time. For this reason, this 
work seeks an alternative to monitoring the full spectrum of 
frequencies and the process energy. Machining of titanium 
alloys under conventional cutting conditions produces chips 
with sawtooth form due to periodic strain localization caused 
by the prevalence of thermal softening over strain 
hardening [3]. The chip formation frequency feature was used 
by Zanger et al. during the broaching process of Ti-6Al-4V to 
predict tool wear and residual stresses [4]. 

In this work, tool wear monitoring during longitudinal 
turning of Ti-6Al-4V is carried out using AE sensors and the 
chip segmentation frequency is used as indicator variable. First, 
an experimental set-up is presented based on structure borne 
sensors and microphones placed next to the cutting edge. Next, 
several chip formation analysis techniques are introduced to 
investigate the relation between process parameters and chip 
segmentation frequency. Finally, different signal processing 
methods in time and frequency domain are described and their 
application potential for qualitative and quantitative tool wear 
prediction is discussed. 



	 Germán González  et al. / Procedia CIRP 102 (2021) 276–280� 277
2 Germán González et al. / Procedia CIRP 00 (2021) 000–000 

Nomenclature 

AE  Acoustic emission 
TCM Tool condition monitoring 
RMS Root mean square, - 
fcs Chip segmentation frequency, Hz 
λ Chip compression ratio, - 
A0 Ideal chip cross-sections, µm2 
A1 Real chip cross-sections, µm2 
Δs Peak-to-peak distance, µm 
N Number of inverse peak to peak distances, - 
vc Cutting speed, m/min 

f  Feed per revolution, mm/rev 
rβ  Cutting edge radius, µm 

ɣ  Rake angle, ° 
𝐾𝐾𝑟𝑟  Main cutting angle, ° 

2. Experimental procedure 

Dry longitudinal turning tests were carried out on a 
vertical turning machine using uncoated carbide inserts type 
CCMW120404 and Ti-6Al-4V material. As shown in Figure 1, 
the set up features a static tool while a clamped workpiece 
rotates and moves downwards. To capture the high frequency 
vibration of the chip segmentation, three structure borne 
sensors (Vallen-System type VS45-H) able to measure a 
frequency range from 10 to 450 kHz were attached to the tool 
holder. AE-signals were amplified employing a pre-amplifier 
with a gain of 40 dB. Three ultrasonic microphones were also 
used to detect airborne sound emissions for filtering purposes. 
Furthermore, the cutting forces were measured using a force 
dynamometer. After each cutting pass, tool wear and chips 
were measured optically using a scanning microscope. A modal 
analysis was carried out to identify the eigenfrequencies of the 
system for filtering purposes.  

 
Figure 1: Experimental Setup. 

The effect of the process parameters and the tool wear on the 
chip segmentation frequency was analyzed. The process 
parameters and tool geometries are listed in Table 1.  

Table 1. Process parameters and tool geometries. 
vc  

m/min 
f  

mm/rev 
ap  

mm 
rβ  

µm 
ɣ 
° 

𝐾𝐾𝑟𝑟
° 

120, 200, 300 0.1, 0.2, 0.3 0.30 50 0, 4, -7 95, 75, 50 

3. Optical analysis of the chip segmentation  

The optical measurement of the chips produced during the 
turning process is challenging, since the process kinematic 
generates an uneven chip with regard to its thickness and 
geometry. In order to obtain the segmentation frequency of the 
sawtooth chips, a section of approximately 5 mm length was 
measured using a confocal laser scanning microscope as shown 
in Figure 2. To consider the chip compression in the analysis, 
as presented in our previous publication [5], a compression 
factor λ was introduced as the ratio of the chip cross-sections 
before (A0) and after (A1) machining. A0 is calculated 
analytically by integrating the distance between two tool tips 
taking into account the tool orientation, the cutting depth and 
the feed rate. Almost identical results can be achieved purely 
analytically or with the help of a CAD program. A1 is 
calculated using the weight per length of the chip fragments 
and the density according to A1 = mchip / (lchip·ρTi-6Al-4V).  

Since the curling of the chip affects the results with 
respect to the segment peaks, the peak-to-peak distances Δs 
were measured. The chip segmentation frequency fcs was then 
calculated as fcs = (vc / Δsmean)·λ. The chip’s morphology 
presents primary and secondary segmentation zones. When 
evaluating the secondary segments, a high standard deviation 
is observed, which represents the variability along a chip. This 
is due to the increasing uncertainty in the subjective evaluation 
of these small peak-to-peak distances. For this reason, the 
segmentation frequency of the primary segments will be 
investigated and used as indicator variable when recording and 
processing AE-signals. 

 
Figure 2: Chip segmentation analysis using confocal scanning microscopy. 

4. Segmentation frequency monitoring using AE 

The AE-signals from both structure and airborne sensors 
were recorded with a sampling frequency of 1 MHz and a 
resolution of 16 bit. First the measured signals are assigned to 
a current state over time and the tool state is classified as in cut 
or out of cut. These states can be distinguished from one 
another by considering the energy of the signal. The structure 
borne signals are used to detect whether the tool is in contact 
with the workpiece, since a significant increase of the energy 
can be seen as soon as the cutting process starts. In many cases 
when the tool is very close to the workpiece but not in cut, an 
increase of energy is measured by the structure borne sensors 
leading to inaccuracies in the signal post-processing. For this 
reason, the airborne signals of the microphones are used in 
combination with the structure borne signals to measure the 
process energy and to detect accurately the moments when the 



278	 Germán González  et al. / Procedia CIRP 102 (2021) 276–280
 Germán González et al. / Procedia CIRP 00 (2021) 000–000  3 

cutting processes starts and ends. For this purpose, a method 
based on principal component analysis (PCA) [6] is used to 
combine the energies of the signals. Therefore, the absolute 
value of the normed first vector of the PCA is used to combine 
the energy of all signals. With a subsequent k-means 
classification [7], a threshold value is automatically found with 
which the time location of the cutting process can be identified.  

4.1 Time domain characteristics of AE signals  

Once the start and end of the cutting process have been 
identified along the measurement time, features have to be 
extracted to obtain a time variant characterization of the 
signals. A well-known feature to indirect measurement and 
tracking of tool wear is the root mean square RMS value, that 
can be obtained from the structure borne signals by: 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑡𝑡) = √|𝑠𝑠(𝑡𝑡)|2 ∗ 𝛾𝛾(𝑡𝑡) (1) 

where 𝑠𝑠(𝑡𝑡) is the signal which is convolved with a window 
function 𝛾𝛾(𝑡𝑡) , in this case a Hanning function of length T. 
Figure 3a shows the raw signal with sawtooth waveform 
obtained from a structure borne sensor. Figure 3b shows the 
RMS value calculated from that raw signal using Equation 1.   

   
Figure 3: a) Raw signal of one structure borne sensor; b) RMS values. 

4.2 Frequency domain characteristics of AE signals  

Another feature of the signals is the frequency. Since the 
structure borne sensors measure the acceleration of vibrations, 
the sawtooth waveforms present very large step discontinuities 
when the direction of force changes. The distance between 
these steps correlates with the consecutively segmented chip 
formation caused by the ductile material failure along the 
adiabatic shear band in the primary shear zone.  

For each cutting test, the periodogram of the structure-
borne signals is obtained. However, later investigations have 
shown that classic frequency analyses, such as the 
periodogram, which are based on a Short-Time-Fourier-
Transform, are no longer optimal for evaluating the structure-
borne sound signals, since they work with harmonic functions. 
Using harmonic functions in combination with long filter 
lengths required for the necessary frequency resolution are not 
ideal for the analysis of signals with large jump discontinuities. 
Therefore, a method was developed to evaluate the structure-
borne sound signals in the time domain, which uses the zero 
crossing points, as shown in Figure 4a to estimate the chip 
segmentation frequency. The distance between the 
positive/negative zero crossings are interpolated and then 
converted by inverting into a frequency. As can be seen in 
Figure 4a the periodicity of the structure borne signal just as 
the segmentation frequency have a high variance over time. 
Hence the statistics of these frequencies can be shown in a 

histogram as in Figure 4b of the estimated frequencies and 
using the number of inverse peak to peak distances N, from a 
signal chunk of length T = 10 ms. To approximate the 
maximum of the histogram, the median of the frequencies can 
be used to get a clearer feature for chip segmentation frequency 
estimation than the analysis of the periodogram. To get a more 
robust feature the median is calculated from the frequencies 
below 70 kHz. Since higher frequencies of the chip 
segmentation frequencies are implausible they are considered 
as disturbance and are excluded in order to achieve the best 
possible approximation of the maxima of the histogram.  

  
Figure 4: a) Trend of the median estimated from the zero crossing distances 
below 70 kHz; b) Histogram of the frequencies calculated from the distances 
between the zero crossings.  

5. Results and discussion 

5.1 Monitoring of the chip segmentation frequency  

Using the parameters listed in Table 1 a full factorial 
study was carried out to investigate the behaviour of the chip 
segmentation during the turning process. Cutting tools were 
changed after each cutting test and the machining time was set 
to ensure reaching steady state. The chip segmentation 
frequencies were extracted from the AE-signals measured with 
the structure borne sensor located in cutting direction using the 
medians of the zero-crossing method. The primary 
segmentation path was also directly measured in five different 
sections of each chip using a confocal laser scanning 
microscope in order to validate the AE-measurements. Figure 5 
shows the estimated segmentation frequencies as a) cutting 
speed, b) feed per revolution, c) rake angle and d) main cutting 
angle vary.  

 

 
Figure 5: Segmentation frequency obtained by structure-borne signals post-
processing and direct analysis by scanning microscopy from turning process 
with variable a) cutting speed, b) feed, c) rake angle and d) main cutting angle. 
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Chip segmentation frequencies obtained from the AE-signals 
do not accurately correlate with the scanning microscopy 
measurements; however, they present the same tendency. This 
deviation can presumably be traced back to measurement errors 
in the calculations of the chip compression ratio, due to the very 
low weight of the chip segments.  

5.2 AE for monitoring tool wear  

As well as the process parameters, the tool wear also 
influences the chip segmentation frequency. At low cutting 
speeds and feeds, stable and almost linear abrasive wear 
appears at the tool flank face. When using more severe cutting 
parameters, the abrasive wear is combined with crater and 
adhesive wear at the rake face, which produces an irregular 
chip formation and in most of the cases leads to tool breakage. 
In this chapter three approaches for tool monitoring under 
different cutting conditions are presented.  

The first method for tool wear monitoring is the analysis of 
the cutting process energy using the RMS value. This technique 
allows a quantitative prediction of the tool wear and tool 
breakage based on a strong empirical characterization. 
Typically, for the calculation of the RMS value and its 
correlation with the tool wear the entire frequency spectrum is 
used [8], however the energy of the cutting process and the chip 
formation phenomena resides only in a specific frequency 
interval. Therefore, a signal bandwidth of 30 kHz with 
midpoint in the chip segmentation frequency was analyzed by 
applying a Gaussian window and used to calculate the RMS 
values. This reduces the calculation times significantly and 
provides more reliable information. Figure 6 shows the RMS 
values obtained from cutting processes with stable abrasive 
wear on the flank face and with dominant adhesive wear on the 
rake face respectively. On the one hand Figure 6a shows the 
RMS values correspond to the structure borne sensors placed 
on the tool in cutting (in blue color) and feed direction (in red 
color) respectively. The first observation is that the process 
energy is higher in cutting direction, which correlates with the 
measured forces in which the cutting force is also higher. For 
this reason, the sensor in cutting position was selected to 
measure the segmentation frequencies and to monitor the tool 
wear. The RMS values show almost linear tendencies, as well 
as the trend of the measured abrasive flank wear.  On the other 
hand, Figure 6b shows an almost linear tendency at the 
beginning of the signal, as in the previous figure. However the 
higher cutting speed used in this tests quickly produces the 
appearing of adhesive wear on the rake face leading to unstable 
chip formation and tool breakage (t = 8.5 s).  

   
Figure 6: RMS values corresponding a) to a stable process with linear flank 
face abrasive wear evolution and b) to an unstable process with dominant 
nonlinear adhesive wear on the tool rake face and tool breakage.  

After an event like tool breakage, the RMS value changes its 
trend, which can be ascending or, as in Figure 6b, descending. 

To build an empirical model for tool wear monitoring, the 
tool wear evolution has to be compared with the RMS values. 
Figure 7 shows this comparison, and additionally the 
comparison with the cutting force. The incremental ΔRMS 
values show, as well as the cutting force values, an ascending 
tendency when the tool wear increases.  

 

Figure 7: RMS value obtained from the AE-signals and cutting force at 
different stages of abrasive tool wear on the flank face. 

The second strategy for tool wear monitoring focuses on 
the measurement and tracking of the chip segmentation 
frequency fcs and its dependency on the process parameters. 

Figure 8a shows the chip segmentation frequency 
obtained using the zero crossing median of the signals from 
Figure 7. The segmentation frequency initially increases up to 
a stable level where it remains constant until the tool is 
completely worn.  

Figure 8b shows the chip’s primary segmentation 
frequency measured by scanning microscopy and obtained 
from the AE-signals using the zero crossing medians as in 
Figure 8a.  

Since the results do not show continuous values but steps, 
slopes and peaks, these values represent a mean over the whole 
cut. The chip segmentation frequency does not change 
significantly even though the wear increases. The tool wear 
presented on the tools was abrasive on the flank face during the 
entire process. It is to be noted that the wear-affected zone was 
exhausted here beyond a usual level.  

   
Figure 8: a) AE measured chip segmentation frequency, b) its evolution at 
different stages of flank wear and AE validation using scanning microscopy.  

The chip segmentation frequency is however affected by 
the changes in the cutting edge geometry. The identification of 
these changes in the chip segmentation frequency leads to the 
estimation of the tool wear type and the tool breakage.  

Figure 9 shows the chip segmentation frequency obtained 
using zero crossing medians of a process with severe cutting 
parameters. The signal presents at the beginning a stable zone 
followed by an increment, an abrupt decrease in frequency and 
a damping period to a stable position. This behaviour 
corresponds to the adhesion of workpiece material on the rake 
face and its release. 
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Figure 9: AE measured chip segmentation frequency under severe cutting 
conditions. 

The third presented method combines the previous two 
methods and uses the histograms of the signals to give not only 
qualitative but also quantitative information of the tool wear. 
Figure 10 shows three histograms of the signal shown in 
Figure 9 corresponding to three signal intervals and three 
discrete tool wear states.  

The first histogram corresponds to the beginning of the 
cutting process, the interval 10 - 30 ms, where the insert has no 
significant wear. The histogram shows a main fcs of 31 kHz.  

The second histogram corresponds to the interval 
150 - 180 ms. After this time the tool presented flank wear of 
100 µm and significant adhesive wear on the rake face. The 
histogram signal is much wider as the previous one due to the 
loss of periodicity in the chip formation. Also a change in fcs 

can be seen, which splits in two due to the change in the 
geometry of the cutting edge leading to a second segmentation 
frequency at 24 kHz. 

The third histogram corresponds to the interval 
200 - 230 ms, where the AE-signal is stable again and the tools 
are worn presenting a bigger cutting edge radius. Here a change 
in fcs compared with the first histogram is clearly appreciated.   

With the aid of the histograms and increasing the number of 
processed signal intervals the type of the tool wear can be 
estimated.  

This method can be combined with the RMS method to 
carry out qualitative and quantitative estimations. The values 
obtained with the presented methods are potential candidates to 
be investigated with e.g. advanced pattern classification 
techniques [9] in order to automatically identify the tool wear 
stage and type. 

 
Figure 10: Histograms obtained from the zero crossing median diagram of 
Figure 9 at different signal intervals and tool wear states. 

6. Conclusions 

This paper presents a chip-segmentation-frequency-based 
strategy for tool wear monitoring using AE-signals from 
structure borne and airborne sensors during the turning process 
of Ti-6Al-4V. The key findings of this work are: 

• The variation of the chip segmentation frequency with the 
process parameters and tool wear is presented. 

• Abrasive wear does not affect the segmentation frequency 
significantly, but causes an increase in the amplitude of the 
signals, which can be identified calculating the RMS value. 

• When using severe cutting parameters, crater and adhesive 
wear appears, which significantly changes the chip 
segmentation frequency as well as the process energy 
generated. 

• Three AE-signal processing techniques: RMS, cross-zero 
medians and histograms and their application to TCM are 
introduced and experimentally validated.   

Consequently, the acoustically measured chip segmentation 
frequency fcs can be considered a process characteristic variable 
with high potential for TCM for machining of Ti-6Al-4V alloy.  

7. Outlook: frequency range selection 

To predict the interval where the segmentation frequencies 
appear and thus configure the AE-signal acquisition a Finite 
Element Method (FEM) based strategy was developed. To 
determine the mean value of the segmentation frequency range 
the chip formation process was simulated in a 3D-FEM model. 
The material behavior was modeled using modified Johnson–
Cook flow stress and failure models. Calibration and results of 
the model are subject of future publications.  
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