
ABSTRACT: Adsorption and desorption of molecules are key 
processes in extraction and purification of biomolecules, engineer 
ing of drug carriers, and designing of surface specific coatings. To 
understand the adsorption process on the atomic scale, state of 
the art quantum mechanical and classical simulation method 
ologies are widely used. However, studying adsorption using a full 
quantum mechanical treatment is limited to picoseconds 
simulation timescales, while classical molecular dynamics simu
lations are limited by the accuracy of the existing force fields. To 
overcome these challenges, we propose a systematic way to 
generate flexible, application specific highly accurate force fields by 
training artificial neural networks. As a proof of concept, we study
the adsorption of the amino acid alanine on graphene and gold (111) surfaces and demonstrate the force field generation
methodology in detail. We find that a molecule specific force field with Lennard Jones type two body terms incorporating the 3rd
and 7th power of the inverse distances between the atoms of the adsorbent and the surfaces yields optimal results, which is
surprisingly different from typical Lennard Jones potentials used in traditional force fields. Furthermore, we present an efficient and
easy to train machine learning model that incorporates system specific three body (or higher order) interactions that are required,
for example, for gold surfaces. Our final machine learning based force field yields a mean absolute error of less than 4.2 kJ/mol at a
speed up of ∼105 times compared to quantum mechanical calculation, which will have a significant impact on the study of
adsorption in different research areas.

1. INTRODUCTION
The study of adsorption phenomena is one of the key research 
areas in chemical engineering,1,2 medicine,3−6 and biotechnol
ogy.7 Adsorption and desorption processes are used in a wide 
variety of applications, such as the extraction and purification 
of biomolecules,8,9 engineering of drug carriers,10 and design of 
coatings for specific surfaces.11 Due to its widespread 
importance, adsorption is studied worldwide using state of
the art quantum mechanical12−15 and classical simulation16−21

methodologies. However, there are limitations in both 
directions. A full quantum mechanical treatment, for example, 
using ab initio molecular dynamics (MD) simulations, to study 
adsorption is only accessible up to a few picoseconds of 
simulation time. On the other hand, classical MD simulation 
suffers from the accuracy of the available force fields (FFs). 
The state of the art universal FFs can only approximately 
predict weak intermolecular interactions and thus noncovalent 
binding energies, while specific FFs designed for adsorption are 
complex and system dependent.
In particular, the parameters are dependent on the class of 

adsorbate molecules as well as on the surface material. To 
study the adsorption of amino acids on a gold surface, for 
example, a specific FF GolP Charmm22 has been developed, 
where the gold surface is described by additional virtual

particles in addition to the gold atoms. Furthermore, to model
the polarizability of gold, the gold atoms are split into two
point charges forming a dipole. A specific set of nonbonded
parameters is suggested to describe amino acids on gold
surfaces, but the parameters of the surface have to be changed
to study DNA23 instead of amino acids on gold surfaces. To
study DNA on graphene,24 virtual atoms are no longer
necessary, while splitting of atoms is still required to account
for the polarizability of the surface. These examples illustrate
that it is far from trivial to derive classical FFs for even
relatively simple surfaces, a process which presently proceeds
case by case.
The FFs discussed above are examples of a bottom up

approach of the FF development, where first principles data
are used to parameterize FF. It is worth mentioning that there
is another route (top down approach) to parametrize FFs
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based on the experimental data. Geada and co workers25

developed a FF for gold surfaces following the top down
approach, which was in excellent agreement with the
experiments in predicting some interfacial properties. How
ever, generalization of the top down approach to any arbitrary
molecule−surface combination is complicated by the lack of
experimental data.
In general, surface specific FFs (bottom up) are para

meterized to reproduce the density functional theory (DFT)
optimized adsorption geometries and the corresponding
energies but do not necessarily generalize well to off
equilibrium conformations. Therefore, when used in MD
simulation, these FFs may generate inaccurate sampling of the
phase space and thus predict unreliably thermodynamic
ensembles and free energies. To overcome this difficulty, we
propose a way of generating flexible and accurate FFs to model
adsorption by training artificial neural networks (NNs), which
have become a powerful tool26−30 capable of providing
quantum mechanical accuracy when trained using DFT data.
In this work, we propose a similar approach to generate the FF
to study adsorption. Here, we develop only the intermolecular
part of the total FF, while proposing to use well established
FFs for the intramolecular part.
As a proof of concept, we study the adsorption of the amino

acid alanine (adsorbate) on two different surfaces (adsorbent),
graphene and gold (111). We develop a protocol to sample
energetically relevant conformations of the system (incl.
adsorbate and adsorbent) and perform DFT calculations to
compute the adsorbate−adsorbent interaction energy with
these geometries. We also compare the prediction from GolP
Charmm FFs (which was optimized to reproduce optimized

geometry and the corresponding energy) with the DFT
calculated energies and find that GolP Charmm does not
match well with the DFT calculated energies for the off
equilibrium conformations. While a traditional pairwise
potential [e.g., a Lennard Jones (LJ) potential] could not fit
the DFT calculated energy, an artificial NN with three hidden
layers was able to reproduce the DFT calculated energies with
mean absolute errors (MAEs) of 2.28 and 3.78 kJ/mol for the
graphene and gold system, respectively. Instead of using
generic NN as a fitting tool, we here pursue an approach that
parameterizes functions relevant to the physical nature of the
problem to increase both accuracy and efficiency. The optimal
feature for the best performance of the machine learning (ML)

models was found to be the 3rd and 7th power
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of the inverse distance {rij} between the atoms of the adsorbent 
and adsorbate, which is very different from the inverse distance 
power used in traditional pair potentials in MD simulation, but 
which can be easily implemented. Furthermore, we explored 
the effect of n body interactions in the adsorbate−adsorbent 
interaction energy. We found that the interaction between the 
gold surface and alanine has significant contributions from n
body interactions, while the graphene−alanine interaction is 
quite well represented by pairwise interactions.

2. METHODS

An overview of the simulation workflow is shown in Figure 1a. 
A diverse set of adsorbate−adsorbent conformers was 
generated using classical FFs, and their adsorption energies 
were computed using DFT. An ML model was trained on a

Figure 1. (a) Schematic workflow describing the generation of the ML based force field. (b) Schematic diagram describing the generation of
adsorbent−adsorbate conformers for DFT calculation.
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subset of the DFT data to predict adsorption energies as a
function of the conformation and to be used as a replacement
of the classical FF.
The atomistic model of alanine was built using the TLEAP32

module of the AmberTools program. The alanine molecule
was solvated in a TIP3P water box having dimensions of 15 Å
in each direction. The snapshot of the initial system prepared
for the MD simulation is shown in Figure S1. The full system
was first energy minimized and then equilibrated using an
NVT ensemble. A production run of 100 ns was performed
thereafter. All MD simulations were done in the GROMACS33

package using the Amber99SB ILDN34 FF. For more details of
the MD simulation protocol, see Supporting Information.
Approximately 1000 alanine conformations were extracted
from the production run. Alanine conformers were selected
randomly from this set and placed on top of Au (111) or
graphene surfaces (see Figure 1b). The graphene surface was
modeled as a single layer with the dimension ∼27/25 Å in x y
directions. We built two layers (each layer having dimensions
of ∼26/25 Å in x y directions) of gold atoms in the (111)
direction to model the Au (111) surface. The atomistic model
of the graphene and the gold is shown in Figure S2. The MD
generated alanine conformers were also additionally rotated to
generate new conformers, which are often not sampled in
simple unbiased simulation. To place the alanine conformers
on top of the surfaces, we sampled the x , y , and z direction
from the surface center and placed the center of geometry of
the conformers at these scanned coordinates. During the scan,
x and y positions were kept only within one unit cell, while for
the z position, we sampled distances of up to 5 Å from the
surface. A quick calculation of the classical interaction energy
(between the alanine and surface) was performed (using GAFF

FF35) with the generated system geometries (alanine and
surface). Only geometries with classical interaction energies
smaller than 1000 kJ/mol were used for the DFT calculation to
avoid expensive DFT calculations with unphysical geometries.
To measure the interaction energy between the alanine and the
surface for each geometry, three DFT single point energy
calculations were performed: isolated alanine, isolated surface
(has to be computed only once), and joint system of alanine
and the surface. All the DFT calculations were performed with
Perdew−Burke−Ernzerhof (PBE) exchange correlation func
tion36,37 with DFT D3 dispersion38,39 correction as imple
mented in VASP.40−43 For more details on the DFT
calculation methodology, see the Supporting Information.

3. RESULTS AND DISCUSSION
3.1. LJ Potentials. We performed interaction energy

calculations with ∼2000 different system geometries. The full
DFT data were split (3:1 ratio) into two sets of ∼1500 and
∼500 geometries. In this paper, we always use the larger data
set with ∼1500 data points (training data set) to train different
models, while the smaller data set with ∼500 data points (test
data set) were used to evaluate the model after training.
We first tried to fit the DFT calculated energies with the

widely used LJ type pair potentials of the form
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The sum in eq 1 is over all pairs of atoms between alanine and
the surface. Here, rij is the distance between two atoms i and j.
We use σij = (σi + σj)/2 and ε ε ε=ij i j , where σi and εi are the

Figure 2. (a, d) Test and training accuracy of Lennard Jones (LJ) potential fitting (LJ models) procedure. Test and training accuracy of the (b, e)
linear regression (LR) model [equivalent to a neural network (NN) without a hidden layer] and (c, f) nonlinear NN (with a hidden layer) models.
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LJ parameters of atom i. We used element specific LJ
parameters in this case. So, if atom i is a carbon atom, then
σi= σC and εi = εC. In total, we had eight fitting parameters in
the case of the alanine on graphene system (σ and ε for
hydrogen, carbon, oxygen, and nitrogen). For the alanine on
gold system, we had 2 additional fitting parameters for gold,
leading to 10 fitting parameters in total.
The training set was used to fit the pairwise potential

according to eq 1. The best fitted parameters were further used
to evaluate the energy for the smaller test set. A comparison of
the DFT calculated energy and the LJ fitted energy of the
training and test sets is shown in Figure 2a,d. To evaluate the
accuracy of the fit, we calculated the MAE and accuracy (r2) of
the fitted energy with respect to the DFT calculated energy.
The prediction accuracy in the case of the graphene surface
was much better (MAE ∼ 14 kJ/mol and r2 = 0.871) than in
the case of the gold surface (MAE of ∼32 kJ/mol and r2 =
0.487). However, in both cases, the LJ pairwise potential was
not accurate enough to represent the DFT calculated energies
and therefore cannot be used as a possible FF for any
simulations. To obtain a better prediction accuracy without the
need to manually add additional terms to the LJ equation (or
assuming an altogether different functional form44−46), we
trained ML models to predict the DFT calculated energies as a
function of the system geometries.
We further compare the DFT calculated energies of the

conformers with the energies calculated using the GolP
Charmm22 FF. The GolP Charmm FFs, which were para
meterized to reproduce the optimized adsorption geometries
and the corresponding energies, do not match well with the
DFT calculated energies for the other off equilibrium con
formations (see Figure 3 below), resulting in a very high MAE

and low r2 values. However, part of the discrepancy between
the GolP Charmm and the DFT calculated energies reported
in this article (using the PBE D3 method) may also be47 due
to different DFT methodologies used in GoIP Charmm (uses
the vdW DF method). However, we expect that one of the
main reasons for large deviations between GoIP and DFT is
the errors due to the virtual atoms in GoIP Charmm, which
can come close to atoms of the adsorbate.

3.2. Linear Regression. Before proceeding to the complex
nonlinear NN based models, we first check whether a linear
pairwise model with much more than 8 or 10 parameters (as
used in the LJ case) can actually fit the DFT calculated energy,
or whether a more complex model including higher order (e.g.,
three body) interactions is needed to accurately predict DFT
energies.
Therefore, we first train a linear regression (LR) model

(equivalent to an NN without a hidden layer). We calculate
the inverse distance (1/rij) of each atom of the alanine from
the closest three atoms of the surface. The different algebraic
powers of these inverse distances with an integer exponent
were used as the feature vector of the LR model. If {1/rij} is
the set of all the inverse distances, then the input of the LR was

constructed as
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with values between 1 and 14. The same data set which was
used to fit the LJ potential was used to train the model. We
used all possible combinations of α and β to test the accuracy
of the resultant linear model by calculating the MAE of the
predicted energy with respect to the DFT calculated energy for
the test data set. As shown in Figure 4, for both graphene and

gold, the lowest MAE is obtained when the 3rd and 7th power
of the inverse distances were used as input features (
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) for the NN. The performance of the linear

model for this optimal choice of features is shown in Figure
2b,e.

3.3. NNs with Hidden Layers. In the next step, we use the

optimized input features
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nonlinear NN with hidden layers. We used a NN with 3
hidden layers and 1000 nodes in each layer. We used a leaky
ReLU activation function for all fully connected hidden layers,
while a linear activation function was used for the output layer.
We used the L2 regularization scheme to prevent overfitting of
the training data and the Adam optimizer and mean squared
error loss function for the model training. Optimized values of
the hyperparameters were found by a grid search of the
parameter space using a training:validation:test split of
1500:250:250 datapoints. To evaluate the performance of the
trained model, we calculated the correlation coefficient r2 and
MAE of the NN predicted energies compared to the DFT
calculated ones. The learning curve, that is, the test set
performance as a function of the number of training points is

Figure 3. Comparison between the DFT calculated energy with the
energies calculated using GolP Charmm FF. The performance of
GolP Charmm is compared for both the training (shown in blue) and
test data sets (shown in red). For the calculation of MAE (and r2),
energies (predicted by GoIP Charmm) up to 1000 kJ/mol are
considered.

Figure 4. Mean absolute error (MAE) of the test data set for the
linear NN (without any hidden layers) model for (a) graphene and
(b) gold with different choices of input features of the form
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. The lowest MAE values are 2.74 kJ/mol for graphene

at alpha = 3 and beta = 7 and 5.34 kJ/mol for gold at α = 3 and β = 7.
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shown in Figure 5. We find a fast improvement of r2 and MAE
up to 500 training points, followed by flattening behavior. In

the case of graphene surfaces, the MAE seems to saturate
toward training set sizes of 1500 datapoints, while in the case
of gold surfaces, the MAE still decreases logarithmically. A
comparison of the r2 and MAE values for both the training and
test data sets is shown in Figure S3.
The comparison of the performance of this NN model with

the LR model (NN model without a hidden layer) and the LJ
fit is shown in Figure 2c,f. The same training (∼1500 data
points) and test data sets (∼500 data points) were used for all
the three models (LJ, LR, and NN) for this comparison. The
performance of the trained NN model for a gold surface on
another (including molecule conformers at longer distances
from the gold surface) test data set is shown in Figure S4.
In the case of both graphene and gold, the nonlinear NN

model could fit the DFT calculated energy highly accurately,
resulting in an MAE value of <4.2 kJ/mol. It is worth
mentioning that the accuracy reported in this paper is always
relative to the accuracy of the data generating methods, that is,
DFT. We estimate the accuracy of DFT to be ∼4.2 kJ/mol,
which means that our NN based FFs cannot become more
accurate than that. However, it was previously shown that
transfer and delta learning methods can be used to increase the

accuracy of ML methods beyond DFT accuracy with relatively 
small data sets calculated with more accurate reference 
methods.48

3.4. Role of n-Body Interactions for Graphene and 
Gold. To compare the performance of the different models in 
the case of both graphene and gold surfaces, we plot the MAE 
(Figure 6a) and r2 values (Figure 6b) of the test data. An error 
bar in the MAE (and r2) was estimated by calculating the 
standard deviation from 10 MAEs (and r2) obtained from 10 
different train−test split on the entire data set. The 
corresponding values are also reported in Table 1.
As evident from Figure 6, the linear fitting of the DFT 

energies (LR model) works well in the case of graphene. The 
introduction of nonlinear NN models (deep NNs) only 
slightly improves (see Figure 6 and Table 1) the quality of 
fitting (17% reduction in MAE). In the case of gold, the linear 
model shows relatively poor performance in comparison to the 
graphene case, which improves the error by 29%. The use of a 
deep NN improves the quality of fit, bringing down the MAE 
value to less than 4.2 kJ/mol. The inadequacy of the LR model 
in the case of gold points toward the n body contribution to 
the DFT calculated interaction energies. The LJ fit as well as 
the LR model only can approximate the energy with two body 
interaction terms and therefore fail when the energy has three
body (or higher order) contributions in it. Higher order 
interactions can implicitly be constructed by the hidden layers 
of the NN by combining the two body potential terms that are 
used as an input. The deeper the NN is, the more complex are 
the interaction terms it can construct and use for the 
prediction. The improvement of the NN model compared to 
the linear model in the case of gold surfaces may indicate that 
the interaction energy between gold and alanine probably 
requires three body (or higher order) contributions, and 
therefore, classical pairwise potential may not be adequate to 
reproduce the energy in an accurate manner.

4. CONCLUSIONS
The phenomena of adsorption are prevalent in almost all 
branches of research, especially in material, chemical, and 
bioengineering.2,5,49 This has attracted the interest of the 
research community to understand the adsorption phenomena 
on an atomic scale. The computational tools to study 
adsorption within full quantum mechanical treatment suffer 
from its limitation to access time scales longer than a few 
picoseconds, while the classical MD simulation is crippled by

Figure 5. Learning curve of the nonlinear NN (with a hidden layer):
r2 value and MAE on the test set; the ML model (NN) for alanine on
(top panel) graphene and (bottom panel) gold.

Figure 6. Mean absolute errors (MAEs) (a) and r2 values (b) for LJ, LR, and NN models.
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the accuracy of the existing FFs. In this article, we propose a
way to generate flexible FFs with high accuracy (MAE < 4.2
kJ/mol) to model adsorption by training artificial NNs with
the DFT calculated adsorption energy.
As a proof of concept, we studied the adsorption of amino

acid alanine on the graphene and gold (111) surface and train
artificial NNs to reproduce the DFT calculated adsorption
energy with accuracies of 2.28 and 3.78 kJ/mol for graphene
and gold systems, respectively. While a single DFT calculation
(including the gold surface) takes ∼5 h of computation time in
a single node with 20 cores (i.e., 100 core hours), the training
of the NN only takes approximately 3 min on a single CPU
core. In search for the optimal features for the ML models, we
found out that the 3rd and 7th power of the inverse distance
(alanine atoms to the graphene/gold surface atoms) provide
the best performance of the ML models. Interestingly, the
pairwise potentials used in the traditional FFs use a different
power (e.g., 6 and 12 for LJ potential) of the inverse distances
rather than 3 and 7. In the end, we provide an interesting
insight in terms of the contribution of the three body (or
higher order) interaction in the alanine−surface interaction.
Although alanine−graphene interaction is well reproduced by
pairwise interaction terms, there is a significant contribution of
three body and higher order terms in the alanine−gold
interaction.
In this work, we demonstrated the generation of NN based

models only for adsorption energies and not for the forces. An
accurate energy model will allow us to perform simulations
using our in house developed code SIMONA,31 which uses a
Monte Carlo based approach for sampling the phase space of
atomistic systems. In principle, the NN approach can be
extended to also obtain forces, either computing the analytic
gradient of the energy50,51 or training a separate ML model for
force prediction.
As a future direction, we plan to use this methodology to

generate FFs for more complex molecule−surface interactions.
An implementation of these NN based FFs in the MD
simulation packages is already in progress at the moment.
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