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Abstract

Abstract
Directionally solidified eutectics of NiAl matrix and fibrous refractory metals, like Mo, can form
cellular mesostructures with significant fiber misalignment and changing fiber volume fraction, for
example, when being solidified at high growth rates or when increased solidification intervals are
present in the alloys. In order to reveal the deteriorating impact of the mesostructure, i.e., the vol-
ume fraction and aspect ratio of the well-aligned cells, on the creep response of such cellular eutectics,
we rely on scale-bridging numerical simulations, using the level-set framework by Sonon et al. [1] for
microstructure generation and FFT-based solvers for computing the creep response. Our results in-
dicate, firstly, that the fraction of properly aligned regions in cellular NiAl composites is lower than
estimated in earlier experimental studies, due to the existence of degenerated regions surrounding
the well-aligned cell interiors. Secondly, studying the influence of the cell aspect ratio shows that
the apparent stress exponent of the composite is very sensitive with respect to this parameter, pro-
viding a possible explanation for the large scatter of experimentally determined stress exponents in
previous studies. A comparison of the numerical simulations to a linear rule of mixtures and the
frequently applied analytical Kelly-Street model illustrates that both fail to accurately describe the
magnitude of minimum creep rates in the investigated ranges of volume fractions and aspect ratios.
The heterogeneity of the strain-rate field on the mesoscale is identified as the primary error source,
demonstrating that either numerical simulations or more sophisticated analytical models are required
for reliably predicting for the creep response of cellular materials.
Keywords: Directional solidification, Nickel-aluminides, Creep, Micromechanical modeling, Level-
set methods

1 Introduction

Alloys based on the intermetallic compound NiAl feature a number of attractive properties, such as
high solidus temperatures, low density and excellent oxidation resistance [2], making them appealing
candidates for novel structural high-temperature materials. However, binary NiAl lacks sufficient creep
resistance at high temperatures. As a result, research effort was devoted to improving the creep behavior
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by introducing body-centered cubic refractory metals such as Mo or Cr to the B2-ordered NiAl, forming
in-situ eutectic two-phase microstructures. Bei and George [3] used directional solidification to produce
microstructures consisting of well-aligned single-crystalline Mo fibers embedded in an NiAl matrix. It
was found that the Mo-fibers were virtually dislocation free [4, 5], resulting in a high yield strength [6]
and an increase in creep resistance by several orders of magnitude in strain-rate for a given applied
stress [7–9]. Motivated by these experimental findings, Albiez et al. [10] proposed suitable single-crystal
material models for the NiAl-matrix and the Mo-fibers and studied the creep behavior of the well-aligned
composite through crystal plasticity simulations. In a subsequent study [11], the models were extended
by a non-local gradient-plasticity approach to account for the movement and transfer of dislocations.
Overall, both experimental studies and simulations significantly improved the understanding of the creep
behavior of well-aligned NiAl-Mo composites.
However, several studies [7,12,13] demonstrated that the microstructure of directionally solidified NiAl-Mo
is rather sensitive to the manufacturing process. In particular, insufficient temperature gradients and/or
high growth rates, which are desirable from the viewpoint of industrial application, lead to deviations
from an ideal microstructure of perfectly aligned fibers in the NiAl matrix. NiAl-Mo develops cellular
structures [12, 13] in which regions of well-aligned fibers are surrounded by degenerated regions with
higher NiAl fraction and coarse, misaligned Mo fibers, see Fig. 1. Indeed, Gombola et al. [14] revealed
that similar structures emerge for various compositions in the NiAl-(Mo,Cr) system.
Seemüller et al. [13] showed that cell formation results in a lower creep resistance, between well-aligned
NiAl-Mo and binary NiAl. The ability to model and predict the creep behavior of cellular NiAl based
composites appears crucial, as: (i) Perfect laboratory conditions for producing NiAl-based eutectics
may not always be available in an industrial context where high growth rates are preferred. (ii) The
process conditions to achieve perfect alignment become challenging in case of advanced complex alloying
compositions with extended solidification intervals [14]. The applied temperature gradients need to cover
the solidification interval in the transition zone from the liquid to the solids in order to obtain stable
processing conditions during solidification. Thus, cellular microstructures become more likely under
practical conditions. Determining the impact of partially interrelating morphological features, such as
cell volume fraction and aspect ratio, on the mechanical behavior is necessary, not only to assess the
sensitivity of the overall creep response to microstructural irregularities, but also for identifying suitable
processing conditions and alloy compositions. Finally, a rather large disparity on reported experimental
results, for example regarding the apparent stress exponent of the composite [8–10, 13], might indicate
that the mesostructure of the material has already played a role in some of the previous studies as will
be highlighted in Sec. 2.2 and Sec. 4.4.
Thus, the aim of the present study is to investigate the creep behavior of cellular NiAl-Mo through
creep simulations on the microscale. To this end, we use modern FFT-based methods [15], which have
established themselves as powerful algorithms for computing the effective response of microstructured
materials, such as composites [16, 17] and polycrystals [18, 19]. In the context of micromechanical creep
simulations, the effective strain-rate is computed by volume averaging the strain-rate field on the mi-
crostructure level, which arises in response to a prescribed mean stress. The main difficulty for this task
lies in the multi-scale nature of the problem, i.e., the difference in the characteristic length scales of the
different geometric features of the material, see Fig. 1. While the cellular colonies are roughly 1 mm and
0.2 mm in length and diameter, respectively, the diameter of the Mo fibers is in the sub-micron scale.
Hence, if a volume element with multiple cells is considered for simulating the creep behavior, resolving
the individual fibers will be infeasible. Instead, we follow Seemüller et al. [13] and divide the material on
the mesoscale into soft regions for the boundary, behaving similar to the NiAl-matrix, and homogeneous
hard regions, mirroring the effective creep behavior of the well-aligned NiAl-Mo colonies.
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Macroscale Mesoscale Microscale

∼ 1cm ∼ 200µm ∼ 1µm

Figure 1: Structure of directionally solidified cellular NiAl-Mo sketched at different length scales based
on dark field optical microscopy images by Seemüller et al. [13]

In order to bridge the different length scales involved in the simulations, we proceed with the following
steps:

1. A phenomenological surrogate model for the anisotropic creep response of the single well-aligned
colonies is calibrated based on crystal plasticity simulations following Albiez et al. [10] in Sec. 2.

2. Synthetic microstructures, mirroring the geometrical features of cellular NiAl-Mo, are generated
based on the level set framework of Sonon et al. [1, 20,21], see Sec. 3.

3. Having gathered all necessary prerequisites, the effective creep behavior of cellular NiAl-Mo is
investigated through FFT-based micromechanics simulations in Sec. 4.

2 Modeling the anisotropic creep behavior of well-aligned
NiAl-Mo colonies

2.1 Single crystal plasticity model for fiber and matrix

In the following, we briefly review the material models and parameters [10] used for characterizing the
anisotropic creep response of well-aligned NiAl-Mo. The material behavior of the NiAl-matrix and the Mo-
fibers is governed by a classical small-strain single-crystal elasto-viscoplasticity model. In the following,
ε denotes the infinitesimal strain tensor and σ refers to the Cauchy stress tensor. Tensor contractions are
marked by dots, i.e, a single tensor contraction is denoted by · and a double tensor contraction reads : .
For instance, with vectors u, v, second order tensors A, B, and a forth order tensor C, the expressions
u = A · v and A = C : B are equivalent to ui = Aijvj and Aij = CijklBkl, respectively, in index notation
using the summation convention. The linear elastic material behavior is governed by Hooke’s law for the
elastic strains εe

σ = C : (ε− εp) with ε = εe + εp (2.1)

and the stiffness tensor C. The plastic strain εp due to dislocation glide is realized as a linear combination
of simple shears [22] in crystallographic slip systems characterized by their slip direction dα and slip plane
normal nα, where the subindex (·)α refers to the αth of N slip systems. Assuming that the slip in the
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glide systems follows the classical power-law flow rule of Hutchinson [23], the flow rule reads

ε̇p =

N∑

α=1

γ̇0 sgn(τα)
∣∣∣ τα
τF

∣∣∣
m

dα ⊗s nα, (2.2)

with shear stress τα = σ : (dα ⊗s nα), yield stress τF, reference slip rate γ̇0 and stress exponent m.
We emphasize that the chosen flow rule only covers plasticity due to conservative dislocation glide.
More sophisticated models which include the smaller strain contribution of dislocation climb by adding
additional non-conservative modes of deformation have been proposed, for instance, by Lebensohn et
al. [24]. However, as Albiez et al. [10] demonstrate, the chosen approach (2.2) is able to predict the creep
behavior of NiAl-Mo for temperatures between 900◦C and 1000◦C and stresses between 100 MPa and
250 MPa with good accuracy. Furthermore, the stress exponents m of the monolithic phases as well as
of the composite are significantly larger than 1 indicating that diffusional contributions to the overall
strain are negligible. Hence, to avoid the introduction and calibration of additional unknown material
parameters, we restrict to the glide based formulation. Furthermore, the temperature dependence of
the creep behavior is incorporated in the reference shear rate by Albiez et al. [10], using an Arrhenius
approach. As an exemplifying study, we compare our modeling results mainly with the experiments by
Seemüller et al. [13], who carried out creep tests at 900◦C. All material parameters, experimental data
and simulation results in the this study are given for this fixed temperature. In addition, experimental
results show that the softening of the Mo-fibers, i.e., the decrease of τF during creep, is only weakly
pronounced in the cellular material, see Fig. 5 in Seemüller et al. [13]. Computational investigations
suggest that, even for the well-aligned material, substantial softening only occurs for direct loading in
fiber direction, see Wicht et al. [25, Sec. 6.3.3]. For a thorough investigation of this load case and a
physical interpretation of the softening, we refer to the studies of Albiez et al. [10, 11]. As the present
study focuses on cellular NiAl-Mo, we restrict to investigating the steady-state creep rate of the materials,
i.e., we treat τF as constant.

NiAl C11 = 184 GPa C12 = 121 GPa C44 = 88.1 GPa

τF = 30.75 MPa γ̇0 = 8.45× 10−6 s−1 m= 5.8

Mo-Fibers C11 = 410 GPa C12 = 163 GPa C44 = 100 GPa

τF = 3751 MPa γ̇0 = 3.43× 10−1 s−1 m= 10

Table 1: Material parameters for NiAl and Mo at 900◦C [10, 13]

The material parameters for NiAl and the Mo-fibers are mostly taken from Albiez et al. [10], see Tab. 1. By
comparing the yield strength τF of the two materials at 900◦C, the difference in creep resistance becomes
apparent. Due to the directional solidification process, the Mo-fibers are virtually free of dislocations [4,5],
leading to a high yield strength of roughly 3% of the shear modulus of Mo. Based on an extensive literature
review, Albiez et al. [10] were able to adopt most material parameters from existing sources. Indeed,
among the relevant parameters for the present study, only the reference shear rate of the Mo-fibers was
calibrated to match simulation results [10]. However, as the study of Seemüller et al. [13] represents
our primary point of comparison, we adopt two additional changes with respect to the parameters of
NiAl. More precisely, we choose m = 5.8 as measured by Seemüller et al. [13], compared to 4.04 used
by Albiez et al. [10]. Indeed, a large range of values from 3 to 7 has been reported for the stress
exponent of single-phase NiAl in the literature [2]. The large scatter in experimental measurements may
be due to the sensitivity of the stress exponent of near stoichiometric NiAl on composition, as noted by
Whittenberger [26]. To compensate for the change in the stress exponent, the value of γ̇0 was modified
to reach a decent agreement between modeled material behavior and experimental measurements, see
Fig. 2(c).
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2.2 Minimum creep rate of well-aligned NiAl-Mo under various
loading angles
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Figure 2: (a) Transverse section of the two-dimensional well-aligned NiAl-Mo microstructure used in FFT-
computations; (b) Sketch of a longitudal section of well-aligned NiAl-Mo indicating growth direction and
loading angle; (c) Comparison of micromechanical simulations and experimental results by Seemüller et
al. [13] for binary NiAl and well-aligned NiAl-Mo

For characterizing the material behavior of well-aligned NiAl-Mo, we use the two-dimensional cell shown
in Fig. 2(a), with 100 fibers occupying 14% of the total area [3]. Distinct microstructural features of
well-aligned NiAl-Mo include the square cross-section of the Mo-fibers and their regular arrangement in
a hexagonal pattern, see Bei and George [3, Fig. 1] or Seemüller et al. [13, Fig. 3]. To generate a similar
hexagonal arrangement, we use the mechanical contraction algorithm of Williams and Philipse [27] to
generate a circle packing with 70% volume fraction. Subsequently, square fibers of appropriate size are
placed at the centers of the packed circles. The resulting structure is discretized by 256 × 256 pixels.
For investigating the anisotropic creep behavior of the material, we apply periodic boundary conditions
and prescribe the effective stress tensor σ̄, i.e., the volume average of the stress field. More precisely,
the prescribed effective stress tensor has the form σ̄ = σ d ⊗ d corresponding to a uniaxial stress state
with magnitude σ and loading direction d. The loading is applied in 1 s and held until a steady-state
strain-rate is reached. Different loading directions n are tested with respect to their angle of misalignment
to the growth direction, see Fig. 2(b) for a sketch. Details on the computational setup of the FFT-based
micromechanics solver are given in Sec. 4.1. The computed minimum creep rate of the well-aligned
material for loadings in growth direction at various stress levels is compared to the creep experiments by
Seemüller et al. in Fig. 2(c). Although the data from simulation and experiment are in decent agreement
in the range from 150 − 200 MPa, the slopes, i.e., the apparent stress exponents, differ notably, with
m = 10 in the simulations compared to values of 5 to 7 in Seemüller et al. [13]. This indicates that
the Mo-fibers control the creep behavior of the single colony in the simulation. A broader review of
existing creep studies reveals that there is, in fact, no clear consensus on the stress exponent of well-
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aligned NiAl-Mo. For instance, creep experiments by Haenschke et al. [7], Albiez et al. [10] and Dudová
et al. [8] displayed fiber-dominant behavior with m between 10 and 14. In contrast, Seemüller et al. [13]
and Hu et al. [9] measure an exponent in the range of 4 − 7. Taking a closer look at the anisotropic
creep behavior predicted by the microstructure computations, see Fig. 3, elucidates the disparity in
experimental measurements. Fig. 3(a) reveals the pronounced sensitivity of the creep behavior with
respect to the angle of misalignment between loading and fiber direction. For loading angles larger than
5◦, the creep rate quickly increases by orders of magnitudes. Indeed, between 15◦ and 30◦, the reinforcing
effect of the fibers mostly vanishes and the creep rate approaches that of the pure NiAl matrix. A more
subtle change in behavior can be observed at small angles of misalignment, see Fig. 3(b). Between 0◦ to
2◦, we observe no change in creep behavior and the apparent stress exponent corresponds to that of the
Mo-fibers. However, between 3◦ to 4◦, there is a turning point from fiber-controlled to matrix-controlled
creep, with little change in the overall magnitudes of creep rates (at least between 150− 200 MPa). This
offers a possible explanation for the wide range of determined stress exponents in the aforementioned
experimental studies, as a small misalignment with respect to the loading direction has a notable impact
on the measured rates. In Sec. 4.3, we identify the mesostructure of the material as another plausible
source for the scatter in stress exponents.
Overall, we conclude that the material model and parameters by Albiez et al. [10] lead to a good agreement
of micromechanical simulations with experimental results, in particular when taking the sensitivity of the
material behavior with respect to load angle into account. Indeed, the creep data by Seemüller et al. [13]
matches the computational results for a loading angle of 4◦ almost perfectly, see Fig. 2(c) and Fig. 3(b).
Having validated the model and computations on the microscale, we use the obtained results to calibrate
a surrogate model, mimicking the effective behavior of the well-aligned fibrous material.

Micromechanical simulation Surrogate model

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦
10−12

10−11
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Figure 3: Comparison of FFT-based simulations on well-aligned NiAl-Mo microstructures and the surro-
gate model (2.8) for uniaxial creep tests where the loading angle is given with respect to growth direction:
(a) Minimum creep rate vs loading angle; (b) Norton plot for small loading angles

2.3 Phenomenological model for the well-aligned fiber structure

The objective of the section at hand is to develop a simple phenomenological elasto-viscoplastic material
model which is able to capture the creep behavior observed in Sec. 2.2. In particular, the following
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properties should be reflected by the model:

1. The transverse isotropy of both stiffness and flow rule, induced by the microstructure.

2. The directional dependence of the apparent stress exponent, resulting from the difference in fiber
and matrix behavior.

The effective linear elastic behavior is governed by Hooke’s law (2.1), where the components of the effective
stiffness tensor are readily obtained by six linear elastic computations. The computed stiffness tensor is
almost transversely isotropic, with a relative error below 0.1%. The associated engineering constants are
listed in Tab. 2. For the flow rule, we rely on the transversely isotropic splitting of the deviatoric stress
tensor by Naumenko-Altenbach [28]

σ′ = σ′L + σ′P + σ′S (2.3)

into a longitudinal component σ′L, the plane stress σ′P and the remaining out-of-plane shear stress σ′S,
defined by

σ′L =

(
3

2
σ : (n⊗ n)− tr(σ)

)(
n⊗ n− 1

3
Id
)
, (2.4)

σ′P = (Id−n⊗ n) · σ · (Id−n⊗ n)− 1

2
(tr(σ)− σ : (n⊗ n))(Id−n⊗ n), (2.5)

σ′S = 2(n · σ · (Id−n⊗ n))⊗s n, (2.6)

respectively. Here, n denotes the unit normal of the isotropic plane, i.e., the fiber direction. Naumenko-
Altenbach [28] show that the Frobenius norms ‖σ′L‖, ‖σ′P ‖ and ‖σ′S‖ of the stress components constitute
a set of independent, transversely isotropic invariants of σ′. Thus, for any flow potential of the form
Φ(σ′) = Φ̂(‖σ′L‖, ‖σ′P ‖, ‖σ′S‖), the associated flow rule ε̇P = ∂Φ

∂σ′ (σ
′) is transversely isotropic. For the

present model, we use the simple ansatz

Φ(σ′) = ε̇0

(
σFL

mL + 1

∣∣∣∣
‖σ′L‖
σFL

∣∣∣∣
mL+1

+
σFP

mP + 1

∣∣∣∣
‖σ′P‖
σFP

∣∣∣∣
mP+1

+
σFS

mS + 1

∣∣∣∣
‖σ′S‖
σFS

∣∣∣∣
mS+1

)
, (2.7)

which leads to the flow rule

ε̇P(σ′) = ε̇0

(∣∣∣∣
‖σ′L‖
σFL

∣∣∣∣
mL σ′L
‖σ′L‖

+

∣∣∣∣
‖σ′P‖
σFP

∣∣∣∣
mP σ′P
‖σ′P‖

+

∣∣∣∣
‖σ′S‖
σFS

∣∣∣∣
mS σ′S
‖σ′S‖

)
, (2.8)

i.e., each stress component σ′L, σ
′
P, σ

′
S has an associated yield stress σFL , σ

F
P, σ

F
S and the stress exponent

mL, mP, mS, respectively. In contrast to the equivalent-stress approach by Naumenko-Altenbach [28],
the present formulation is able to accommodate different stress exponents for longitudinal and in-plane
loadings. On the downside, our flow rule does not reduce to the classical J2-plasticity model for a specific
choice of parameters.
The material parameters for the flow rule, see Tab. 2, were calibrated by performing a creep test in fiber
direction and two shear-creep tests. The resulting creep behavior of the surrogate model is compared
to the crystal plasticity computations of Sec. 2.2 in Fig. 3. Overall, the surrogate model matches the
simulations exceptionally well. Both, the deterioration of creep resistance for off angle loadings, see
Fig. 3(a), and the transition from fiber to matrix-dominated creep at small angles, see Fig. 3(b), are
reproduced with high accuracy. Overall, the surrogate model is suitable for facilitating computational
investigations on cellular NiAl-Mo on the mesoscale. However, some remarks on the limitations of the
model are in order:
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1. The largest relative error in strain-rates between surrogate model and micromechanical crystal
plasticity simulation is around 25% for loadings perpendicular to the fibers. This is acceptable for
investigations of the creep behavior, where creep rates are typically visualized on a logarithmic scale
and experimentally determined creep rates may scatter up to an order of magnitude. However in
other contexts, e.g., for predicting the non-linear stress-strain behavior, the model may have to be
reviewed, or, at least, carefully recalibrated.

2. Both simulations [10,11] and experiments [8,9,13] on well-aligned NiAl-Mo show a transient decrease
of the creep rate in the initial stages of a creep test, owing to the load transfer from fibers to matrix.
Naturally, the surrogate model cannot account for this behavior as the constituent phases are not
explicitly resolved.

Stiffness EL = 120.6 GPa ET = 181.9 GPa GLT = 89.7 GPa νTT = 0.015 νLT = 0.379

Creep σFL = 625 MPa σFP = 153.5 MPa σFS = 154.5 MPa ε̇0 = 0.01 s−1

mL = 10 mP = 5.8 mS = 5.8

Table 2: Material parameters for the surrogate model, mimicking the creep behavior of unidirectional
NiAl-Mo with 14% fiber fraction

3 Generation of synthetic cellular mesostructures

For NiAl-10Mo alloys solidified at a rate of 80 mm/h, Seemüller et al. [13] observed that regions of well-
aligned unidirectional fibers formed cellular structures on the meso-scale, surrounded by misaligned fibers
and pure matrix material. The cells, featuring roughly hexagonal cross-sections, were elongated in the
direction of solidification, with lengths of around 1000µm and an aspect ratio of five. Based on a cell
distance between 6 − 10µm, Seemüller et al. [13] estimated a volume fraction of 82 − 85% of the hard
regions.
For generating synthetic volume elements, mimicking the aforementioned characteristics, we rely on the
level-set-based framework of Sonon et al. [1, 20, 21]. In the following, the basic methodology is briefly
summarized for the convenience of the reader. Suppose we have a rectangular cell Y in Rd with a set of
non-overlapping particles Φ =

⋃N
i=1 Φi. Sonon et al. propose an implicit description of the microstructure

in terms of the nearest neighbour level set

DN1(x) =





min
y∈∂Φ

d(x, y), x /∈ Φ,

min
y∈∂Φ

−d(x, y), x ∈ Φ,

where d(x, y) denotes the periodic distance of two points x, y ∈ Y and ∂Φ stands for the boundary of the
set Φ. Thus, the condition DN1(x) ≤ 0 describes the space occupied by particles. As an extension to
DN1(x), the level sets DNk(x) may be computed [1], encoding the periodic distance at each point to the
k-th nearest particle Φi. The DNk(x) level sets may be used in the context of dense packing algorithms
and/or for generating new microstructures by thresholding suitable level-set functions [1, 20,21]

f(DN1(x), DN2(x), . . . , DNkmax(x)) ≤ 0.

In particular, for the present study, we exploit the Voronoi-type level set with interparticle distance t

DN1(x)−DN2(x) + t ≤ 0, (3.1)
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Figure 4: Different stages of the microstructure generation process for (a) a transverse cross section and
(b) a 3D overview with the underlying fiber structure (left), the Voronoi level set (3.1) of the center lines
(middle) and the final cell structure (right)

for generating microstructures with the complex geometrical features of cellular NiAl-Mo. For a given
collection of particles,DN1(x)−DN2(x) = 0 describes the boundary of the associated Voronoi tessellation.
Thus, the geometry extracted by the related level set (3.1) may be interpreted as an expansion of all
particles to a shape which enforces a uniform distance of t between the resulting cells, see Sonon et
al. [1, Sec. 4.1]. In two dimensions, Massart et al. [29] used the level set (3.1) to generate irregular
masonry structures featuring elongated inclusions, resembling the cells observed in NiAl-10Mo. We
follow a similar approach to generate the microstructures for the present study:

1. For given cell dimensions, we use the sequential addition and migration (SAM) algorithm [30] to pack
cylindrical fibers with a length of 800µm and a diameter of 160µm until a volume fraction of at least
45% is reached. The SAM method has proven to be a flexible and powerful scheme for generating
dense packings of non-overlapping short-fibers with arbitrary prescribed orientation state and thus
represents our algorithm of choice. However, for the simple uni-directional case, the method may be
substituted by any algorithm which is capable of reaching the desired volume fraction. For instance,
the LS-RSA method by Sonon et al. [1] may be adapted for elongated inclusions to integrate the
level-set computation in the packing algorithm. As the level-set operation (3.1) further enlarges
the inclusions, the fiber dimensions were chosen 20% smaller than those observed for the cells in
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the alloy. The volume fraction was chosen to obtain a dense fiber packing, i.e., a roughly hexagonal
pattern, which still permits some irregularity as observed in the actual microstructure.

2. The level sets DN1(x) and DN2(x) are computed based on the center lines of the fibers. For
efficiently computing the level sets, we rely on the Euclidean distance transform by Meijster et
al. [31], see Appendix A for further details.

3. Using the bisection method, we iteratively solve for the cell distance t until a prescribed cell volume
fraction φ is obtained. With the indicator function

iV (x) =





1, DN1(x)−DN2(x) + t ≤ 0,

0, otherwise,

of the level set (3.1), we terminate when the convergence criterion
∣∣∣∣
∫
Y
iV (x)dV∫
Y
dV

− φ
∣∣∣∣ < δ

is satisfied. Throughout we set the tolerance for the volume fraction to δ = 10−3. Unless stated
otherwise, the prescribed volume fraction is set to φ = 85%, following the estimate of Seemüller et
al. [13]. Note that we prefer to fix the volume fraction φ rather than the interparticle distance t,
as, from the viewpoint of micromechanics, the volume fraction enters the effective (linear elastic)
material behavior to first order [32, Ch. 14].

Note that, in practice, the discrete level set is computed on a regular background grid. Throughout the
present study, we choose the same refinement for the level-set computation as for the target resolution
of the microstructure used in the FFT-based computations. More precisely, for a given underlying fiber
packing, steps 2 and 3 of the outlined process are repeated for each realized resolution. Compared
to downsampling all realizations from a single finely resolved microstructure, this approach requires a
larger number of level-set computations. However, it offers tighter control of the target volume fraction,
which is preferred with respect to the minimum necessary resolution for the FFT-based computations, see
Sec. 4.2. The processing steps for a generated microstructure with dimensions 4000µm×800µm×800µm

are visualized in Fig. 4. Due to the dense fiber packing, the placement and aspect ratio of the cells closely
follow that of the underlying fibers. Note that smaller fragments visible in Fig. 4 arise as artifacts of the
2D cuts and are actually part of regularly sized cells. A transverse section and a longitudinal section of the
generated structure are compared to dark field optical microscopy images of cellular samples by Seemüller
et al. [13] in Fig. 5. Both the roughly hexagonal cross section of the cells and their elongated shape with
an aspect ratio about five are featured in the synthetic structure. Hence, the volume elements generated
by the adapted level-set strategy closely resemble cellular NiAl-Mo, enabling subsequent micromechanical
studies on the materials’ effective creep behavior.

4 Creep behavior of cellular multi-colony NiAl-Mo eutectics with
degenerated boundary regions

4.1 Computational setup

For computing the effective creep response of the NiAl-Mo alloys, we rely on an in-house FFT-based
micromechanics solver, written in Python 3.7 with Cython extensions and parallelized using OpenMP.
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(b)

1000µm
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(d)

Figure 5: Synthetic generated microstructures in comparison to dark field optical microscopy images of
NiAl-Mo by Seemüller et al. [13]: (a)-(b) Comparison of transverse cross sections; (c)-(d) Comparison of
longitudal cross sections1

More precisely, we use the BFGS-CG algorithm [33] in combination with the staggered grid discretiza-
tion [34]. We refer to the recent review by Schneider [35] for a general overview of current FFT-based
methods and the articles by Segurado et al. [36] and Lebensohn-Rollett [37] for dedicated reviews on
the computational homogenization of polycrystalline materials. For a detailed discussion of the specific
algorithms used in the study at hand, see Wicht et al. [33]. FFT-based solvers naturally operate with
periodic boundary conditions, i.e., the stress and strain fields in the volume element are periodic. For
our investigations, we prescribe an effective stress σ̄, which is the volume average of the stress field, of
the form σ̄ = σ d⊗ d, corresponding to a uniaxial stress state with magnitude σ in direction d, see Kabel
et al. [38]. The loading is applied in 1 s and subsequently held constant until a steady-state creep rate is
reached. For our investigation of the cellular material, we restrict to loadings in growth direction.
Throughout, convergence of the FFT-based solver is checked using the criterion proposed in Sec. 5 by
Schneider et al. [39] with a prescribed tolerance of 10−4. For the soft regions in the cell-boundary regions,

1Fig. 5(b) and Fig. 5(d) from Seemüller et al. [13] are reused under the STM permissions guidelines: https://www.
stm-assoc.org/intellectual-property/permissions/permissions-guidelines/.
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we use the material model of NiAl, see Sec. 2.1. The behavior of the hard regions in the well-aligned cells
is governed by the surrogate model proposed in Sec. 2.3. All computations were either performed on a
workstation with two 12-core Intel Xeon(R) Gold 6146 CPUs and 512 GB RAM or a workstation with
two AMD EPYC 7642 with 48 cores each and 1024 GB RAM.

4.2 Study on the size of the representative volume element

FFT-based micromechanics solvers naturally operate on a regular (voxel)grid. However, even when
treating the hard regions in cellular NiAl-Mo as a homogeneous material, the difference between the
largest geometric features, i.e., cell lengths of about 1000µm, and the smallest geometric features, i.e.,
the soft cell boundaries with a thickness around 10µm, is still very large. Both memory and runtime
limit the size of volume elements which are feasible for computation. Thus, it is imperative to identify
both a suitable volume element size and an appropriate resolution, while keeping the possible error of
the material response reasonably small [40].
In this context, it is useful to recall some insights from the study on representative volume elements
by Kanit et al. [41]. When computing an effective material property based on a randomly generated
microstructure of finite size, Kanit et al. [41] identify two sources of error. For an ensemble of finite
microstructure realizations of the same size, there will be some scatter in the effective properties of each
realization. The difference between the effective property of a single realization and the mean of an
infinitely large ensemble is called dispersion or random error. The dispersion can either be reduced by
increasing the size of the microstructure or by averaging over multiple microstructures. The second error
source is the bias or systematic error, describing the difference between the mean effective properties
for a finite volume element size and the effective properties of the infinite volume limit. For instance,
choosing a small volume element may induce anomalies in the microstructure leading to incorrect effective
properties, independent of the number of realizations considered. Indeed, the systematic error can only
be reduced by increasing the size of the microstructure. As the size of the volume element is a limiting
factor for the simulations, we aim to identify the smallest microstructure which sufficiently reduces the
systematic error and keep track of the dispersion by considering multiple realizations
In the following, we investigate microstructures with varying lengths L and cross-section widths W . For
each size, ten volume elements are generated and the effective creep rates for a uniaxial stress loading of
200 MPa in growth direction are computed. Based on preliminary investigations, the voxel size is fixed at
8µm, unless stated otherwise. In Fig. 6, we plot the resulting mean values together with the two-sided
99% confidence interval based on Student’s t−distribution, following Schneider et al. [42]. Note that for
better readability, we use a linear scale on the y-axis instead of the typical logarithmic scale when plotting
experimental creep rates.
First, we take a look at microstructures of varying width for a fixed length of L = 2000µm. We observe
that up to a width of 800µm the averaged creep rate increases linearly and subsequently stagnates, see
Fig. 6(a). Indeed, the creep rate for W = 400µm is 30% below the stationary level, indicating a large
bias. Between W = 800µm and W = 1200µm, the fluctuation of the mean creep rates is small compared
to the confidence intervals, revealing that the dispersion is the primary error source. As expected, the
confidence intervals narrow down with increasing size. However, when considering an ensemble of ten
volume elements, a width of W = 800µm appears sufficient.
Qualitatively, the same trends emerge for volume elements of varying length, see Fig. 6(b). Using mi-
crostructures with L = 1000µm, i.e., a single cell length, leads to a systematic underestimation of the
creep rate by about 70%. Notably, owing to the imposed regularity of the structure (each cell bor-
ders itself in length direction), the dispersion is comparatively small for this case, demonstrating that
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Figure 6: Influence of cell size and resolution on the effective creep rate with default values of L = 2000µm,
W = 800µm and a default voxel size of 8µm: (a) ε̇min vs W ; (b) ε̇min vs L; (c) ε̇min vs resolution

bias and dispersion do not always follow the same trends. For volume elements longer than 2000µm,
there are only marginal changes in the average creep rates. Overall, we conclude that a length of
2000µm, i.e., two cell lengths, is sufficient for our purposes, arriving at a default volume element size of
2000µm× 800µm× 800µm for our subsequent investigations. We emphasize that this choice is only safe
if an ensemble of (at least) 10 microstructures is considered. As the dispersion is still rather high, with a
relative sample standard deviation of 11.5%, using only a single volume element may lead to significant
(and undetectable) errors [42]. Further note that these results only hold for investigating the effective
creep rate. When studying other physical properties, the representative volume size has to be identified
anew.
Last but not least, we validate our chosen resolution for our final volume element size of L = 2000µm

and W = 800µm. To this end, the full ensemble of 10 microstructures was discretized with voxel lengths
ranging from 2µm to 8µm. In comparison to the size of volume element, the impact of the resolution is
miniscule, see Fig. 6(c). Note that a resolution of 8µm is rather coarse, i.e., the soft cell boundary in the
discretized microstructure is only one to two voxels in thickness. Hence, the low impact of resolution on
the overall accuracy may appear surprising. We found that a key factor for the consistency of the results
with respect to resolution stems from in the microstructure generation process, see Sec. 3. For each
sampled resolution, the target volume fraction of φ = 85% was reached to high accuracy by iteratively
thresholding the underlying level-set. Downsampling from a high-resolution microstructure, for instance,
by using the median value, produces larger scatter in both volume fraction and creep rate. Overall,
continuing the investigation with a default resolution of 8µm per voxel seems reasonable.

4.3 On the definition of the soft cell boundary

In their experimental study on cellular NiAl-Mo, Seemüller et al. [13] observed a massive loss of creep
resistance compared to the well-aligned material. More precisely, for a certain nominal stress, the strain-
rate differed by about two to three orders of magnitude. The magnitude of this difference was unexpected,
as fiber-free boundary regions only accounted for ∼ 15% of the total volume and grain boundaries were
generally found to have no effect on the creep resistance of binary NiAl [26]. Hence, we are interested
in computationally investigating the loss of creep resistance in the cellular material and comparing our
results to the experimental data by Seemüller et al. [13]. In this context, we note that the definition of
the soft regions and the volume fraction of the remaining well-aligned material is crucial.
For their estimated cell fraction of 82%-85%, Seemüller et al. [13] only classified completely fiber-free
regions as soft regions, see the violet shading in Fig. 7(a). However, larger regions with a coarse fiber
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Figure 7: (a) Optical microscopy image by Seemüller et al. [13] with fiber-free (violet) and degenerated
(pink) regions; (b) SEM image of boundary region with misaligned fibers by Haenschke et al. [7]2
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200µm
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φ = 65%, t = 28µm

200µm

(d)

φ = 55%, t = 38µm

Figure 8: Artificial microstructures with varying volume fraction φ and corresponding boundary width t

distribution and pronounced fiber misalignment can be identified around the cell boundaries (pink shading
in Fig. 7(a)). In light of the results in Sec. 2.1, it is plausible that the degenerated regions do not
significantly contribute to the creep resistance in growth direction. Indeed, scanning electron microscopy
(SEM) images by Haenschke et al. [7] reveal fiber misalignments between 20◦ to 30◦ at cell boundaries,
see Fig. 7(b). At these angles of misalignment, a single colony of well-aligned NiAl-Mo displays essentially
the same creep behavior as the pure NiAl matrix. Thus, it appears reasonable to classify both the fiber-
free and the degenerated regions as soft regions. To check this assertion, we consider the simulated creep
behavior for varying volume fractions of the hard phase, see Fig. 8(a) - Fig. 8(d) for an example of a
microstructure with varying cell distance t and volume fraction φ. Comparing the computed creep rates
to the data by Seemüller et al. [13] reveals that the experimentally determined creep rates lie between
the simulation results for volume fractions of φ = 55% and φ = 65%, see Fig. 9. The cell distance of
28µm−38µm for the associated synthetic structures roughly matches the thickness of 30µm−40µm for
the coarse region in the microscopy image by Seemüller et al. [13]. Thus, the creep simulations strengthen
the hypothesis, that both coarse and fiber-free regions should be classified as soft regions.
Our results highlight that, in contrast to binary NiAl [26], the boundary of the cellular colonies is essential
for explaining the overall creep behavior of the cellular material. Owing to its much lower creep resistance,

2Fig. 7(a) from Seemüller et al. [13] is reused under the STM permissions guidelines: https://www.stm-assoc.org/
intellectual-property/permissions/permissions-guidelines/. The shading of the boundary regions and the associated
annotations have been added. Fig. 7(b) from Haenschke et al. [7] is reused under the CC BY 4.0 license: https://
creativecommons.org/licenses/by/4.0/legalcode. The visualization for the angle of misalignment has been added.
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properly defining the soft regions and their volume fraction is key for reaching accurate predictions. In
particular, identifying the coarse regions with degenerated fiber structure as part of the soft regions
sheds light on the deterioration of the creep resistance in cellular NiAl-Mo samples. Compared to the
completely fiber-free regions, the degenerated part of the cell boundary occupies two to three times as
much volume. Hence, the fraction of the actual hard regions is much lower than the 85% estimated by
Seemüller et al. [13], leading to the pronounced loss of creep resistance. An illustration of the difference in
reinforcing structure is shown in Fig. 10, where the difference in synthetic volume elements with φ = 85%

and φ = 55%, i.e., the impact of the coarse boundary, is visualized. Thus, it appears mandatory to
pay special attention on such mesoscale deviations from the ideal fiber morphology when comparing the
magnitudes of creep resistance of NiAl-based composites from different experimental datasets. As many
alloys in the NiAl-(Cr,Mo) system exhibit similar colony structures with degenerated regions at the cell
boundaries [14], these findings should be taken into account when modeling and evaluating the creep
resistance. In particular, more complex alloys with a larger number of constituents will be even more
prone to form degenerated regions due to extended solidification intervals.

4.4 Influence of the morphology on the overall creep response

In terms of the mechanical properties of directionally solidified NiAl-Mo, aiming for a well-aligned mi-
crostructure appears to be optimal. However, this degree of fiber alignment is only achieved under
specific processing conditions, i.e., slow growth rates and high temperature gradients, which are typically
restricted to a laboratory environment [3, 43, 44]. In contrast, samples solidified in industrial scale fur-
naces are prone to microstructural irregularities [43]. Hence, for the practical application of NiAl-Mo on
a component scale, a robust prediction of the creep behavior in terms of the microstructure morphology
is required to find a suitable compromise between mechanical behavior and favorable processing condi-
tions. However, in practice, deliberate morphology modification of NiAl-Mo is limited due to strongly
interrelating solidification and processing parameters. Thus, thoroughly characterizing the impact of the
morphology on the creep behavior solely based on experiments is difficult.
The level-set framework outlined in Sec. 3 provides greater flexibility for adjusting the aspect ratio and
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volume fractions of the generated synthetic microstructures. Hence, we expand upon the computations
of Sec. 4.3 and investigate the impact of these morphological quantities on the effective creep rate. In
addition, we compare our results with the Kelly-Street model [45], which is popular for predicting the
microstructure-dependent creep behavior of cellular and fibrous composites and evaluating experimental
data [9,13], to assess its accuracy for the case of NiAl-Mo. To this end, we generate microstructures with
volume fractions from 55%−85% and aspect ratios of 5−40. Aspect ratios higher than the original ratio
of 5 were realized by increasing the length of the cellular inclusions and the overall volume elements as
part of the microstructure generation routine. Based on the results for l/d = 5, see Sec. 4.2, we set the
width of all volume elements to four times the width of the cellular inclusions and the length to twice
the cell length.
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Figure 11: Influence of volume fraction φ and aspect ratio l/d on the creep rate of cellular NiAl-Mo for
a fixed stress loading of σ = 100 MPa: (a) ε̇min vs φ; (b) ε̇min vs l/d

The minimum creep rates obtained from simulations on the generated microstructures with a fixed stress
loading of σ = 100 MPa are shown in Fig. 11. Recall that, according to Kanit et al. [41], the dispersion of
the effective properties is a decent measure for the representativeness of the volume element size. For the
cellular microstructures considered in this study, this was confirmed in Sec. 4.2 for volume elements of
sufficient length. As a general trend, the dispersion in the effective creep rates decreases with increasing
aspect ratio, see Fig. 11. Hence, it is reasonable to assume that the size of the volume elements with
an aspect ratio beyond the initial choice of l/d = 5 is sufficiently representative as well. In Fig. 11(a),
we observe that, for a fixed aspect ratio, a decrease in volume fraction by 20% leads to an increase in
creep rate by roughly an order of magnitude. This trend is independent of the specific aspect ratio, as
all plots in Fig. 11(a) feature a similar slope. Similarly, for a fixed volume fraction, all plots in Fig. 11(b)
exhibit approximately the same general tendency. The creep rate decreases by a factor of about three
from l/d = 5 to l/d = 10. For each subsequent doubling of l/d, the impact of the aspect ratio diminishes.
The influence of volume fraction φ and aspect ratio l/d on the apparent stress exponent is illustrated in
Fig. 12. In particular, all plots in Fig. 12(a) feature the same slope, revealing that the apparent stress
exponent is virtually independent of φ. In contrast, increasing the aspect ratio leads to a marked change
from matrix-controlled creep with m ≈ 6 for l/d = 5 to fiber-controlled creep with m ≈ 9 for l/d = 40,
see Fig. 12(b). Due to the change in the apparent stress exponent, the impact of the aspect ratio on
the creep rate diminishes further at higher stresses. Note that the observed values for m are inside the
range reported in the experimental literature [8–10, 13]. Hence the morphology of the colonies arises as
another possible source for the scatter in experimental data, again emphasizing that information on the
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Figure 12: Influence of volume fraction φ and aspect ratio l/d on the apparent stress exponent of cellular
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mesostructural properties are crucial for a proper assessment of data from different sources.
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Figure 13: Comparison of the Kelly-Street model [45] to simulation results for σ = 100MPa: (a) ε̇min vs
φ for l/d = 5; (b) ε̇min vs l/d for φ = 65%

Lastly, we turn to the comparison of the simulations to the 1-dimensional shear-lag model by Kelly
and Street [45], widely used in materials science to assess and interpret experimental creep data of
composites [9,13,46]. In particular, the Kelly-Street model for quasi-rigid inclusions admits a closed-form
expression for the creep rate of the composite as a function of the applied stress. Assuming a power-law
formulation

ε̇ = ε̇matrix
0

(
σ

σmatrix
0

)m
(4.1)

for the matrix, the creep rate for the composite reads

ε̇ = ε̇matrix
0

[
σ

σmatrix
0

(
Φ(l/d)(m+1)/m − 1

)
φ+ σmatrix

0

]m
(4.2)
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with the stress transfer function

Φ =

(
2

3

)1/m(
m

2m+ 1

)(
m

m+ 1

)(√
π

2
√

3φ
− 1

)−1/m

, (4.3)

see Kelly-Street [45, Sec. 3.1] and the modifications by Chan [46]. Note that, in this context, all considered
quantities, such as stress σ and strain rate ε̇, are scalar valued. In addition to the Kelly-Street model,
we consider the rule of mixtures as a lower bound on the creep rate

σ = (1− φ)σmatrix
0

(
ε̇

ε̇matrix
0

)1/m

+ φσfiber0

(
ε̇

ε̇fiber0

)1/n

, (4.4)

where it is assumed that the fibers are governed by a power-law, analogously to (4.1). Note that the
rule of mixtures admits no closed-form solution for the strain rate ε̇ and has to be solved numerically for
given stress σ. The material parameters of matrix and well-aligned colonies for the analytical models are
listed in Tab. 3.

Soft regions (matrix) ε̇matrix
0 = 1/s σmatrix

0 = 503 MPa m= 5.8

Hard regions (inclusion) ε̇fiber0 = 1/s σfiber0 = 1245 MPa n= 10

Table 3: Parameters for the 1-dimensional power-law model

In Fig. 13(a), we compare the dependency of the creep rate on the cell volume fraction for the original
aspect ratio of l/d = 5. As an additional data point, we consider the creep rate of the well-aligned
material for φ = 100%. For volume fractions smaller than 85%, the plots of the analytical models and
the simulations have a similar slope. However, the Kelly-Street model overestimates the effective creep
rate by an order of magnitude compared to the simulation results, which lie roughly at the geometric
mean between the Kelly-Street model and the rule of mixtures. In addition, the creep rate for the Kelly-
Street model degenerates at φ = π/2

√
3, i.e., the maximum volume fraction for a hexagonal packing

of continuous fibers as assumed by Kelly-Street [45]. The results highlight that using the Kelly-Street
model beyond its intended regime may lead to inaccurate predictions. Indeed, Kelly-Street note that their
theory may be inaccurate for small l/d [45] and validate their model for l/d = 50 and l/d = 100 [47].
Keeping in mind that the Kelly-Street model assumes a constant strain rate in the matrix and zero strain
rate in the fibers, the origins of the model inaccuracy may be traced to the heterogeneity of the local
fields. In Fig. 14 the strain rate in growth direction is visualized for l/d = 5. Note that, for the purpose
of portraying the fields, we choose a higher resolution of 4µm per voxel.

100
0µ

m

(a)

100
0µ

m

(b)

Figure 14: Strain rate component in growth direction for a microstructure with aspect ratio l/d = 5 and
volume fraction φ = 65%: (a) Boundary network; (b) Cellular inclusions
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Figure 15: Histograms of the strain-rate in growth direction for various aspect ratios

Evidently, the strain rate in both cellular inclusions and matrix is strongly heterogeneous for this case,
see Fig. 15(a) for the corresponding histogram. Thus, it is not surprising that the Kelly-Street model
struggles to arrive at accurate predictions. With increasing aspect ratio, the strain-rate field becomes
more homogeneous, see Fig. 15(a)-Fig. 15(d), and the simulated creep rates approach the results for the
rule of mixtures. However, for high l/d, the assumption of zero strain-rate in the fibers leads to a vast
underestimation of the effective creep rate of the composite by the Kelly-Street model, see Fig. 13(b).
Thus, we conclude that the model should be confined to cases where the inclusions are truly rigid.

5 Conclusions

The present work was devoted to studying the creep behavior of directionally solidified NiAl-Mo eutectics
with a cellular mesostructure using FFT-based micromechanics solvers. Our conclusions are as following:

• Combining the level level-set framework for microstructure generation [1, 20, 21] with FFT-based
solvers [15] proves to be a flexible approach for simulating the creep response of cellular materials.
In particular, the suggested procedure enables the individual control of morphological parameters
such as cell volume fraction and aspect ratio. As alloys with a larger number of constituents in
the NiAl-(Cr,Mo) system may be even more prone to developing microstructural irregularities, a
flexible simulation tool-set is crucial for assessing their creep response.

• Simulations on both well-aligned and cellular material strongly suggest that the degenerated regions
with high fiber misalignment do not substantially contribute to the overall creep strength of NiAl-
Mo. As a result, the identified fraction of the hard regions was significantly lower than first estimated
by Seemüller et al. [13]. This offers an explanation for the rather large decrease in creep resistance
compared to the well-aligned material, which was found to be surprising at that time.

• Studying the impact of morphology on the creep behavior of cellular NiAl-Mo, we observed that
the volume fraction of the hard regions has a strong influence on the (minimum) creep rate, irre-
spective of the aspect ratio of the cells. The aspect ratio primarily determines the apparent stress
exponent, i.e., if the creep behavior is matrix-controlled or fiber-controlled. Hence, information on
the mesostructure is crucial for comparing experimental creep data from different sources.

• In contrast to Seemüller et al. [13], we found that the shear-lag model by Kelly-Street [45] for quasi-
rigid fibers was not able to accurately describe the creep behavior of cellular NiAl-Mo. The finite
creep resistance of the inclusions, their relatively low aspect ratio and the resulting inhomogeneity
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of the microscopic strain-rate field were identified as main error sources. Furthermore, based on its
geometric assumptions, the Kelly-Street model breaks down for cell volume fractions above 90%.
Overall, the results demonstrate that the basic assumptions and scope of the model need to be
carefully considered, when it is used for interpreting experimental data. The Kelly-Street model for
creeping fibers [45, Sec. 3.2] may serve as a starting point for developing analytical models which
address the aforementioned limitations.
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A Remarks on computing the DNk level sets on voxel images

A.1 Using Euclidean distance transforms to compute level sets

In the following, we briefly lay out how Euclidean distance transforms (EDTs), which are standard
algorithms in image processing [48], may be exploited for computing the DNk level-sets on voxel images.
Suppose a binary microstructure image I : Ω→ {0, 1} is given on a discretized domain Ω = {0, ..., N}3,
with a set of inclusion voxels Φ (typically with value 1) and matrix voxels Φc = Ω\Φ (typically with value
0). For any image with a marked set of object voxels O, an EDT assigns to each voxel the distance to its
nearest object voxel. Thus, the signed distance field DN1 of I may be computed by a three-step process:

1. Identify the boundary voxels ∂Φ of the inclusions [49, Sec 9.5]. For our implementation, we check
the connectivity based on the 6-neighbourhood, i.e., voxels are connected if they share a face.

2. Compute the EDT with the boundary ∂Φ as object O.

3. Assign a negative sign to the distance for all voxels inside Φ.

For computing the nearest neighbour level sets DNk of higher order, the sequential updating strategy by
Sonon et al. [20, Sec. 2.4.1] may be used. To this end, the subsets Φi of all particles, with Φ =

⋃n
i=1 Φi,

have to be identified in a pre-processing step, using a connected-component extraction algorithm [49,
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Sec 9.5]. For each particle, firstly, its signed distance field DSΦi is computed by applying the outlined
three-step process to Φi. Secondly, the DNk fields are updated according to Sonon [20, Sec. 2.4.1]

DNk ← max(DNk−1, min(DNk, DSΦi
))

DN1 ← min(DN1, DSΦi
),

(A.1)

starting with kmax, i.e., the highest desired value of k. Note, that the computational effort for this
generic strategy is proportional to the number of particles in the image I. However, certain EDTs may
be modified to evaluate DNk in a single pass as shown in the next section.

A.2 Choice of EDT algorithm

Figure 16: Overview of the microstructure and the
DN1 (red scale) and DN2 (blue scale) level sets for
a structure with 500 fibers

For an extensive performance comparison and dis-
cussion of various EDTs for 2-dimensional images,
we refer to the study by Fabbri et al. [48]. Follow-
ing their taxonomy, EDTs may be broadly cate-
gorized into scanning algorithms and propagating
algorithms [48], differing in the order in which the
voxels are processed. For the present discussion,
we consider one representative algorithm of each
family.
In scanning algorithms, the image is processed in
terms of its rows, columns and planes. The fastest
EDT in this category [48] is the algorithm by Mei-
jster et al. [31], which exploits that the minimiza-
tion problem for computing the square Euclidean
distance transform may be solved for each spatial
dimension separately. The algorithm lends itself
well to parallelization and periodicity of the image

can be incorporated at virtually no additional cost, using the scheme of Coeurjolly [50].
Propagating algorithms update the distance field in a narrow band or wavefront, emanating from the
object voxels. As Dijkstra-type algorithms they are very similar to the fast marching method for solving
the (related but more general) eikonal equation. Algorithms of this type [51–53] mostly differ in details
such as the data structure for the wavefront or the propagated information, see Sec. 7.4.1. in Fabbri et
al. [48] for a generic description. For our implementation, we choose the algorithm by Lotufo et al. [53]
using a bucket queue as data structure and propagating the nearest object voxel. The bucket queue
enables a partial parallelization of the algorithm. Periodicity is integrated by considering the periodic
6-neighbourhood during propagation. Note that propagation-type algorithms are generally not exact,
see Cuisenaire-Macq [52] for a detailed discussion of the 2-dimensional case. However, in our studies the
maximum error for computing DN1 was usually below a single voxel length, which we consider acceptable.
As a first benchmark, we investigate the performance of the algorithms for computing the DN1 level
set of a microstructure generated with the SAM algorithm by Schneider [30], featuring 500 isotropically
distributed fibers with an aspect ratio of 10, occupying a volume fraction of 23.5%, see Fig. 16. All EDT
benchmarks were performed on a desktop computer with an Intel i7-8700K CPU using 6 threads. The
runtimes for different spatial discretizations from 643 voxels up to 5123 voxels are shown in Fig. 17(a).
For the chosen structure, both EDT algorithms exhibit linear time complexity with respect to the voxel
count. However, the scanning algorithm is more than an order of magnitude faster than the propagating
algorithm, confirming the trends observed by Fabbri et al. [48] in the 3-dimensional setting.
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Figure 17: Benchmark of the scanning EDT by Meijster et al. [31] and the propagating EDT by Lotufo
et al. [53] (and its modified version Alg. 1) for computing the nearest neighbour level sets of isotropically
packed fiber structures: (a) Computing DN1 for varying voxel counts; (b) Computing DN1 and DN2 for
varying fiber counts

The vast difference in performance may suggest that this is the end of the story and the scanning algorithm
by Meijster et al. [31] is clearly superior. However, the situation changes when considering level sets DNk
of higher order. As far as the authors are aware, the scanning algorithm is limited to the sequential
updating strategy (A.1) outlined in the last section. Thus, the runtime for computing the DNk level sets
becomes dependent on the number of inclusions. This is illustrated in Fig. 17(b), where the runtimes for
computing DN1 and DN2 for microstructures with a fixed voxel count of 2563 and a varying number of
packed fibers are plotted.
On the other hand, the propagating algorithm by Lotufo et al. [53] can be naturally modified to compute
the DNk level sets up to a maximum level kmax in a single pass. A pseudocode for the modified algorithm
is outlined in Alg. 1. Informally speaking, a unique label is assigned to each object and the associated
emanating wavefront. By allowing wavefronts with different labels to pass through each other, the order of
arrival at a certain coordinate determines the level k of DNk. At the end, all points are visited kmax times.
Note that a similar concept for fast marching algorithms was outlined in Sonon’s thesis [20, Sec. 2.4.1].
The performance of the resulting single-pass propagating algorithm is virtually independent of the number
of inclusions, see Fig. 17(b). In particular, it becomes the preferable option for object counts larger than
100. At the end, some closing remarks are in order:

1. Due to the limited size of feasible volume elements for cellular NiAl-Mo, see Sec. 4.2, we did
not exceed fiber counts of 100 during the microstructure generation process. Thus, the scanning
algorithm of Meijster et al. [31] was used for the present study. However, the propagating scheme
in Alg. 1 is more suitable as a general-purpose method.

2. The sequential scanning algorithm may compute the level sets for higher kmax at little additional
cost, as the updating step (A.1) is usually less expensive than computing the level set of a single
particle. On the other hand, the computational effort for the single-pass propagating algorithm
increases notably, as more voxels need to be processed. Thus, at higher kmax the break-even point
in terms of inclusion count may shift to higher numbers in favor of the scanning algorithm. However,
for the most common morphing operations [1,20,21] the necessary kmax does not exceed 3. Hence,
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our evaluation of the algorithms is not substantially affected.

3. If a sequential evaluation of the level sets is unavoidable, e.g., as part of the LS-RSA microstructure
generation process by Sonon et al. [1], then Meijster’s algorithm [31] is the method of choice. Due
to its high efficiency for computing the level set of a single particle, it relieves the user of using
pre-screening strategies [1]. In addition, using Coeurjolly’s approach [50] avoids the creation and
consideration of periodic neighbours.

Algorithm 1 Propagation algorithm for computing DNk in a single pass
Auxiliaries:
• A voxel object v stores its associated coordinates v.x, a label v.label, a root voxel v.root and the

periodic square distance to its root v.dsquare
• Q is a queue for storing voxels, ordered by their square distance
• Ilabeled(x) is an array with the same structure as I but the coordinates of each object Φi are marked

with a unique integer label
• N(x) returns the voxels with coordinates of the periodic neighbourhood of point x
• V (x) is an array, storing the number of wavefronts, which have passed point x
• DN(x, k) is an array, storing the value of the DNk level set at point x
• L(x, k) is an array storing the label of the kth wavefront which has passed x

Input: Binary image I, maximum depth kmax

Output: Level sets DN(x, k)

1: Initialize V , DN and L to 0
2: Extract particles Φi, assign an integer label ≥ 1 to each particle and initialize Ilabeled(x)

3: Identify the particle boundaries ∂Φi

4: Add all points in ∂Φi with their associated label and themselves as root to Q
5: while Q is not empty do
6: Remove voxel v with smallest v.dsquare from Q

7: if V (v.x) < kmax and v.label /∈ {L(v.x, 0), ..., L(v.x, kmax)} then
8: L(v.x, V (v.x))← v.label

9: d← √v.dsquare
10: if v.label = Ilabeled(v.x) then
11: d← −d
12: end if
13: DN(v.x, V (v.x))← d

14: V (v.x)← V (v.x) + 1

15: for each n ∈ N(v.x) do
16: if V (n.x) < kmax and v.label /∈ {L(n.x, 0), ..., L(n.x, kmax)} then
17: n.root← v.root

18: n.label← v.label

19: n.dsquare← ‖n.x− n.root.x‖2
20: Add n to Q
21: end if
22: end for
23: end if
24: end while
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