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Abstract

The growing demand for energy, while the fossil-based resources deplete, is considered

as one of the major challenges for science and society in the 21st century. As part of

the bio-economy strategy of the federal and state governments of Germany, the supply

by fossil-based materials and energy sources is being increasingly converted to bio-

based products. For this purpose, the residual biomass from agriculture is not enough.

Microalgae are considered to be a promising alternative for biomass production, that

neither competes with areas for which already other options are planned nor negatively

impacts the environment. In precisely controlled technical environments, referred to as

Photobioreactors (PBR), microalgae convert solar energy to biomass and other desirable

products.

Since the early 2000s, the commercial production of microalgae have undergone

continuous development, not only driven by experience but goal-oriented engineering.

But still, many engineering implementations of PBR suffer from photo-limitation effects,

due to steep light gradients in algae cultures. For a better understanding of the light

supply and its interplay to hydrodynamic mixing and mass transfer, researchers start

to implement complex multi-physics simulation models. Such computational studies

are proposed to quantitatively predict the PBR performance and facilitates the process

scale-up to large industrial applications.

The objective of this work is the development of a consistent simulation framework

for the prediction of light supply, hydrodynamic mixing and biomass growth kinetics

to assess the PBR performance. All submodels are implemented in the framework of

Lattice Boltzmann Methods (LBM), best known for their parallel performance and multi-

physics models, and the coupling benefits from the consistent modeling scope. For this

background, it is derived and validated a new mesoscopic submodel to simulate the

light supply, inside participating media such as microalgae suspensions, by solving the

radiative transport equation (RTE). Additionally, existing LBM for the fluid flow, mass

transport and microalgae tracking are implemented to gain insights in complex flow

patterns and to better understand the mixing. Due to the consistent scope of model

equation and numerical algorithm of the submodels, the comprehensive coupling is
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achieved through biomass growth kinetic models in a numerical efficient way and does

not contribute to the model complexity. All conducted simulations are implemented in

the open-source LBM library OpenLB and available to the public from release version

1.3 and newer. Implementation details of the new light LBM models are presented and

referenced whenever possible.

The developed mesoscopic simulation framework is applied to three PBR to quanti-

tatively analyze and propose design improvements of the reactors. Special focus is put

on complex reactor geometries and light settings, for which sophisticated simulation

models are needed, due to the absence of known analytical solutions (e.g. Lambert–Beer

for flat plate PBR) or correlations of mass transport and hydrodynamics (e.g. tubular

PBR). Additionally, the robustness and numerical efficiency of the simulation framework

is emphasized on a complex sponge-structured tubular PBR with internal illumination.

Its complex flow patterns and light setup stresses the need of a consistent and yet highly

efficient algorithm to solve and predict real 3D PBR. This survey suggests that the pro-

posed computational framework is also suitable for the support of process scale-up of

PBR, that requires efficient 3D predictions.
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Zusammenfassung

Der wachsende Bedarf an Energie bei gleichzeitiger Erschöpfung der fossilen Ressourcen

gilt als eine der großen Herausforderungen für Wissenschaft und Gesellschaft im 21.

Jahrhundert. Im Rahmen der Bioökonomie-Strategie von Bund und Ländern wird die

Versorgung durch fossile Brennstoffe und Energieträger zunehmend auf biobasierte

Produkte umgestellt. Hierfür reicht die Restbiomasse aus der Landwirtschaft nicht aus.

Mikroalgen gelten als vielversprechende Alternative zur Biomasseproduktion, die weder

mit Flächen konkurriert für die bereits andere Optionen geplant sind, noch die Umwelt

negativ beeinflusst. In genau kontrollierten technischen Umgebungen, den so genannten

Photobioreaktoren (PBR), wandeln Mikroalgen Sonnenenergie in Biomasse und andere

erwünschte Produkte um.

Seit den frühen 2000er Jahren hat die kommerzielle Mikroalgenproduktion eine

kontinuierliche Entwicklung durchlaufen. Diese Entwicklung basiert in zunehmenden

Massen auf zielorientiertes Engineering. Nach wie vor unterliegen viele PBR der Photo-

Limitierung, die durch steile Lichtgradienten in der Algenkultur verursacht werden.

Für ein besseres Verständnis der Lichtführung und deren Wechselwirkung mit der hy-

drodynamischen Durchmischung und dem Stofftransport beginnen Forscher, komplexe

Multiphysik-Simulationsmodelle zu implementieren. Solche computergestützten Stu-

dien sollen die PBR-Leistung quantitativ hervorsagen und gleichzeitig, das Scale-up des

Prozesses für große industrielle Anwendungen beschleunigen.

Das Ziel dieser Arbeit ist die Entwicklung eines konsistenten Simulationswerkzeugs

für die Vorhersage des Lichteintrages, der hydrodynamischen Durchmischung und der

Biomassewachstumskinetik, zur Bewertung der PBR-Leistung. Alle drei Modelle werden

mit Lattice-Boltzmann-Methoden (LBM) realisiert, die für ihre gute Parallelisierbarkeit

auf Hochleistungsrechnern und Multiphysik-Modelle bekannt sind. Darüber hinaus

profitiert die Kopplung der Modelle von der konsistenten Formulierung. Vor diesem

Hintergrund wird eine neue LBM abgeleitet und validiert, welche den Lichttransport

in partizipierenden Medien, wie zum Beispiel Mikroalgen-Suspensionen, durch Lösung

der Strahlungstransportgleichung (RTE) berechnet. Zusätzlich werden bestehende LBM

für die Fluidströmung, den Stofftransport und der Mikroalgentrajektorien implemen-
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tiert, um Einblicke in komplexe Strömungsmuster zu gewinnen und die Durchmischung

besser zu verstehen. Aufgrund der einheitlichen Formulierung der Modellgleichungen

und des numerischen Algorithmus der Teilmodelle, wird die Kopplung durch Biomasse-

Wachstumskinetik-Modelle auf numerisch effiziente Weise erreicht und trägt im geringen

Maße zur Modellkomplexität bei. Sämtliche durchgeführten Simulationen sind in der

open-source LBM-Bibliothek OpenLB implementiert und ab Version 1.3 öffentlich ver-

fügbar. Im Rahmen der vorliegenden Dissertation wird, wann immer möglich, auf

Implementierungsdetails des neuen LBM-Modells verwiesen bzw. diese vorgestellt.

Das entwickelte Simulationswerkzeug, basierend auf LBM, wird auf drei PBR angewen-

det, um die Reaktoren quantitativ zu analysieren und Designverbesserungen vorzuschla-

gen. Besonderes Augenmerk wird auf komplexe Reaktorgeometrien und Lichtführung

gelegt, für die aufgrund des Fehlens bekannter analytischer Lösungen (z. B. Lambert-Beer

für Flachplatten-PBR) oder Korrelationen von Stofftransport und Hydrodynamik (z. B.

röhrenförmige PBR) anspruchsvolle Simulationsmodelle erforderlich sind. Zusätzlich

wird die Robustheit und numerische Effizienz des Simulationsframeworks an einem

komplexen, schwammartig strukturierten, röhrenförmigen PBR mit interner Beleuchtung

herausgestellt. Die komplexen Strömungsmuster und aufwendige Beleuchtung unterstre-

ichen die Notwendigkeit eines konsistenten und dennoch hocheffizienten Algorithmus

zur Lösung und Vorhersage realer 3D-PBR. Diese Untersuchung legt nahe, dass das

vorgeschlagene Berechnungsframework auch für die Unterstützung des Prozess-Scale-

up von PBR geeignet ist, welches im besonderen Maßen effiziente Algorithmen für 3D

Modelle erfordert.
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1. Introduction and Objective

1.1. Introduction

As part of the bio-economy strategy of the federal and state governments of Germany,

the supply of oil-based materials and energy sources is being increasingly converted

to bio-based products. For this purpose, the residual biomass from agriculture is not

enough. Microalgae are considered to be a promising alternative for biomass production

without competing with areas for which already other options are planned. In precisely

controlled environments, referred to as Photobioreactors (PBR), microalgae convert

solar energy to biomass and many other desirable products. Beginning with Borowitzka

[20], the commercial production of microalgae have undergone continuous development

towards biorefineries of microalgae, not only driven by experience but goal-oriented

engineering [73].

To cope with high areal productivity, the biomass concentration in PBR is typically

increased, which comes with a critical illumination and undesired photo-limitation effects.

As reported by Posten [147], the high absorption and scattering behavior of algae results

in a light penetration depth of only 0.02 m for a Porphyridium concentration of 2.0 gL−1.

Algae beyond that distance are subjected to photo-limitation and contribute rather to the

costs than biomass production. This dilemma leads straight to the all-dominant question

in general PBR design, that is driven by the great desire of establishing PBR as a cost

neutral alternative in industry [82]. Can the productivity of PBR be enhanced when

increasing microalgal concentration by implementing a clever illumination and mixing

strategy?

From an engineering perspective, the demand of a homogeneous illumination can

be met in particular by closed PBR due to their hardly limited light setups, ranging

from internal illumination installations including light guides to external illuminations

including photo-conductive reactor elements, as recently assessed by Nwoba et al. [138].

In modern approaches, photo-conductive reactor elements are used as part of the reactor

wall [90] or explicitly introduced structure [34, 43], to increase the surface to volume

ratio and implement a homogeneous reactor illumination. This constructional effort

1



1. Introduction and Objective

pays off by attaining a proper mixing, while maintaining or even reducing the fluid

velocity, as reported for tubular reactors with passive elements [65, 204]. The controlled

mixing additionally improves the light supply on a metabolic level by implementing

light/dark cycles (LD-cycles). One strategy is based on wall turbulence promoters, that

were investigated by computational fluid dynamics (CFD) simulations and found to

establish better mixing behaviour, compared to tubular reactors, at much fewer flow

velocities yielding a reduced energy uptake of 60–80 % [65]. Adopting the principle of

static mixers, the cultivation efficiency in flat plate PBR has been increased by optimizing

the arrangement of the meander through CFD accompanied by experiments [81]. Both

strategies achieve the reduction of energy costs and at the same time improve the

performance of known reactor designs, by attaining a homogeneous light supply. A third

approach is the cultivation in novel reactor designs, e. g. the Taylor vortex PBR, that show

complex flow pattern and algae trajectories leading to promising mixing behaviour [55].

Other innovative concepts that reinvent the PBR design are porous substrate and biofilm

PBR. Both approaches aim to overcome the volume-related limitations of suspension

through a cultivation process of immobilized algae [162, 203, 144]. The authors suggest,

that the almost complete separation of algal biomass from the bulk of the liquid culture

medium, is likely to improve the cost-effectiveness of the cultivation process. Similar

techniques are known for bioreactors, that lack the aspect of illumination by shared

structural aspects. For instance, the monolithic reactor design consisting of a uniform

structure of parallel channels with diameter 1–5 mm attains a very high surface to

volume ratio and increases gas-liquid mass transfer through a Taylor flow [155, 96]. An

illumination strategy might be based on light installations between the small capillaries.

The many cultivation strategies and reactor designs outline the great potential and

equally the desire and urgency of finding a suitable process engineering answer, to the

increased demand of bio-based energy sources. Comprehensive simulation tools can

play an important role in the optimization of existing reactor designs and simultaneously

the acquisition and assessment of numerous innovative concepts from other process

engineering disciplines, through analyzing the interplay of flow field, light supply and

mass transfer, to predict biomass growth kinetics. Among the many existing numerical

models and algorithms for the above phenomena, the comprehensive coupling towards

an efficient PBR model, that allows studying the interplay in real 3D geometries, remains

an open topic [59, 17]. Consistent numerical frameworks that model the multi-physics at

a persistent scope are needed in order to study the complex coupling in a comprehensive

way, besides keeping the algorithmic efforts of data structures and complex interfaces at

a minimum.
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1.2. Objective and Work Program

1.2. Objective and Work Program

First, the objective and goal of the work is presented. Then, the work program along with

the structure of the doctoral thesis is given.

1.2.1. Objective

Until today, there remains a lack of reliable simulation models, not only for the prediction

of 3D light distribution in general PBR but for the comprehensive description of the

complex interplay in PBR. For instance, existing light simulations in PBR literature, are

still often based on Lambert–Beer’s law instead of implementing the scattering properties

described by the radiative transport equation (RTE). Needless to say, that the many

hydrodynamic PBR models have to be coupled to proper light models, in order to provide

a robust and efficient predicting of the biomass growth kinetic. It is not enough to model

light transport by Lambert–Beer and consider hydrodynamics separately, when providing

a feature rich simulation framework.

The main objective of the thesis is to overcome this fundamental limitation, by devel-

oping an efficient 3D simulation tool for general radiative (light) transport problems in

volume. Besides novel isotropic radiative transport (RT) models in participating media,

here algae suspension, it has been proposed and equally validated a new anisotropic

RT model based on Lattice Boltzmann Methods (LBM). By solving the light distribution

in the framework of LBM, a common fluid flow solver, the subsequently coupling, to

existing hydrodynamic and mass transfer LBM models, shares the same modeling scope

and numerical method. In addition, this strategy adopts the competence of LBM in the

discipline of hydrodynamics and the effort is concentrated to the methodical development

and validation of a general Radiative Transport Lattice Boltzmann Methods (RTLBM),

and the study of the interplay of the multi-physics. For instance, once the fluid flow is

computed, numerous algae particles are placed inside the flow field and their trajectory is

obtained by an Euler–Lagrange method implemented in the framework of LBM. Also the

mass transfer benefits from existing LBM models. Based on an Euler–Euler approach, the

gas phase is transported in the flow field and dissolved by a diffusion mechanism. Finally,

the flow field, algae trajectories, gas transport and light supply, are coupled to predict the

biomass growth kinetic, as depicted in Figure 1.1.

In recent years LBM has been established as a numerical tool for multi-physics phenom-

ena related to fluid flows, that benefit from a highly parallel algorithm and very intuitive

modeling in the mesoscopic scale. Except for RT, there are LBM simulation submodels

for gas transport and hydrodynamic known in literature. Hence, a major effort is dedi-
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LIGHT SUPPLY FLUID FLOW AND ALGAE TRAJECTORY

ALGAE KINETICS GAS PHASE

PERFORMANCE

mesoscopic

Figure 1.1.: Interplay between radiation, fluid flow, gas transport and algae kinetics. The
arrows indicate the implemented coupling in the present work.

cated to the methodical development of RTLBM, to establish a coherent and consistent

modeling scope of PBR. This task is based upon three parts and is related to the author’s

publications as indicated: The development of novel reflection boundary conditions for

outgoing radiation on surfaces in Mink et al. [123], the modeling of radiative sources

and a proper numerical validation against analytical and Monte–Carlo Methods (MC)

solutions in Mink et al. [125, 123].

The validation of the developed numerical framework for the comprehensive simulation

of PBR is conducted on simple test scenarios, such as classical reactor geometries in

Section 7.4, but also on new and innovative internally-illuminated and sponge-structured

tubular designs, see Sections 7.5 and 7.6. The comprehensive computational framework

is designed to answer the following PBR design relevant questions:

1. Can we predict the spacial light distribution inside general PBR geometries?

2. What is the impact of the coupled process parameters such as light intensity, flow

rate and CO2 concentration in a reactor?

3. What recommendations can be derived for PBR operating parameters, with respect

to existing reactor and also novel reactor types?

The main outcome of the work is the establishment of RTLBM for the simulation of

RT in participating media, achieved by comprehensive modeling and proper numerical

validation, and is prepared to be published in Mink et al. [124]. Followed by a multi-

physics coupling as presented in Figure 1.1, the hydrodynamics are incorporated, yielding

a robust and accurate numerical tool to predict algae growth kinetics. In particular, the

mesoscopic modeling and simulation superiors traditional macroscopic based methods

with respect to parallel-efficiency, but also covering the complex coupling of multi-physics
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in a consistent and hence very intuitive way. Finally, it is expected a reliable and robust

simulation tool for algae growth in arbitrary and complex PBR geometries and new

insights in the interplay of light and fluid dynamics in PBR design. The generic derivation

of RTLBM allows reusing or extend the developed numerical tool to many engineering

problems, as the comprehensive validation and the application guidelines, presented

in [121], shows.

1.2.2. Work program

The development of the mesoscopic simulation model for PBR can be broken down into

three tasks. Key parts of the tasks have been published by the author as the references

show. Publication [121] stands out, as it is a result of a collaboration with Christopher

McHardy. Its implementation and validation in OpenLB has been contributed by the

author together with the discussion of the macroscopic RTLBM.

• Predict light supply with RTLBM. First, the modeling and simulation of light

distribution in participating volume is investigated in the framework of LBM. The

results are published in Mink et al. [125] and form the basis of Chapter 5. In

order to solve the RTE, it is developed, implemented and validated a novel RTLBM

model, including boundary models, see Chapter 4. The results have been submitted

and are currently under review [123]. The author implemented not only isotropic

RTLBM but the anisotropic RTLBM proposed in McHardy et al. [115]. Both authors

then collaborated and presented the first validation paper of RTLBM in Mink et al.

[121] where improvements of both models have been applied. This work forms the

basis of Chapter 6 and shows that RTLBM is accurate for a wide range of optical

parameters beyond algae suspensions. Finally, the Chapman–Enskog expansions are

given in Appendix A and B. All implementation, testing and validation is executed

in the software OpenLB.

• Compute algae trajectories and mass transport in the flow field with LBM.

Second, the flow field inside a PBR is computed by LBM. Together with an Euler–

Lagrange particle simulation the algae trajectories and more generally, the time

evolution of the algae suspension is retrieved. By the trajectories it is clearly seen,

whether there are dead zones or in other words, it is detected the quality of mixing.

From the numerical perspective, it is applied an Euler–Lagrange scheme based on

LBM literature as presented in Section 7.1.2. Furthermore, the gas component is

modeled in the flow field by an Euler–Euler model, where the transport by the fluid

regime is modeled by an advective term and the natural diffusion by a diffusion
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process. The applied numerical algorithm is based on the existing LBM literature

for diffusion-advection problems shown in Section 7.1.

• Design a comprehensive LBM based model for PBR. The coupling of the above

light supply, mass transport and algae trajectories models yields in a comprehensive

and consistent simulation tool. The photo-conversion of the transported gas has

been coupled to the local light supply, via a sink term in the advection-diffusion

equation. A qualitative study inside a tubular PBR equipped with glass sponges has

been prepared for publication and can be found in the Appendix.

The work starts with the introduction to RT modeling, it characteristic quantities

and the RTE in Chapter 2. Then, the numerical framework LBM is introduced from

scratch in Chapter 3 with the required steps to outline the novel RTLBM in Chapter 4.

Its validation against analytical solution extends over Chapter 5, whereas the validation

against MC is provided in Chapter 6. Finally, the developed light simulation is coupled

with hydrodynamic and gas supply models, to provide a simulation model for PBR shown

in Chapter 7. The Appendix covers the contributions to the software OpenLB and technical

parts of the LBM development such as the Chapman–Enskog analysis. In addition, the

Appendix provides a short vitae, published and unpublished articles along an overview of

the many conference contributions.
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2. Radiative Transport Modeling

The RT in volume is the study of photon propagation in volume that interacts and one of

its applications is the modeling of photon distribution in such volumes. A photon interacts

by getting absorbed or scattered by the volume, not by photon-photon interaction. For

instance, light entering fog or clouds interacts with small water droplets. This three

dimensional transport phenomena is modeled by the RTE, the central equation in the

present chapter.

2.1. Basic Radiation Characteristics

The present work models radiation as small, virtual particles that propagate on trajectories

through space. Depending on the wavelength λ, these particles carry the photon energy
or radiant energy

E(λ) = ×c

λ
in J ,

with Planck constant × given in Js, constant speed of light in vacuum c in ms−1 and

specific wavelength λ in m. Associating the photon energy to a certain time interval the

photon power is derived by P (t , x) = dE/dt at position x. The photon power is measured

in Js−1.

By taking the propagation direction into account, the radiance is defined, as the photon

power per unit normal area and per unit solid angle

L (t , x , s) = d2P (t , x)

dAdΩ
in Js−1 × 1

m2 × 1

sr
,

with respect to time t , position x and into direction s. The abstract quantity radiance can

be thought of, as the amount of photons that pass a small surface element dA arriving

from directions dΩ, see Figure 2.1a.

The radiance on the particle level can then be linked to macroscopic observable
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2. Radiative Transport Modeling

x

s

dΩ

dA(x)

(a) For any fixed time t expression
L (t , x , s)dAdΩ describes the incident
photon power from direction dΩ to sur-
face element dA.

x

(b) The integration over the incident radi-
ance yields in the radiant energy density.

Figure 2.1.: The left side illustrates the radiance. The right side illustrates the radiant
energy density on a surface.

quantities by integration. This retrieves the radiant energy density1 by

Φ (t , x) = 1

c

∫
Ω

L (t , x , s)dΩ in Jm−3 , (2.1)

for the speed of radiation c. This formula can be interpreted as the brightness or photon

density of a volume element at position x. An illustration of the radiant energy density

on a semi-hemisphere is shown in Figure 2.1b.

Besides the radiant energy density, there is a further important macroscopic quantity

the radiant flux defined by

J (t , x) =
∫
Ω

s L (t , x , s)dΩ in Js−1 × 1

m2 ,

which expresses the averaged propagation direction of the radiance. Both macroscopic

expressions help to understand the modeling quantity radiance L in terms of macroscopic

observables.

1Note that the integral is stated in spherical coordinates and reads
∫
ΩL(t , x , s)dΩ =∫ π

θ=0

∫ 2π
φ=0 L(t , x , s)sinθdθdφ, for s = (

sinθcosφ, sinθ sinφ,cosθ
)ᵀ .
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2.2. The Law of Lambert–Beer

x0

L0
µa

Figure 2.2.: Lambert–Beer states an exponential loss of radiance along the traveled path,
characterized by the absorption parameter of the volume.

2.2. The Law of Lambert–Beer

Imagine an absorbing volume that gets illuminated by a pencil beam. The incident

radiance at position x0 with intensity L0 then propagates through the volume as depicted

in Figure 2.2 and attenuates accordingly to the traveled distance and the absorption

coefficient µa. This RT model is known as the law of Lambert–Beer, that predicts an

exponential attenuation with respect to the passed distance

L(x) = L0 exp
(
µa|x0 −x |) . (2.2)

This simple formula does not model scattering or any other phenomena than absorption

and hence is not appropriate for general RT problems in volume. For example, the

incident ray does not deviate its traveling direction and hence, does not contribute to

ambient illumination. Scattering events become relevant for the light propagation in

dense microalgae suspension and as such, the law of Lambert–Beer is a rudimentary

model that is not known for its accuracy, as pointed out in more detail in Section 7.2.

However, for pure absorbing media the law of Lambert–Beer is an appropriate choice,

which can be solved in many cases analytically or by numerical schemes. Both, the

computational costs and the complexity of the algorithm, are manageable.

2.3. The Equation of Radiative Transfer in Participating Media

Radiance propagating through optically interacting volume, e. g. milk, biological tissue

or clouds, is not only governed by the passed distance, but absorption and scattering

behavior. Let us consider radiance that hits a single droplet or volume element from
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Figure 2.3.: Stair case approximation of the spectrum, also referred to as box model. The

RTE is solved independently for every discrete spectrum. A weighted sum of
the results is considered to be a good approximation.

direction s. Then, the radiance diminishes due to out-scattering in an arbitrary direction

and absorption. Conversely, there might be radiance associated to a traveling direction s ′,

that equally gets out-scattered into direction s, which then yields in a gain of the radiance

in direction s, named in-scattering. Taken together these phenomena, the RTE

1

c
∂t L+ s ·∇L =−(

µa +µs
)

L+µs

∫
Ω

p
(
s ′, s

)
L

(
t , x , s ′

)
dΩ′ , (2.3)

describes the evolution of radiance L (t , x , s) in a volume with specific absorption and

scattering coefficients µa and µs and phase function p. The speed of radiation is given

by c. Note, this formula is valid with respect to a specific wavelength λ, since the

absorption and scattering coefficients are typically a function of the wavelength. In order

to model the visible light spectrum from 400–700 nm, one approximates it by constant

functions (staircase approximation or box model) and solves the RTE for every staircase

independently. The staircase approximation of the spectrum is illustrated in Figure 2.3.

The first term on the right hand side of the RTE accounts for the linear loss of radiance

propagating in direction s, due to absorption and out-scattering. The second term models

the gain of radiance due to in-scattering from all possible incident directions s ′, as

indicated by the integral. The probability of incident radiance from s being scattered

into direction s ′, is denoted by p
(
s, s ′

)
. Unlike the constant phase function in isotropic

scattering volume, anisotropic scattering behavior, such as Mie or Rayleigh scattering,

can be covered by more sophisticated phase function. For further reading it is referred to

textbooks [19, 28, 129, 89]. Solving the RTE is a numerical difficult task, mainly due to its

integro-differential form, for which many numerical methods have been developed. This
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lmfp

Figure 2.4.: Incident radiance changes its propagation direction due to scattering with
the volume, e. g. water droplets. The average distance between a scattering
or absorption event is denoted by the mean free path lmfp.

thesis outlines the MC and Discrete–Ordinate Method (DOM) as the dominant stochastic,

respectively deterministic, algorithm in Section 2.8.

The following introduces into the optical characterization of transport regimes. A

characteristic length for the radiation transfer regime is the mean free path

lmfp = (
µa +µs

)−1 ,

which accounts for the average distance between absorption or scattering events. Fig-

ure 2.4 illustrates a trajectory of an incident ray, that changes direction due to scattering

events. This quantity is directly related to the optical thickness, sometimes referred to as

optical depth, of the RT. The ratio of the mean free path and a characteristic length lphys

yields in the (non-dimensional) optical depth

b= (
µa +µs

)
lphys .

This quantity depicts the optical thickness of the volume considering a specific problem

size lphys. Further, the amount of scattering along a mean free path is measured by the

(transport) scattering albedo

a= µs

µa +µs
.

Both, the optical depth and the scattering albedo, characterize the RT regime in the

volume and allow to define RT regimes for which approximations of the RTE are known.
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2.3.1. Radiative transport regimes

The difficulty in solving general RT problems in volume is mainly due to the (anisotropic)

scattering, which results in the complex integro-differential form of the Boltzmann-type

equation [24]. Fortunately, the RTE can be approximated by much simpler equations,

either by the law of Lambert–Beer or a Helmholtz equation, depending on the portion of

scattering along a mean free path. To this aim, the RT can be classified into a ballistic

(a→ 0) or diffuse (a→ 1, b> 1) regimes. For both RT regimes, the radiance can be approx-

imated in its steady-state1. First, assuming a ballistic regime, the RTE reduces to the law

of Lambert–Beer s ·∇L =−µaL with the solution L (x) = L0 exp
(−µa|x −x0|

)
. This fallback

shows not only the consistency to more basic model equations, but predicts the expo-

nential decrease of radiance along the optical depth coordinate. Second, the Helmholtz

equation D∆L (x) =µaL (x) approximates the RTE in the diffuse transport regime, with dif-

fusion coefficient ∆, for which a detailed survey and derivation is presented in Section 2.5.

However, the prediction of general RT in volume is equally essential and challenging for

general numerical RT solvers. It can only be attained by a precise implementation of

the scattering and absorption behavior of the media. In addition, anisotropic scattering

media requires the accurate treatment of the in-scattering integral.

2.3.2. Scattering events and phase functions

The phase function2 is a conditional probability distribution function and accounts for the

single scattering events of radiance and media. Given radiance arriving from direction s,

expression p
(
s, s ′

)
denotes the probability of a post-scattering direction s ′, as shown

in Figure 2.5. If the probability of such events depends on the location, such as in

inhomogeneous media, the phase function is additionally formulated with respect to

position x. Thinking of (homogeneous) algae suspension, the phase function measures

the probability of the deviation of an incident light beam into direction s ′ inside an

infinitesimal small control volume. From a physical standpoint, the phase function has to

1RT is an instantaneous transport and the many applications focuses on the steady-state. This thesis
does not emphasis on transient transport phenomena.

2Phase functions that depend only on directions are usually called bidirectional reflection distribution
functions (BRDF). More sophisticated phase functions are able to model surfaces as skin or clothes, where
light enters at a certain point, undergoes several subsurface scattering events and eventually leaves at
another point.
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s
s ′

s
s ′

Figure 2.5.: Single scattering event from direction s into s ′. The phase function denotes
the probability of all such scattering events.

fulfill the following properties:

p
(
s, s ′

)≥ 0 , (2.4a)

p
(
s, s ′

)= p
(
s ′, s

)
, for all s, s ′ ∈R3, Helmholtz reciprocity, (2.4b)∫

Ω
p

(
s, s ′

)
dΩ′ = 1 , Energy conservation. (2.4c)

Scattering events from s to s ′ or from s ′ to s happen with the same probability (Helmholtz

reciprocity). The energy conservation guaranties that the scattering event does not

consume radiance. However, the radiance might get reordered or distributed, hence

change the propagation direction. In the literature there are many different notations for

the phase function, e. g. p
(
s · s ′

)
, p

(
s → s ′

)
or p (θ), where angle θ is given by cos(θ) = s ·s ′ .

In case of isotropic scattering, the phase function is constant. However, anisotropic

scattering behaviour requires a general scattering model, e. g. Henyey–Greenstein phase

function. A common characterization of anisotropy is the anisotropy factor or mean

cosine defined by

g (s) =
∫
Ω

s · s ′ p
(
s, s ′

)
dΩ′ . (2.5)

This quantity averages the probability for all scattering events by measuring the amount

anisotropy. In case of isotropic scattering the anisotropy factor equals 0 due to the

symmetry. A negative anisotropy factor means that backward scattering is dominant.

Otherwise, the considered media mainly scatters forward.

The following presents analytic phase function models that are common in literature

and shows that the RTE is a very general equation that is able to model many different

RT phenomena. The Phone model implements RT on surfaces, whereas the Henyey-

Greenstein model accounts for RT in media.
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s
srefl

s ′

θ

(a) Radiance hits surface from direction s
and is reflected into s ′. The angle θ ex-
presses the derivation from the outgoing
s ′ to a srefl.

0

π
2

π

3π
2

(b) The polar plot indicates that the proba-
bility for a scattering event with θ ≈ 0 is
high.

Figure 2.6.: Illustration of the Phong phase function and the modeled reflection on
surfaces.

The Phong phase function

The Phong phase function models scattering behaviour on surfaces. Consider radiance

hitting a surface with orientation n from direction s. For perfectly specular surfaces, the

radiance is mirrored on n in direction srefl. Other outgoing directions are not considered

and hence this surface behaves like a mirror. Contrary holds for a diffuse surface, where

the incident ray is scattered equally in every direction.

However, most surfaces are rough up to a certain level and the scattering is neither

specular nor diffuse. The Phong phase function models exactly the mixture of specular

and diffuse surfaces by a preferred scattering direction, see Figure 2.6. With the definition

of θ as the angle defined by n and srefl the Phong phase function is obtained as

pphong (θ) = N +1

2π
cosN (θ) , θ ∈ [0,2π] ,

for a positive integer N that accounts for the narrowness of the outpoint directions. For

N = 0, the Phong phase function models diffuse surfaces, indicated by p = const.. The

other limit of N →∞ models the specular surfaces. For moderate N the Phong phase

function models specular surfaces with a diffuse portion, e. g. mirrors with a preferred

scattering direction.
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s
s ′

θ

(a) Radiance hits a particle from direction s
and is scattered into s ′. The angle θ ex-
presses the derivation from the outgo-
ing s ′ originally traveling direction.

0

π
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(b) A polar plot of the Henyey–Greenstein
function for a forward scattering media
with phase function and g= 0.6. Forward
scattering is obviously dominate, but it is
possible that particles get scattered back-
wards.

Figure 2.7.: Radiance hits particle from direction s and is reflected into s ′. The angle θ
expresses the derivation from the outgoing s ′ to a s.

The Henyey–Greenstein phase function

The Henyey–Greenstein phase function accounts for single particle scattering of radiance,

which can be thought of as light getting scattered on droplets e. g. inside fog or milk. Such

a scattering event with resulting deviation of the traveling direction by θ is associated to

a probability by

pHG (θ) = 1−g2

2
(
1+g2 −2g cosθ

)3/2
, θ ∈ [0,2π]

where g ∈ [−1,1] is the anisotropy factor, that indicates forward or backward scattering

behaviour of the volume (2.5). Figure 2.7 shows the Henyey–Greenstein phase function

for a forward scattering media
(
g> 0

)
. Note that particles may get scattered backwards.

However, the probability for such an event is very low compared to the forward directions.

For g= 0, the Henyey–Greenstein phase function is a constant function, thus represents

isotropic scattering. That shows the consistence of the Henyey–Greenstein phase function

to the trivial ones of isotropic scattering.

In order to apply this phase function to engineering applications, the model parameter g
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has to be fitted to the measurements.

General scattering models

Radiation propagating through volume interacts and gets absorbed and scattered, accord-

ing to RTE (2.3). Consider a scattering on a single spherical particle of diameter d by

radiation with wavelength λ. Then, the elastic scattering regime can be classified into

λ¿ d Mie scattering

λÀ d Rayleigh scattering

λ≈ d The surface of the particle is fully resolved and treated as a normal surface with

roughness and specular properties.

In dilute gases where mainly single scattering events occur, the phase function together

with the RTE is a very accurate model. Such transport regimes are well suited to MC

simulations. First, the few gas particles can be simulated in reasonable time. Second, the

simulation as well as the model share the microscopic approach and which result in an

intuitive numerical scheme.

However, in dense gases the scattering is overlapped multiple times and the RTE can

be approximated by a technique called diffusion approximation, as is shown later in

Section 2.5. In fact, after several scattering events the particle has lost the information

about the original or incident direction and the recent propagation direction is totally

independent. It can be said that after several scattering events the radiative regime is

almost diffuse and as such, the phase function that models single scattering events gets

less relevant.

2.4. Optical Characteristics of Algae Suspensions

The characterization of algae suspension with respect to scattering and absorption prop-

erties is a non trivial experimental task. Measurements depend on the wavelength and

growth conditions, also the scattering must be analyzed within very thin suspensions, in

order to avoid multiple scattering events that would blur the results.

Kandilian et al. investigated the radiation characteristics for C. reinhardtii and C.
vulgaris grown under nitrogen-replete conditions [93, 94]. The authors present a simple

experimental procedure for retrieving the averaged spectral absorption cross-section of

concentrated microalgae suspensions, that was proven to predict the fluence rate and

absorption. Including theoretical methods, based on the Mie theory treating microalgae
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as polydisperse homogeneous spheres, the scattering cross-section and anisotropy factor

was found to be in good agreement to measurements. An emphasis of their work is the

impact of algae morphology and the inappropriate homogeneous spheres assumption

for C. vulgaris. A summary of the experimental measurements of [93, 94] is given in

Table 2.1. From the measurements it is seen, that algae suspension is a highly scattering

media (aÀ 0) which will justify the diffusion approximation of the RTE in Section 2.5.

nm µ̂a in m2 kg−1 µ̂s in m2 kg−1 µ̂t in m2 kg−1 a
470 400 800 1200 0.66
600 140 1700 1840 0.92
680 380 1300 1680 0.77

Table 2.1.: Experimentally obtained absorption, scattering and extinction cross-sections
besides scattering albedo of C. reinhardtii for three wavelengths 470, 600 and
680 under optimal growth conditions [93].

For a biomass concentration of 1 gL−1 the extinction coefficient for light with wave-

length 680 nm results in 1680 m−1. Estimating the light attenuation briefly by Lambert–

Beer, it is retrieved that after 1 mm the residual light holds 18% of the incident intensity.

This example shows the steep light gradient inside algae cultures.

2.5. Diffusion Approximation

The present section focuses on the diffusion approximation of the RTE. As many other

approximation techniques of describing RT it is designed to accomplish two goals. First,

to make RT accessible to numerical investigations by developing simulation tools that

solve the approximation. Second, to gain insight in the RT regime and the interaction

of the scattering and absorption parameters. It is known, that in the limit of high

scattering albedo, radiance propagates nearly isotropic and hence, the radiation transport

is approximately diffusive. Under this diffusion hypothesis, the RTE can be approximated

by a diffusion equation, here the Helmholtz equation. This technique is well-known in

literature [89, 184] and summarized in the present Section.

Figure 2.8 illustrates the diffusion approximation, where a car is placed in a foggy

environment. The car headlights emits the radiation, which travels from droplet to droplet

and changes the traveling direction due to scattering. The further away the radiation

travels the more the traveling direction becomes independent of the emitting direction

and hence diffusive. However, close to the source the RT regime remains anisotropic. In

this example, the quality of the diffusion approximation is characterized by the scattering
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Φ J

far field

Figure 2.8.: The car headlights emit radiation that gets scattered on the droplets. The RT
regime is diffusive in the far field. Close to the radiative source the regime is
highly anisotropic.

property of the volume. To summarize the illustration it can be said, that the diffusion

equation approximates the RT in the far field and that the higher the amount of scattering

the better the diffusion approximation.

In the first step, the radiance is expanded in the basis of spherical harmonics

L (t , x , s) ≈ 1

4π
Φ (t , x)+ 3

4π
J (t , x) · s , (2.6)

up to first order in s. This expansion composes radiance as an isotropic and anisotropic

part. For an almost isotropic radiance, this is a reasonable approximation. The second

step is based on substituting the expansion (2.6) in (2.3) and integrating over the solid

angle, which yields
1

c

∂

∂t
Φ (t , x)+µaΦ (t , x)+∇· J (t , x) = 0 . (2.7)

By repeating this procedure, but first multiplying (2.3) by s, the integration yields in

1

c

∂

∂t
J (t , x)+

(
µa +µs

)
J (t , x)+ 1

3
∇Φ (t , x) = 0 . (2.8)

The closure of these two equations assumes that the partial time derivative of J can be

neglected, which leads directly to Fick’s law J =−D∇Φ, see (2.8) and

D = 1

3
(
µa +µs

) . (2.9)
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Note, that this diffusion coefficient is a result of the approximation hypothesis and might

deviate from measured values [154, 50]. Since the radiation field reaches a steady state

quasi instantaneously, this is a reasonable approximation. Substitution of this finding

in (2.7) yields
1

c

∂

∂t
Φ−∇·

(
1

3
(
µa +µs

)∇Φ)
+µaΦ= 0 . (2.10)

With the definition of an effective attenuation coefficient

µeff =
√

3µa
(
µa +µs

)
(2.11)

the RTE is finally approximated in the steady state by the Helmholtz equation

∆Φ=µ2
effΦ . (2.12)

To summarize the diffusion approximation, the complex RTE with independent param-

eters µa, µs and p can be approximated by a simple Helmholtz equation with a single

parameter µeff. The diffusion approximation has been widely discussed in literature

and predicts general RT in the diffuse regime accurately at distances from sources and

boundaries greater than one mean free path [179, 50, 184]. When it comes to the

numerical effort, it is clear that solving the approximated RT problem results in notable

less numerical cost.

Where are the limits of the diffuse approximation? One shortcoming is the restriction

to isotropic propagation. Close to boundaries and in particular close to radiative source

where photons get injected, there is anisotropic RT. However, this directional character

of RT vanishes after several mean free path lengths or equally in the far field and as

such, the far field is still predicted properly. Both phenomena are also observed in the

simulation part of this PhD thesis, see Section 4.2.2.

2.6. Approximated Solutions of Radiative Transfer in Volume

General solutions for RTE are barely known and hence approximated solutions come to

the fore. On the one hand, they provide information about the RT regime and help to

understand the modeling parameter better. On the other hand, they found the basis for

the validation of numerical schemes for solving RTE. The derivation of the approximated

solutions, given in the following, can be found in the textbooks [22, 89, 184].

In a large distance from the boundaries, inlet respectively outlet, and for some geome-

tries the diffusion approximation can be solved in a closed form. The following presents
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2. Radiative Transport Modeling

two examples for which approximated solutions are known. The case I considers an

isotropic point source in an infinite media, see illustration in Figure 2.9. The solution is

r R

(a) Geometry sketch with a radiative source.
By symmetry it is sufficient to consider
intensity along the dashed line.

0 0.2 0.4 0.6 0.8 1
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(b) Plot of the solution for optical parameter
µs = 3m−1 and µs = 27m−1.

Figure 2.9.: Case I: Point source with infinitesimal small radius and outlet radius R →∞.
By symmetry it is sufficient to consider intensity along the dashed line.

of exponential character and reads

Φ(r ) = 3
(
µa +µs

)
4πr

exp

(
−

√
3µa

(
µa +µs

)
r

)
(2.13)

= 1

4πDr
exp

(−µeff r
)

(2.14)

for distance r = |x | from an infinitesimal small light source at position x = 0, diffusion

parameter D (2.9) and effective attenuation coefficient µeff (2.11). In Section 5.1 this

solutions enters a experimental order of convergence (EOC) study to determine the order

of the numerical scheme.

Case II assumes an incident beam of infinite diameter, see Figure 2.10. In the simulation

this is modeled by a source that extends over the entire wall. The approximated solution

reads

Φ(r ) =Φ0 exp
(−µeff r

)
, (2.15)

for an effective attenuation coefficient µeff and r as above. Here, the decrease of radiance

is described only by an exponential function with a proportional constant Φ0. As before

this is a solution at large distance from the boundaries or simply far field. The slope of

the solution in Figure 2.10, is determined by the effective attenuation coefficient or in
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2.7. Boundary Conditions for the Radiative Transfer Equation

r

(a) The beam enters from the entire left
hand side, hence is of infinite diame-
ter. Approximated solutions are known
along the dashed line.
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(b) The plot shows the intensity of the so-
lution. The y-log representation clearly
indicates an exponential decay of inten-
sity.

Figure 2.10.: Case II: The infinite beam illuminates the domain from the left. By con-
struction the intensities along the dashed line are sufficient to determine
the RT.

other words, by the absorption and scattering coefficient simultaneously. In fact, the

solutions is no longer unique in terms of scattering and absorption. This behaviour shows

the approximating character of the diffusion approximation.

2.7. Boundary Conditions for the Radiative Transfer Equation

The interaction of radiance with surfaces defines the boundary condition for general

RT problems in volume. Some surfaces are transparent and the radiance just passes

them. Others may absorb or reflect radiance or even a mixture of all three phenomena

together. The main focus of the present work are boundary layers that are between two

volumes. Usually every volume is characterized by refractive indices ni and no, for the

inner volume, respective outer volume. Depending whether there is a refractive indices

match ni = no or not, the radiance passes the boundary strictly or not.

In the scope of LBM there are two main modeling aspects. At its simplest case, the

radiance leaves the volume of interest or in other words, there is no radiance re-entering

the volume. In the situation is expressed by the refractive index match ni = no, where the

boundary is completely transparent and all the radiance passes. Such a boundary can

be written, for all boundary points x with orientation n, in the form L(t , x , s) = 0 for all s
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2. Radiative Transport Modeling

with s ·n > 0. The integral version reads∫
s·n>0

L(t , x , s) dΩ= 0

where expression s ·n > 0 ensures that only the directions that pointing into the volume

are taken into account. This phenomena is named transmission and can be observed for

two volumes with the same refractive index.

In the general case, radiance is (partly) reflected on the interface and re-enters the

volume. The portion of the re-entering radiance is described by Fresnel’s equation and

depends strongly on the direction s that hits the boundary layer. Since the key part of LBM

boundary modeling is to find appropriate incoming discrete particle density functions on

the boundary, the present work discusses the partly reflected portion on the surface in

detail.

For an in-depth understanding of the interaction of radiance with surfaces, it is provided

a brief recall of Snell’s law. Given a surface normal n and volume specific refractive

indices ni, no with ni < no, Snell’s law states the change in the propagation direction by

the refraction angle

θr(θ) = arcsin

(
ni

no
sinθ

)
,

for an incident angle θ. An illustration of Snell’s law is presented in Figure 2.11. In the

case of ni > no, a critical angle is defined as θc = arcsin
(

no
ni

)
, where total reflection is

observed for θ > θc and radiance is entirely reflected (mirrored at n) back into medium.

The key modeling equation of the present work, the Fresnel’s equation, reads

RF (θ) =
 1 , for θ > θc ,

1
2

(
nrel cosθr−cosθ
nrel cosθr+cosθ

)2
+ 1

2

(
nrel cosθ−cosθr
nrel cosθ+cosθr

)2
, for 0 ≤ θ ≤ θc .

(2.16)

Given the boundary specific relative refractive index nrel = ni/no, the Fresnel’s equation

associates an incident angle to a certain reflectivity in the interval [0,1]. For the sake

of compactness, it is written θr instead of θr(θ). The special case of RF = 1 models total

reflection, e. g. mirrors, and RF = 0 pure transmission, e. g. ni = no. An illustration of the

strong dependence of RF on the incident direction is shown in Figure 2.12.

Assuming that radiance hits an interface at position x from direction θ. Then the

re-entering or partly reflected radiance can be stated informally by

L
(
t , x ,θ′

)= L (t , x ,θ)RF (θ) , (2.17)
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2.7. Boundary Conditions for the Radiative Transfer Equation

n

noni

θr
θ

Figure 2.11.: Dashed line represents the interface of two volumes with refractive index ni
and no. Incident radiance from angle θ changes its direction to angle θr
when passing the volumes. Dashed arrow (red) indicates the reflected
portion governed by Fresnel’s equation.

for an reflected angle θ′, compare Figure 2.11. According to this formula, the reflected

radiance (left hand side) is the product of incident radiance and Fresnel’s equation (right

hand side). As a first guess, one could derive an LBM scheme from (2.17), by choosing a

large set of discrete directions in order to reduce the discretization error. However, the

regular grid of LBM implies to roll out this set of directions for the whole domain, which

installs an undesired coupling of boundary discretization error and numerical cost for the

whole domain.

This downside can be avoided by, first substituting (2.17) by a less direction-sensitive

boundary formulation and second, deriving a discrete version. To this aim, there are

introduced two quantities that average the direction of radiance. First, the irradiance is

introduced

J ir(t , x) =
∫

n·s>0
L(s) s ·n dΩ in Js−1 × 1

m2 ,

which accounts for the total incident radiance on a surface point with orientation n.

Accordingly, the average outgoing radiance is introduced by the radiosity

J ra(t , x) =
∫

n·s<0
L(s) s ·n dΩ in Js−1 × 1

m2 .

Both quantities are associated to a position x with the surface normal n, where incident

directions satisfy n · s > 0 and outgoing directions satisfy n ·ß < 0. By expanding the
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Figure 2.12.: Fresnel’s equation RF plotted over incident angle θ for varying relative
refractive index nrel. Total reflection is observed for a water-air interface
(nrel = 1.2) only for radiation that hits the interface almost parallel. Other
directions are almost fully transmitted and pass the boundary interface.

radiance in the basis of spherical harmonics, up to first order, it yields

L(t , x , s) = 1

4π
Φ(t , x)+ 3

4π
J (t , x) · s ,

and subsequently the irradiance is reformulated, by means of Φ and J , to

J ir =
1

4
Φ+ 1

2
J ·n , (2.18)

respectively the radiosity with a negative second term, due to the change of sign in

direction n. This is a reasonable approximation for the radiance, if there is considered a

highly scattering media. With this findings, the averaged version of (2.17) is derived in

Section 4.3.

2.8. Existing Numerical Methods

Many numerical tools are available to solve RT problems in participating media or volume.

Most widely used are the MC and DOM, since they provide a reasonable compromise

of accuracy and computation time. The following presents the predominant stochastic

scheme, the MC, and also a deterministic representative, the DOM.
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2.8. Existing Numerical Methods

2.8.1. Monte–Carlo Methods

RT in volume can be simulated by the MC. This methods traces single photon packages by

resolving the persistent trajectory that is determined by scattering and absorption on the

volume. The absorption reduces the energy of the photon packages and the scattering

changes the propagation direction. After computing sufficient photon paths the physical

quantity light distribution can be estimated.

A single path is a random walk that samples every scattering event and computes a

single post-scattering direction. As such, anisotropic scattering events and even spectral

scattering can be incorporated straight forward, through adequate phase functions. This

equally outlines the importance of sampling of the phase function, which indeed is a key

task for MC in general. A good quality of the sampling, referred to as variance, is achieved

by keeping the statistical noise at a minimal level. Typically, the sampling of scattering

events is responsible for the time consuming character and enormous numerical effort.

Together with the slow numerical convergence rate, this method loses attraction for heavy

scattering light regimes. Still, the straight forward implementation and the robustness

are strong arguments in many computer graphic applications. For example, RT problems

with few scattering events, such as RT on surfaces, are most often computed by the MC.

The development focuses more and more on sophisticated photon tracing methods,

that are specialized to certain geometries and light regimes [181, 180, 192]. In particular

the bidirectional and Metropolis light transport models are promising by reducing the

path length and variance and hence the noise as well as the computation time.

2.8.2. Discrete Ordinate Method

The study of radiative (heat) transfer in isotropic and anisotropic scattering media with

the DOM goes back to Fiveland [49] and Truelove [176]. By dividing the unit sphere of

the scattering integral into discrete directions, according to an integration rule, the RTE

can be transformed into a set of partial differential equations. The retrieved approximated

equations represent the RT along discrete directions, which leads to the interpretation of

the DOM as a simple finite differencing of the directional dependence of the RTE [44].

More recently, Mishra et al. proposed a novel quadrature scheme for the DOM that

benefits from a very simple evaluation of ordinates and corresponding weights [128]. The

validation of 1D and 2D square enclosures containing absorbing, emitting and scattering

medium was found to provide accurate results. A recent review of the advances in

DOM for the solution of radiative head transfer problems in participating media was

presented [31]. The development of grid structures, spatial discretization and angular
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2. Radiative Transport Modeling

discretization schemes are presented along the progress in accuracy and alternative

formulations. When simulation 3D RT, typically the angular discretization is critical.

In order to prevent ray-effects in optical thin media, it is required a very fine spatial

discretization that comes with high computation costs.

26



3. Lattice Boltzmann Methods

The LBM emerged from the lattice gas automata in the late 1980s. They become rapidly

popular in the modeling of hydrodynamics by overcoming the limitation of statistical

noise of the lattice gas automata [201]. By replacing the Boolean configuration by

continuous distribution functions, the LBM, as we know them today, were derived in the

early 1990s [119, 152, 12]. Almost ten yeas later, in 1998, Chen and Doolen outlined in

their highly accepted work, that LBM is in particularly successful in fluid flow applications

involving interface dynamics and complex boundaries [30].

A first incubator for the rapid development is undoubtedly the intuitive modeling on

the mesoscopic level, which allows to incorporate many physical phenomena in fluids

and others with a clear physical understanding. From the very beginning, this attracted

engineers from many disciplines, that then speed up the development and spreading the

application scope of LBM in a remarkable way [3, 105, 69]. Compared to traditional CFD

methods, they are easy to implement, easy parallelizable and, able to model complex

multi-physics problems. In fact, pure mathematicians hardly can reproduce many of

those contributions in their stringent formalism of asymptotic and convergence [9, 183,

160, 64]. The trend of highly parallel computer hardware can be named as a second

crucial incubator, that favored the spreading of LBM as a benchmark application for high

performance computers [191, 202, 194, 131]. Today, LBM are recognized as a reliable

numerical tool in industry, where the pioneers companies getting bought up by big global

players. The standard graduate textbooks [105, 69, 130] prove that the LBM has matured

and is well-established along the traditional numerical solvers.

One characteristic for LBM is its microscopic modeling and the mesoscopic equations.

Coming from the Navier–Stokes equation, people are familiar with the macroscopic scope

and variables. However, the modeling scope for LBM is closer to the particle character

or molecules and requires a brief introduction. Let’s imagine a swarm of bees. From a

macroscopic standpoint, the swarm is described through its moving direction and speed,

or briefly the velocity. This scope however, does not consider individual bees and hence,

does not know about the interaction of the bees or even the queen bee. As a result the

swarm of bees, lacks crucial information in the macroscopic scope which could help to
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3. Lattice Boltzmann Methods

understand the swarm of bees in greater detail.

A natural choice would then be to consider the individual bees. This corresponds to

the microscopic modeling scope and allows to resolve the behaviour of individual bees,

even the queen bee. Once, the evolution of the bees is computed, respecting the queen

bee and the interactions, the information of the velocity of the swarm can be obtained

by averaging the velocities of all bees. Keeping in mind, that the averaging is a rather

trivial task compared the evolution of a single bee. The complexity depends directly on

the amount of modeled individuals and might exceed rapidly the available memory or

computing time. In particular for gases, this microscopic model is very challenging due

to several hundreds of billion individuals.

A good workaround of those two classic scopes is an introduction of a third one, the

mesoscopic scope, which lies in between. The goal is to be as close as possible to the

microscopic scope such that the relevant behaviour is still represented. But on the other

side, keeping the computational effort at a feasible level. This motivates the mesoscopic

modeling scope of the LBM, which is introduced in the following.

3.1. Kinetic Theory

In kinetic theory the configuration of a system is described by distribution functions.

This abstracts stochastic description is said to be on mesoscopic scope and sits right

between the two classic micro- and macroscopic scopes. It claims to be close enough

to the microscopic level preserving the particle character of the molecules and at the

same time, it allows to express the relevant macroscopic phenomena [166, 110]. In

particular, the latter is an asymptotic statement which must be proven carefully with

either by Chapman–Enskog analysis or other multiscale expansions [195, 105].

Considering a gas occupying a volume X with a single species of N molecules, then

the particles in a control volume element dx ⊂ X move with velocities v . It is presumed

that there is a sufficient large number of molecules in dx, such that the population can

be considered as a continuum. This hypothesis ensures that the mesoscopic scale is a

reasonable approximation of a dense gas, accordingly to the law of large numbers. The

expression

f (t , x , v )dxdv

denotes the average number of molecules in the control volume element dx around

position x that travel with velocities in the vicinity dv of velocity v at time t . Distribution

function f is the central quantity in the mesoscopic scale and also the main modeling
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Figure 3.1.: Graph shows the Maxwell–Boltzmann distribution function plotted over
velocity. The three different temperatures results in individual velocity
distributions.

quantity of the present work. Sometime f is said to be the velocity distribution function

or velocity density distribution function, depending on the personal favor. Finally, this

function is defined on the phase space [0,∞)×X×V

A common example of such a (velocity) distribution function is the Maxwell–Boltzmann 1

function

f (v ) =
( m

2πkT

) 3
2

exp

(
−m|v −u|2

2kT

)
(3.1)

that describes the velocity distribution of an idealized gas with particle mass m, for

the Boltzmann constant k, temperature T and local mean average velocity u. Such an

ideal gas consists of randomly moving point particles, that undergo particle-particle

collisions and their velocity distribution, in the equilibrium state, is described by the

Maxwell–Boltzmann function shown in Figure 3.1. This function answers the question:

How many particles have a certain velocity for a gas of temperature T ? Since the quantity

of interest is velocity, the function is referred to as velocity (density) distribution function.

Famous other distribution function are the Bose–Einstein function that models ideal

quantum Bose gas or the Fermi–Dirac function that models ideal quantum Fermi gas.

The connection from the mesoscopic modeling function f to macroscopic observable

1Maxwell derived this function through a heuristic approach in 1870. It was Boltzmann that derived this
function based on mechanics in 1872 .
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lmfp

Figure 3.2.: A particle experiences several particle-particle collisions. The mean free
path lmfp is the average distance between such collisions and denotes the
characteristic length on mesoscopic scale.

quantities is established by the moments of the distribution function, or simply by

averaging. Note, that position and time are macroscopic variables but the v is strictly

a mesoscopic velocity and u the macroscopic velocity. In the context of fluid flow

application, the fluid characteristic quantities such as density ρ, velocity u and total

energy E are obtained by the following formula:

ρ (t , x) =
∫

f (t , x , v )dv , (3.2a)

ρu (t , x) =
∫

v f (t , x , v )dv , (3.2b)

ρE (t , x) = 1

2

∫
|v |2 f (t , x , v )dv . (3.2c)

Here, the integral considers all possible velocities in Rd for d ∈ {2,3} and connects the

kinetic scope to macroscopic observables.

Another linkage between the meso- and macroscopic level is the ratio of the length

scales. Imagine a gas molecule that travels on a trajectory and hits other gas molecules as

illustrated in Figure 3.2. The average distance between those particle-particle interactions

is named mean free path lmfp and serves as the characteristic length on the mesoscopic

scale. With the latter the dimensionless Knudsen number Kn is defined as

Kn=
lmfp

lphys
(3.3)

for a macroscopic reference length lphys. Gas regimes that are characterized by a Knudsen

number < 0.1 can be approximated properly by the Navier–Stokes equations. Flow

regimes with a higher Knudsen number are typically based on very small macroscopic
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length, e. g. flow in micro channels and are no longer described by the Navier–Stokes

equations [166, 72].

3.2. Boltzmann Equation

The evolution of a system, described by a particle distribution function f , is governed by

the Boltzmann equation. Assume there is a boundary condition or any other force, that

forces the system away from the state of equilibrium. Then, the time evolution of the

distribution function reads in its most general form

d
dt

f (t , x , v ) =Q
(

f
)

(t , x , v ) , (3.4)

for a general collision operator Q. The magic part of this equation is the collision modeling,

that typically models the particle-particle interaction [170, 24, 8] and is provided later.

To be precise, for the specific Boltzmann collision operator [26], this simple yet powerful

equation was formulated between 1872 and 1875 by its name giver Ludwig Eduard

Boltzmann. Boltzmann met with many difficulties in making his theory understood by

his contemporaries. Today it is difficult to imagine, that he was constantly attracted

and criticized by his opponents for his visionary concept that relates the principles from

mechanics to an irreversible statistical process [25].

The physics of the modeled system is solely determined by the collision operator, which

is specified later in Section 3.3.1. Quantities such as viscosity, diffusivity and many more

are hidden behind this versatile operator.

One of the major problems, when dealing with the Boltzmann equation, is the compli-

cated nature of the collision integral. Instead of computing the original collision operator

formulated by Boltzmann it is considered a simplified version that equally conserves and

models the desired quantities. Wolf-Gladrow pointed out two constraints that all collision

operators Q should respect [195]:

1. Preservation of mass, momentum and energy:∫
Q

(
f
)
dv = 0, Mass conservation, (3.5a)∫

v Q
(

f
)
dv = 0, Momentum conservation, (3.5b)∫

|v |2Q
(

f
)
dv = 0, Energy conservation. (3.5c)

2. Collision expresses tendency to a Maxwell–Boltzmann distribution (H-Theorem)
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These are the minimal requirements for a collision operator for e. g. fluid flow problems.

Some author emphasis the strong connection to the Maxwell–Boltzmann distribution by

naming the equilibrium function f M . Both constraints are matched by the BGK collision

operator, named after the authors of the original work [15]. The collision nature of the

molecules is modeled by a collision time τ that relaxes the recent particle distribution

function towards the equilibrium state

Q
(

f
)= 1

τ

(
f eq − f

)
.

Note, that the collision expresses the tendency to Maxwell–Boltzmann distribution locally.

3.3. Lattice Boltzmann Method Algorithm

A typical LBM simulation is based on a domain discretization into a structured uniform

grid of cubes. Thus, the domain X is divided into cubes1 of equal size with edge length 4x.

Every cube is equipped with a set of discrete directions, along which virtual particles

travel to neighbouring cubes, see Figure 3.3. The grid together with the discrete directions

Figure 3.3.: Discrete cube equipped with 27 discrete directions, referred to as a D3Q27
stencil. Every green dot represents virtual particles propagating along certain
directions to a neighboring cube.

represents the discrete phase space. According to the distance to the neighboring cube,

the discrete directions are associated to weights, which ensure an isotropic setting. In LBM

such an arrangement is referred to as a stencil with nomenclature DnQq for dimension

n = 1, 2 and 3 and number of directions q.
1In the context of LBM the cubes are typically referred to as cells.
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The iterative nature of LBM is due to the alternately performed collide-and-stream step.

The first recomputes the particle distribution in the cells according to a collision rule that

imposes the desired physics, e. g. viscosity, diffusivity and more. The second updates the

domain with the particle configuration after the collision. Details on the LBM specific

discretization can be found in the standard LBM literature [105, 69, 130].

According to the above discretization, the discrete particle velocity function reads

fi (t , x) = wi f (t , x , v i ) ,

with respect to a cell at position x and directions v i or directly i . In addition to the

velocity discretization, there are q lattice weights wi such that the moments, defined

in (3.2), are computed exactly by a Gaussian quadrature formula∫
v k f (t , x , v )dv =

∑
i

v k
i fi ,

for k = 0, 1 and 2. It can be seen, that the lattice weights wi are the integration weights

of the Gaussian quadrature formula. According to the number of discrete directions q,

the three dimensional LBM stencil is named D3Qq.

The collide-and-stream equation is then stated

f ?i (t , x) = fi (t , x)−Q
(

fi
)

(t , x) , (3.6a)

fi (t +4t , x +v i4x) = f ?i (t , x) , (3.6b)

in accordance to a collision operator Q, which has to be specified. The first equation is

local in position x, where the collision rule is applied for every direction i , whereas the

second equation streams the updated discrete particle fluence f ?i along direction v i to a

neighbouring node. The essential difficulty in any application of LBM lies in verifying

that the simple collide-and-stream step on the mesoscopic scale solves asymptotically

a desired macroscopic partial differential equation. To clarify this issue, researchers

examine a multi-scale analysis such as the Chapman–Enskog expansion and prove that

the correct asymptotic behaviour is achieved. The central ingredient therefore is a small

Knudsen number of the system (3.3).

With regard to high-performance computing and parallel efficiency, it is important

that the collision is a purely local operation, which is responsible for the embarrassingly

parallel algorithm. However, the streaming requires the neighbouring cube and causes

the bandwidth limitation of LBM implementations. It is also noteworthy to emphasize on

the simple domain discretization and decomposition, which is a major benefit of LBM

33



3. Lattice Boltzmann Methods

when it comes to mesh generation and load balancing in parallel execution.

3.3.1. Collision operators in LBM

The collision operator models the physics and is a crucial ingredient for every LBM. As

derived above, one requirement to a typical collision operator is the conservation of mass,

momentum and energy, see (3.5) along the (local) trend towards a Maxwell–Boltzmann

distribution. The discrete analogs of the conservation equations read

q∑
i=1

Q
(

fi
)= 0 , (3.7a)

q∑
i=1

v i Q
(

fi
)= 0 , (3.7b)

q∑
i=1

|v i |2Q
(

fi
)= 0 . (3.7c)

There are many formulations for such collision operators as the recent survey of Coreixas

et al. [33] shows. For the sake of simplicity it is considered the BGK collision operator

QBGK
(

fi
)= 1

τ

(
f eq

i − fi
)

, (3.8)

for a relaxation time τ and a discrete representation of an equilibrium function f eq
i .

LBM that implement the BGK collision operator are often referred to as BGK LBM. This

collision operator relaxes the recent particle distribution function towards an equilibrium

state at the rate determined by relaxation time τ. The physics behind this rather synthetic

BGK collision operator is based on two aspects, the relaxation time and the equilibrium

function. Thinking of a fluid, the relaxation time is related to the viscosity and the

equilibrium function to the fluid state at equilibrium.

Let’s assume that the equilibrium state is reached by the particle distribution function fi ,

then the Boltzmann equation vanishes d
dt f = 0 and hence the simulated system is at

equilibrium. The magic happens when forcing the particle distribution away from

equilibrium by imposing boundary conditions. Then the simulated ’forced away from

equilibrium’ state expresses a proper physical state of velocity field or pressure field

through the moments. Depending on the relaxation time τ the viscosity of the fluid is

adjusted.
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3.3.2. Equilibrium functions in LBM

Considering BGK LBM and its application to hydrodynamics, the equilibrium function

is chosen as a discrete Maxwell–Boltzmann distribution. The derivation of the discrete

Maxwell–Boltzmann distribution is separated into two steps: a Taylor truncation of the

continuous distribution and a Gauss–Hermite integration of the collision invariants (3.7).

First, the local equilibrium state of the populations is formulated for ideal gases according

to Maxwell–Boltzmann distribution

f (v ) =
( m

2πRT

) 3
2

exp

(
−m|v −u|2

2RT

)
=C exp

(
− |v |2

2RT

)
exp

( |u|2
2RT

− v ·u

2RT

)
≈C exp

(
− |v |2

2RT

)(
1+ v ·u

2RT
+ 2(v ·u)2

(2RT )2 − |u|2
2RT

)
,

for the specific gas constant R, some constant C and Taylor expansion up to second order

in u. This trivial case proves the consistency of the modeling. This truncated Maxwell–

Boltzmann equation is of form f (u) = exp(−u2)p(u) for a polynomial p of second order

and can be integrated exactly by the Gauss–Hermite quadrature rule, for certain LBM

weights wi and velocity sets v i . The order of the Gauss–Hermite quadrature is chosen

such that, the discrete collision invariants∫
v k f (v )dΩ=

∫
v k p (v )exp(−|v |2)dΩ=

∑
i

v k
i wi p (v i ) , for k =0, 1 and 2

are preserved. This property is important and guaranties the mass, momentum and

energy conservation of the collision operator, here BGK collision.

In more detail, the (discrete) equilibrium function is retrieved by

f eq
i

(
ρ,u

)= wiρ

(
1+ v i ·u

c2
s

+ (v i ·u)2 − c2
s |u|2

2c4
s

)
, (3.9)

as a function of macroscopic density ρ and velocity u. For 3D applications, the D3Q19

stencil with its 19 directions (in favor of Gauss–Hermite quadrature: 19 grid points) and

the lattice speed of sound cs =
p

1/3 is a suitable discretization stencil. Details for the

precise derivation is found in mathematics-style works [195, 101, 41].

The main characteristics of an equilibrium function is, that it is a function of macro-

scopic observables and needs only the information of the averaged population fi .
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3. Lattice Boltzmann Methods

3.3.3. LBM and target equations

The LBM are designed on mesoscopic scale to solve certain macroscopic target equations.

Here, common LBM models for typical target equations, namely Navier–Stokes, advection–

diffusion and diffusion equations, are presented briefly. The brief classification assigns

the order of the Maxwell–Boltzmann equilibrium to the target equation and is adopted

from the textbook of Mohamad [130] and can also be found in Krause et al. [103].

LBM for Navier–Stokes equation

The Navier–Stokes equation for incompressible fluids (∇·u = 0) reads

∂t u + (u ·∇)u =−∇p

ρ
+ν∇2u ,

for fluid velocity u, density ρ, pressure p and kinematic viscosity ν.

The corresponding LBM deploys a 2nd order Maxwell–Boltzmann equation (3.9) and

assigns the relaxation time τ to the viscosity by formula ν= c2
s

(
τ− 4t

2

)
. According to the

second-order non-linearity of the target equation, the Navier–Stokes equation, the LBM

scheme relies also on a second order equilibrium expression. A suitable lattice stencil

is the D3Q19 model. Such LBM methods are second order schemes for the velocity and

first order schemes for the pressure, in the diffusive scaling (4t = (4x)2), see theoretical

analysis of the truncation and asymptotic behavior in [79, 92].

LBM for advection–diffusion equation

The general advection–diffusion equation, for a species of interest Φ in a fluid field of

velocity u, reads

∂tΦ=∇·D∇Φ−∇·uΦ .

Here, D is the diffusion coefficient or the (thermal) diffusivity. Combining both, the

Navier–Stokes and advection–diffusion, a multi-physics Euler–Euler model for the simula-

tion of dilute particulate fluid flows is achieved [177]. Another promising approach is

to solve the conservative form of the energy equation in the framework of LBM, whose

solution appears as a source term in the advection–diffusion equation. The source term

formulations is suitable for conjugated heat transfer in general multiphase or multicom-

ponent systems, being independent of the topology of the interface [174, 97].

The relaxation time for the simulation is defined by equation D = c2
s

(
τ− 4t

2

)
, see [106,

145]. It is sufficient to use the Maxwell–Boltzmann equation (3.9) up to first order
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3.4. From Lattice Boltzmann Methods to Macroscopic Equations

and D3Q7 lattice stencils.

LBM for diffusion–reaction equation

Diffusion–reaction equation (steady-state) or more general Poisson equation reads

∇·D∇Φ (x) = S (x) ,

for a right hand side S that models the reactive part. For a vanishing reactive term, the

equation reduces to the Laplace equation and for a linear reactive term, the equation

corresponds to the Helmholtz equation. The comparisons of LBM with analytical solu-

tions and alternative numerical solutions is discussed with respect to solution accuracy,

convergence and computational efficiency [140, 145, 27]. Ponce Dawson et al. [145]

pointed out, that this LBM is most accurate for τ= 1 (relative error of 0.04%) and of 2nd

order considering diffusion without any reactive terms.

In summary, it can be said, that the LBM for diffusion processes is obtained through the

LBM for advection–diffusion processes by fixing the fluid velocity u to zero. Hence, the

Maxwell–Boltzmann equation is of zeroth order and the diffusion parameter as above.

Additional sinks or sources can be incorporate according to the procedure of external

forces in fluid flow applications.

3.4. From Lattice Boltzmann Methods to Macroscopic
Equations

A crucial difference of LBM compared to traditional numerical schemes such as Finite–

Volume Method (FVM), is the modeling and simulation scope. LBM is not a discrete

formulation of a macroscopic equation, e. g. Navier–Stokes and others. The typical

collide-and-stream equations of the LBM can be obtained through discretization of the

(continuous) Boltzmann equation equipped with the BGK collision operator, see the

pioneer work of He and Luo [77]. However, without an evidence or linkage from the

retrieved collide-and-stream equations to macroscopic observables, this procedure is of

little interest. This task is typically completed by a multiscale expansion of the LBM

followed by several courageous algebraic operations, researchers translate mesoscopic

parameter and equations to their macroscopic counterparts [29, 66]. Despite the fact,

that these methods are widely used, mathematicians often found the procedures to rely

on sloppy grounds [183].
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3. Lattice Boltzmann Methods

Surprisingly, the initial goal of this discretization is not to solve the Boltzmann equation

but instead solve macroscopic target equations, e. g. Navier–Stokes equations and others.

In other words, the LBM, as we know them today, are motivated by the particle character

of the Boltzmann equation and applied to solve macroscopic equations, rather than the

Boltzmann equation. The relation of the modeling scope and its typical equation is

illustrated in Figure 3.4. It is also important to note, that the simplification of the collision

Boltzmann equation LBM Navier–Stokes

Distribution f Discrete distribution fi Velocity u =
∑

i vi fi

ρ

MESOSCOPIC (CONT.) MESOSCOPIC (DISCR.) MACROSCOPIC

Discretization

Simplify Collision

Moments

Chapman–Enskog

Figure 3.4.: Summary and relation of the micro-, meso- and macro level for application
to fluid flows.

already assumes some physical behavior as the two constraints above demonstrates. As a

consequence, the derivation of LBM beyond the common hydrodynamic discipline, might

implement other constraints to retrieve collide-and-stream equations from their model

equation, as discussed in [125] and Section 4.2. In fact, the first LBM are designed as

lattice gas automata and were not related to macroscopic equations at all as pointed out

in [195].

In the last two decades, the application of LBM towards solving multi-physics problems

catalyzed and speeded-up the development in a tremendous way. Over the years, re-

searches developed a zoo of collision operators, claiming diligently their collision operator

outperforms others for a specific problem. An objective and theoretical comparison of

collision models for hydrodynamic LBM was presented in Coreixas et al. [33].

To summarize the modeling and origin of LBM it can be said, they evolved as a

bottom-up approach that originates in the Boltzmann equation. The numerical algorithm

is derived for a simplified collision model and is known to solve the Navier–Stokes

equations in the hydrodynamic limit [160, 9].
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4. Radiative Transport with LBM

A relatively new technique for the simulation of radiation transfer are LBM, which are

well-established tools in the context of fluid dynamics. Both, the radiation field and the

fluid flow are modeled on mesoscopic scale, describing the evolution of the (velocity

and photon) distribution function by a Boltzmann-type equation. Until now, LBM mainly

are developed for hydrodynamics and with little focus on the radiation field, which is

surprising since both phenomena are modeled by very similar Boltzmann equations. The

main difference is referred to the particle-particle collision in the fluid flow context and

particle-volume collision in the application to the RT. As a consequence, the application

of LBM to RT is expected to differ on: (a) particle-volume collision operator and (b)

equilibrium state for photon transport. Beyond those physical driven differences, the

structure of the model equations is similar and deriving RTLBM is a very promising

venture.

If the algorithm is equally parallel and intuitive than for LBM, RTLBM are a competitor

for traditional numerical methods for RT. For instance, LBM have the great advantage

that all computational operations are carried out locally in the numerical grid and no

derivatives need to be approximated from adjacent grid points. This enables highly

efficient implementations for parallel computing and super-computing [131, 45], which

is particularly interest for computationally costly simulations of RT. Coupled heat trans-

porting LBM benefit from the consistent scope of model equations as pointed out by [157,

52].

Analogously to the hydrodynamic LBM, a summary of the involved scopes in RTLBM

is shown in Figure 4.1. There are two main strategies to develop general RTLBM. The

bottom-up approach implements RTLBM as a discrete version of the RTE and aims to

transport the particle character into the mesoscopic algorithm. Any kind of bottom-up

motivated RTLBM, in this thesis, is name mesoscopic RTLBM. On the other side, the top-

down approach relies on an indirection introduced by a target equation, here Helmholtz

equation. For the latter, the technique of Chapman–Enskog provides evidence that the

heuristically proposed RTLBM solves the target equation. The latter are designed to solve

a macroscopic target equation and are hence named macroscopic RTLBM.
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4. Radiative Transport with LBM

Being firstly suggested by Geist et al. [62], several mesoscopic RTLBM have been

proposed over the last decade [16, 5, 115]. The majority of these models [115, 16,

5, 188] consider the RTE as a Boltzmann-type kinetic equation [148]. This class of

models is based on a direct discretization of the RTE in the angular, spatial and temporal

space. The numerical solution is obtained thereafter by an efficient collide-and-stream

algorithm, which is a characteristic ingredient of general LBM. The target equation of the

algorithm is the RTE itself, so that the physical model to be solved is still on the kinetic

level. Mesoscopic models typically show first order convergence, anisotropic scattering

can be incorporated intuitively and no assumption about the isotropy of radiance must

be made [118].

An alternative approach presented in [111, 125] originates from the assumption that

the solution of the RTE can be approximated by the solution of a macroscopic Helmholtz

equation. Under the assumption, that the transport regime is scattering dominant, the

diffusion approximation also known as P1-Approximation [184, 89] derives the Helmholtz

equation from the RTE. This class of RTLBM aims to solve the RTE indirectly through

the Helmholtz equation. The correct asymptotic behaviour of this scheme is analyzed

by a Chapman–Enskog expansion, which connects the collision rule to the macroscopic

diffusion coefficient what is in accordance to classical formulations of the LBM [125].

In a subsequent study, it was pointed out that the macroscopic model is numerically

very efficient and accurate in optically thick media and that second order convergence is

achieved due to the diffusive scaling of the transport coefficients [121].

Typically, for all general LBM, the flexibility and intuitiveness of RTLBM allows to

extend the numerical algorithm to many related problems. For instance, the adaption

of RTLBM to transient transport [208, 206, 188, 53], the polarized radiation [207]

and to the visible light spectrum [116] have already been studied. Even adaptive mesh

refinement and GPU implementation of RTLBM have been reported [187]. Recently, Cen

et al. [23] reported an efficient RTLBM that is applied to optical tomography, emphasizing

the performance improvements through RTLBM. The combination of volumetric radiation

and natural convection has been simulated using the LBM, respectively RTLBM, in

many publications [175, 114, 10]. By replacing the Maxwell–Boltzmann distribution by

the Bose–Einstein distribution, researches developed a novel LBM for the transport of

phonons [134, 68].

This chapter derives methodologically the general RTLBM as published by the au-

thors Mink et al. [125, 121] and others [115]. Further, it is proposed for the first time a

novel P1-RTLBM, that combines the benefits from macroscopic and mesoscopic RTLBM.

Besides a clear development of the three RTLBM there is a precise categorization and
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4.1. Discrete Radiative Transport Lattice Boltzmann Equation

delineation to hydrodynamic LBM. Finally, the chapter closes with a comprehensive

boundary modeling for general surfaces, based on the publication Mink et al. [123].

4.1. Discrete Radiative Transport Lattice Boltzmann Equation

The RTE describes the evolution of radiance due to scattering and absorption, through

a Boltzmann-type equation. Except the formulation of the collision, that for RTE is a

photon-volume collision, the mathematical structure is equal. Thus, applying similar

discretization techniques as for fluid flow problems appeals promising, when deriving an

LBM for RTE phenomena.

Recall the RTE (2.3) is a balance equation that explains the change of radiance due to

absorption µa and scattering µs by

1

c
∂t L (t , x , s)+ s ·∇L (t , x , s) =−µs

(
L (t , x , s)−

∫
4π

p
(
s, s ′

)
L

(
t , x , s ′

)
dΩ′

)
−µaL (t , x , s) (4.1)

=−µs
(
L (t , x , s)−Leq (t , x , s)

)−µaL (t , x , s) . (4.2)

In addition the phase function p models the single scattering events. Black body radiation

and other sources respectively sinks can be easily added to the above equation. The right

hand side is separated according to the scattering and absorption contributions and yields

already in a similar representation than the Boltzmann equation (3.1) equipped with

the BGK collision operator (3.8). From this equation it can be seen how the radiative

characteristics are represented as a BGK -Boltzmann equation in the context of LBM. The

scattering corresponds to the collision and absorption plays the role of external forces

or sinks. As LBM is a relaxation scheme, it is deduced, that RTLBM are suitable for

RT regimes that scatter significantly. Media that is described by a dominant absorption

parameter is expected to be critical.

Now, the goal is to apply the discretization known from hydrodynamic LBM to the above

equation and obtain an explicit scheme that approximately solves RTE. It is expected that

the retrieved numerical algorithm can be implemented as an LBM collide-and-stream

equation and hence the computation of the radiation field and fluid flow is attained

in a consistent framework of LBM. To start with the discretization of the phase space

[0,∞)×X×V, first the typical LBM stencils have to be specified. Consider a discrete

phase space with a stencil that defines directions si and weights wi , then the radiance is

expressed as a photon fluence function

fi (t , x) = wi L(t , x , si ) ,
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4. Radiative Transport with LBM

where x are discrete lattice points, also referred to as (lattice) cells, and vectors si are

pointing towards a neighbouring cell. A cell at position x is equipped with q photon

fluence functions fi , for every direction as depicted in Figure 3.3. In the following the fi

are also referred to as populations to emphasis the numerous fi for every cell.

Following the arguments of the discretization in space and time of the BGK Boltzmann

equation from [105, Chapter 3.5] or the original work of He and Luo [77], the continuous

equation (4.2) can be transferred to the discrete form

fi (t +4t , x + ci si4t )− fi (t , x)

4t
=−µsci

(
fi (t , x)− f eq

i (t , x)
)−µaci fi (t , x) . (4.3)

Here, the equilibrium function f eq
i is a discrete representation of Leq , which will be

presented in detail in Section 4.2. The contribution ci = |si | is an additional term for

RTLBM and accounts for the transport of radiance. For instance, the axis aligned directions

are trivially ci = 1, but the diagonal direction gets scaled.

In the last step (4.3) is rewritten in the collide-and-stream form

f ?i (t , x) = fi (t , x)−µsci4t
(

fi − f eq
i

)
(t , x)−µaci4t fi (t , x) ,

fi (t +4t , x + ci si4t ) = f ?i (t , x) ,

where in the first equation the population is rearranged according to the scattering and

absorption characteristics of the volume. The second equation, then propagates the novel

populations to the neighboring cells. More precise, after one time step 4t , every photon

fluence function is transferred exactly to the neighboring cell located at x + ci si4t or

x + si4x for the definition 4x(i ) = ci4t . This collide-and-stream equation is the core of

every RTLBM presented in the present thesis.

The following section presents three RTLBM with precise choice of stencils and equilib-

rium functions. All simulation models are given in a collide-and-stream form accompanied

with the associated equilibrium expression.

4.2. Radiative Transport Lattice Boltzmann Methods

LBM are relaxation schemes in which populations tend toward a local equilibrium state

(Maxwell–Boltzmann function (3.9)), typically a function of higher moments, e. g. 0th

moment ρ and 1st moment v . The speed of this relaxation process is determined by the

relaxation time τ for general LBM or µsci in the context of RTLBM.

In fact, the equilibrium formulation is such a dominant ingredient for RTLBM, that can
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4.2. Radiative Transport Lattice Boltzmann Methods

be used to classify the RTLBM in literature. One category consists of the moment–based

equilibrium formulations presented in Section 4.2.1, named macroscopic RTLBM and

P1-RTLBM. The second category, referred to as mesoscopic RTLBM, contains the fully

discretized scattering integral formulations, see Section 4.2.2. The latter strikes out a

new path by considering a discrete version of the phase function and computing the

scattering integral for all directions in an LBM stencil. A full theoretical discussion of the

presented models is provided in Section 4.2.4. Finally, the Fresnel boundary is introduced

in Section 4.3 to equip the RTLBM with physical boundary models.

All presented RTLBM, boundary models and normalization techniques are available to

the public in OpenLB version 1.3 as referenced in more detail in Appendix E.

4.2.1. Macroscopic RTLBM

RT in highly scattering media can be approximated by a Helmholtz equation as presented

in Section 2.5. From theory, it is known, that the approximation is accurate in RT regimes

with scattering albedo a> 0.9, describing the RTE by the macroscopic Helmholtz equation

∆Φ=µ2
effΦ ,

for an effective attenuation coefficient µeff which is a function of absorption and scattering

coefficients as depicted in (2.11). Instead of solving the RTE, the macroscopic RTLBM

aims at first to approximately solve the macroscopic target equation. The gained insights

are then applied to develop an enhanced version in Section 4.2.3, where additional

information from the approximation are plugged in the equilibrium formula.

The first 3D RTLBM was proposed by Mink et al. [125] reporting a collide-and-stream

equation

fi (t +4t , x + si4x) = fi (t , x)− 1

τ

(
fi (t , x)− f eq

i (t , x)
)− µ2

eff

8
(4x)2 fi (t , x) , (4.4)

with 0th order discrete Maxwell–Boltzmann equilibrium distribution (3.9) of

f eq
i = wi

∑
j

f j ,

equipped with relaxation time τ= 1 and D3Q7 stencils. Special attention is paid to the

choice of the lattice stencil D3Q7 with axis aligned directions si and weights wi . They are

chosen, such that the moments of f eq
i can be computed by a Gauss–Hermite quadrature

formula, e. g.
∫

f eq (t , x , s) dΩ= ∑
i wi f eq (t , x , si ) = ∑

i f eq
i (t , x). As emphasized by Mink
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et al. [125], this guaranties that the general conservation requirements of LBM collision

in (3.7) and the energy conservation of the scattering integral in (2.4) are satisfied. For

details on the Gauss–Hermite quadrature rule and common LBM stencils it is referred

to [77, 195].

In agreement to the approximation, where absorption and scattering is bunched in the

effective attenuation coefficient µeff, the above RTLBM is stated only in µeff. The authors

reported that a small set of 7 discrete directions results in a very fast converging scheme

(2nd order)[125], that in addition benefits from low memory requirements.

In contrast to general transient diffusion–reaction LBM, where the non-dimensional

relaxation time τ is a function of the diffusivity D see [145, 27, 61, 137], this approach

allows choosing τ= 1. Since LBM for diffusion problems are in particular accurate for

τ ≈ 1, this is an elemental step which is achieved by a suitable target equation that

does not depend on the diffusion coefficient, but on the effective attenuation coefficient.

Two assumptions justify this approach as pointed out in [184, 125, 121]. First, the RT

happens instantaneously at the considered time scales, which allows to consider the

steady representative. Second, the reformulation to the Helmholtz equation (diffusion–

reaction equation with D = 1) leads to the choice of τ= 1. This point is further discussed

in Section 5.1.2 by means of numerical experiments.

The numerical validation against a spherical test geometry with known analytical

solution is presented in Section 5.1 and the Chapman–Enskog analysis, that translates

the kinetic algorithm to macroscopic target equations, is provided in Appendix A. The

comprehensive validation against MC data is presented in Section 6.4.

Additional numerical test cases from [105, Section 8.6.1] and Chai and Shi [27,

Example 2] have been implemented in OpenLB 1. The results agree with the literature

and suggest that the implementation is validated for diffusion problems.

4.2.2. Mesoscopic RTLBM

The mesoscopic RTLBM aim to approximate the scattering integral with the same set of

discrete directions then imposed by the LBM as the discretization of the phase space. By

using the same stencil, the computations can be executed on the same grid yielding a

collide-and-stream equation in the framework of LBM.

The RTLBM with resolved scattering integral are in particular interesting for two

reasons. First, they are designed to incorporate anisotropic scattering with volume

through a discretization scheme for the phase function. Second, the stencil differs from

1The implementation is found in the source code application guassianHill2D and helmholtz.
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the fluid flow stencils, as they are based on the Lebedev–Laikov quadrature rule as

proposed originally by McHardy et al. [115].

Recall the scattering integral that accounts for the in-scattering from all s ′ into propa-

gation direction s by ∫
4π

p
(
s, s ′

)
L

(
t , x , s ′

)
dΩ′ = Leq (t , x , s) . (4.5)

The probability of a single scattering event at position x from direction s into s ′ is denoted

by the phase function p
(
s, s ′

)
, or the discrete analog p (si , si ) = pi , j . The straight forward

discretization into q directions of (4.5) yields in an approximation error, that in particular

violates the energy conservation property for anisotropic scattering events as reported

in Kim and Lee [98] and Hunter and Guo [87]. Consequently, many techniques have been

developed, to cure the discretization error with different normalization strategies [87, 86,

85, 88, 98]. All techniques are designed such that the two closures of the discrete phase

function

∑
i

pi , j = 1 ,∑
i

si · s j pi , j = g ,

for all j = 1, . . . , q are fulfilled simultaneously, where g is the anisotropy factor (2.5). Both

constraints have already been stated in its continuous counterparts, see (2.4c) and (2.5).

Those 2q equations form an under determinate system of linear equations, since there

are q(q +1)/2 unknown pi , j . Note that the matrix with entries pi , j can be defined by

q(q + 1)/2 parameters, due to its symmetry. A unique solution that satisfies the two

closures, from above, is obtained by means of Moore–Penrose inverse [167], solving a

least square problem. The iterative nature of the normalization scheme makes this task

time consuming for LBM stencils with many directions, e. g. D3Q27 stencils. However,

this computation has to be carried out only once per simulation and takes less than 5 min

due to the hardware optimized implementation of the least square algorithm in LAPACK.

Further remarks and comments on the OpenLB implementation of the normalization

technique proposed in Hunter and Guo [87] is provided in Appendix E.3.

Next, the construction of the equilibrium function is retrieved, starting from the discrete

formula

f eq
i = wi Leq (t , x , si ) ,

for an intensity equilibrium (4.5). Consider the general matrix A retrieved by the

normalization strategy from above and with entries aµ,ν which account for the probability
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of a particle undergoing an scattering event sµ → sν. It is known that matrix A is

symmetric, since scattering event is symmetric, conserves energy and the anisotropy

factor. The retrieved equilibrium function then reads

f eq
i = wi

∑
j

ai , j f j . (4.6)

Together with the collide-and-stream equation

fi (t +4t , x + ci si4t ) = fi (t , x)−µsci4t

(
fi −wi

∑
j

ai , j f j

)
(t , x)−µaci4t fi (t , x) , (4.7)

this states the mesoscopic RTLBM with resolved scattering integral, proposed initially

by [115] and with enhancements in [121]. The corresponding stencils are obtained from

the Lebedev–Laikov quadrature rule, see Appendix E.2.

Recently, an enhancement of the present mesoscopic RTLBM was developed by applying

a Runge–Kutta (RK) scheme to the collision step. The RK approximates collision at the

time 4t through four several intermediate steps and it was found to foremost improve the

ballistic RT [121, 118]. The method was co-authored and implemented in OpenLB, see

Appendix E.2 by the author of the present thesis. The computational expensive method

improves mainly the accuracy for absorbing media and was presented first and in full

detail in the PhD thesis of McHardy [118]. The validation against MC data for various RT

regimes is shown in Section 4.2.2.

4.2.3. P1-RTLBM

The P1-RTLBM combines the comprehensive modeling of radiative phenomena from

the mesoscopic RTLBM with the computational efficiency of the macroscopic RTLBM. It

is designed to overcome the limitations of both, the heavy computational cost and the

poor modeling of radiative characteristics, and combine the strength to make general

RT problems more accessible for LBM. To this goal, the complex equilibrium expression

of the mesoscopic RTLBM in (4.6) is simplified according to the technique of spherical

harmonics.

The derivation of the equilibrium expression is based on the expansion of radiance

in the base of spherical harmonics. This expansion is an essential element in the P1-

Approximation of the RTE and also in the present RTLBM. Hence, the resulting LBM
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scheme is named P1-RTLBM. The truncated spherical harmonics expansion yields

L (t , x , s) =
∫

L (t , x , s)dΩ+ s ·
∫

s ′L (t , x , s)dΩ . (4.8)

Higher order terms are found in the textbook of Wang and Wu [184]. This expansion can

be interpreted as a decomposition of radiance into an isotropic (first term on the right

hand side) and an anisotropic part (second term on the right hand side) compare Fig-

ure 2.8. By substituting the definition of the discrete particle fluence rate fi = wi L(t , x , si )

into (4.8) and applying the Lebedev–Laikov quadrature rule, then the radiance is retrieved

as

L (t , x , s) = wi

(∑
j

f j + si ·
∑

j
s j f j

)
= wi (Φ+ si · J ) .

The second term on right hand side accounts for the directed (anisotropic) transport,

e. g. close to boundary where the injected particles impose anisotropic transport which

depends on direction s. This formula connects the 0th and 1st moment (macroscopic

variables) with the mesoscopic equilibrium populations and is chosen as the novel

equilibrium expression

f eq
i (Φ, J ) = wi (Φ+ si · J ) . (4.9)

It is clear, that for vanishing flux J this construction simplifies to f eq
i = wiΦ which shows

consistency to the macroscopic RTLBM in isotropic transport regimes. All together, the

P1-RTLBM reads as a collide-and-stream equation

fi (t +4t , x + ci si4t ) = fi (t , x)−µsci4t

(
fi −wi

(∑
j

f j + si ·
∑

j
s j f j

))
(t , x)−µaci4t fi (t , x) .

Models with higher order expansion in the basis of spherical harmonics can be imple-

mented straight forward in the framework of P1-RTLBM. The P1-RTLBM is equipped with

a moment based formula for the local equilibrium state and therefore follows the spirit of

general LBM. Due to the local averaging through moments and integration of directed

RT, this model is closer to the radiative characteristics, than the macroscopic RTLBM

and requires notable less computations than the mesoscopic RTLBM with its resolved

scattering integral. A detailed numerical validation is presented in Section 6.3.
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4.2.4. Discussion of the RTLBM

The pioneer work of Geist et al. [62] developed a collide-and-stream equation where the

particle-volume interaction is written as a matrix vector multiplication. This expression is

a rather untypical in LBM literature, but the equilibrium contribution in (4.6) can also

be written as a matrix multiplication of A f where the populations fi are written as a

vector f . Now, by adding the absorption term in (4.7) to the diagonal of the matrix A

the original matrix of Geist et al. is retrieved. A distinctive feature however is, that the

constructed matrix in [62] is not symmetric, which contradicts the reciprocity of scattering

events. However, this constraint has been cured by the methodological derivation of the

mesoscopic RTLBM, where the computation of the scattering matrix is treated carefully. It

is required to solve the least square problem to obtain the normalized discrete scattering

matrix.

Another interpretation of this particular matrix is, that is states an equilibrium configu-

ration towards which the population relaxes. Interestingly, this configuration deviates

from the Maxwell–Boltzmann distribution (3.9). Due to its photon-particle collision, the

concept of a photon distribution function at rest does not apply as for particle-particle

collision of the ideal gas. The relaxation towards this equilibrium configuration is deter-

mined solely by the scattering behavior of the volume, compare relation of viscosity and

relaxation time in hydrodynamic LBM. Since this equilibrium does not consider moments,

it follows rather the spirit of DOM approach of a discretized Boltzmann equation, then

standard LBM. As numerical experiments will show, the mesoscopic RTLBM shares even

the ray-effects, known in DOM.

Wang et al. propose a novel FVM-based LBM to simulate RT problems, where the

numerical integration of the scattering is based on an FVM [189]. In light of the

philosophy of the multi-speed LBM, this method requires a vast number of discrete

directions, for instance q = 48 directions for 2D problems. None of the numerical test

cases treat 3D RT, which would be challenging keeping in mind the required directions.

However, the FVM-based LBM was extended by the same group to many interesting

topics such as transient and multi-group RT [188, 186] but also technical topics such as

adaptive mesh refinement and unstructured meshes[187, 189].

The mesoscopic RTLBM installs a single stencil for computational grid and discrete

scattering. Therefore, not only the accuracy of the discrete scattering events are governed

by the Lebedev–Laikov stencils, but also the computational grid itself, which is necessary

to implemented RT it in the framework of LBM. This coupling is strong and might limit

the choice of stencils with many discrete directions, due to an increasing amount of
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memory and computation time. Until now, the mesoscopic RTLBM cannot compute the

scattering at a higher accuracy and then distributes the population to a stencil of fewer

directions.

When considering isotropic RT, the macroscopic RTLBM is expected to be accurate. Its

modeling relies on high scattering albedo which is equally to say isotropic RT, yielding a

computational efficient RTLBM equipped with D3Q7 stencil, as shown later in Section 6.4.

Its drawback of predicting anisotropic transport regimes, for instance close to radiative

sources but also walls, is well understood from theory of the diffusion approximation [89,

184] and macroscopic solvers [51, 39]. Numerical investigations of the macroscopic

RTLBM in Section 6.4 will show that this deficits apply also to this LBM scheme.

This deficit is cured by the mesoscopic RTLBM, that aim to resolve the anisotropic

transport regimes. This is in particular relevant for regions close to any radiative source or

wall, since after several mean free paths the transport regime becomes rapidly isotropic.

However, the increased computational cost remains constant through the domain, unlike

simpler models such as the macroscopic RTLBM are sufficient after the length of several

mean free paths. Thus, a trade-off between computation time and the modeling of

anisotropic transport has to be managed, when applying to any of the RTLBM models.

A hybrid model, that simplifies the anisotropic transport implementing a P1-Approxi-

mation motivated equilibrium expression, is then proposed to implement a precise and

efficient RTLBM. The P1-RTLBM is based on a mesoscopic equilibrium that accounts

additionally, to the flux, when compared to macroscopic RTLBM, and is shown in Section 5

to be valid for a greater set of optical parameters, beyond the highly scattering media.

4.3. Boundary Models for RTLBM

Boundaries for RT are typically non-permeable, which stands out from many fluid flow

problems. The reason for that is, that radiation can either be transmitted, emitted or

reflected on the boundary, even a combination of all microscopic phenomena. In terms

of radiative sources, the main task for LBM boundary treatment is, the construction of

populations fi such that the imposed intensities are matched on macroscopic level, here

by the relation (2.1). This is a non-trivial task since generally there are more populations

to choose then there are conditions.The same situation holds for outgoing boundary

treatment. Meaning, in most cases there is an under determined system of equations to

solve on every boundary cell on every time step.

Boundaries for the application to RTLBM are rarely discussed and analyzed in the

literature. Most often they are stated as a special collision rule that can be computed
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rapidly with rather unspecific physical meaning [188, 186, 206, 208, 199, 23]. For

instance, Wang et al. [188] applied a reflection scheme that is not further related to

the physic of reflection on surfaces nor is it proven to be grid independent. This two

points are treated with little interest in all above mentioned publications. To address the

raised issues, a general approach of deriving a RTLBM boundary treatment for partly

reflecting surfaces is proposed in Section 4.3.3. The developed mesoscopic model and its

parameters are linked to surface properties described by Fresnel’s equation.

A proper understanding of boundary interplay is needed since only the boundary effects

forces the population away from the equilibrium state and as a result there is a non-trivial

radiative distribution. Without providing boundaries with physical meaning, the RTLBM

might not attract the attention they aim for and will be limited to the academic examples

e. g. rectangular enclosures.

4.3.1. Source models

The source models are classified into collimated and diffuse sources. Both are described

on macroscopic level by a fix intensity ΦB at a boundary position xB. In the first scenario,

the radiative source injects populations only orthogonal to the wall orientation, whereas

the diffuse source injects photons into all inward pointing directions. These are simple

boundary treatments and the construction on a suitable kinetic boundary population is

straight forward.

In the scenario collimated source the boundary populations are constructed by

fi (xB) =
{
ΦB (xB) , i inward pointing and orthogonal to the wall,

0, else,

on a boundary element xB. For axis aligned boundaries, there is exactly one direction i

that is orthogonal to the wall normal. It is clear, that the defined boundary populations

yield in
∑

i fi =ΦB, as imposed by macroscopic boundary condition.

Analogous to this, the diffuse source is modeled by

fi (xB) =
{

wi
w̄ ΦB (xB) , i inward pointing,

0, else.

The variable w̄ is the sum of all weights wi which are associated to an inward pointing

direction i . There might be several inward pointing directions, such that a normalization

by w̄ ensures the desired boundary intensity. Note, that both formula apply equally for

sources and general emitting walls. This might also serve for the purpose of simulating
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4.3. Boundary Models for RTLBM

conjugated heat transfer and other multi-physics application.

By this construction the boundary populations recover the imposed constant macro-

scopic intensities, as the moments show for the collimated respectively diffuse source

∑
i

fi (xB) =ΦB (xB) ,

shows. The physical interpretation for such boundaries is that they impose a fixed

intensity or in other words a Dirichlet boundary [121]. Implementation details can be

found in OpenLB as indicated in Appendix E.4. Note, that this source boundary models

does define equally a flux, which is clearly seen by computing the 1st moment J =∑
i si fi .

The presented source modeling is predominant in the RTLBM literature and to the

best of the authors knowledge there is no ongoing discussion. Compared to general LBM

boundary modeling, the development of powerful boundary treatments in RTLBM has

still not started in great detail. For instance, up to now, the source models are formulated

for axis aligned walls, which is a serious limitation to any application to more complex

geometries.

4.3.2. Bounce-back wall

One of the most elementary and oldest boundary formulation in LBM is the bounce-back

scheme, where the outgoing particle fi re-enters1 in the opposite direction ī . In the

context of hydrodynamics, this boundary scheme models solid no-slip boundaries and

imposes Dirichlet condition for the (macroscopic) fluid velocity at the wall. Despite its

age, the bounce-back scheme is the most popular wall model which might be explained

by its simplicity of implementation and intuitiveness in modeling.

One possible implementation consists of replacing the collide-and-stream equation (3.6)

on the boundary by

f ī (t +4t , xB + ci si4t ) = fi (t , xB) ,

where ī is the opposite direction of i , see Figure 4.2. A full review of its variants along a

detailed analysis is presented in Krüger et al. [105, Paragraph 5.3.3.].

For RTLBM the bounce-back scheme corresponds to a zero Neumann boundary for

the radiant energy density, since there is no change in radiance on a boundary cell.

Throughout the present work, it is deployed the full way bounce-back scheme and

subsequently the collision on the boundary is realized by a trivial swap of fi by f ī , see

1In LBM literature bounce-back is commonly described by reflection of direction. In order to avoid abuse
of language, the term reflect is used in microscopic modeling and re-enter in the mesoscopic context.
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the original work on bounce-back for LBM [35, 210].

4.3.3. Partial bounce-back wall

This section first derives a macroscopic counterpart of the Fresnel’s equation that models

reflection on surfaces on the mesoscopic level. The applied technique originates from

the P1-Approximation and can be found in the textbook of Wang and Wu [184]. After

analyzing the macroscopic parameters that describe the surface properties, a novel RTLBM

is proposed to solve the derived macroscopic equation. This indirect strategy of solving an

approximated target equation has also been applied in the derivation of the macroscopic

RTLBM, see Section 4.2.1.

On a boundary surface with orientation n, the expression n ·s < 0 depicts all directions s

that hit the surface from within the volume. Radiance that hits surfaces from such

directions is partly reflected according to Fresnel’s equation (2.16). The integral formula

for this boundary reflectance is∫
n·s>0

L (s) s ·n dΩ=
∫

n·s<0
RF (s ·n)L (s) s ·n dΩ , (4.10)

where the re-entering radiance (left hand side) equals the reflected part of the incident

radiance, given by the right hand side. The argument (t , x) has been dropped for the

sake of compactness. A numerical integration of the above equation in the framework of

LBM yield an uncertain discretization error, since the quadrature rules of Gauss–Hermite,

respectively Lebedev–Laikov, do not compute this integral exactly. However, the following

derives an approximated version of (4.10) which can be solved by well-known LBM

techniques.

Approximation to macroscopic equation

In the following, the above boundary equation is approximated by a Robin boundary

condition under the assumption of a highly scattering volume. More details of the

purely algebraic operations can be found in [184]. The effective reflection coefficient is

introduced by

Reff =
∫

s·n<0 RF (s ·n)L (s) s ·n dΩ∫
s·n<0 L (s) s ·n dΩ

. (4.11)
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With the expansion of the irradiance (2.18) and the definitions

RΦ =
∫ π/2

0
2 sinθ RF (θ)dθ ,

RJ =
∫ π/2

0
3 sinθ (cosθ)2 RF (θ)dθ ,

the effective reflection coefficient is retrieved

Reff =
RΦ+RJ

2−RΦ+RJ
. (4.12)

By know, Reff is no longer expressed in terms of the unknown radiance and the incident

direction, but can be computed solely by means of RF , which is equivalent to knowing nrel,

see definition (2.16).

Starting off with the substitution of (4.11) into the original boundary equation (4.10)

yields ∫
n·s>0

L (s) s ·n dΩ= Reff

∫
n·s<0

L (s) s ·n dΩ .

Followed by plugging-in the expanded irradiance (2.18), it holds

1

4
Φ+ 1

2
J ·n = Reff

(
1

4
Φ− 1

2
J ·n

)
,

and finally, with Fick’s law (J =−D∇Φ) and the following definition

CR = 1+Reff

1−Reff
, (4.13)

the macroscopic Robin boundary condition is stated

Φ (t , x)−2CR D∇Φ (t , x) ·n = 0 . (4.14)

Here, D = 1/(3(µa+µs)) is a diffusion coefficient as in (2.9) and CR a constructively derived

dimensionless parameter accounting for the surface reflection. Table 4.1 shows typical

values for CR (water-glass nrel = 0.88). The computation of Reff and CR for given refractive

indices is published in OpenLB version 1.3 and also outlined in Appendix E.1.

The Robin boundary condition is a sum of Dirichlet and Neumann boundary condition,

where the product CR D indicates whether the Dirichlet or Neumann part dominates.

For instance, the Neumann part ∇Φ becomes dominant for CR D → ∞ and contrary

for CR D → 0. However, the latter concludes Φ= 0 and hence the Dirichlet boundary is

imposed.
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4. Radiative Transport with LBM

From a phenomenology perspective, the reflection parameter CR depends on the relative

refractive index nrel through the definition of Reff and hence is the boundary surface

specific parameter. In addition, the volume is covered by the diffusion parameter D.

The modeling predicts for refractive index match (ni = no) no reflection on the wall, see

the Fresnel’s equation (2.16). This observation is matched on the macroscopic scale by

the derived Robin equation that does not include reflection properties (CR = 1). This

concludes that the approximation is consistent with respect to refractive index match.

The general situation is analyzed by a Chapman–Enskog expansion in Appendix B and

investigated numerically in Section 5.2.

nrel 1.0 0.88 0.7 0.5
CR 1.0 1.0478 1.14 1.35

Table 4.1.: Refractive index match (nrel = 1) is indicated by CR = 1.

Mesoscopic algorithm

Fresnel’s equation states that outgoing radiance is partially reflected and re-enters the

computational domain. The corresponding Fresnel boundary equation is formulated

in (2.17), respectively in its integral form (4.10). By following this microscopic picture,

it is proposed a partial bounce-back scheme

f ī (t +4t , xB + ci si4t ) = rF fi (t , xB) , (4.15)

in order to solve the Fresnel boundary equation, for a wet boundary node xB, an outgoing

direction i and its opposite direction ī . With the mesoscopic reflection function

rF = 1− 2

4CR D +1
, (4.16)

for (non-dimensional) diffusion coefficient D and CR as in (4.13), this scheme solves

the Robin boundary condition derived previously (4.14). This formula indicates that

the Fresnel’s equation is reduced on mesoscopic scale to a sole reflectivity of the wall

given by rF . The latter is further related to it macroscopic counterpart of CF , see

Chapman–Enskog expansion in Appendix B. This formula simplifies the Fresnel’s equation

by averaging the direction of the re-emitted populations. By implementing specular

reflection this deficit can be compensated.

The innovation of this boundary model lies in a precise and physically based description

of the mesoscopic reflection function. Besides, it is equipped with a clear and simple
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implementation of the relevant parameter, namely CR that covers the Fresnel’s boundary

at the surface and additionally the volume properties that are represented by D. Finally,

the mesoscopic scheme is almost as simple as a standard bounce-back scheme and

therefore very well suited for high performance computing.

For the quantitative considerations, it should be noted that the mesoscopic reflection

function rF takes values in the interval [−1,1]. In its most simple case, rF = 1, the

boundary scheme is equivalent to bounce-back, thus photon density fi (t , xB) re-enters

totally at the opposite direction ī , see Figure 4.2. This is in excellent agreement to

macroscopic considerations, where for D?CR →∞ the zero Neumann boundary for the

density is obtained. In fact, the limit of D?CR →∞ result in rF → 1 and hence the partial

bounce-back scheme fulfils the macroscopic prediction.

4.3.4. Specular wall

An interesting approach on mesoscopic scale to incorporate specular reflection are slip

boundaries, already discussed in fluid flow LBM literature [169, 161, 7]. They are

designed as bounce back rules that in addition respect the re-emitted directions depending

on the incident angle. In the context of fluid flows, the velocity slip becomes noticeable for

Knudsen number ≤ 0.01 where equally the continuum assumption for the Navier–Stokes

equation is violated. Among the boundary models for such transport regimes are the

diffuse reflection models, that assumes microscopically rough walls on which particles

get reflected uncorrelated with their incident angle [4, 165, 104, 209]. Guo et al. [70]

studied the discrete effects of slip boundaries in simulating microscale gas flows. Most

boundary treatments are dedicated to 2D axis aligned rectangle enclosures which lack on

generality. For instance, the extension to curved boundaries is non-trivial and 3D cases

need to be studied, validated and investigated.

With regard to RTLBM, the slip boundary can model specular boundaries for axis

aligned enclosures with straight walls. Also a mixture of diffuse and specular reflection

might be considered to implement certain surface roughness. In fact, the implementations

of such numerical schemes require only a little more effort and the knowledge of the

wall orientation. However, these boundary treatments apply primarily to very dilute

volume and ballistic RT regimes, where the usage of a relaxation scheme such as LBM is

obsolete. The recommended simulation tool for this scenario would be MC and its rich

(sub-) surface models.
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Boltzmann equation (RTE) RTLBM Helmholtz equation

Radiance L Discrete fluence rate fi Intensity Φ=∑
i fi

MICROSCOPIC MESOSCOPIC MACROSCOPIC

Discretization

Equilibrium

Moments

Chapman–Enskog

Figure 4.1.: Summary and relation of the micro-, meso- and macro level for RTLBM
and the corresponding quantities. The macroscopic RTLBM focus on the
Chapman–Enskog technique and the mesoscopic RTLBM emphasis the dis-
cretization of the RTE.

xB

ni

no

fi

xB

ni

no

f ī

Figure 4.2.: Boundary region represented by the dashed line with a wet boundary node xB.
The pre-collision configuration is shown on the left side and the post-collision
state on the right side. The population fi hits the boundary surface and after
collision, the population re-enters in the opposite direction ī .
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Analytical Solutions

Besides a careful derivation of RTLBM the methodological development of novel numerical

algorithm requires numerical experiments. Only, the latter show whether sophisticated

algorithms apply to real engineering problems and provide accurate predictions. Since

the emergence of RTLBM over the last years, few investigations consider methodology

numerical research. The majority of the proposed schemes are not investigated with

respect to grid convergence/independence or validation against measurements for a

rich parameter set, see for instance [111, 199, 188]. This shows the lack of general

studies and limited insights of RTLBM and might explain the many variations of RTLBM

in literature, suggesting distinct development approaches.

The author provides in the present and the following chapter a comprehensive and

general validation study of the three RTLBM introduced in Section 4.2. The main focus of

this chapter is the validation against analytical solutions, where the conducted numerical

experiments comprise the convergence studies published by Mink et al. [125] and Mink

et al. [123]. It is shown, that the macroscopic RTLBM approach is of 2nd order and the

Fresnel boundary condition is a 1st order model.

5.1. Validation of Macroscopic RTLBM

The following validates the macroscopic RTLBM against analytical solutions that are

known for a particular setup, based on a spherical domain and spherical radiative source.

Considering numerical errors for different grid sizes, the EOC is conducted for non-

absorbing and general participating media. The main outcome is a numerical study of

grid convergence, which indicates that the macroscopic RTLBM is a 2nd order scheme.
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4x

Figure 5.1.: Cross section of three dimensional discrete geometry, with cell size 4x.
Yellow indicates radiative source, blue is participating volume and grey is the
outgoing boundary.

5.1.1. Simulation setup and analytical solution

In Section 2.6 the analytical solutions of the Helmholtz equation (2.12) is presented. For

an isotropic radiative source placed at position r0, the intensity in the domain reads

Φµa,µs (r ) = 3
(
µa +µs

)
4π|r − r0|

exp

(
−|r − r0|

√
3µa

(
µa +µs

))
,

for constant coefficients µa,µs > 0 and r > 0, which denotes the distance of a considered

point x to the radiative source at r = 0. For the sake of simplicity, the absorption and

scattering indices are dropped and the analytical solution is written as Φ.

The domain of interest is a sphere denoted by X with radius L0, which is placed in the

origin of a coordinate system. Equipped with Dirichlet boundaries for each, the radiative

source at (an arbitrary) distance ri = 0.1L0 and the walls at ro = 1L0, the entire domain is

defined, see Figure 5.1. Due to the singularity of the analytical solutions at the r0, the

radiative source is placed arbitrarily at distance of 0.1L0. Here, L0 denotes a characteristic

length of the system in m. The fixed boundary values are given by the analytical solution

and are projected to the discrete lattice nodes. This procedure guaranties that the source

lattice nodes are initialized by the continuous value of Φ, which is important since the

staircase approximation of the sphere does not guaranty that all source nodes are at the

same distance to the origin, see Figure 5.1. For implementation details, it is referred

to Appendix D and the documentation of OpenLB [103]. The knowledge of analytical

solution makes this situation valuable for numerical error analysis.

58



5.1. Validation of Macroscopic RTLBM

For a stringent numerical analysis and validation, the relative error is introduced by

eN = ‖ΦN −Φ‖L2(X)

‖Φ‖L2(X)
.

for an analytical solution Φ and a computed solution ΦN , associated to a grid size N , e. g.

N = L0
4x . However, the formula also includes averaging and might not account for the

maximum deviation at a single cell.

When studying the asymptotic behaviour of the relative error for decreasing grid

sizes, the analysis is based on the EOC. The EOC measures the convergence order of the

numerical scheme experimentally and determines the rate of decrease of the relative

error1 subjected to the grid sizes N and M

EOCN ,M = log(eN )− log(eM )

log(M)− log(N )
.

In the following, several EOC are computed for the above mentioned setup, in order to

determine grid convergence of the numerical method.

5.1.2. Convergence study and discussion

This section provides studies of the non-absorbing and general RT regimes. A discussion

on the retrieved results and its linkage to the relaxation time closes this section.

Radiative transport without absorption

The macroscopic RTLBM presented in Section 4.2.1 is applied to non-absorbing par-

ticipating media (µa = 0). Since both, the RTLBM and the target equation reduces to

the standard configuration for diffusion problems, for which LBM literature provides

studies [196], this is an appropriate setup for a fundamental evaluation.

For the non-absorption case the collide-and-stream equation reduces to a BGK -type

equation, already presented in (4.4). In accordance to the target equation (2.12), the sink

term vanishes. RTLBM presented in [5, 16] show the same behaviour for this particular

case. Since both models are based on the direct discretization approach, it is hard to

derive a meaningful relationship to the macroscopic target equation out of collide-and-

stream equations. As a consequence, their LBM solutions are compared against FVM

results, which makes convergence analysis or error estimation difficult. In contrast, the

1The EOC is basically the slope in the log-log plot of the relative error over the grid size.
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modeling of the macroscopic RTLBM is connected to target equations and hence, enables

an error analysis based on analytical solutions.

The computed solutions depend equally on the grid size N and on the coefficient µs,

through the Dirichlet boundary condition. For the configuration of µa = 1 the relative

errors of the macroscopic RTLBM for varying grid size N are shown in Figure 5.2a. The

presented simulations are evaluated by grids up to size 4013 and show good agreement

with analytical solutions. It is shown that the grid refinement leads to more accurate

computations. A refinement of the grid by factor of 2 reduces the relative error by factor

of 4. This observation is summarized in an EOC ≈ 2. and was also proven for other

absorption parameters.

General RT

The macroscopic RTLBM presented in Section 4.2.1 is applied to general participating

volume. Recall, the collide-and-stream equations reads

fi (t +4t , x + si4x) = fi (t , x)− 1

τ

(
fi (t , x)− f eq

i (t , x)
)− µ2

eff

8
(4x)2 fi (t , x) ,

for a mesoscopic sink term
µ2

eff
8 as in (2.11) and the isotropic equilibrium f eq

i = wiΦ, for

D3D7 stencils. After reaching steady state1 of the RTLBM, the relative error is computed

for several optical parameters, see Figure 5.2b. Already for a resolution of 50 grid-points

in every direction, the relative errors, over the entire domain, is < 1% for all considered

participating media µi
2. This is remarkable, taking into account, the staircase character

of the regular grid and the spherical simulation domain.

To determine numerical grid convergence, the trend of the relative error with an

increased resolution is studied. To this aim, all participating media are simulation for

resolutions up to 400 yielding an overall number of 250×106 cells. Figure 5.2b shows,

that the relative error decreases for higher grid resolutions with an EOC = 2 for all

participating media.

1Steady state criteria for simulations is a density deviation in L2-norm of less than 1×10−5 during a
period of N 2 iteration steps.

2Participating media are characterized by optical parameter sets µ1 :µa = 5/3,µs = 1/3, µ2 :µa = 3/2,µs =
1/2, µ3 :µa = 1,µs = 1 and µ4 :µa = 2,µs = 1.
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(a) Relative error as a function of the grid
size N for fixed µs = 1 and µa = 0. For re-
laxation coefficient τ= 1 grid convergence
of EOC = 2 is observed.
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(b) Relative error as a function of the grid
size N for relaxation coefficient τ= 1 and
several participating media µi .

Figure 5.2.: Left figure shows the EOC analysis for non-absorbing volume. Right figure
depicts the EOC study for general volume.

Discussion of the relaxation time

Ponce Dawson et al. [145] pointed out that the LBM relaxation time is related to the

diffusity of the advection–diffusion equation through the formula given in 3.3.3 and

determined the range of relaxation time τ for which the LBM is accurate. The findings

of relative errors ≈ 0.04% for τ= 1 and ≈ 5% for τ= 10 lead to the conclusion that LBM

is only a good approximation method for small relaxation times. From the computed

relative errors of 3 and 1 % for grid sizes 256 and 512, indicate an EOC between 1–2. This

observation was confirmed by A. A. Mohamad at the DSFD conference in Edinburgh 2015,

where he reported an EOC of two, when choosing relaxation time τ wisely. Both surveys

considered two dimensional pure diffusion problems.

The 3D numerical experiments in this section met the above observations and concluded

that the macroscopic RTLBM is a 2nd order scheme for solving the Helmholtz equation.

In this context, it is crucial that the macroscopic RTLBM allows to choose τ= 1 and model

the photon-media interaction solely by the mesoscopic sink term, see Section 4.2.1. It is

remarkable, that even the extension by an additional mesoscopic sink term preserves the

order of convergence as shown in the conducted simulations.
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5. Numerical Validation Against Analytical Solutions

5.2. Validation of Fresnel Boundaries

The following validates the Fresnel boundary model against analytic data known from

theory. Based on a spherical domain and spherical radiative source, the walls where

radiation leaves the domain is investigated. The later is referred to as outlet of the

simulation domain. The investigation concludes the numerical errors for different grid

sizes and the hereby obtained EOC indicates, that the proposed boundary treatment is a

1st order scheme.

5.2.1. Simulation setup

The validation of the Fresnel boundary equation (4.15) is based on a spherical geometry

setup, with a spherical radiative source inside, see Figure 5.1. Here, the isotropic

radiative source is placed at a distance 0.1L0 from the center and the investigated

outgoing boundary at a fixed distance 1L0, where L0 is a characteristic length given

in m. The regular grid is associated to a grid size N for which the cell size reads 4x = L0
N .

This simulation setup is a natural choice, since for Dirichlet boundaries at the radiative

source and the novel boundary at the outlet, there are solutions form literature.

Unless otherwise stated, absorption and scattering is given by µa = 0.5m−1 and µs =
1.5m−1. Further, the refractive index for the participating volume is given by ni = 1.33

(water) and for boundary by no = 1.51 (glass). Given the above parameters, the macro-

scopic refraction coefficient results in CR = 1.0478, see Table 4.1 and diffusion coeffi-

cient in D = 1
6 m. The following considers the non-dimensional versions D? = D4x−1,

µ?a =µa4x and µ?s =µs4x.

Steady state criteria for simulations is a density deviation in L2-norm of less than 1×10−5

during a period of N 2 iteration steps. The time scale is proportional to (4x)2 and thus

diffusive scaling is deployed. Finally, the radiative source is defined as Dirichlet radiant

energy density, accordingly to previous work [125].

5.2.2. Convergence study

First, numerical simulations have been carried out to prove that the model is stated grid

independently and converges. For this purpose, the simulation data along the positive

x-axis is investigated, which is a reasonable choice due to the symmetry of computational

domain. In Figure 5.3 simulations for varying resolutions and fixed absorption and

scattering coefficients are shown. It is seen, that a grid size of N = 40 or 4x = 0.025L0

is sufficient to resolve the problem properly and higher resolutions do not result in a

62



5.2. Validation of Fresnel Boundaries

substantially more accurate simulations. This observation suggests, that the algorithm is

grid convergent, including the novel boundary formulation.
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Figure 5.3.: Simulated radiant energy density over distance to origin r = |x|.

Second, the convergence rate is investigated, which is important to estimate the benefit

of a finer grid. Together with the increase in necessary time steps (diffuse scaling), the

computation time increase finally by a factor of 16. As a result, the available computing

resources might exceed very fast. The validation against the extrapolated length x0,

known from literature [184, 89], after which the tangent on the boundary density

intersects with the x-axis, depicted in Figure 5.4a, is presented in the following. It is

known from literature that the length is determined by x0 = 2DCR , see [74, 184]. Here,

the simulation is validated by means of computing first the density gradient on the wall

by a simple two-point form and second, determine the intersection with the x-axis. This

procedure retrieve the length x0,N obtained from simulation data. Figure 5.4b depicts the

relative errors for varying grid resolutions. Simulation data yields an EOC 40,320 = 0.9588

and suggests that the proposed Fresnel boundary scheme is first order convergent. It is

expected that the relative error can be reduced further by applying a halfway bounce-back

scheme, as literature reports [205, 210].

Remarks on computational effort At the resolution of 40 the steady state is reached

after about 10500 iterations for this particular configuration. The iterations can be

reduced by initializing the domain with an appropriate guess, for example the solution

known for Dirichlet boundary. A resolution of 320 results in more than 125×106 voxels

and has been executed on a high performance cluster ForHLR II at the Karlsruhe Institute

of Technology.
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(a) Solid line represents simulated intensi-
ties in volume subjected to ni. Predicted
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tangent (red dashed line) with the x-axis.
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Figure 5.4.: Left side shows the validation setup with x0 = 0.3492. Right side presents the
data from the EOC study.

5.2.3. Application to multiple LED spots

Simulating radiative sources and hence boundaries, can be realized by two Dirichlet

boundaries. One implements the light source and another one the density on the outlet.

Generally, the light intensity at the outlet is not known, thus it is often set to zero and

hence, lacks on physical meaning. In addition, the simulation is very unstable due to the

non-steady jump of densities close to source and outlet. However, the novel boundary

model is capable of simulating general outlet boundaries, taking the reflectivity into

account. Applications such as multiple LED spots demonstrate the need of such boundary

schemes for RTLBM. The geometry setup in Figure 5.5 is based on a cuboid with extension

of 0.2m×0.1m×0.1m. Except to two rectangular light sources (0.01m×0.01m), that are

realized by a Dirichlet boundary condition at the bottom, the outgoing walls are either

Fresnel or Dirichlet boundaries.

The comparison of the simulation results obtained from Dirichlet boundary and the

novel Fresnel boundary is shown in Figure 5.5. The Fresnel boundary is imposed for a

refractive index nrel = 0.88, which corresponds to water-glass interface, and the volume

specific parameters are µa = 3m−1 and µs = 27m−1. It is seen, that the Fresnel boundary

predicts a remarkably higher light density in the volume. This can be explained by the

partially reflected radiation that leaves the domain and gets reflected, instead of fixing

the light density to almost zero by 1×10−6 in the case of Dirichlet boundaries. This
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5.2. Validation of Fresnel Boundaries

(a) For Dirichlet boundary we observe a poor
penetration depth of light into the media.
Already after short distance, the light re-
duced by factor of 10.

(b) The novel Fresnel boundary leads to a sig-
nificantly higher predication of the inten-
sity, since there is reflectivity at all walls
except the light source.

Figure 5.5.: Cross section with contour lines for values 0.1, 0.01 and 0.001 of intensity Φ.
Radiative source is initialized with intensity of 1.

simulation example emphasis the need of Fresnel reflection on surfaces to model general

light source configurations of finite extend.
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6. Numerical Validation Against
Monte–Carlo

RTLBM emerged over the last decade and are relatively new numerical tools for the

simulation of RT in volume. Therefore, it is hardly surprising that a systematic validation

comparing existing models, is overdue. In addition, a comprehensive investigation of

the range of validity, in terms of the optical parameters, is also still missing. As many

derivations of RTLBM emphasize to a certain discipline, for instance thermal problems, its

validation is limited to a narrow set of optical parameters relevant for thermal problems.

However, this procedure does not only impede the acceptance of RTLBM, but also

restricts artificially its application to other disciplines, such as photocatalytic reactors

and photobioreactors. This might be due to a lack of guidance of the proper choice of

a RTLBM model with respect to an RT regime, or due to the fact that the majority of

existing RTLBM are restricted to one or two spatial dimensions. Until now, 3D RT was

only considered in the pioneer work [62] and, more than a decade later, in [115] as well

as by Mink et al. [125, 121, 123].

This chapter investigates the presented RTLBM models from Section 4.2 for a set

of 35 different participating media applied to four benchmark scenarios, see Section 6.1.

The comprehensive validation of the RTLBM against MC data reveals their strength

and weakness, according to the modeling hypothesis and discretization strategies. In

Section 3.3.1 it is concluded the overall quality and asymptotic trends for general RTLBM.

Together with the analysis of simulation time, the validity range is depicted systematically.

At the end, guidelines for the choice of RTLBM are formulated considering RT from

ballistic to diffuse regimes. These efforts spread RTLBM to a much wider audience than

before and establish them in LBM literature as an autonomous field of application. The

presented results of the mesoscopic and macroscopic RTLBM can also be found in the

author’s publication Mink et al. [121]. However, the survey of the P1-RTLBM is shown

for the first time in the present thesis. The chapter closes with a discussion on future

model extension in Section 6.6.
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6. Numerical Validation Against Monte–Carlo

6.1. Benchmark Design and Transport Regimes

The four numerical validation benchmarks, presented in the section, are based on a cubic

domain with either a diffuse or collimated radiative source. For this setting, the steady-

state RT is compared to MC simulations. First, the benchmark scenario is presented

together with the validation criteria and error measure. Then, the 35 RT regimes are

defined in order to validate the RTLBM in detail.

6.1.1. Benchmark design

The simulated geometry is based on a cubic domain with edge length L0, which is

equipped with a rectangular radiation source at one of the walls, see Figure 6.1. The

domain is discretized with a regular grid of equidistant nodes with fixed spacing 4x =
0.01L0. For MC simulations, the spatial discretization consists of cubic volume elements

with an edge length similar to the grid spacing of the RTLBM. Unless otherwise stated,

the steady-state criterion for all simulations is a change of the dimensionless radiation

intensity of less than 1×10−8 in the whole domain during 160 iterations. The radiative

source emits radiance either diffusely or collimated and is implemented according to

Section 4.3. Other boundary nodes are modeled as transmissive walls where radiation

leave the domain and no radiation enters. In thermal applications those walls are referred

to as black walls.

x
y

z

Line 1
Line 2
Line 3

Figure 6.1.: Sketch of the cubical simulation geometry with the rectangular radiative
source in the yz-plane. For validation the data along the lines is compared.
Line 1 (green rectangles) goes through z = 0.5L0, line 2 (orange circles) goes
through z = 0.75L0 and line 3 (yellow crosses) line goes through z = 0.875L0.
From red to blue the light intensity decreases.
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6.1. Benchmark Design and Transport Regimes

(a) Ballistic RT regime with parameters a= 0.7,
b= 0.2.

(b) Diffuse RT regime with parameters a = 1,
b= 20.

Figure 6.2.: Cross section of intensity field for benchmark scenario finite collimated beam.
Comparison of ballistic (left) and diffuse (right) RT regimes with finite source
located on left wall.

Four benchmark scenarios are defined to survey the proposed RTLBM in great detail.

The scenarios include a collimated as well as a diffuse beam on infinite extent. Those

benchmarks are designed to minimize the influence of the radiative source and focus

on the simulation of the domain. The other class of scenarios are a collimated as well

as a diffuse beam on finite extent of edge length 0.2L0. These scenarios are designed to

study not only the RT into ambient regions, that are not directly imposed to the radiation

source, but also the boundary model itself.

Due to symmetry, the intensity inside the cube is validated along line 1, 2 and 3, where

the first accounts for the direct RT and the others for the ambient RT. In non-scattering

transport regimes (ballistic regime) the radiative intensity in the ambient regions vanishes,

see Figure 6.2a. This changes as the scattering becomes more dominant (diffuse regime),

by the diffusive effects of the photon-media scattering, see Figure 6.2b. Note, that

approximating solutions, namely Lambert–Beer for ballistic RT and Diffusion–reaction

equation for diffuse RT, are discussed briefly in Section 2.6. A cross section (xy-plane) of

the simulated intensities inside a cube, with finite radiative source, is shown in Figure 6.2

to illustrate the two limiting cases of RT regimes.

Typically, radiative intensities vary over several orders or magnitudes, depending on

the optical thickness of the media. Thus, the comparison of general transport regimes is

hardly balanced. To this aim, the absolute L2-error is normalized by the total intensity

along the considered line, to provide a reasonable measure for the validation of general
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Figure 6.3.: The 35 parameter set is characterized by the optical depth and the scattering
albedo. The diffusive regime is represented by the upper right region and
the ballistic regime by the lower region.

RT regime. The error measure is defined for a simulated intensity Φ along line 1, 2 and 3

as

e= ‖Φ−Φ?‖L2

‖Φ?‖L1
,

with respect to the reference solution Φ? from the MC simulation. Norm Lp is defined as

follows ‖ (Φ1,Φ2, . . . ,ΦN )‖Lp = p
√

1
N

∑N
n=1 |Φn |p . The survey in the PhD thesis includes the

analyze of intensities along line 1, 2 and 3. For the sake of completeness, the intensity

profiles for every benchmark scenario and every optical parameter are found in the

publication [121].

6.1.2. Transport regimes and optical parameter set

The limit of applicability of the RTLBM is studied by the help of a large set of optical

parameters, that covers RT in principle from the ballistic to the diffuse regime. Following

Van de Hulst [179], the parameter set is formulated with respect to scattering albedo and

optical depth, see Figure 6.3. An isotropic single scattering phase function with g= 0 is

assumed for the mesoscopic RTLBM and the MC in all simulations. The diffusive regime

herein is represented by the upper right region and the ballistic regime by the lower

region. In total, there are 35 different sets of optical parameter, which can be thought

of certain participating media. Every benchmark scenario is executed for 35 different

participating media to provide a comprehensive validation data.

The following discusses RTLBM models in ascending order with respect to their com-
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6.2. Numerical Experiments for Mesoscopic RTLBM

putational effort and complexity. First, the mesoscopic RTLBM is analyzed followed by

P1-RTLBM and the macroscopic RTLBM.

6.2. Numerical Experiments for Mesoscopic RTLBM

This section provides the validation of the mesoscopic RTLBM presented in Section 4.2.2.

First, it is investigated the effects of angular discretization by the Lebedev–Laikov stencils,

followed by a grid independence study. Both aspects were not included into the publica-

tion [121]. Then, the benchmark scenarios of infinite and finite radiative source, each

considering diffuse and collimated source, are validated against MC data considering 35

different RT regimes.

6.2.1. Angular discretization and grid independence

This section investigates the impact of the Lebedev–Laikov quadrature rule considering

the 7, 15 and 27 directions. Then, the grid independence is shown for grids of resolution

50, 100 and 150. The analysis is based on a collimated radiative source and the diffuse RT

regime given by a= 1 and b= 6.

Angular discretization

The mesoscopic RTLBM aims for a precise computation of the scattering integral of

the RTE. However, the discrete propagation directions from the LBM limit the angular

discretization and hence, the precision of the discrete scattering integral, see (4.6). To

understand the influence and importance of the angular discretization of the mesoscopic

RTLBM the simulation results of the Lebedev–Laikov stencils with 7, 15 and 27 directions

are plotted in Figure 6.4a. When considering diffuse radiative regimes, the discretization

of the scattering integral is related directly to the Lebedev–Laikov quadrature rule and

hence, the quality of the scattering phenomena. It is seen that 7 discrete directions are not

able to predict the correct intensities at distances greater than 0.3 m or equivalently twice

the mean free path length. The simulation is more accurate for an increased number of

discrete directions. This trend is in good agreement to the theory of quadrature rules

and is a notable difference compared to hydrodynamic LBM. Unlike for Navier–Stokes

LBM, where considering more than 19 directions does not provide any information for

the flow field, the mesoscopic RTLBM becomes more accurate for an increased number of

directions.

71



6. Numerical Validation Against Monte–Carlo

0 0.2 0.4 0.6 0.8 1

10−2

10−1

100

Distance

R
ad

ia
ti

ve
in

te
ns

it
y

q = 7
q = 15
q = 27

MC

(a) Impact of discretization stencil with 7, 15
and 27 directions.
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(b) Grid independence study for Lebedev–
Laikov quadrature with 15 directions.

Figure 6.4.: Benchmark scenario of a finite collimated source and diffuse RT regime (b= 6,
a= 1) simulated with the mesoscopic RTLBM.

A representative ballistic regime is predicted accurately and independently of the

discrete directions (not shown). Due to the lack of scattering, there is only attenuation

along the incident direction as predicted by Lambert–Beer. Hence, an increase of angular

discretizations does not have any influence of the simulation.

Another aspect is the small jump in the intensity profile close to the radiative source

at about 0.1 m. This jump is determined by the extent of the radiative source, where

radiance is injected diffusely into the domain. Radiance emitted in diagonal direction

at the very end of the source, crosses at distance 0.1 m into the simulation domain and

results in this artificial jump. For more details it is referred to discussion in Figure 6.7.

Grid independence

Grids of resolution 50, 100 and 150 are simulated in order to identify grid independence.

Figure 6.4b depicts the intensities along line 1 for the Lebedev–Laikov with 15 directions

for varying grid resolutions. It is clearly seen, that the considered diffuse transport regimes

is grid independent for the mesoscopic RTLBM. This observation is also valid for the

entire parameter set in Figure 6.3 (not shown). Already a resolution of 4x = 0.01L0 yields

in a grid convergent method for this setup, independently of the considered transport

regime. McHardy [118] pointed out in his PhD thesis that the method is a first order

scheme.
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(a) Collimated beam.
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(b) Diffuse beam.

Figure 6.5.: Errors for the benchmark scenario infinite beam.

6.2.2. Infinite radiative source

The mesoscopic RTLBM and MC simulations are examined to the two benchmark scenarios

infinite diffuse beam and infinite collimated beam. Both scenarios implement a radiation

source that extends to an entire wall. By analyzing the simulation errors along the central

line 1, the accuracy of the simulated RT is addressed. However, it is difficult to clearly

assign shortcomings to absorption, in- or out-scattering effects, due to the extent of the

source.

The simulation errors for the 35 different participating media are presented in Figure 6.5

for collimated and diffuse sources. Media with equal transport scattering albedo are

represented within a line, whereas the optical depth b ranges from 2–30.

Collimated beam

The mesoscopic RTLBM is generally and independently of the albedo in good agreement

with the MC results (≈ 10%), with the trend of performing better in optical thin media. The

overall trend for an increased optical intensity however is a loss of precision independently

of the scattering albedo. This result can be explained by the fact that all simulations

were performed on the same numerical grid, so that the radiation-volume interaction

between two points is less accurately resolved at high optical depth. Thus, the observed

error of the mesoscopic RTLBM subjected to radiative source of infinite extent might not

be determined by the validity range of the model, rather than by spacial discretization

reasons.
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Diffuse beam

The observed errors of the mesoscopic RTLBM are ≤ 10% over almost all investigated RT

regimes. Apparently, the optical depth of the media is not the major determinant of the

method’s accuracy and the shape of the error curves is not intuitively understandable. A

closer evaluation of the simulated intensity distribution in the whole domain (not shown)

indicated that the error is mostly caused by the radiation flux across the open boundaries

of the domain. This can be explained by the coarse directional discretization of radiance

in the mesoscopic model, which leads to an inaccurate representation of the angular

irradiation pattern of the diffuse source. Consequently, the problem arises that too much

energy is transported along single discrete directions and parts of the radiative energy do

not leave the domain at the correct location what leads to the observed error. It seems

plausible that the observed effect and its magnitude depends on the albedo. In case of a

strongly scattering system (a> 0.9), the source characteristics do not play a role after a

short distance apart from the source, what is also reflected in the smooth trend of the

respective error curves. In other cases, the propagation of radiative energy along rays

becomes more important and causes the described error. Additionally, if absorption is

strong (a → 0), the radiation intensity varies strongly in space so that small absolute

deviations of the local intensity to the reference solution may cause large errors according

to the applied normalized error measure. Therefore, the erratic shape of the error curves

for (a ≤ 0.4) and the case of an infinite diffuse beam result from a combination of the

directional discretization and high absorption. It can be expected that the simulation

error decreases in domains with larger width-to-length ratios, where fluxes across the

open boundaries become less important for the simulation results. However, with regard

to the current example of a cubic domain, it can be concluded that the mesoscopic RTLBM

delivers reliable results since the error was ≤ 10% for most participating media.

6.2.3. Finite radiative source

The results obtained for the scenario of an infinite beam cannot answer the question of

how accurate the in- and out-scattering of radiation is treated. In addition, the transport

of radiation to ambient regions, that are not exposed directly to the radiative source,

cannot be validated properly. To this aim, this section is based upon a spatially restricted

radiative source of extent 0.2×0.2m, which corresponds to the scenario of a finite beam,

see benchmark design in Figure 6.1. The simulations are carried out again for all 35

participating media and the errors between the mesoscopic RTLBM and the MC simulation

are depicted for diffuse and collimated beams in Figure 6.6.
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Now, the errors along line 2 and 3 will be of particular interest, since they measure the

accuracy of the simulation of the absorbed as well as the in- and out-scattered radiation.

In particular, the transport of radiation to ambient regions, that are not exposed directly

to the radiative source, is of interest since it was not accessible by benchmark scenario

infinite beam.

Collimated beam

The observed errors of the mesoscopic RTLBM on line 1 are generally in good agreement

to the MC data and less than10%. With an increase in optical depth, the simulation is less

accurate for the same reason as discussed in the benchmark of infinite collimated beam.

Considering lines 2 and 3, the errors remains equal or increases slightly, compared to

those measured on line 1. However, the accuracy in diffuse transport regimes (a≥ 0.9)

is almost constant over lines 1, 2 and 3. This indicates that the RT to ambient regions is

computed exactly for highly scattering media. Such transport regimes are almost diffuse

and the angular discretization must cover isotropic transport, that is achieved. However,

the more the transport regimes becomes ballistic the less accurate are the simulations of

the ambient RT. Optical thick regimes enhance this model deficits.

Diffuse beam

The general trends of the error of the mesoscopic RTLBM along line 1 follow similar

patterns as it was already discussed for the scenario of an infinite collimated beam. It is

seen that the error in purely scattering systems (a= 1) remains constant at high optical

depths b ≥ 12. Under these conditions, radiation transfer is diffusive and the solutions

of the RTE are more or less similar and independent of the optical depth. This behavior

explains the observed constant deviation from the MC reference solution.

Regarding the errors along line 2 and 3, the crossing of the curves for a= 0.9 and a= 1

at b> 12 seems to be related to the observation of a constant error in purely scattering

systems because in case of (a< 1) the solution is no longer approximately independent

of the optical depth. In the limiting case of a→ 0 and b→ 0 the accuracy of the method

decreases. Similar to the scenario of a collimated finite beam, this behaviour is related to

the directional discretization of the governing equation, thus the RTE. In fact, the finite

diffuse source is the most challenging setup, because the number of discrete directions

not only affects the computation of scattering but also the accuracy with which the diffuse

source can be modeled.

In order to illustrate the impact of the finite diffuse beam, it is referred to Figure 6.7a
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(a) Collimated beam along line 1.
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(b) Diffuse beam along line 1.
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(c) Collimated beam along line 2.
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(d) Diffuse beam along line 2.
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(e) Collimated beam line 3.
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(f) Diffuse beam line 3.

Figure 6.6.: Errors for the benchmark scenario finite beam.
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(a) Cross section of the simulation domain in-
dicates ray-effect. The orientation corre-
sponds to Fig. 6.1 and the intensity dimin-
ishes from red to blue.
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(b) Intensity profile along line 1.

Figure 6.7.: Finite diffuse source and optical thin media (b= 2, a= 0.9).

where the intensity cross section for optical thin media is depicted. From the contour of

the radiation intensity it is seen that the diffuse emission of photons applies foremost to

the discrete directions yielding in rays. Close to the radiative source the diagonal emitted

photons lead to an overlay and form an artificial intensity pyramid. The intensity along

line 1 is subsequently subjected to a jump, see Figure 6.7b. Similar observations hold

for line 2 and 3. The diffuse radiative source leads to ray-effects that originates from

angular discretization errors, similar to the smearing ray-effect observed in DOM. In

summary, it can be stated that the finite diffuse beam is a very challenging case for the

mesoscopic RTLBM and very sensitive to the discrete directions of the stencil. In case of

high optical depth and high albedo, this ray-effect diminishes and the mesoscopic RTLBM

is accurate as discussed here. Other optical media might be predicted wrong close due to

the occurrence of rays in the simulation.

6.3. Numerical Experiments for P1-RTLBM

This section provides the validation of the novel P1-RTLBM presented in Section 4.2.3.

First, it is investigated the effects of angular discretization by the Lebedev–Laikov stencils,

followed by a grid independence study. Then, the benchmark scenarios of infinite and

finite radiative source, each considering diffuse and collimated source, are validated

against MC data considering 35 different RT regimes.
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6.3.1. Angular discretization and grid independence

This section investigates the impact of the Lebedev–Laikov quadrature rule for q =7,

15 and 27 directions and the grid size to the computed intensities along line 1. The

considered scenario includes a finite collimated radiative source and a highly scattering

volume that is characterized by optical parameters a= 1 and b= 6.

Similar to the mesoscopic RTLBM the present numerical model is based on a Lebedev–

Laikov quadrature rule to compute the equilibrium expression (4.9) for the collide-and-

stream equation. From theory, it is expected that a higher integration order yields in a

more accurate computation of the scattering integral. To verify this forecast, a diffuse

RT regimes is computed for the benchmark scenario of a finite and collimated beam for

Lebedev–Laikov stencils with 7, 15 and 27 directions. The simulation results along line 1

are depicted in Figure 6.8a and show that the intensity profile for the stencil with 27

is the most accurate one. The stencils with 7 and 15 directions lose in precision. This

observation meets the expectation from the theory of quadrature rules and suggests that

increased integration order enhances accuracy of the numerical algorithm.

Various grids of resolution 50, 100 and 150 are simulated in order to identify grid

independence of the P1-RTLBM. Figure 6.8b depicts the intensities along line 1 for

the Lebedev–Laikov stencil with 15 directions and varying grid sizes. The simulated

intensities for the diffuse transport regime are in good agreement and already a resolution

of 4x = 0.01L0 lead to precise data. A further increase in the grid resolution does not

provide significant improvements on the accuracy. The following analysis is subsequently

based on grid size N = 100 or equivalently 4x = 0.01L0.

6.3.2. Infinite radiative source

The P1-RTLBM and MC simulations are examined to the benchmark scenario infinite
collimated beam and infinite diffuse beam, where the radiation source extends to an entire

wall. By analyzing the simulation errors along the central line, the overall quality of the

simulated RT can be specified. However, it is difficult to clearly assign shortcomings due

to absorption, in- or out-scattering.

The simulation errors for the 35 different participating media are presented in Figure 6.9

for collimated and diffuse sources. Media with equal transport scattering albedo are

represented within a line, whereas the optical depth b ranges from 2–30. The general

trends and also the simulation error are similar to the ones reported for the mesoscopic

RTLBM reported in Section 6.2.
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(a) Impact of discretization stencil with 7,
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(b) Grid independence study for Lebedev–
Laikov quadrature with 15 directions.

Figure 6.8.: Finite collimated source and diffuse RT regime
(
b= 6, a= 1

)
simulated with

the P1-RTLBM. Depicted intensity profiles represent line 1 in the cubical
simulation geometry.
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(a) Collimated beam.
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(b) Diffuse beam.

Figure 6.9.: Errors for the benchmark scenario infinite beam.
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Collimated beam

The precision of the P1-RTLBM is over all optical parameters good and the measured

error is smaller than 10%. Except for volumes that are characterized by scattering albedo

a= 1, there is a clear trend of better performance for optical thin media. This is explained

in analogy to the mesoscopic RTLBM. Considering for instance the volumes of a= 0.4 and

varying optical depth. Then the increase in optical depth leads to more photon-volume

interaction per grid point. However, the fixed numerical grid size does not account for

the increased interaction and resolves the optical thick media not as precise as the optical

thin media.

Non-absorbing media (a= 1) are predicted with an error of 1–2% independently of the

optical depth. This shows the consistency to the diffusion approximation of the P1-RTLBM

and is explained by the vanishing flux in the equilibrium expression (4.9) due to the

diffuse RT.

Diffuse beam

The measured errors of the P1-RTLBM are smaller than 10% for all 35 optical parameter

sets. Despite the outliers of a = 0.4 and optical depth 20 all simulations are of very

similar quality with no remarkable trends. The lack of a clear tendency over the large

optical parameter set, that including distinct transport regimes, assumes that the error

measurement of this benchmark scenario is not able to point out the strength and

weaknesses of the numerical algorithm. As a consequence this survey can not provide

a valid and comprehensive validation of the P1-RTLBM for diffuse radiative sources

of infinite extent. Further investigations including different boundary models, such as

equilibrium boundaries, might help to understand the simulation error.

6.3.3. Finite radiative source

The results obtained for the scenario of an infinite beam cannot answer the question of

how accurate the in- and out-scattering of radiation is treated. In particular, the transport

of radiation to ambient regions, that are not exposed directly to the radiative source,

cannot be validated properly. To this aim, this Section is based upon a spatially restricted

radiative source, which corresponds to the scenario of a finite beam, see Figure 6.1. The

P1-RTLBM simulations are carried out again for all 35 participating media and the errors

between the macroscopic RTLBM and the MC simulation are depicted in Figure 6.10.

Now, the errors along line 2 and 3 will be of particular interest, since they measure the

accuracy of the simulation of the absorbed as well as the in- and out-scattered radiation.
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6.3. Numerical Experiments for P1-RTLBM

In particular, the transport of radiation to ambient regions, that are not exposed directly

to the radiative source, is of interest since it was not accessible by benchmark scenario

infinite beam.

Collimated beam

In this benchmark scenario the P1-RTLBM shows very good results along line 1 for

optical thin media with an error ≤ 1%, almost independently of the scattering albedo. For

higher optical depths, the error diverges, except for a= 1, for the same reasons as for the

benchmark scenario of a collimated finite beam, pointed out above. Diffuse transport

(a= 1) in contrast is predicted more accurately for an increased optical depth, which is

also observed for the above referred benchmark scenario.

When considering the RT to ambient regions by computing errors for line 2 and 3, the

general tendency of a great prediction of diffuse RT is conserved and even more striking.

The latter is depicted in Figure 6.10c and 6.10e for a= 1. More precisely, while the error

on line 2 still decreases and seems to converge for an increased optical depth, the error

depicted on line 3 stagnates for optical depths ≥ 12 and remains at a low level about 1%.

Other transport regimes are predicted on line 2 and 3 with an error ≥ 10% and are not

considered to be reliable. This is confirmed by the lack of a plausible trend considering

the scattering albedo. Instead, the error levels are crossing of the errors for a= 0.4 and

a= 0.9 and others.

Diffuse beam

The results of this benchmark scenario are depicted in Figure 6.10 (right column). RT

along line 1 is predicted with an error ≈ 8%, independently of the optical depth and

scattering albedo. As in the scenario of a diffuse infinite beams, there is no remarkable

trend among the 35 different volumes. The reasons therefore might be manifold and

need additional analysis. The diffuse characteristic of the radiative source does lead to a

pyramid effect as for the mesoscopic RTLBM and falsify the prediction. Better boundary

conditions might prevent the ray-effect for general diffuse sources. Interestingly, diffuse

RT into ambient regions is predicted with the same quality as the collimated infinite beam

scenario. This observation might be due to the smoothing character of the P1-equilibrium

term (4.9).
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(a) Collimated beam along line 1.
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(b) Diffuse beam along line 1.
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(c) Collimated beam along line 2.
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(d) Diffuse beam along line 2.
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(e) Collimated beam line 3.
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(f) Diffuse beam line 3.

Figure 6.10.: Errors for the benchmark scenario finite beam.
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6.4. Numerical Experiments for Macroscopic RTLBM

This section provides the validation of the macroscopic RTLBM presented in Section 4.2.1

that is based on an indirect strategy of solving the diffusion approximation presented in

Section 2.5. An essential requirement for the accuracy of the diffusion approximation

is that the transport regime is characterized by a high scattering albedo. After a short

radiative path, the photons undergo numerous scattering events that deviates the incident

direction and leads to diffuse propagation in the far field. In such situations literature

reports an error at predicting the magnitude of radiance intensity of < 10% for media

with a > 0.95, see [50]. RT regimes with a strong anisotropic tendency, typically close

to boundaries and sources, violate the diffusion hypothesis and can not properly be

described by the Helmholtz equation (2.12), which is pointed out in the course of this

section.

To start with, it is introduced to the methodological drawback of the diffusion approx-

imation at boundaries and the good prediction of the far field. Figure 6.11 illustrates

an exemplary profile for a diffuse transport regime with optical parameters a= 0.9 and

b= 30. The observed inaccuracy close to the boundary is due to the modeling hypothe-

sis of isotropic scattering (isotropic equilibrium state), that fails to predict anisotropic

transport by associating every direction the same portion of radiance through the formula

f eq
i = wiΦ. However, after a penetration depth of about 2lmfp the radiation transport is

almost diffuse and the results are very close to the MC data. This behaviour is further

confirmed by computing the flux according to (3.2), which vanishes after some mean

free path length, indicating isotropic transport. The latter is often referred to as the far

field and is simulated in remarkable agreement to MC data.

6.4.1. Angular discretization and grid independence

The macroscopic RTLBM was validated in Mink et al. [125] concerning standard D3Q7

stencils and shown to be grid independent. It has also been pointed out, that the

macroscopic RTLBM is a second order scheme subjected to Dirichlet boundary conditions.

Since the model assumes isotropic scattering behaviour of the volume, the angular

resolution of the axis aligned direction is sufficient. This is also suggested by the spherical

geometry and diffuse source of the investigated geometry in Mink et al. [125].
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Figure 6.11.: Radiance intensity profiles along line 1 for a= 0.9 and b= 30. Radiance close
to boundary is not predicated accurately due to the isotropic equilibrium of
the macroscopic RTLBM.

6.4.2. Infinite radiative source

The macroscopic RTLBM and MC simulations are examined to the benchmark scenario

infinite collimated beam and infinite diffuse beam, where the radiation source extends

to an entire wall. By analyzing the simulation errors along the central line, the overall

quality of the simulated RT can be specified. However, it is difficult to clearly assign

shortcomings due to absorption, in- or out-scattering.

The simulation errors for the 35 different participating media are presented in Fig-

ure 6.12 for collimated and diffuse sources. Media with equal transport scattering albedo

are represented within a line, whereas the optical depth is in the rage of 2–30.

Collimated beam

The errors along line 1 of the macroscopic RTLBM are accurate for highly scattering media

of a≥ 0.9, which is also claimed from theory. For such transport regimes the method even

converges fast towards the MC solution for high optical depths and is already appropriate

for b≥ 12. This observation shows the quality of the diffusion approximation in diffuse

transport regimes. On the other hand, for media with a≤ 0.7, the macroscopic RTLBM

stagnates independently of the optical depth. This can be explained by the violation of

the diffusion approximation requirements, which is a scattering albedo of a > 0.9. For

such RT regimes the diffusion approximation is no longer accurate and the macroscopic
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(a) Collimated beam.
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(b) Diffuse beam.

Figure 6.12.: Errors for the benchmark scenario infinite beam.

RTLBM cannot provide reliable simulation data.

The sampling of scattering albedo into 0.1, 0.4, 0.7, 0.9 and 1 is not sufficient fine to

determine the exact break point of the diffusion hypothesis. According to the simulation

errors, an additional sampling in the range of 0.9–1 might determine the validity range

of the diffusion approximation in greater detail. In general, it is clear, that the transport

regimes with scattering albedo > 0.9 are suitable for the simulation with the macroscopic

RTLBM. Compared to the mesoscopic RTLBM, this is a small range of optical parameters.

Diffuse beam

The macroscopic RTLBM is applied to D3Q7 stencils that are equipped with axis aligned

directions. Due to the lack of diagonal directions, diffuse boundaries cannot be modeled

by this D3Q7 LBM stencil. Hence, the macroscopic RTLBM simulation results are very

similar to the collimated source data. As such, the distribution of radiation in optically

thin media and absorption dominated media is predicted poorly. This deficit is due the

violation of the diffusion hypothesis, similar as for the case of a collimated infinite beam.

However, the simulation matches the reference MC in highly scattering media, resulting

in a precise prediction for diffuse transport regimes. A strong dependency of the accuracy

on the scattering albedo is also observed. Therefore, the method requires a> 0.9 for an

error of ≤ 10%.
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6.4.3. Finite radiative source

The results obtained for the scenario of an infinite beam cannot answer the question of

how accurate the in- and out-scattering of radiation is treated. In particular, the transport

of radiation to ambient regions, that are not exposed directly to the radiative source,

cannot be validated properly. To this aim, this Section is based upon a spatially restricted

radiative source, which corresponds to the scenario of a finite beam, see Figure 6.1. The

simulations are carried out again for all 35 participating media and the errors between

the macroscopic RTLBM and the MC simulation are depicted in Figure 6.13.

Now, the errors along line 2 and 3 will be of particular interest, since they measure the

accuracy of the simulation of the absorbed as well as the in- and out-scattered radiation.

In particular, the transport of radiation to ambient regions, that are not exposed directly

to the radiative source, is of interest since it was not accessible by benchmark scenario

infinite beam.

Collimated beam

Considering the errors of the macroscopic RTLBM along line 1, 2 and 3, the scheme is

accurate for a high scattering albedo and converges in the limit of a high optical depth.

This means that diffuse RT is simulated accurately by the macroscopic RTLBM, also in

the ambient regions of the domain, see Figure 6.13c and 6.13e for a= 1. These results

coincide with the findings in Mink et al. [125], where it is showed that the macroscopic

RTLBM is a very accurate and suitable scheme for highly scattering media. Compared to

the diffuse RT, the ballistic and other RT regimes are predicted with a loss of precision up

to an error of ≥ 1%. This observation follows the trend of an increased error, the more

the RT becomes ballistic.

The minimum error along line 3 for the b = 20 and a = 0.4 (see Figure 6.13e), is

explained by the definition of the error measurement. Here, the intensity profiles are not

only aligned to the MC data but even intersect. This yields in an artificially small error

which is also observed later in the scenario of a finite diffuse beam. Nevertheless, this

phenomenon is observed only for transport regimes of a=0.1, 0.4 and 0.7, which are not

of particular interest due to the violation of the diffusion approximation hypothesis.

Diffuse beam

With regard to the diffuse transport regime, the macroscopic RTLBM predicts the radiation

intensity accurately along all three lines. This verifies that the simple isotropic equilibrium

is able to predict complex radiative sources of finite extent and diffuse characteristic. By
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(a) Collimated beam along line 1.
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(b) Diffuse beam along line 1.
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(c) Collimated beam along line 2.

2 4 6 8 12 20 30
10−3

10−2

10−1

100

a=0.1
a=0.4

a=0.7
a=0.9

a=1.0

Optical depth

Er
ro

r

macro RTLBM

(d) Diffuse beam along line 2.
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(e) Collimated beam line 3.
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(f) Diffuse beam line 3.

Figure 6.13.: Errors for the benchmark scenario finite beam.
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running simulations for 35 different participating media, the scope of validity for the

diffuse transport regimes is indicated numerically. Taking all lines 1, 2 and 3 into account,

it can be said that the macroscopic RTLBM performs excellent for a≥ 0.9. As expected, a

smaller scattering albedo violates the assumptions behind the diffusion approximation

and as a result the numerical scheme is not an adequate choice for such media. This

tendency of poor numerical results the more the transport regime becomes ballistic is

suggested by the data and expected by the theory of the diffusion approximation.

6.5. Performance of RTLBM

This section provides a discussion and comparison of the conducted numerical experi-

ments for the mesoscopic, the P1 and the macroscopic RTLBM. Aspects as validity range

in Section 6.5.1 and computation time in Section 6.5.2 are discussed and as a conclusion

the guidelines for a good choice of RTLBM in Section 6.5.3 are proposed. The main effort

of this concentration of the simulation data1 is to clearly assign the strength of the specific

RTLBM to finally guide application engineers to a proper choice of the numerical scheme.

6.5.1. Validity range of RTLBM

Depending on the transport regime, the conceptual strengths and weaknesses for both

RTLBM have been validated in detail. Most of the discussed phenomena can be reduced

and explained by the equilibrium function, which imposes the physics by defining a local

target configuration for the photon populations. Commonly, the equilibrium function is a

function of higher moments, e. g. intensity Φ and flux J , meaning that the equilibrium is

based on the averaged photon populations. At this point, the mesoscopic RTLBM differs

from the macroscopic RTLBM and its moment–based equilibrium function, in the spirit of

the common LBM. The first strikes out a new path by considering a discrete version of the

phase function and computing the scattering integral for all directions in an LBM stencil.

A combination of both approaches is introduced by the P1-RTLBM and its spherical

harmonics based equilibrium construction. The mesoscopic algorithm relaxes for this

RTLBM scheme towards an equilibrium stated defined by the intensity (isotropic) and

the flux (anisotropic). It can be considered as an extension of the macroscopic RTLBM by

a higher order equilibrium function in the base of spherical harmonics.

1Four benchmarks scenario considering three lines, executed to 35 optical parameter sets and simulated
by three different algorithm are about 1200 data sets.
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The simulation results of the benchmark scenario infinite collimated beam are sum-

marized in Figure 6.14, where the contour lines account for the simulation error in the

set of optical parameters, defined in Figure 6.3. In terms of asymptotic, it can be said

that the macroscopic RTLBM converges in the limit of optical thick media (bÀ 0) under

the constraint of a high scattering albedo. Otherwise, the underlying P1-Approximation

hypothesis is violated and the derived macroscopic RTLBM suffers from inaccurate simula-

tion results. A contrary results holds for the mesoscopic RTLBM, that converges for optical

thin media. Higher grid resolutions are expected to resolve optical thick media better and

reduce the error. The coupling of resolution and optical parameter might constrain the

method in real engineering application as well as the limitation to light sources of finite

extend. In addition, the sensitivity to diffuse boundaries and the integration stencil, with

regards to ray-effects might limit the application. Both methods have been reviewed in

terms of convergence order [125, 121, 118], where the macroscopic RTLBM was found

to be a 2nd order scheme and the mesoscopic RTLBM is a 1st order scheme. The novel

P1-RTLBM combines both asymptotic behaviour being generally accurate in optical thin

media and converging for optical thick media under the constraint of high scattering

albedo.

6.5.2. Comparison of computation time

The application to complex three dimensional geometries might be time critical or

even bounded by the memory. A comparison of the computation time for meso- and

macroscopic RTLBM and the 35 different optical media is found in Figure 6.15. The

simulations were performed on a single core (Intel Xeon Silver 4114) for the purpose of

a consistent comparison. In applications, the RTLBM is typically executed on parallel

computers to benefit from the outstanding parallel performance of the LBM algorithm

and reducing the computation time drastically [131]. Here, the grid is discretized in

every direction by 100 nodes (4x = 0.01L0) and the simulation was terminated after a

deviation of 1×10−8 in the light intensity during 160 iterations. The overall computation

time is mostly smaller than 50 min and both RTLBM take similar time to reach the steady

state RT. It is remarkable, that this observation changes for an increase in optical depth.

Already for b≥ 12, the computation time for the mesoscopic RTLBM is superior and this

trend increases the thicker the media, independently of the scattering albedo. Media with

optical depth of 20 and higher is computed about three times faster by the macroscopic

RTLBM. This comparison does not include exact numbers of the P1-RTLBM. However, the

absolute numerical cost is a little higher than the macroscopic RTLBM, as the flux has to
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(a) Mesoscopic RTLBM.
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(b) P1-RTLBM.
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(c) Macroscopic RTLBM.

Figure 6.14.: Contour plots of the determined error over the total optical parameter set.
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Figure 6.15.: Comparison of computation time in minutes plotted over the optical depth
and scattering albedo (color). E. g. the green bar in the optical depth of 12
corresponds to the simulation time of macroscopic RTLBM for participating
media with a= 0.7 and b= 12, where the mesoscopic RTLBM is additionally
plotted with a pattern.

be computed additionally, but does not reaches the mesoscopic time effort. Considering

the tendency over the parameter set, the P1-RTLBM as both other methods comes with

an increase of computation time for diffuse transport regimes.

The strict convergence criteria of the present investigation, regardless of the total

intensity in the domain, might bias the comparison of media of the upper and lower

bound of the optical depth. Whilst the simulation with high optical depth and hence,

high extinction reaches for almost all nodes rapidly very low radiative intensities, the

simulation of thinner media takes generally more time to converge. Similar phenomena

was taken into account by the normalization of the absolute error in the validation against

MC data in Section 6.1.1 and could be applied to the time aspect as well. Still, the analysis

allows drawing conclusion when comparing the RTLBM for a specific parameter set, as

presented in the above discussion.

6.5.3. The choice of suitable RTLBM

To summarize, it is presented guidelines and recommendations for the choice of the

RTLBM, that is based on the desired illumination by finite or infinite radiative sources of

either diffuse or collimated character and the desired error tolerance. Starting with the

infinite collimated light sources, it is recommended to simulate optical thin media < 20

with either the mesoscopic or P1-RTLBM. Both achieve an accuracy of < 6% and while

the computation time of the P1-RTLBM is smaller (not showed) due to the much simpler

equilibrium function, the mesoscopic RTLBM is more accurate by a factor of two. In the

limit case of scattering albedo ≈ 1 the macroscopic RTLBM produces accurate results and
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is recommended over the others, since the computational effort and memory requirements

is the smallest. This situation changes dramatically when the radiative source becomes

diffuse and small, for instance general LED spots. Then, the diffuse emission of the

source leads to ray-effects that extends over the entire computational domain, for both

the mesoscopic and P1-RTLBM. Even though this phenomenon becomes less significant

with increased scattering albedo, it does not vanish and as a consequence both RTLBM

should be avoided. However, the macroscopic RTLBM has shown its advantage for this

radiative configurations and is recommended due to its fast and precise simulation.

6.6. Future Model Extensions

The numerical experiments showed that the macroscopic RTLBM lacks of precision for

ballistic transfer regimes, while the performance of the mesoscopic RTLBM depends

strongly on the configuration of the radiation source. According to the investigation,

both RTLBM differ greatly in their computation time and precision for the different

RT regimes. A possible performance improvement of RTLBM is a hybrid model that

computes anisotropic transport by the mesoscopic method, whereas the diffuse transport

is simulated by the fast efficient macroscopic RTLBM. Such a hybrid model should speed-

up the simulations significantly while the error is kept at the same level. In order to

avoid numerical interpolation, both methods should run on the same LBM stencil and in

dependence of the flux J and hence, anisotropic transport, the hybrid RTLBM chooses the

suitable collision rule. A first step, towards such hybrid models has been proposed with

the P1-RTLBM, where the anisotropic transport is resolved by a higher order diffusion

approximation. Similar approaches for connecting solvers, even solvers from different

disciplines, to compute the RTE exist in the literature [184, 91]. However, the unique

feature of an LBM based model is, that RTLBM benefit from a consistent methodological

approach, which promises advantages in terms of computational efficiency and avoids

additional complexity of interpolation.

Extensions of the presented models are also desirable in view of thermal radiation

transport. In each of the investigated benchmark simulations non-thermal gray radiation

transfer in non-emitting and homogeneous media was considered. To account for thermal

radiation transfer, emission of radiation must be incorporated into the models in addition.

For both presented models, this extension can be easily realized by another source term

accounting for the emission of thermal radiation. In fact, most of the previous scientific

applications of RTLBM focused on heat transfer problems and emitting materials have

been considered in different 1D and 2D models [126, 127, 114, 14]. In these works
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isotropic emission was modeled with respect to the local temperature and a similar

implementation in the here presented 3D RTLBM is straightforward.

A further extension to heterogeneous thermal problems and conjugated heat transfer

can be achieved by a source term [97, 114, 109]. This is remarkably intrinsic compared

to the conventional CFD solvers treatment, where Dirichlet or Neumann conditions are

imposed on the interface, which need to be solved by iterative schemes and adds further

complexity, for instance in porous structures.

Another open point is the spectral nature of radiation, which has been rarely considered

in applications of RTLBM [116], although the underlying concept of tracing a population

of pseudo-particles offers interesting opportunities of doing so. In addition to the fluence

function f that accounts for radiation at a certain wavelength, it is straightforward to add

a second fluence function g representing radiation at another wavelength in a medium

with different radiation characteristics and so forth. Every fluence function is associated

to a discrete RT regime for a specific wavelength and is simulated simultaneously on

the same mesh and hence the total intensity, the local temperature and emission can

be computed accordingly to the simulated wavelengths in a non-gray medium. This

procedure is widely adopted in multi-physics LBM, for instance conjugated heat transport

or multi-phase and -component applications [164, 71, 177, 112]. With regard to non-

gray applications, the collision kernels of the RTLBM should be selected accordingly to

the radiation property of the participating media, as shown by the computations in the

present thesis. By doing so, both models can be solved in parallel on the same mesh,

accounting for RT at certain wavelengths, whereby the number of simulated wavelengths

might be limited to the order of 10 under the current constraints of computational power,

which however seems sufficient for applications of non-gray radiation transfer [172].
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The design and optimization of PBR can benefit from the development of robust and yet

quantitatively accurate computational models, that incorporate the complex interplay

of fundamental phenomena. At a minimum, the simulation model requires at least

three submodels for hydrodynamic, light supply and biomass kinetics as pointed out by

various review articles on CFD models for PBR design [17, 59, 143]. By modeling the

hydrodynamics, the LD-cycles can be detected and the mixing characteristic of the flow

besides its mass transport is analyzed. The underlying modeling equations and simulation

algorithm are discussed in Section 7.1. The RT model is deployed to predict the local

light intensities according to wavelength of the light and scattering characteristic of the

culture, to which Section 7.2 is dedicated. The third submodel implements the biomass

growth kinetic, by coupling the local light intensities to hydrodynamic information of

CO2 concentration, to predict the algal growth as pointed out in Section 7.3. Figure 7.1

depicts the three (sub-) models and its coupling, indicated by the arrows. All presented

models are formulated and computed by an LBM, yielding a consistent simulation scope

and simple yet efficient coupling.

LIGHT SUPPLY FLOW FIELD

ALGAE KINETICS GAS PHASE

PERFORMANCE

mesoscopic

multi subtrate

Figure 7.1.: Interplay between light supply, fluid flow, gas transport and algae kinetics.
The arrows indicate the implemented coupling in the present work. The
coupling indicated by the dashed line is discussed in the outlook and requires
a multi substrate model for the growth kinetic.

The developed mesoscopic simulation model is then applied to three real PBR. The first

reactor is based on a traditional flat plate geometry and is simulated in Section 7.4. Its
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simple hydrodynamics and light setup allows to discuss the coupling comprehensively and

emphasize the prototype character, by quantitative identification of coupling parameters.

Whereas the next PBR is internally-illuminated and has complex light sources and bound-

aries, see Section 7.5. Light simulations for two wavelengths provide insights in the local

light intensities and demonstrate the need of light models that account for spectral light

composition in the reactor illumination. Finally, a tubular PBR with transparent walls

and internal sponge structure is investigated in Section 7.6. The complex hydrodynamics

and the homogeneous illumination in such reactors is very promising for CFD based

optimization.

7.1. Fluid, Particle and Gas Transport Models

A crucial feature in the cultivation of microalgae is the mixing, that reduces nutrients,

temperature and pH gradients in PBR as well as mechanically prevents the cell sedi-

mentation, dead zones and cell attachment to reactor walls. Another important aspect

of mixing is the increased gas transport between the gas-liquid phase and finally the

homogenization of the irradiance through cell movement, also referred to as LD-cycles.

The reason why the mixing cannot be maximized without any constraint is twofold. First,

an increase in mixing intensity can apply high shear stress to the microalgae and finally

deals damage to the cell. For instance, P. tricornutum is reported to decline in specific

growth rate when the micro-eddies become smaller than 45 µm [32, 47]. As a rule of

thumb fluid velocities around 0.2–0.5 ms−1 are recommended for tubular reactors [147].

Second, extensive mixing undoubtedly increases the operating costs and hence is a key

parameter for the efficient operating of PBR.

7.1.1. State-of-the-art

Recent progress in closed PBR design focus intensely on passive turbulence promoters to

implement a proper mixing while reducing the energy uptake significantly. Numerical

investigation of tubular reactors with diameter of 0.05 m presented by Gómez-Pérez

et al. [65] compared algae trajectories in the flow field for different wall turbulence

installations. They concluded that the flow velocity can be halved while retaining or

even improving the mixing. The hydrodynamics in a tubular reactor with diameter

of 0.04–0.08 m equipped with helical installations were analyzed using CFD in several

publications [142, 204, 153]. It was found that (helical) static mixer enhance the mixing,

mass transfer and homogenize the irradiance to the algae culture. This findings were
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confirmed by cultivation experiments, that showed an increase of biomass productivity of

Chlorella sp. by 37.26% in such tubular PBR. Similar approaches for flat plate PBR are

found in literature, where the arrangement of risers is analyzed by CFD [81, 141] and

analogously, the bubble column reactors are analyzed by CFD [136, 117].

Recently, ultra-thin flat plate PBR gained attraction by the reported increase of biomass

concentration and hence biomass productivity, due to very short light paths [63]. The ex-

perimental study conducted extremely high microalgal concentration with up to 24 kgm−3

for Chlorella sorokiniana in 3 mm thick reactors illuminated by light intensity

of 1000 µmolm−2 s−1. A more complex Taylor vortex PBR was survey in a sequence

of publications [56, 57, 55, 54], where the gap with of 12.7 mm indicates also an ultra-

thin reactor geometry. The particular study [55] focused on the CFD based investigation

of Euler–Euler mass transfer model. However, the findings are specific to the Taylor

vortex design and do not apply to general reactor designs.

7.1.2. Fluid flow equation and Lagrangian particle tracking

Numerical investigation of general fluid fields are based on the Navier–Stokes equation

for incompressible fluids

∂t u + (u ·∇)u =−∇p

ρ
+ν∇2u .

For the fluid density ρ, pressure p and kinematic viscosity ν, they determine the fluid

velocity u. This macroscopic equation is solved according to the LBM algorithm showed

in Section 3.3.3 and is computed by the open-source LBM solver OpenLB [103, 100].

Typically, the inlet of the PBR is imposed to a constant velocity condition, where the

outlet is subjected to a pressure boundary condition. Other boundaries are implemented

as a no-slip walls, according to the model of Bouzidi et al. [21]. Instead of simulating

the no-slip wall by a standard bounce-back method, this algorithm is an interpolated

bounce-back method and reduces the staircase error of the aforementioned on the curved

walls. To account for the turbulence, it is applied a large-eddy simulation that replaces

the viscosity with an (local) effective viscosity that models the non-resolved scales [135,

75]. Basically, the turbulence in the flow regime is either modeled or resolved depending

on the eddy-size, yielding a computational efficient and comprehensive CFD tool for

complex fluid flows. The deployed LBM simulation model has been presented in [78]

and is available to the public through the solver OpenLB.

The individual algae cells are tracked in the flow field inside the PBR by an Euler–

Lagrange approach, to determine their trajectory. After computing the fluid velocity

according to the above scheme, a representative set of point particles are added to the
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flow field. Those algae cells are modeled as spherical Lagrangian point particles of

mass mP and tracked according to Newton’s second law of motion

mP∂t uP = F P ,

for a general force F P and fluid velocity u. Unlike Euler–Euler models, that consider

the algae cells as a continuum phase, the Lagrangian approach resolves single particles,

typically spherical shaped, in the flow field 1. Due to the small characteristic size of

microalgae (2–10 µm) the Stokes drag force

F P =
πr 2

p

2
ρPCP (uF −uP ) ,

for a drag coefficient CD applies, with particle radius rP and density ρP [107]. The

model assumption behind this formula is that the algae does not affect the fluid flow.

Instead, the algae particle experiments a general force F P from the fluid that can be

easily extended to gravity, buoyancy, virtual mass and lift forces if desired. Some authors

add a noise or fluctuation components to the computation of the trajectory to account for

the turbulence in the flow field [57, 65, 149]. This might be explained by the smoothing

behaviour of their fluid turbulence models, namely k −ε or Reynolds-averaged Navier–

Stokes (RANS) models, that might require a supplemented artificial noise to retrieve

non-laminar trajectories. The deployed LBM simulation model for both, the large-eddy

simulation and Euler–Lagrange model, has been presented in [78, 75] and is available to

the public through the solver OpenLB.

In summary, it can be said, that the Euler–Lagrange model is a comprehensive tool to

study the time evolution of a representative population of algae cells in the fluid flow

and to draw conclusion of trapped algae in eddies, the quality of mixing and the induced

shear strain stress [107, 58].

7.1.3. Gaseous transport equation

Mass transport of a species or concentration c in a flow field uF is modeled by the

advection–diffusion equation

∂t c +∇·uF c = D∆c +R , (7.1)

1Since particle-particle interaction is neglected, particles of different size can be simulated straight
forward by multiple Lagrange particles of different mass and radius.
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also known as Euler–Euler model. Here, the evolution of the CO2 concentration c is

due to diffusivity D and advection by fluid velocity uF , which has to be computed in

advance, and a sink term R. The latter accounts for the CO2 consumption depicted by the

photosynthetic conversion and is modeled as a linear function of the photo-conversion

rate. Note, that diffusion is an isotropic phenomenon that transports the concentration

in all directions equally. In contrast, the advection term transports accordingly to the

fluid velocity and in its non-trivial cases it is anisotropic transport. The ratio of both

transport regimes is denoted by the Peclet number and is a critical number for stability of

the numerical scheme.

The simulation of the present work implements a corresponding Euler–Euler model in

the framework of LBM presented and validated in [177].

7.2. Light Model

Light supply is the predominant factor in cost efficient cultivation of microalgae in

PBR, which is fundamental to achieve economic feasibility and large-scale demand of

general biomass production. For the measurements of the efficiency of light conversion to

products such as lipids, carbohydrates and proteins, it is introduced the photoconversion

efficiency (PCE) as the fraction of irradiance that is converted to chemical energy in a

photo-bioprocess. Outdoor microalgal production attain theoretically a maximum PCE of

8–12% depending on the total spectrum of the irradiance [193], while experimental data

of a closed indoor PBR showed a PCE of 5.6%. Interestingly, industrial-scale microalgal

production hardly attain a PCE of 2%, even at optimal growth conditions. The great loss is

due to three phenomena as emphasized in the review article of Nwoba et al. [138]. First,

the total solar energy is diminished in the atmosphere by a factor of about 17%. Then,

the latitudinal position on the earth yields in about a loss of 30%, depending on where

the PBR is placed. Followed by clouds and other participating media in the troposphere

that accounts for a further 65% of attenuation. This list applies foremost to outdoor PBR

and could be extended to the horizontal reactor orientation and many more. But it shows

also, that the few variables, in PCE and light supply considerations, that can be addressed

by a proper reactor design, should be optimized with emphasis. For indoor installations

the importance of a clever strategy is unaffected and becomes even more eminent, due to

the increased control of light guidance and an almost free choice of reactor geometry.

Generally, the light regimes inside a reactor can be categorized into three domains.

Close to the light source, algae are exposed to high intensities that might favor photo-

inhibition that reduces the PCE. The second regime is the culture that is subjected to
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photo-limitation. Both volumes are not desired due to their contribution to mixing costs

and others, but not to photo-conversion to biomass, for instance lipids, proteins and

more. The remaining reactor volume is subjected to photo-saturation and represents the

ideal cultivation scenario with respect to light supply. Considering algae concentration

of ≈ 2gL−1 inside a flat plate PBR that gets illuminated from one direction, then the

photo-limitation starts after some few cm [147]. Subjecting the great majority for the

reactor volume to photo-saturation is one of the major tasks is successful PBR design and

decides whether a PBR can be operated efficiently or not.

From an engineering perspective, the light management to increase the PBR efficiency

is manifold and a difficult task. The strategy of cultivation thin biomass concentrations

can increase the portion of adequately illuminated microalgae cells, since the light paths

are longer before getting absorbed by cells. In other words, the penetration depths of

light is greater and equally the light gradient is less strong, which both are desired when

cultivating algae. However, the downside of a lower productivity, compared to thick

suspensions, is eminent and poses a dilemma for microalgae cultivation in PBR that is

being subject of many investigations [171, 46, 139]. On the other side, the approach

of an increased surface to volume ratio achieved by either ultra-thin flat plate [63] or

capillary reactors [155] or internal-installations diluting the irradiance [90, 43] attain

a homogeneous light supply. The trade-off between both strategies can be managed by

numerical studies and prediction of local light intensities. To this goal, the following

section introduces to the modeling and simulation techniques of light in PBR and discusses

the interplay with hydrodynamic simulation with regard to improve light supply.

7.2.1. State-of-the-art

A basic model equation of RT in volume is formulated by the law of Lambert–Beer (2.2),

accounting for absorption of the microalgae. The error introduced by Lambert–Beer’s

law increases for high biomass concentrations [46], due to the lack of scattering in

the model equation. For nearly any configurations that does not involve orthogonal

illumination through flat surfaces, this model is a poor approximation. This deficit is

well-known and therefore a modified Lambert–Beer model was proposed by Pruvost et al.

[150] to predict light in tubular reactors, illuminated by the reactor walls. Still, this

empirical model was fitted to predict light in tubular reactors and might not be reliable

for general light transport in PBR. General RT in volume is governed by the RTE, which

accounts additionally for the scattering characteristic of microalgae. Based on cell size

and pigment concentrations, the local light intensities are predicted by the RTE for the
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desired wavelength.

Over the last decade, researches applied FVM, MC, RTLBM, DOM and other numerical

tools to solve the general RTE and predict local light intensities in microalgal suspen-

sion [38, 99, 83, 36, 121]. All of these methods can be used for the prediction and a

subsequent quantitative analysis of the light supply. Although the MC is an intuitive

and widely used algorithm, that suits complex light constellations, it is computational

expensive and compared to the FVM or DOM, the coupling to hydrodynamic solvers is

difficult. To this aim, the choice of the numerical algorithm for the computation of light

must take carefully by avoiding additional complexity by different scopes of modeling

equations and algorithm, as outlined in review articles [17, 143, 59]. Many authors

claimed the numerical solvers of RTE to be time consuming and difficult to include in the

CFD framework due to different grid sizes and other coupling reasons [57, 143, 17]. Due

to the complex 3D geometries, including many light sources, precise numerical investi-

gations of light supply on the basis of RTE are rare in PBR literature [99]. Instead, the

light model complexity is often reduced using Lambert–Beer’s law and most importantly,

meanwhile, it is emphasized on the interplay to hydrodynamics [57, 1, 48]. This gap is

closed by the present thesis and its proposed RTLBM model for solving the RTE in the

framework of LBM, which is a well established hydrodynamic solver.

For the optimization based on the above prediction of local light intensities, there are

various engineering strategies and approaches. An effective strategy of homogenizing the

irradiance in the culture is the intense mixing along the light gradient. Photo-conversion

is known to extend over a very short time period and alternating LD-cycles enhance

the biomass growth, known as flashing-light effect [182, 163]. This light memory or

buffering effect is taken as a basis of many CFD optimization studies that focus on flow

control through inner structures in PBR [81, 185, 198, 200]. General numerical studies

of hydrodynamics based on an Euler–Lagrange particle tracking in PBR are presented

in [151, 113, 57].

An additional technique of homogenizing the light supply is attained by clever light

guidance strategies, summarized as the internally-illuminated PBR [178]. They share

the idea of guiding (artificial or sun) light through an increased surface into the culture.

Experiments demonstrate that the biomass production is increased by 23.42% for flat

plate PBR equipped with hollow light guides [43]. Similar results are obtained in

PBR with helical structures of photo-translucent material, that enhance additionally the

mixing, showing an increase of 25% in growth rate and a higher biomass productivity of

35.26% [90, 204]. Both studies were accompanied by CFD studies to additionally gain

insides on the effect of the helix height and screw pitch.
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7.2.2. Light model equation

In spatially homogeneous medium, light transport is governed by the following RTE,

which models the loss or radiance L due to absorption µa and the redistribution of

radiance by scattering µs

1

c
∂t L+ s ·∇L =−(

µa +µs
)

L+µs

∫
Ω

p
(
s ′, s

)
L

(
t , x , s ′

)
dΩ′ .

This equation models the change of light intensity traveling in time t with speed c along

a path element s, through algae suspension characterized by absorption and scattering

coefficients and scattering integral with phase function p [129, 28]. Inside a small control

volume at position x the local light intensity Φ is obtained by formula

Φ(t , x) =
∫

L (t , x , s)dΩ .

Note, that the RTE is formulated with respect to a certain wavelength λ, which is dropped

for the sake of simplicity as mentioned earlier in Section 2.3. Bubbles in the suspension are

not considered, since they do not influence the light supply as shown in the experimental

and numerical works [117, 13].

Spectral light regimes are typically approximated by the Box model, where RTE is

solved for several wavelengths and the computed intensities are averaged [84, 116].

This extension might be of interest when improving the light utilization efficiency, since

not all absorbed light in the visible spectrum contributes equally to the conversion to

valuable bioproducts. Inhomogeneous suspensions are modeled by spacial varying optical

parameters µa and µs. In addition, light sources of arbitrary shape and number can be

added by introducing corresponding source terms. The extension to incorporate thermal

phenomenon was recently investigated in the framework of RTLBM and is technically

achieved by adding a source term [114, 14, 52]. This model extension can contribute to

design the cooling of reactors, that is necessary for most internally-illuminated setups.

In previous work, Mink et al. [125, 121] established the RTLBM as a numerical tool to

solve the general RTE by the following collide-and-stream equation

fi (t +4t , x + si4x) = fi (t , x)− 1

τ

(
fi (t , x)− f eq

i (t , x)
)− µ2

eff

8
(4x)2 fi (t , x) ,

with 0th order discrete Maxwell–Boltzmann equilibrium f eq
i = wi

∑
j f j equipped with

relaxation time τ= 1 and D3Q7 stencils. The computed populations fi represent in its
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λ in nm µ̂t in m2 kg−1 a
470 1200 0.66
600 1840 0.92
680 1680 0.77

Figure 7.2.: Extinction cross-section and scattering albedo for three wavelengths [93].

steady-state the light intensities in PBR by local averaging

Φ (x) =
∑

i
fi (x) .

As this LBM scheme is executed on the same numerical grid as the fluid flow simulation,

they share the data design and data interfaces, which facilitates the coupling. For details

about this RTLBM and the definition of the effective attenuation µeff
1 it is referred to

Section 4.2.1 where the method was introduced.

7.2.3. Optical characteristic of microalgae suspension

As pointed out in Section 6.5.3, the choice of an appropriate RTLBM has to be taken

carefully, depending on the optical properties of the media, numerical tolerance and

computational conditions. For a modeling organism C. reinhardtii, an extract of spectral

measurements are shown previously in Table 2.1 and are recalled in Table 7.2. Needless

to say, that the extinction coefficient µt is retrieved by multiplying the extinction cross-

section µ̂t by the culture density cx . This relation explains the increase of culture density

in a PBR by an increased light extinction and hence steeper light gradients. Dimensionless

characteristic parameters are the scattering albedo a and the optical depth b. The optical

depth is linked to the reactor geometry by b=µtL0, for a characteristic length L0 of the

PBR.

Figure 7.3 links the optical properties of the algae to the application guidelines and va-

lidity range of general RTLBM shown in Section 6.5. The axis span the optical parameter

field, defined by scattering albedo and optical depth, and form a map for which the per-

formance of RTLBM is validated. Orange and red light is recommended to simulate with

the macroscopic RTLBM whereas the blue light might be simulated with the mesoscopic

or P1-RTLBM, according to the discussion in Section 6.5.3.

1The effective attenuation parameter was previously defined in (2.11) as µeff =
√

3µa
(
µa +µs

)
.
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Figure 7.3.: Colored lines indicate the transport regime of the three wavelength. The
optical depths increase according to the culture density.

7.2.4. Boundary treatment

The Fresnel’s and Snell’s law model the reflection and transmission of radiance on surfaces,

yielding the following boundary condition. Radiance that hits the boundary surface from

angle θ is reflected back and attenuates according to Fresnel’s equation

RF (θ) =
 1

2

(
nrel cosθr −cosθ
nrel cosθr +cosθ

)2
+ 1

2

(
nrel cosθ−cosθr
nrel cosθ+cosθr

)2
, for 0 ≤ θ ≤ θc ,

1, for θ > θc .

Only if the incident angle is greater than the critical angle θc, the radiance is totally

reflected and there is no transmission. Otherwise, the incident radiation gets multiplied

by Fresnel’s equation RF that results in an attenuation factor due to reflection and

transmission. Parameter nrel accounts for the reflection properties of the surface. In the

framework of LBM, this boundary condition translates into a partial bounce-back scheme,

as shown in previous work [123].

Simulating a light source embedded in a boundary, can be realized by two Dirichlet

boundaries. One for the light source and another density on the outlet. Generally, the

light density at the outlet is not known but much lower than the source, thus it is often set

to zero. This lacks on physical meaning but in addition, the simulation is very unstable

due to the jump of density. This deficit can be fixed by the Fresnel boundary presented in

Section 4.3.
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7.3. Algal Growth Models

The assessment of productivity of microalgal cultivation is heavily based on the biomass

accumulation. Therefore, the main focus here is on theoretical modeling of photo-

conversion due to light supply, assuming nutrient saturation. Microalgae attain the

maximum growth rate at specific light intensities, referred to as photo-saturated light

level. Below and above this level, the growth is limited either by photo-limitation or

photo-inhibition. Due to the strong light gradient in PBR all three light regimes has

to be taken into account by any growth kinetic model. Even if the general PBR design

aims for prevailing photo-saturation and photo-limitation or in other words, aims for a

homogeneous light supply.

The recent review articles of Béchet et al. [11], Lee et al. [108], and Darvehei et al.

[37] present theoretic models for algae growth, that focus on the supply of light, nutrient

and temperature or even its combination. Apparently, there is a great variety of models

that have been proposed in algal research and when choosing one, the trade-off between

model complexity and usability must be taken into account. One aspect are undoubtedly

the numerous empiric parameters, that are expected to be a function of the specific algae,

temperature and many more cultivation parameters. This might be a time consuming

process of fitting or calibrating the model to experimental data.

General growth kinetic models, that consider light supply, are approximating the

growth by a descriptive approach. Rather than explaining the kinetics, these models are

developed for the prediction, which can be observed by the many empiric parameters.

One representative, that describe the relationship between light supply and rate of

photosynthesis is the PI relationship (photosynthetic rate and light intensity). It is

based on a characterization of light supply into three distinct regimes (a) The rate of

photosynthesis in photo-limited regimes is governed by the photon capture rate and is of

linear nature, (b) At photo-saturated regimes the photosynthetic rate reaches its maxima

and is hardly dependent on the light intensity, represented by the plateau, (c) When the

light intensity is increased further the cells are subjected to photo-inhibited regimes and

the photosynthetic rate decreases. To increase the PCE, it is clear that the reactors design

stresses on photo-limited regimes, where the light conversion efficienty is the highest.

This classification into three light regimes considers photosynthetic rate as a function

of light assuming saturation of nutrients, e. g. temperature, nutrient supply and others.

In such situations, the light supply is a critical factor of photosynthetic activity. This

descriptive modeling is widely represented in algal research, see the review articles [11,
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Figure 7.4.: Growth kinetics and the three light regimes of Porphyridium purureum [156].

108, 37] and a possible model formula is the Monod equation

P (L) = Pmax
L

LK +L
, (7.2)

for local light intensity L, specific maximum photosynthetic rate Pmax and constant LK.

Note, that this single substrate model has already two parameters that has to be deter-

mined through calibration, which has been performed in the pioneer work of Tamiya

et al. [173]. An illustration of the PI relationship is shown in Figure 7.4. Further, the

specific rate of photosynthesis is proportional to the specific growth rate µ. This basic

(yet general) population model can be applied to other relevant scenarios in microalgal

cultivation, e. g. to describe growth under low and moderate nutrient concentrations,

considering the limitation by a single nutrient [6, 80, 146], not to forget the pioneer

work Monod [132].

As pointed out by Lee et al. [108], the Monod model cannot explain growth under

nutrient absence or inhibition caused by high nutrient concentration. It also fails to

implement internal nutrient storage behavior. Over the years, model improvements that

addressed the better fitting to experimental results have been presented [2, 67, 40, 150].

Modifications that consider the photosynthetically usable radiation (PUR) instead of the

photosynthetically active radiation (PAR) have just recently been proposed [18]. A even

more precise modeling makes usage of the mechanical abstraction of the cell and its

photosynthetic unit (PSU) and is designed to account for photo-adaption, photo-inhibition

and the LD-cycles [158, 60]. This 3-state model, proposed originally by Eilers and Peeters

[42], assumes that PSU consists of a resting x1, an active x2 and an inhibited fraction x3,
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with the closure of x1 +x2 +x3 = 1. Accordingly to Wu and Merchuk [197], the evolution

of the PSU is given by

dx1

dt
=−αJ xi +γx2 +δx3

dx2

dt
=αJ x1 −γx2 −βJ x2

dx3

dt
=βJ x2 −δx3 ,

predicting finally the specific growth rate by

µ= kγx2 −M .

The parameters α,β,γ and k depend on temperature and the specific species, whereas

the algae maintenance coefficient is denoted by M [120]. The irradiance is accounted

for by light flux J . A comparative study of six PSU models from literature is presented

in [159], including a sensitivity analysis of the parameters.

Following the growth model classification into three types, see Béchet et al. [11], it is

deduced that the strategy of PSU is related to the Type III models. Compared to Type I

or II models, this model implements cell maintenance and respiration and accounts

for LD-cycles. For complex flow regimes, the algae experiences a very heterogeneous

illumination yielding an alternating light exposure history. Only, Type II models account

for the local light-history and hence are recommended for PBR with complex fluid flows.

Model Type I assumes that the culture is a continuum that gets illuminated. Hence,

there are no individual cells or fluid vortices that trap cells, which is a common assumption

for ideally mixed PBR. The rate of photosynthesis is modeled by the Monod equation or

its variants with light intensity L to be the averaged or modeled by Lambert–Beer. Both

kinetic parameters, constant LK and maximum rate of photosynthesis Pmax have to be

fitted empirically as a function of the culture density, temperature and nutrient supply.

7.4. Application to Flat Plate PBR

In flat plat reactors the algae are cultivated in rectangular enclosures, that are either

illuminated from one or both sides. They are one of the most robust reactors designs, not

only for the flexibility in implementing any desired illumination by varying the reactor

depth. The mixing is implemented by the sparging with CO2-enriched air at the bottom,

that has been reported to by the most gentle way to keep shear stress the algae cells at a
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Light

Fluid/Gas

Figure 7.5.: Model of the flat plate PBR with fluid inflow at the bottom that additionally
transports the gas phase. The reactor is illuminated over the entire left wall.
Dashed reactor volume is subjected to light-saturation and consumes the gas
due to photosynthetic activity.

low level [147].

7.4.1. Modeling of the reactor dynamics

The PBR geometry is given by two panels (0.3×0.1m) at distance 0.05 m as illustrated in

Figure 7.5. The irradiance is modeled as an infinite beam that enters orthogonally on

the left reactor wall. Note, that such illumination setup has been validated in Chapter 6,

called benchmark scenario infinite collimated beam. The intensity of the light source is

normalized and the biomass concentration of approximately 1gL−1 at λ= 600nm of C.
reinhardtii [93] is modeled by scattering albedo a= 0.9 and optical depth b= 12.

Concerning the hydrodynamics, the flow enters at the bottom with velocity 0.001 ms−1

in a Poiseuille profile. The pressure boundary at the top ensures the outflow, whereas

the walls are modeled as no-slip walls by the LBM bounce-back scheme. In addition, the

reactor bottom is subjected to a fixed gas concentration that is transported upwards by

the fluid flow, according to the Euler–Lagrange model presented in Section 7.1. The ratio

of both transport phenomena, gas diffusivity and advection by fluid, is denoted by the

Peclet number indicating which transport regime dominates. With regard to numeric,

the Peclet number is a critical parameter since the numerical model becomes less stable

for decreasing diffusion. The present thesis deployed for the flat plate PBR gas transport
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a Peclet number of 400. A closer match to typical parameters from application was

not considered for various reasons. First, the laminar flow regime allows studying the

interplay of diffusion of the gas and its advection by to the flow field without adding

further complexity (e. g. turbulence models) or numerical artifacts. This simplifies the

methodical development of a coupled simulation in general and speed-up the implemen-

tation process. Second, the performance can be retrieved by simple algae growth kinetics,

that consider a continuum algae culture, instead of light exposure history of single cells,

and averaged light intensities, known as Type I models in [11].

The reactor thickness of 0.05 m is discretized by 30 discrete nodes, yielding an overall

number of about 300000 fluid cells for the LBM simulation. The program simulates first the

light intensities by the macroscopic RTLBM and then the Euler–Euler gas transport. Both

information are subsequently coupled by the computed photosynthetic rate, depending

on the local light supply, that enters the sink term gas transport model equation. Most of

the total simulation time (parallel execution on Intel i7-6700) of about 20 min is spent in

solving the gas transport in the flow field. The solver for the light transport takes less

than 3 min.

This model focus on understanding the interplay of the modeling parameters and lacks

on precise description of the typical experimental design. First, the air gets injected as

bubbles at to bottom and as they rise, the induce the fluid flow. Second, the described

gradient in gas concentration cannot be observed in experiments. The gas consumption

and gas transport happens on different time scales.

7.4.2. Simulation results

Figure 7.6 shows the light and gas supply in the flat plate PBR. The light simulation,

based on the macroscopic RTLBM, indicates that only a small reactor volume close to

the light source is subjected to photo-saturation, see Figure7.6a. After the distance of

about 0.01–0.02 m the light attenuates already about two orders of magnitude, which

is in good agreement to experimental data [147]. This is explained by the relatively

high algal concentration of 1 gL−1 yielding steep light gradients, such that most of the

algae suspension is cultivated in photo-limitation. The latter is not desired and the

simulation concludes to construct thinner reactors and simultaneously illuminated from

both walls. Both strategies favor an increase in homogeneous light supply and enhance

PBR performance.

A normalized gas concentration enters the reactor at the bottom and is transported

upwards by the implemented fluid flow. While being transported, the gas concentration
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(a) Incident light from the left side attenuates
in algae suspension. White contour lines
indicate the orders of magnitude.

(b) The transported gas concentration is
photo-converted close to the light source.

Figure 7.6.: Cross section of light and gas supply simulation in a 3D flat plate PBR of
width 0.05 m and biomass concentration of 1 gL−1.

is converted by photo-conversion, accordingly to the local light intensities, which results

in a loss of gas close to the left wall, see Figure 7.6b. Without the coupling of gas to the

light field, the gas phase would follow the fluid flow and develop a Poiseuille profile. The

consistent simulation scope applies in particular to this gas-light coupling by a simple sink

term in the advection–diffusion equation (7.1). At every grid node the information of light

intensity and CO2 concentration are available and are coupled as follows: First, the (local)

photosynthetic rate is computed, accordingly to Monod (7.2). The modularity allows to

easily switch for most other growth models. Second, the gas concentration is reduced

linearly with respect to the determined photosynthetic rate, determined for instance by a

Monod model. This work identifies the coupling parameters in the simulation model and

its interplay to the models. However, its calibration to experimental data might determine

the precise proportional constant for the sink expression.

A closer look to the time evolution of the gas transport is shown in Figure 7.7. At
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Figure 7.7.: Time evolution of the gas phase in the fluid flow, till steady-state is reached.
Black color indicates high CO2 concentration. The coupling to light supply
yields in a consumption of CO2 close to the left reactor wall.

the beginning (left side) of the parabolic Poiseuille fluid flow profile transports the gas

concentration upwards, by means of advection. Needless to say, that the shown cross

section indicates also a parabolic profile of the gas concentration in the bottom. While

the fluid field transports the gas towards the top, this changes due to two aspects. The

longer the gas remains in the flow, the more it gets diluted by diffusion processes. This

concludes the first observation of a blurred gas-liquid interface towards the top of the flat

plate PBR. On the other side, the coupling to light intensities simulates the consumption

of CO2 in the photo-saturated volume, mainly observed close to the left reactor wall. This

consumption results in a biased Poiseuille profile of the gas transport and depicts the

second phenomena.

An appropriate model for algae growth kinetics in such laminar fluid flows and simple

illumination scenarios, is the Type I model in [11]. By volumetric considerations, based

on the amount of culture volume that experience photo-saturation, the growth kinetics

are formulated. This assessment assumes that the fluid flow is a continuum and that

there is not mixing along the light gradient. As a summary, the performance evaluation

of flat plate PBR with laminar flow field does not require the tracking of algae particles

and is based solely on the light supply inside the culture. Calibrated models for the

CO2 consumption can identify a maximum plate height, till the suspension suffers CO2

limitation. This height might be optimized for various reactor depths and fluid flow
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regimes to met the design demands.

7.5. Application to Algfine – An internally-illuminated PBR

Internally-illuminated PBR benefit from additional light sources inside the algae culture,

contributing to a potentially homogeneous light supply by the increase irradiance surfaces.

On the assumption of cultivating a microalgal concentration of 2 gL−1 and more, the light

supply of the present reactor is designed. For such suspensions it is known, that after a

short light path of 0.01–0.02 m the light intensity is no longer sufficient and the volume is

subjected to photo-limitation. As a consequence, the goal of the immense constructional

effort for this reactor is to attain a homogeneous light supply inside a compact cylindrical

reactor by means of a minimal distance from any algae cell to its next light source of less

than 0.02 m.

7.5.1. Reactor dimensions

The geometry of the reactor is based on a horizontally mounted tubular reactor of

diameter 0.3 m and length 0.5 m equipped with 37 internal cylinders installations of

diameter 0.016 m, see Figure 7.8a. The radial distance between the cylindrical internal

installations vary from 0.03–0.05 m. Each of them is equipped with 72 LED spots that are

mounted helical, resulting in a horizontal distance between the LED spots of about 0.05 m

as depicted in Figure 7.8b. This construction attains a minimal distance from any algae

cell to the closest light source of about 0.02 m, as concluded from previous considerations.

When discretizing the reactor into a regular grid, it is clear that the small inner cylinders

determine the choice of the grid size. Without grid refinement, the regular grid in LBM

can be a constraint for such scenarios. A possibly high number of grid nodes is avoided by

exploiting the axial symmetry of the Algfine reactor by considering shorter cylinders. For

instance of length 0.1 m instead the original 0.5 m. Then, the reactor discretization with

30 nodes resolving the diameter of inner cylinders, results already in a total node number

of 10×106. This makes the visualization by the software ParaView on desktop machines

(Intel i7-6700, 32 GB RAM) just feasible, more nodes might exceed the memory.

Another relevant LBM issue for its application to real engineering problems is the

decomposition of the computational domain into small sub-blocks, for the execution on

massive parallel computer hardware1. Those sub-blocks than can be computed almost

1The outstanding parallel performance of LBM is often based on clever domain composition.
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(a) Reactor diameter of 0.3 m and length 0.5 m equipped with 37 cylindrical light installations of
diameter 0.016 m.

(b) Internal light cylinder equipped with 72 LED spots mounted in a helical arrangement. Hori-
zontal distance between LED spots is 0.05 m.

Figure 7.8.: The Algfine PBR with complex internal illumination based on 37×72 single
LED spots. The LED arrangement ensure a homogeneous light supply in the
suspension.
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independently and are a key element in the parallelization strategy. For cuboid based

geometries the block decomposition is a simple and yet powerful tool. However, the

internal-illumination structure of the Algfine PBR is less appropriate. Consider a Algfine

simulation 1 that is executed on 2000 cores and hence requires at least the same amount

of sub-blocks. Then, the decomposition results in a sub-block size of about the size of the

diameter of an inner cylinder. This is critical for the parallel performance, since the blocks

might contain an extremely varying amount of nodes that actually has to be computed

(e. g. algae suspension) and not (e. g. hollow inner cylinders). This is an unbalanced

decomposition into sub-block of uneven computational time.

In the experiments, the CO2 supply is attained by a sparger at the bottom of the reactor.

The fluid flow inside the present Algfine PBR will not be simulated, mostly due to the

lack of a boundary condition of a flow field that is imposed by raising bubbles. Since the

reactor is not entirely filled with suspension, the gas escapes from the fluid phase on the

upper surface in the cylinder.

7.5.2. Simulation results

The illumination of the reactor is attained by many internal light sources of finite extent.

This LED spots emit light almost diffusely and hence the macroscopic RTLBM is chosen

for the simulation of the light supply. As pointed out in Section 6.5.3, the macroscopic

RTLBM is able to predict diffuse light sources of finite extent. Besides the vast number

of LED spots, the present reactor has foremost curved walls, which in total makes light

prediction a challenging task. With respect to the reactor walls, the simulation models the

light source as a Dirichlet (constant) source, where other boundaries are partly reflecting,

accounting for the water-glass interface, as discussed in Section 4.3. Figure 7.9 shows the

light simulation setup with resolved LED spots besides the predicted illumination of the

culture suspension. As indicated above, the simulation considers a representative part of

the reactor with length 0.1 m. It is clearly seen, that the internally-illumination setting

benefits from an increased surface to volume ratio in comparison to the flat plate PBR in

Section 7.4 and can hardly be modeled by Lambert–Beer’s law.

As emphasized by Nwoba et al. [138], the light management in PBR might include the

spectral selection and filtration to deliver a more useful amount of PAR to the culture. In

addition, the tailoring to specific wavelengths should also lead to substantially reduction

of heat, which is an actual issue for this reactor. In order to understand the light supply

better, the following study investigates the light transport for two red wavelengths 600 nm

1For the Algfine reactor of length 0.1 m and a sub-block size of 0.016 m, there are about 2000 sub-blocks.
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(a) Reactor part with internal illumination by
multiple LED spots (yellow).

(b) Light transport from LED spots into algae
culture colored green.

Figure 7.9.: The complex geometry and the multiple LED spots require a carefully mod-
eling of the boundary. Here, the blue part are outlet boundaries that are
modeled by the novel reflection boundary. The radiation field is computed
according to the macroscopic RTLBM.

and 680 nm, according to the optical parameters presented in [94]. Both transport

regimes are characterized by very similar extinction coefficient 1 of 736 m−1 and 672 m−1 2

. However, the scattering albedo varies from 0.9 at 600 nm to 0.77 at 680 nm, which allows

to study the penetration depth into the algae suspension of light with varying wavelength,

as depicted in Figures 7.10 and 7.11. Both cross sections show the 37 internal cylinders

on which multiple LED spots are helically mounted, seen by its non-symmetric light

intensities. The simulation shows, that an increased scattering albedo (600 nm) 3 results

in an enhanced penetration depth of the light, compared to data obtained for 680 nm. The

modeling error, considering only extinction parameters, is significant as it predicts very

similar light supplies for the distinct wavelengths. However, the independent modeling

of absorption and scattering by the RTLBM clearly accounts for the high absorption at

680 nm, as it leads to a significantly higher light attenuation and hence a very steep light

gradient, compared to the results at 600 nm. This concludes, that a spectral filtration and

selection of the light sources is crucial in dense algal cultivation process to establish a

1The extinction coefficient is defined as the sum of absorption and scattering by µt =µs +µa
2Interestingly to note, the Lambert–Beer model predicts the light supply only be means of extinction,

hence the light intensities are expected to be very similar.
3The amount of scattering on the extinction is called scattering albedo and is defined by a=µs

(
µa +µs

)−1.
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Figure 7.10.: Light supply by 600 nm in an algae suspension of 0.4 gL−1 - scattering albedo
a= 0.92 (µa = 56m−1 and µs = 680m−1). Contour lines are drawn at intensi-
ties 0.1, 0.01 and 0.001.

homogenize light supply through varying light penetration depth.

A comprehensive study of the reactor performance should include also the mixing

induced by hydrodynamics. The steep light gradients and the many light sources inside

the reactor might implement LD-cycles and enhance the PBR performance on a metabolic

level.

7.6. Application to Sponge-Structured PBR

Tubular reactors are one of the most suitable closed PBR for outdoor mass cultivation.

In transparent tubing of either glass or plastic tubes, the cultures are re-circulated or

pumped with airlift systems. Arrangements of horizontal, vertical, conical and inclined
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Figure 7.11.: Light supply by 680 nm in an algae suspension of 0.4 gL−1 - scattering albedo
a= 0.77 (µa = 152m−1 and µs = 520m−1). Contour lines are drawn at inten-
sities 0.1, 0.01 and 0.001.
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Figure 7.12.: Idealized foam of equal-sized bubbles.

tubes are known [178]. Its large illumination surface attains a reasonable homogeneous

light supply in the culture. However, the mass transfer concerning supply of CO2 and

removal of dissolved oxygen is known to be a major challenge in efficient microalgae

cultivation in large tubular reactors.

The present tubular reactor increases the illumination surface through an internal

installation of a photo-translucent sponge structure. Figure 7.12 depicts the sponge

structure based on an idealized foam of equal-sized bubbles [190], named Weaire–Phelan
structure. It is expected that the photo-translucent material acts similar to light guides

and increases the irradiance surface. In addition, the passive sponge structure induces

complex hydrodynamics that might improve the mixing and even implement LD-cycles.

The experimental work of Jacobi et al. [90] reviewed the PCE for such reactors and

suggested the improvement in efficiency of biomass build-up to be more apparent in high

cell densities.

7.6.1. Modeling of reactor dynamics

The simulation of the reactor covers the light supply and the tracking of algae cells in the

flow field in the framework of LBM. Special attention is paid to the discretization of the

fine sponge structure and the coupling of the submodels.

The simulated tube is of diameter 0.05 m, where the sponge structure is placed at 0.5 m

from the inlet. Since the hydrodynamics develop after the inlet boundary and requires to

settled, the tube is extended to a total length of 1 m to allow the development of the flow

pattern. First, the light simulation is carried out, where the photo-translucent sponge

together with the tubing acts as a radiative source of constant light intensity. Afterwards,

the fluid field is simulated for a Poiseuille inflow profile and no-slip walls with vanishing

fluid velocity on the sponge surface and tube walls. Since the entire geometry is provided
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Figure 7.13.: Simulation of light supply (green) and algae trajectory inside the sponge-
structured PBR.

by a Stereolithography (STL) file, the interpolated bounce-back model of Bouzidi et al.

[21] is deployed for the no-slip walls. It is observed to be more stable for the staircase

approximation of the sponge structure, by the regular grid. After the full flow pattern

is developed for an inflow velocity of 0.01 ms−1, the algae cells are added and tracked

accordingly to the Euler–Lagrange approach, as shown in Section 7.1.2. An illustration of

the simulation data is given in Figure 7.13.

The discretization into a regular grid, comes with a trade-off of maximum possible

grid nodes or lattice cells and the quality of the staircase approximation of the fine

sponge structure. Due to memory and computation time constraints, the pore sizes of

0.002–0.004 m from the original experiments [90] can not be resolved by the regular grid.

Instead, the present work considers a pore size of 0.02 m, that is resolved by 20 grid

nodes, of size 0.0005 m, yielding an overall number of approximately 15×106 grid cells.

Compared to the original pore size, the present pore size is increased about factor 10.

7.6.2. Simulation results

Light simulation results are depicted on the contour plot in Figure 7.14a. It is seen that

the sponge structure extends over 0.5–0.7 m in the axial direction and clearly enlarges

the inner surface of the reactor. This cross section representation allows studying two

characteristic light supply regimes. The first regimes is a classic tube reactor, illuminated

only by its transparent walls, see both ends of the tube. Herein, the algae culture is

subjected to steep radial gradients, shadowing most of the suspension, which is undesired

and leads to a dominant photo-limited reactor volume. The strategy of increasing the light

intensity on the walls might reduce the photo-limited volume. However, this approach
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(a) Contour lines on the light distribution. Yellow parts are light sources and the algae suspension
is colored blue.

(b) Local velocities for an inflow of 0.01 ms−1 entering from the left side. White regions are the
sponge structure modeled as no-slip walls.

Figure 7.14.: Cross section of the sponge structure installations inside the tubular PBR.

exposes simultaneously suspension close to the reactor walls to a photo-inhibitory light

intensity, that might even damage the algae cells. Thus, the strategy of increasing the

light intensities translates the deficit to other reactor regions and barely solve the issue of

heterogeneous light supply.

Much better homogenization of the light supply is achieved in the second light regimes,

observed in the sponge structure. Here, the large irradiance surfaces dilutes the light into

the deeper part of the reactor, by the photo-translucent sponge structure. As a summary

it can be said, that the implementation of a sponge structure inside the tubular reactor is

a promising strategy to homogenizes the light distribution by increasing the surface of

irradiance. It further allows to lower the intensity of the light source, while implementing

a homogeneous light distribution inside the reactor.

At the same time, the sponge structure attains a complex flow pattern that enhances

the radial mixing. While the fluid passes the sponge, the local constrictions leads to

high velocities and a complex flow pattern develops already for very slow inlet velocity
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of 0.01 ms−1, see Figure 7.14b. Typically, for the implemented flow obstacle, the fluid

flow develops a preferred path, that is indicated in the present figure by the increased

velocities in red.

After the flow field is fully developed, the particles are seeded randomly at the inlet and

are tracked through the reactor. Figure 7.15 depicts the radial position of such tracked

algae cells, computed by the Euler–Lagrange model. The color gradient indicates the

time evolution in the flow field from the beginning (dark) to the end (light). Along its

trajectory the algae is subjected to significant radial movements that indicates non-laminar

flow pattern and proves the mixing characteristic of this particular reactor design. The

information of the spacial positions is further analyzed by coupling to the light intensity

and recording the local light exposure history, as depicted in Figure 7.16 for the same

particles. When considering the computational effort of this light-particle coupling, the

consistent simulation scope of the algae tracking and light supply pays off. Analyzing the

algae light history along the z-direction (axial), it is clearly seen that the sponge structure

increases the general light supply through homogenization as pointed out earlier. Before

and after the sponge the subjected light decreases and remains at a constant level. The

latter shows also the laminar character of the flow field and how algae cells are not

mixed and remain therefore at a certain light regime. A survey that considers the light

history over time, might indicate the presence of LD-cycles and its precise frequency.

However, the present data only indicates the tendency to LD-cycles given the alternating

light exposure history in Figure 7.16.

The modeling of trajectory and its coupling to the light model, allows studying the

light history of individual algae cells. From the simulation data is can be concluded

that tubular reactors of diameter 0.05 m have poor radial mixing properties for fluid

velocities 0.01 ms−1 and lower. Further improvements have been confirmed by placing

a photo-translucent sponge structure inside the flow field. The simulation shows a

homogenization of the light supply while enhancing at the same time the radial mixing.
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Figure 7.15.: Cross section of tubular reactor shows the time evolution of two algae in
the axial position. The trajectory begin is indicated by the dark blue and
the end by light green colors.

122



7.6. Application to Sponge-Structured PBR

0 0.2 0.4 0.6 0.8

0

2

4

6

8

·10−2

Distance in z direction

Li
gh

t
in

te
ns

it
y

Particle 1
Particle 2

Figure 7.16.: Experienced light intensity plotted over traveled axial distance. The increase
of subjected light intensity at axial position 0.5 m is due to the sponge
structure. Before and after the sponge structure, the subjected light is
constant.
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8.1. Conclusion

The objective of this work was the development of a consistent simulation framework

for the prediction of light supply, hydrodynamic mixing and biomass growth kinetics

in Photobioreactors (PBR). By studying the interplay of the tree simulation submodels,

reactor designs can be improved by quantitative predictions of PBR performance and

the process scale-up can be supported as well. It was chosen a mesoscopic modeling

scope and the algorithm has been implemented in the framework of Lattice Boltzmann

Methods (LBM), best known for their parallel performance and multi-physics models.

For this background, it was derived, tested and validated a novel mesoscopic submodel,

based on LBM, to simulate the light supply inside reactors, accordingly the model of the

radiative transport equation (RTE). Additional LBM for the fluid flow, mass transport and

microalgae tracking has been implemented, to gain insights in complex flow patterns

and to better understand the mixing. Due to the consistent scope of model equation

and numerical algorithm of light and hydrodynamic, the coupling was achieved in a

numerical efficient way and did not add significant complexity, through a biomass growth

kinetic model.

The mesoscopic simulation framework was successfully applied to three PBR to quanti-

tatively analyze and propose design improvements of the reactors. Thereby, the initially

formulated questions could have been answered in detail:

1. Can we predict the spacial light distribution inside general PBR geometries?

The developed Radiative Transport Lattice Boltzmann Methods (RTLBM) have been

validated beyond the optical parameter set of typical algae suspension in closed

PBR. It has been shown that the light supply in PBR can be predicted robustly and

accurately in complex 3D geometries and for the entire photosynthetically active

radiation (PAR).

2. What is the impact of the coupled process parameters such as light intensity, flow

rate and CO2 concentration in a reactor?
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The consistent modeling scope of the key factors such as local light supply, algae

trajectories and gas supply is a major benefit of the developed LBM based simulation

framework. It has been performed quantitative studies of a simple algae growth

model, that revealed the great ability, of the transparent model formulation, in

deriving the impact of the modeling parameters, without the conversion into

different scopes. Further qualitative studies regarding experimental data, might

determine the coupling coefficients.

3. What recommendations can be derived for PBR operating parameters, with respect

to existing reactor and also novel reactor types?

For a non-laminar fluid flow, it is essential to take the algae trajectory into account

to derive the performance of PBR. The performed simulation indicate that the

mixing quality can be enhanced by passive turbulence promoters, such as a sponge-

structured inlet for tubular PBR. An increase of fluid velocity can damage individual

algae cells due to shear stress and a high reactor surface combined with few

cultivation volume can lead to an undesired raise of temperature in the reactor.

Both phenomena can be addressed by further simulation work, since there are

already LBM based simulation models for them.

Special attention was paid to complex reactor geometries and light settings, for which

sophisticated simulation models are needed due to the absence of known analytical

solutions (e. g. Lambert–Beer for flat plate PBR) or correlations of mass transport and

hydrodynamics (e. g. tubular PBR). Additionally, the robustness and numerical efficiency

of the simulation framework was demonstrated on a complex sponge-structured tubular

PBR with internal illumination. Its complex flow patterns and light setup emphasized

the need of a consistent and yet highly efficient algorithm to solve and predict real 3D

PBR. This survey suggested that the proposed framework is also suitable for the support

of process scale-up of PBR, that requires efficient 3D predictions.

General radiative transport (RT) in participating volume is a popular topic and gains

importance for the light prediction in the computer aided design of PBR. Its governing

equation, the RTE, accounts for the absorption and scattering and is easily extendable

to heat transfer as well. The gap in LBM literature, concerning 3D RT models, has

been closed successfully by deriving novel RTLBM, to solve an-/isotropic RTE within

the framework of LBM. Validation against analytical solution and Monte–Carlo Methods

(MC) data showed, that the RTLBM is suitable for the prediction of light supply in

PBR. Further, the multiscale expansion of Chapman–Enskog demonstrated the correct

asymptotic behavior of the mesoscopic algorithm. For the first time, the RTLBM have

126



8.1. Conclusion

been review with respect of a great optical parameter set, to identify its validity range

and provide general guideliness for the application to engineering problems. Additionally,

novel boundary models have been developed to incorporate the reflection of radiance on

surfaces. This completed the development of RTLBM, as a submodel for the prediction of

light supply in general PBR. Since the algorithm was implemented in the open-source

LBM library OpenLB, the source files are available to the public in the release 1.3 of

OpenLB. As a bonus, the generic derivation of RTLBM allows reusing or extend the

developed numerical tool to many engineering problems as the comprehensive validation

and the application guidelines revealed.

In a further step, the work addressed the submodels for the simulation of hydrodynamic,

including Lagrangian particle trajectories of microalgae cells in the flow field, and mass

transport in PBR with LBM. This procedure was catalyzed by existing Euler–Lagrange and

Euler–Euler models in LBM literature and corresponding simulation modules, available in

the LBM solver OpenLB. Additionally, the present work implemented the consumption of

CO2 by means of the photosynthetic-rate, determined by the local light intensities, based

on a single substrate (light) limited Monod model. This coupling scheme completed

the design of the novel mesoscopic simulation framework for the prediction of PBR

performance and support of process scale-up. Since all submodels were based on LBM, by

means of mesoscopic equations and algorithm, the simulation model has been formulated

on a consistent scope. With respect to numeric, this persistent concept facilitated intuitive

and efficient coupling, based on common data structures, and equally avoided complex

data interfaces and time consuming interpolation between different numerical grids.

The developed numerical framework was then applied to three distinct PBR to demon-

strate and analyze the interplay of the submodels and finally answer the above questions.

While the first reactor was a standard flat plate PBR, the second one already increased

the complexity of the light setting by internal-illumination by more than 2000 single LED

spots. However, the demands to the framework were further increased by the tubular

reactor with sponge structure installations, that dilute the light supply by its photo-

translucent material. The simulation of the flat plate PBR showed, that the coupling of

the light and mass transport model allows to predict the evolution of gas supply and

identify a maximum reactor height, till the algal growth is CO2 limited. Although the

internally-illuminated PBR lacks on a precise fluid flow model, the complex artificial light

setting was simulated for different wavelengths. This survey emphasized the impact of

polychromatic light and the importance of spectral filtration to attain a homogeneous

light supply in high biomass concentration, by the concept of composing a clever spectral

composition with varying penetration depth and photosynthetic response inside the algae
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culture. The last study stressed on the algae tracking in complex flow fields and the

history of the light exposure of individual microalgae cells. It was found that the sponge

structure acts similar to turbulence promoters by enhancing the radial mixing and at

the same time achieved a homogenization of light supply. This finding was observed by

studying the light exposure history of representative cells, that in addition indicated a

high frequency light/dark cycles (LD-cycles) along trajectories.

8.2. Outlook

The outlook contains aspects in the recent development of reactor designs and new

simulation strategies, that turned out to be very promising during the course of the

present doctoral thesis and might be considered in further works. Ultra-thin PBR with

very short light paths are designed to address a high surface to volume ratio and subject

most of the algae culture to photo-saturation, which enhances the performance of PBR,

as conducted in the experimental work [63]. The almost homogeneous light supply,

on the one hand, has a highly sensitive demand on a proper irradiance intensity and

requires careful treatment. On the other side, the fluid flow simulation simplifies, since

particle tracking might not even be necessary, due to the lack of significant light gradients.

However, ultra-thin reactors suffer on small culture volume and absolute biomass growth

and are consequently mounted on racks or are enlarged for process scale-up. Such

arrangement might subject them to a much more complex irradiance constellation and in

particular, the enlargement is critical due to the limitation in mass transfer due to the

long holding times. Both phenomena have to be incorporated in future investigations of

the ultra-thin PBR, based on computational models.

Another design strategy are turbulence promoters, that overcome the poor radial

mixing of traditional tubular reactors. While the mass transfer can be significantly

enhanced, the induced shear stress to the algae cells might cause cell damage. Small

eddies of the size of an algae cell are transferring energy which will be dissipated by a

cell, yielding a potentially damaged cell, as addressed by computational fluid dynamics

(CFD) investigation in [58]. Explicit studies based on CFD are still missing and might

require the development of specific submodels that account for the shear stress to algae

cells.

The increase in reactor surface comes typically with a rapid heating, such that the

appropriate culture medium temperatures need to be controlled [133]. In particular,

outdoor PBR are subjected to a much wider spectrum than the PAR and the infrared

radiation could be filtered, to manage the temperature more easily by heat exchangers
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and other technical concepts. Due to existing and very comprehensive radiative heat

surveys in the discipline of LBM [52, 97], future simulation frameworks of LBM might be

extended to account for these phenomena.

Another important design aspect, is the limited performance of large systems of tubular

PBR, due to the dissolved oxygen, that inhibits the photosynthetic conversion rate at

high concentrations. Simulation wise, it is straight forward to run LBM simulation

simultaneously for multiple concentrations and adopt for dissolved oxygen. The so called

multi-phase models have improved significantly over the original versions, but much

remains to be done to increase accuracy further [168, 170].

The raise of complexity in multi-physics simulation data requires at the same time

adequate biomass growth models that can cope the new insights. Biomass growth models

that account for multiple substrate and environment factors, presented in [108], are

able to address available CO2 and dissolved oxygen concentration as well as temperature

effects. Future computational models might consider such biomass growth models

and equally emphasis on the calibration to experimental data, since the many model

parameter have to be adjusted.
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A. Chapman–Enskog Analysis of the
RTLBM in Volume

The following is an extract of the publication Mink et al. [125] and repeated for the sake

of completeness. The Chapman–Enskog expansion is a vehicle to derive macroscopic

equations from collide-and-stream equations at the mesoscopic scale. This is a crucial

part of the LBM development, since it is not guarantied or even clear whether the compu-

tations on mesoscopic scale lead to suitable solutions of macroscopic target equations or

not [195]. By showing that the proposed collide-and-stream equation of the macroscopic

RTLBM presented in Section 4.2.1 solves the target diffusion equation with additional

sink term (2.10), analytical evidence of the present approach is provided. Recall, that the

collide-and-stream equation is given by

fi (t +4t , x +v i4t ) = fi (t , x)− 4t

τ

(
fi − f eq

i

)
(t , x)−4t 2η fi (t , x) ,

for η= 3µa(µa+µs)
8 and discretization parameter 4t .

Firstly, a Taylor series expansion up to second order of the left hand side reads

fi (t +4t , x +v i4t ) = fi (t , x)+4t (∂t +v i ·∇) fi (t , x)+ 4t 2

2
(∂t +v i ·∇)2 fi (t , x) .

Substituting this expression into the collide-and-stream equation, it holds

(∂t +v i ·∇) fi +
4t

2
(∂t +v i ·∇)2 fi =

1

τ

(
fi − f eq

i

)−4t η fi , (A.1)

for η̂ =4t η. By introducing a small, positive scaling parameter ε2 =4t , the time and

space derivation can be rewritten according to the diffusive limit [130, 160]

∂t  ε2∂t , ∇ ε∇ . (A.2)
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Then, the particle density function fi is expanded by

fi = f (0)
i +ε f (1)

i +ε2 f (2)
i + . . . . (A.3)

Deploying the scaling (A.2) and the expansion (A.3), the reformulated equation (A.1)

can be rewritten in the consecutive orders of parameter ε as

ε0 : f (0)
i = f eq

i , (A.4)

ε1 : v i ·∇ f (0)
i =−1

τ
f (1)

i , (A.5)

ε2 : ∂t f (0)
i +v i ·∇ f (1)

i =−1

τ
f (2)

i −η f (0)
i . (A.6)

Inserting (A.4) and (A.5) in (A.6), it holds

∂t f eq
i −τ|v i |2|∇|2 f eq

i =−1

τ
f (2)

i −η f eq
i .

By two considerations, namely that the macroscopic density (irradiance) Φ can be

recovered through the 0th moment and due to the D3Q7 grid it yields |v i |2 = 1, for

i = 1, . . . ,6, the above equation can be rewritten

∂tΦ−D∇Φ=−ηΦ ,

for relaxation time τ= D, as defined in (2.9).

Considering the radiative diffusion which is reached immediately, the time evolution

is obviously not relevant. As a result the partial time derivative on the left hand side

vanishes and the macroscopic target diffusion equation with additional sink term (2.12)

is recovered. Also the mesoscopic sink parameter η have been linked to corresponding

macroscopic sink term µa and µs. This Chapman–Enskog expansion points out, that the

proposed RTLBM solves the macroscopic target equation.
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B. Chapman–Enskog Analysis of the
RTLBM on Boundaries

The following is an extract of the work under review Mink et al. [123] and repeated for

the sake of completeness. Based on the Chapman–Enskog expansion, the mesoscopic

boundary formulation is related to the target Robin equation. This approach ensures

that the simulation parameter on mesoscopic level are properly linked to the macro-

scopic parameters in the Robin equation. Recall, that the collide-and-stream equation in

Section 4.2.1 for the highly scattering volume is given by

fi (t +4t , x + si4t ) = fi (t , x)− 4t

τ

(
fi − f eq

i

)
(t , x)−4t 2η fi (t , x) ,

for η= 3µa(µa+µs)
8 and discretization parameter 4t . Firstly, a Taylor series expansion up to

second order in 4t of the left hand side reads

fi (t +4t , x + si4t ) = fi (t , x) + 4t (∂t + si ·∇) fi (t , x) + 4t 2

2
(∂t + si ·∇)2 fi (t , x) .

Substituting this expression into the collide-and-stream equation, it holds

(∂t + si ·∇) fi +
4t

2
(∂t + si ·∇)2 fi =

1

τ

(
fi − f eq

i

)−4t η fi . (B.1)

By introducing a small, positive scaling parameter ε2 =4t , the time and space derivation

can be rewritten

∂t  ε2∂t , ∇ ε∇ . (B.2)

In addition the particle density function fi is expanded by

fi = f (0)
i +ε f (1)

i +ε2 f (2)
i + . . . . (B.3)

Using the scaling (B.2) and the expansion (B.3), equation (B.1) can be rewritten in the
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consecutive orders of parameter ε as

ε0 : f (0)
i = f eq

i , (B.4)

ε1 : si ·∇ f (0)
i =−1

τ
f (1)

i , (B.5)

ε2 : ∂t f (0)
i + si ·∇ f (1)

i =−1

τ
f (2)

i −η f (0)
i . (B.6)

From (B.3) and (B.5), it follows

si ·∇ f eq
i =− 1

τε

(
fi − f eq

i

)
,

or equivalently

wi si ·∇Φ=− 1

τε

(
fi −wiΦ

)
, (B.7)

according to the definition of the equilibrium function f eq
i = wiΦ.

To find a closure for the system (B.4), (B.5) and (B.6), the discrete version of the Robin

boundary condition (4.14)

wi si ·∇Φ=− wi

2CR D
Φ

is substituted by (B.7) leading to

wiΦ= fi

1+ τε
2CR D

.

For diffusion coefficient D in meter and diffusive scaling ∆t ∝∆x2. Further, the closure

assumes that the incoming non-equilibrium parts equal the outgoing ones in the opposite

direction [76, 95]. This relation reads

f ī − f eq

ī
=−(

fi − f eq
i

)
and is rewritten to

f ī =
(

2

1+ ε
2CR D

−1

)
fi . (B.8)

Note, in RTLBM it is common to set τ equals one [125, 27]. The definition of f eq
i and the

underlying stencil D3Q7 yields in f eq
i = f eq

j for all i , j 6= 0. The derived equation can be

interpreted as the discrete version of the boundary equation (4.10). Equation (B.8) is a

general partial bounce-back formula and is derived through the performed Chapman–

Enskog expansion.
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C. Parallel Efficient Data Output in
OpenLB

In the field of high performance computing the overall simulation domain of LBM contains

typically more than 1×1012 grid points. The demand is met by strategies of sharing the

work load and distributing the tasks among thousands of threads. As a matter of fact, the

computed data is also distributed on the compute cluster and the process of data writing

should adopt this paradigm of distributed data. If not, the data is written sequentially,

which means one thread will write the data and the others have to wait. This increases

the costly communication of data to this specific thread, but potentially more significant:

All threads except of one are waiting till the data is written.

A possible workaround is to write data rarely and hence keep the sequential part

small. However, this is not feasible for neither the development of simulations methods

nor for the post-processing of simulation data for visualization purpose. To avoid this

technical drawback every thread writes its data, which is a perfectly parallel task. By this

approach the communication between the threads is kept at a minimum and ideally, the

writing itself takes the same time for all threads. Only the master thread has to create an

additional file that reference all files written by the threads.

The following introduces to the file format used by OpenLB and the parallel writing

concept. The author of the present PhD thesis started working on this topic as a working

student about the end of 2014 and then maintained and implemented the zLib compression

in the following years.

C.1. VTK-Data Format

The Visualization Toolkit (VTK) provides a number of popular file format definition

that are based on Extensible Markup Language (XML). Most relevant for the regular

grid characteristics of LBM are the structured data formats named Serial vtkImageData

(VTI). Such a VTI file starts with details to the extension, placement and spacing of the

structured data. The latter depicts the distance between the point data on the regular grid
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and corresponds to the 4x in the OpenLB implementation of LBM. Next, the raw data

is provided either as ASCII code, binary (base64) or zLib compressed. An example VTI

file is given in Listing C.1. Its parallel version Parallel vtkImageData (PVTI) is designed

to be a partition of the sequential VTI and suits parallel execution on several processors.

However, the PVTI format requires that the assembled piece must be a cuboid. In general,

OpenLB violates this assumption, by shrinking individual blocks to their necessary size

and removing empty blocks. This requires a more general format the ParaView Data

(PVD) that reference loosely any kind of data that can be loaded in ParaView the single

VTI without further assumptions as in the case of PVTI.

C.2. Data Size

When comparing the file size of a CFD simulation with respect to the three raw data

formats above (ASCII, binary, zLib) a typical simulation of the velocity and pressure of

the fluid field is considered. In this scenario every grid point is associated to 3+1 floating-

point data types that are stored in the structured data format. Unlike unstructured data

sets, for regular grids it is sufficient to store the extension, the grid spacing and the raw

data. There is no need to store the raw data along with its actual position, which in total

results in more complex structures and bigger file sizes. Figure C.1 shows the data size for

ASCII, binary and zLib VTK data for a simulation made up of 60×106 grid points. In the

beginning the simulation is initialized with zero velocity and constant pressure and the

compression of the zLib reduces the size to its minimum. During the simulation the flow

pattern develops and the flow field together with the pressure takes many different values

that cannot be compressed as efficient as the many zeros in the beginning. Yielding in a

file size of 1000 MB. The same trend of an increase in file size as the flow field develops

over time is observed for the ASCII format, however starting at bigger file size and ending

at 2500 MB. The data stored in base64 binary format remains constant since it writes

every floating-point in a binary representation. However, compared to the ASCII format

it requires 60% of the storage with its 1600 MB.

To summarize it can be said that the binary type compared to ASCII type requires

roughly half of the memory. The compression works excellent for monotone data of equal

value and for general floating-point data it requires about a third compared to the ASCII

type.
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Figure C.1.: A comparison of the VTK data size during a simulation of 3D velocity field
and pressure. The dynamic is due to the development of the flow field
starting with a constant initialized field of size 60×106.

C.3. Sequential Data Output

The sequential data format in OpenLB is the structured data format VTI. In contrast to

unstructured data, there are no coordinates for the data values, but the extension and

spacing of the uniform grid. This reduces the data size essentially and is a native choice

for LBM in general. A minimal example for a structured data set is provided in Listing C.1

and is described in the following three steps:

1. The file begins with a line that describes the VTK file type and version.

2. The second line defines the extent, origin and spacing of the structured set.

3. Next, the plain data is stored with associated attributes of type, name, format

and optionally the number of components. There might be several elements of

DataArray, one for the velocity and a second for pressure.

A typically VTI data file of CFD application is given in Listing C.2. It is seen, that the

velocity and pressure data are separate DataArrays, allowing different data types and

number of components, that are compressed and hence require less memory. Sequential

simulations that are based on a decomposed domain into several block write as many

pieces as blocks.

Listing C.1: Minimal example of a structured data set.

<VTKFile type="ImageData" version="1.0">
<ImageData WholeExtent="0 1 0 1 0 1" Origin="0 0 0" Spacing="1 1 1

">
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<Piece Extent="0 1 0 1 0 1">
<PointData >
<DataArray type="Int32" Name="color" format="ascii">
0 0 0 0 0 0 0 0
</DataArray >
</PointData >
</Piece >
</ImageData >
</VTKFile >

Listing C.2: Structured data set.

<VTKFile type="ImageData" version="0.1" byte_order="LittleEndian"
compressor="vtkZLibDataCompressor">

<ImageData WholeExtent=" -1 19 -1 13 -1 14" Origin="120 36 51"
Spacing="1 1 1">

<Piece Extent="-1 19 -1 13 -1 14">
<PointData >
<DataArray type="Float32" Name="physVelocity" NumberOfComponents="

3" format="binary" encoding="base64">
AQAAAEDsAABA7AAAtlYAAA == eJzsuXlUT ...
</DataArray >
<DataArray type="Float32" Name="physPressure" NumberOfComponents="

1" format="binary" encoding="base64">
AQAAAMBOAADATgAAESMAAA == eJztm3dX ...
</DataArray >
</PointData >
</Piece >
</ImageData >
</VTKFile >

OpenLB writes the Lagrange particle simulations data to unstructured data sets of

the type Serial vtkUnstructuredGrid (VTU). Every position and attributes e. g. mass and

velocity are written to the file.

C.4. Parallel Data Output

The parallelization strategy for data structures in OpenLB is based on a domain partition

into blocks. Every block consists of several cells and all blocks together represent the

entire simulation domain. An exemplary simulation geometry in its block representation

is shown in Figure C.2. Note that the blocks are only as big as necessary and not

necessarily of equal size. By this blockification the simulation data is divided into small

blocks which are further distributed to the threads. Here, thread one might simulated

blockID of 0 and 1, and thread two might simulate blockID of 3 and 4. Obviously, this

process is relevant for a much larger number of threads and blocks and total automatized
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Figure C.2.: Cross section with colored block identification number. The domain is divided
into four blocks of individual size. The more blocks the better the masking
of the simulation domain.

in OpenLB. Note, that the simulation size is only limited by the available memory of all

threads together and not by the memory of an individual thread. This brief sketch of the

parallelization strategy is important to understand the parallel data output.

In a multi thread simulation every thread simulated blocks and also writes the data

of those blocks. This results in a parallel writing to individual VTI files. In the above

illustration thread one writes a VTI file for block 0 and a VTI file for block 1, analogously

thread two writes block 2 and 3. Fortunately, the OpenLB parallel data structure can be

matched closely with the VTK-Data format definition. There remains to create a file that

references to all VTI files in order to bunch and collect the data. This is achieved by a

MultiBlock VTK (VTM) file that references the simulation data of a single time step, see

Listing C.3. The many VTM files for the individual simulation steps are further bunched

in a PVD file, see Listing C.4. This format is the most general collection format in VTK

and acts in OpenLB as the reference file for the simulation data.

Listing C.3: Multiblock data set – VTM.

<VTKFile type="vtkMultiBlockDataSet" version="1.0">
<vtkMultiBlockDataSet >
<Block index="0" >
<DataSet index= "0" file="venturi3d_iT0000100iC00000.vti"/>
</Block >
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<Block index="1" >
<DataSet index= "0" file="venturi3d_iT0000100iC00001.vti"/>
</Block >
<Block index="2" >
<DataSet index= "0" file="venturi3d_iT0000100iC00002.vti"/>
</Block >
<Block index="3" >
<DataSet index= "0" file="venturi3d_iT0000100iC00003.vti"/>
</Block >
</vtkMultiBlockDataSet >
</VTKFile >

At the end the data writing routine is closely matched by the VTK format. The simulated

data on the grid is stored to VTI files in parallel and multiple VTI files are referenced

in VTM and PVD, in such a way that the files are assembled. Compared to sequential

writing, this approach allows a parallel handling and execution of writing simulation data

to the memory. This is crucial for simulations that are required to write frequently data

for debugging purpose or video rendering. To minimize the file size up to a factor of 3,

the data is stored either as binary or zLib compressed.

Listing C.4: Collection of data set – PVD.

<VTKFile type="Collection" version="1.0">
<Collection >
<DataSet timestep="0" part="" file="venturi3d_iT0000.vtm"/>
<DataSet timestep="100" part="" file="venturi3d_iT0100.vtm"/>
<DataSet timestep="200" part="" file="venturi3d_iT0200.vtm"/>
<DataSet timestep="300" part="" file="venturi3d_iT0300.vtm"/>
<DataSet timestep="400" part="" file="venturi3d_iT0400.vtm"/>
</Collection >
</VTKFile >
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D. Functors in OpenLB

The general functor concept is motivated by the need to process the data provided

in OpenLB. Might it be the goal to compute shear stress or drag data by the help

of populations fi or might it be the design of the computational grid and boundary

conditions, all these tasks are heavily based on the omnipresent functor concept.

Knowing the population on the computational grid, the velocity can be computed easily

through moments. This changes if additional information are needed, such as conversion

factors to compute the physical velocity or geometry data for wall shear stress or drag

coefficients. In OpenLB those tasks are defined in classes, that typically have attributes

that provide conversion factors and geometry information. Then, the operator() executes

the computation of e. g. velocity and others. The following section present show-cases for

the arithmetic operations, modularity and geometry creation by functors. A short sketch

of the implementation is shown in the end.

The author implemented and designed the very first version of the functors and its

arithmetic in OpenLB version 0.8 back in 2013 in collaboration with Lukas Baron and

Mathias J. Krause. Over the years the concept has been improved and also extended to

std::shared_ptr for the memory management.

D.1. Calculations with Functors

By introducing arithmetic operations, the functors behave like general functions in

mathematics and can be added, subtracted and many more. For example, the deviation

of a simulated velocity field u to a reference solution u? can be expressed as

‖u −u?‖
‖u?‖ ,

where the norm evaluates to ‖(·)‖ = n−1 ∑n
ν=1 |(·)| (xν) for n simulation grid point xν. The

according implementation is shown in Listing D.1.

Listing D.1: Step by step computation of the relative error.
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// typedef double T;
// typedef D3Q19 <> DESCRIPTOR;
SuperLatticePhysVelocity3D <T,DESCRIPTOR > u(lattice ,converter);
SuperLatticePhysVelocity3D <T,DESCRIPTOR > ustar(lattice ,converter);
// |u-u^star|
SuperL2Norm3D <T> absoluteError( u - ustar , superGeometry , 1 );
// |u^star|
SuperL2Norm3D <T> norm( ustar , superGeometry , 1 );
// evaluate numerator and denominator
absoluteError( numerator , input );
norm( denominator , input );
// print relative error to terminal
std::cout << "rel error: " << numerator [0]/ denominator [0] << std::

endl;

D.2. Application to Data Processing

Knowledge about maximum values of data fields such as velocity are important for CFD

simulation. Often the diverging of simulation start in regions of extreme velocities and

can be easily observed by functors. The present example computes first the velocity field

for the entire domain with the SuperLatticeVelocity3D functor. Then the maximum x,

y and z component are obtained by the SuperMax3D functor and available in variable

maxVelocity, see Listing D.2.

Listing D.2: Compute maximum velocity components in flow field

// typedef double T;
// typedef D3Q19 <> DESCRIPTOR;
SuperLatticeVelocity3D <T,DESCRIPTOR > u(superLattice);
SuperMax3D <T> maxVelocity( u, superGeometry , 1 );
int input [0];
T maxVelocity [3];
maxVelocityFunctor(maxVelocity , input);
std::cout << "maximum velocity components in domain" << std::endl;
std::cout << maxVelocity [0] << "; "

<< maxVelocity [1] << "; "
<< maxVelocity [2] << std::endl;

In case the local maximum velocity is desired, there is added an additional functor

SuperEuklidNorm3D that computes the magnitude of the velocities, see Listing D.3. Then,

the maximum value is determined for this functor and demonstrated the modularity of

the general functor concept.
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Figure D.1.: Two show-cases of arithmetic operations of indicator functors for geometry
creation.

Listing D.3: Compute maximum local velocity of flow field

// typedef double T;
// typedef D3Q19 <> DESCRIPTOR;
SuperLatticeVelocity3D <T,DESCRIPTOR > u(superLattice);
SuperEuklidNorm3D <T,DESCRIPTOR > normVel(u);
SuperMax3D <T> maxVelocity( normVel , superGeometry , 1 );
int input [0];
T maxVelocity [1];
maxVelocityFunctor(maxVelocity , input);
std::cout << "maximum velocity in domain" << std::endl;
std::cout << maxVelocity [0] << std::endl;

D.3. Facilitate Geometry Creation

OpenLB provides indicator functors that define geometric primitives, e. g. circles, cuboids,

cones, spheres and many more. Simulation domains can be build out of this geometric

primitives and the arithmetic allows to construct more complex geometries by means of

unions and intersections of the indicators. An example of a rectangular simulation domain

with circular obstacles is shown in Listing D.4 and illustrated in Figure D.1. For such

basic simulation domains, the shipped indicator functors allows creating the simulation

geometry without any external definition, for instance Stereolithography (STL) files.

Listing D.4: Geometric primitives as functors

// rectangle centered in (0,0) of given extent
IndicatorCuboid2D <T> rectangle(xExtent ,yExtent ,Vector <T,2>{0,0});
// circle placed in (0,0)
IndicatorCircle2D <T> circle(Vector <T,2>{0,0}, radius);
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// circle placed in (0.5 ,0)
IndicatorCircle2D <T> circleShifted(Vector <T,2>{0.5,0}, radius);
// informally arithmetic operation -- std:: shared_ptr are missing
IndicatorIdentity2D <T> ident1(rectangle -circle);
IndicatorIdentity2D <T> ident2(rectangle -( circle+circleShifted));

The typical geometry creation of a cylinder with an inner installation is shown in

Listing D.5. This is productive code from the shown example of the sponge PBR in

Section 7.6. Here, the Weaire–Phelan sponge structure is defined in an external STL file

and loaded by the STLreader, that is a functor object itself. Since the STL defines only a

periodic part, the indicator is shifted accordingly to obtain a large sponge structure in the

cylinder. The translated parts are then added to one piece by arithmetic operations.

Listing D.5: Loading and assembling of a periodic sponge element defined by a STL file.

auto spongePart = std:: make_shared <STLreader <T>>
("./ periodicElement.stl", voxelSizeSI , convFactorSTL , 1);

auto domain = std:: make_shared <IndicatorCylinder3D <T>>
(center1 , center2 , channelLength);

auto stlTranslate1 = std:: make_shared <IndicatorTranslate3D <T>>
(std::array <T,3>{xShift ,yShift , zShift}, *spongePart);

auto stlTranslate2 = std:: make_shared <IndicatorTranslate3D <T>>
(std::array <T,3>{xShift ,yShift , zShift *2}, *spongePart);

auto stlTranslate3 = std:: make_shared <IndicatorTranslate3D <T>>
(std::array <T,3>{xShift ,yShift , zShift *3}, *spongePart);

SuperGeometry3D <T> sGeometry(cuboidGeometry , loadBalancer , 2);
sGeometry.rename (0,2,* domain);
sGeometry.rename (2,1,1,1,1);
sGeometry.rename(1,3, stlTranslate1+stlTranslate2+stlTranslate3);

D.4. Functor Design

Here, the technical details of the arithmetic operations and how they unfold are presented.

An overview of the available functor categories is also given.

D.4.1. Expression templates

For general functors F 1 and F 2 the expression F 1+F 2 results in a new object, called

PlusFunctor, that implements the addition by evaluating both functors and adding its

values. The operations minus, multiplication and division have the same behaviour. This

results in a hierarchy of classes for more complex expressions as F 1+F 2+F 3+F 4 that only

define the evaluation of the data. Technically, the general c++ operator precedence applies,

168



D.4. Functor Design

saying first / and ?, then + and − and by equality from left to the right. This is exactly

what we are used to from mathematics. Know, for functors F 1, F 2 and F 3 the expression

F 1−F 2/F 3 is capsuled into F 1−(F 2/F 3) are class-wise MinusFunctor(F 1,DivisionFunctor

(F 2,F 3)). The memory management of the temporal arithmetic objects is based on

std::shared_ptr and hidden from the user.

D.4.2. Class hierarchy

Functors are applications that operate either on the lattice N3 or more generally on R3

and might take values in R3 for instance velocity.

Functor: Ω→Rd , d ∈N

This very general concept of an application that associates data fromΩ to Rd is represented

by the class GenericF that defines the data types and dimension of the spaces, see

Listing D.6.

Listing D.6: Implementation of the base class of all functors.

/** Please take care about the data types and dimensions
* F: S^m -> T^n (S=source , T=target)
*/

template <typename T, typename S>
class GenericF {
protected:

GenericF(int targetDim , int sourceDim);
private:

int _n;
int _m;
// ...

public:
// memory management
std:: shared_ptr < GenericF <T,S> > _ptrCalcC;
bool operator () (T output[], S input);
// ...

};

Depending on the data types of the domain and image of the functor, OpenLB imple-

ments a linear class hierarchy that is classified into the following categories.

R3 →Rd AnalyticalF3D

R3 → {0;1} IndicatorF3D

R3 → [0,1] SmoothIndicatorF3D
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N3 →Rd LatticeF3D

LatticeF3D → AnalyticalF3D Interpolation

AnalyticalF3D → LatticeF3D Projection

Any implementation of an IndicatorF3D, for instance IndicatorCuboid3D, inherits from

its base class. Functors that share the same base class can be added, subtracted and more.

Of particular interest are the interpolation functors, that allow to access data in between

grid nodes through interpolation. This is useful for general post-processing routines. Its

counterpart are the projection functors that restrict functors defined on a continuous

domain to the discrete grid nodes.
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E. Radiative Transport LBM
Implementation in OpenLB

The presented features are fully available to the public with the release of version 1.3

of OpenLB1. The classes and functions discussed in this section are fully tested by the

unit-test framework (non-public) in OpenLB, to facilitate the development and guaranty

consistency during the substantial work on the OpenLB kernel. Note, that the flag/feature

OPENBLAS must be added to the config.mk file. Otherwise, OpenBLAS is not available

inside OpenLB.

List of publications and the associated implementation of benchmark cases:

Mink et al. [125] is based on simulation application apps/albert/pbr3d.

Mink et al. [123] is based on simulation application apps/albert/robinBC.

Mink et al. [121] is based on simulation application apps/albert/ansioSB.

The git commit hash in the GITLAB developer repository e08084ff76fa7ebd provides the

above simulation applications in its most recent way and provides comprehensive insights

in the implementation of the publications.

E.1. Conversion Factors and Refraction Parameter CR

Conversion from physical to lattice units for RT specific parameters is implemented in

class RadiativeUnitConverter, see Listing E.1. Once the object is created, the spacial

discretization is retrieved by the method getConversionFactorLength(), the absorption

in lattice dimensions through getLatticeAbsorption() and many more. See the online

DoxyGen documentation https://www.openlb.net/DoxyGen/html/index.html.

Listing E.1: Constructor and documentation of RadiativeUnitConverter.

template <typename T, template <typename U> class DESCRIPTOR >

1Download link https://www.openlb.net/download/
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class RadiativeUnitConverter : public
UnitConverterFromResolutionAndRelaxationTime <T,DESCRIPTOR > {

public:
/** Documentation of constructor:

* \param resolution is number of voxel per 1 meter
* \param latticeRelaxationTime see class

UnitConverterFromResolutionAndRelaxationTime
* \param physAbsorption physical absorption in 1/ meter
* \param physScattering physical scattering in 1/ meter
*/

constexpr RadiativeUnitConverter(
int resolution ,
T latticeRelaxationTime ,
T physAbsorption ,
T physScattering ,
T anisotropyFactor =0,
T charPhysLength =1,
T refractiveMedia =1,
T refractiveAmbient =1 )

}

Additionally, the computation of refraction parameter (4.13) and the partial bounce-

back parameter (4.16) is implemented as free functions in file src/core/radiativeUnitCon-
verter.cpp.

E.2. Collision Kernels and Integration Stencils

List of RTLBM collision models with OpenLB specific nomenclature:

macroscopic RTLBM PoissonDynamics in src/dynamics/dynamics.h

P1-RTLBM P1Dynamics in src/dynamics/dynamics.h

mesoscopic RTLBM RTLBMdynamicsMcHardyRK in src/dynamics/rtlbmDynamics.h

The Lebedev–Laikov integration stencils D3Q7, D3Q15 and D3Q27 are implemented

in src/dynamics/rtlbmDescriptors.h and available in the namespace descriptors through

D3Q27DescriptorLebedev. Note, that the introduction of compile time constant descriptors

in OpenLB version 1.3 and later requires all stencil properties to be available at compile-

time. The Lebedev–Laikov stencils store additionally the ci that is the distance of discrete

direction si , for instance diagonal si with ci =
p

3. Unfortunately, function std::sqrt is

according to the standard not computed at compile-time. As a workaround, the decimal

numbers are hard-coded and might be replaced by template metaprogramming (TMP) or

a constexpr function for c++-14 and later.
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E.3. Discrete Phase Function

E.3. Discrete Phase Function

The routine for the discretization of the phase function accordingly to [87], called

computeAnisotropyMatrix, is implemented in src/utilities/anisoDiscr.h. The LBM stencil

is provided as a template argument and the least square problem is solved by LAPACK

with function dgels. This iterative normalization scheme has to be computed only once

for every simulation and is not time critical. The implementation in OpenLB was adopted

from a Matlab script originally written by Christopher McHardy.

A second implementation of the discrete phase function, according to Kim and Lee [98],

called computeAnisotropyMatrixKimAndLee, is implemented in src/utilities/anisoDiscr.h.

Tests for the conservation of energy and anisotropy factor are implemented in the same

file.

E.4. Boundary Conditions

The source boundary for diffuse and collimated incident radiance are implemented

in the file src/boundary/rtlbmBoundaryDynamics.h with associated creator functions

in src/boundary/rtlbmBoundary.h. The Fresnel boundary is implemented in the file

src/dynamics/dynamics.h and class PartialBounceBack.
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F. Factory Functions for XML-based
Geometry Creation in OpenLB

OpenLB simulations are a c++ programs that set up the geometry, characteristic param-

eters, the collide-and-stream equation and many more. Changing one of these steps

requires the modification of at least one c++ file, followed by a compilation of the pro-

gram. To avoid editing source code files and achieve a robust encapsulation it is added an

XML file that stores, independently to the c++ program, the desired parameters. During

the runtime the program load the XML file and access the data. For example, simple

variables such as spacial discretization or Reynolds number can be stored and loaded by

this strategy. Even classes might be constructed by the variables loaded from the XML

file. Most common there is the createConverter or createGeometry function that create

general objects from given data. However, it is also possible to provide the definition of

geometric primitives on which the simulation domain is based on.

The following provides an example of the definition of geometric primitives in XML

files for the createGeometry function. Consider a geometry that is based on geometric

primitives such as cylinders and cones, such as in Figure C.2. Then, the associated

definition in an XML file format is a union of cylinders and cones as provided in Listing F.1.

Listing F.1: Definition of a simulation domain consisting of cylinders and cones.
<IndicatorUnion3D >
<IndicatorCylinder3D center1="5 50 50" center2="40 50 50" radius="20"/>
<IndicatorCone3D center1="40 50 50" center2="80 50 50" radius1="20"

radius2="10"/>
<IndicatorCylinder3D center1="80 50 50" center2="120 50 50" radius="10"/>
<IndicatorCone3D center1="120 50 50" center2="160 50 50" radius1="10"

radius2="20"/>
<IndicatorCylinder3D center1="160 50 50" center2="195 50 50" radius="20"/

>
<IndicatorCylinder3D center1="115 50 50" center2="115 25 50" radius="4"/>
<IndicatorCone3D center1="115 25 50" center2="115 5 50" radius1="4"

radius2="10"/>
</IndicatorUnion3D >

Now, the modification of the inlet size or other dimensions is achieved by modifying the
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XML based primitive definitions. The absence of editing c++ files reduces the development

time, by reduction of compilation process. Another aspect is the encapsulation of geometry

and simulation information. For small simulations this might not be relevant, however

the simulation domain of the Algfine reactor in Section 7.5 with several thousands of

LED spots, is very demanding and could be scripted. Hence, the XML is a reasonable

format that is also supported by many other tools, which is important when scripting the

geometry definition. Finally, the separation facilitates the tracing down of errors in the

development process, since changes in XML are less error prone than editing c++ files.

Finally, it is concluded that the added complexity of an XML based geometry definition

outweighs the benefit of faster and more comprehensive development and simulation

design.

F.1. Showcase: Algfine

An application show-case is the Algfine reactor with its 37 cylinders, which each of them

is equipped with 72 LED spots. In total there are 37 of such cylinders, see Listing F.2,

which together with the 72 LED spots on every cylinder results in an XML file with more

than 2500 lines. The definition of a single cylinder with its LED spots is given in Listing F.3.

Listing F.2: The 37 cylinders of the Algfine reactor.
<Geometry >

<IndicatorUnion3D >
<IndicatorCylinder3D center1=" 0 -0.13 0 " center2=" 0 -0.13 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.03912 -0.12397 0 " center2=" -0.03912 -0.12397 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.03912 -0.12397 0 " center2=" 0.03912 -0.12397 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.07461 -0.10646 0 " center2=" -0.07461 -0.10646 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.07461 -0.10646 0 " center2=" 0.07461 -0.10646 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.01954 -0.08785 0 " center2=" 0.01954 -0.08785 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.01954 -0.08785 0 " center2=" -0.01954 -0.08785 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.10318 -0.07908 0 " center2=" -0.10318 -0.07908 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.10318 -0.07908 0 " center2=" 0.10318 -0.07908 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.05495 -0.0712 0 " center2=" 0.05495 -0.0712 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.05495 -0.0712 0 " center2=" -0.05495 -0.0712 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.023 -0.045 0 " center2=" -0.023 -0.045 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.023 -0.045 0 " center2=" 0.023 -0.045 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.12291 -0.04437 0 " center2=" -0.12291 -0.04437 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.12292 -0.04436 0 " center2=" 0.12292 -0.04436 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.07999 -0.04126 0 " center2=" 0.07999 -0.04126 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.07999 -0.04126 0 " center2=" -0.07999 -0.04126 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.12988 -0.00554 0 " center2=" -0.12988 -0.00554 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.12988 -0.00554 0 " center2=" 0.12988 -0.00554 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.045 -0.005 0 " center2=" -0.045 -0.005 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0 -0.005 0 " center2=" 0 -0.005 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.045 -0.005 0 " center2=" 0.045 -0.005 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.08993 -0.00346 0 " center2=" -0.08993 -0.00346 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.08993 -0.00346 0 " center2=" 0.08993 -0.00346 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.12553 0.03379 0 " center2=" -0.12553 0.03379 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.12553 0.0338 0 " center2=" 0.12553 0.0338 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.08292 0.0338 0 " center2=" -0.08292 0.0338 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.04146 0.035 0 " center2=" -0.04146 0.035 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0 0.035 0 " center2=" 0 0.035 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.04146 0.035 0 " center2=" 0.04146 0.035 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.08292 0.035 0 " center2=" 0.08292 0.035 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.10954 0.07 0 " center2=" -0.10954 0.07 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.065724 0.07 0 " center2=" -0.065724 0.07 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" -0.021908 0.07 0 " center2=" -0.021908 0.07 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.021908 0.07 0 " center2=" 0.021908 0.07 0.5 " radius=" 0.008 "/>
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<IndicatorCylinder3D center1=" 0.065724 0.07 0 " center2=" 0.065724 0.07 0.5 " radius=" 0.008 "/>
<IndicatorCylinder3D center1=" 0.10954 0.07 0 " center2=" 0.10954 0.07 0.5 " radius=" 0.008 "/>

</IndicatorUnion3D >
</Geometry >

For such an extensive geometry, the separation of c++ code and geometry definition is
very comfortable. On the one hand, the geometry definition is based on a script, that then
writes a general XML file. This routine avoids copy and paste errors, that might happen
by such huge amount of data. On the other hand, the check-pointing and encapsulation
achieved by clear separation enhances the user experience while developing.

Listing F.3: The 72 LED spots on a single cylinder.
<IndicatorUnion3D >
<IndicatorCone3D center1=" 0.01 -0.13 0.013 " center2=" 0 -0.13 0.013 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.013 " center2=" 0 -0.13 0.013 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.013 " center2=" 0 -0.13 0.013 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.0345 " center2=" 0 -0.13 0.0345 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.0335 " center2=" 0 -0.13 0.0335 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.0325 " center2=" 0 -0.13 0.0325 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.056 " center2=" 0 -0.13 0.056 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.054 " center2=" 0 -0.13 0.054 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.052 " center2=" 0 -0.13 0.052 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.0775 " center2=" 0 -0.13 0.0775 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.0745 " center2=" 0 -0.13 0.0745 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.0715 " center2=" 0 -0.13 0.0715 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.099 " center2=" 0 -0.13 0.099 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.095 " center2=" 0 -0.13 0.095 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.091 " center2=" 0 -0.13 0.091 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.1205 " center2=" 0 -0.13 0.1205 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.1155 " center2=" 0 -0.13 0.1155 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.1105 " center2=" 0 -0.13 0.1105 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.142 " center2=" 0 -0.13 0.142 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.136 " center2=" 0 -0.13 0.136 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.13 " center2=" 0 -0.13 0.13 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.1635 " center2=" 0 -0.13 0.1635 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.1565 " center2=" 0 -0.13 0.1565 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.1495 " center2=" 0 -0.13 0.1495 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.184 " center2=" 0 -0.13 0.184 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.177 " center2=" 0 -0.13 0.177 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.17 " center2=" 0 -0.13 0.17 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.204 " center2=" 0 -0.13 0.204 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.197 " center2=" 0 -0.13 0.197 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.19 " center2=" 0 -0.13 0.19 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.224 " center2=" 0 -0.13 0.224 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.217 " center2=" 0 -0.13 0.217 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.21 " center2=" 0 -0.13 0.21 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.244 " center2=" 0 -0.13 0.244 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.237 " center2=" 0 -0.13 0.237 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.23 " center2=" 0 -0.13 0.23 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.264 " center2=" 0 -0.13 0.264 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.257 " center2=" 0 -0.13 0.257 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.25 " center2=" 0 -0.13 0.25 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.284 " center2=" 0 -0.13 0.284 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.277 " center2=" 0 -0.13 0.277 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.27 " center2=" 0 -0.13 0.27 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.3045 " center2=" 0 -0.13 0.3045 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.2975 " center2=" 0 -0.13 0.2975 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.2905 " center2=" 0 -0.13 0.2905 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.325 " center2=" 0 -0.13 0.325 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.318 " center2=" 0 -0.13 0.318 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.311 " center2=" 0 -0.13 0.311 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.3455 " center2=" 0 -0.13 0.3455 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.3385 " center2=" 0 -0.13 0.3385 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.3315 " center2=" 0 -0.13 0.3315 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.365 " center2=" 0 -0.13 0.365 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.359 " center2=" 0 -0.13 0.359 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.353 " center2=" 0 -0.13 0.353 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.3845 " center2=" 0 -0.13 0.3845 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.3795 " center2=" 0 -0.13 0.3795 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.3745 " center2=" 0 -0.13 0.3745 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.404 " center2=" 0 -0.13 0.404 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.4 " center2=" 0 -0.13 0.4 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.396 " center2=" 0 -0.13 0.396 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.4235 " center2=" 0 -0.13 0.4235 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.4205 " center2=" 0 -0.13 0.4205 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.4175 " center2=" 0 -0.13 0.4175 " radius1=".005" radius2=".0"/>
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<IndicatorCone3D center1=" 0.01 -0.13 0.443 " center2=" 0 -0.13 0.443 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.441 " center2=" 0 -0.13 0.441 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.439 " center2=" 0 -0.13 0.439 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.4625 " center2=" 0 -0.13 0.4625 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.4615 " center2=" 0 -0.13 0.4615 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.4605 " center2=" 0 -0.13 0.4605 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" 0.01 -0.13 0.482 " center2=" 0 -0.13 0.482 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.12134 0.482 " center2=" 0 -0.13 0.482 " radius1=".005" radius2=".0"/>
<IndicatorCone3D center1=" -0.005 -0.13866 0.482 " center2=" 0 -0.13 0.482 " radius1=".005" radius2=".0"/>
</IndicatorUnion3D >
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