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Abstract (German)

Ein optischer Frequenzkamm ist ein optisches Signal, dessen Spektrum aus
einer Vielzahl streng äquidistanter, untereinander gekoppelter Spektrallini-
en besteht. Die Kopplung der Spektrallinien äußert sich in einer zeitlinearen
Phasenbeziehung dieser optischen Töne, sowie im Zeitbereich in einer peri-
odischen Signalform. In der Wissenschaft finden optische Frequenzkämme in
unterschiedlichen Bereichen Anwendung, etwa als optisches “Zählwerk” bei
der Entwicklung hochgenauer Uhren, bei der Entdeckung von Exoplaneten,
oder in spektroskopischen Untersuchungen. Etablierte Frequenzkammquellen
wie beispielsweise Titan:Saphir-Laser oder Erbium-Faserlaser werden inzwi-
schen auch kommerziell eingesetzt, allerdings sind diese Kammquellen für
bestimmte Anwendungen ungeeignet. Hierbei spielen, neben wirtschaftlichen
Aspekten wie den Kosten der Kammquellen, physikalische Eigenschaften der
emittierten Frequenzkämme eine Rolle. Dazu zählen beispielsweise der abge-
deckte Spektralbereich der emittierten Spektrallinien, sowie deren spektraler
Abstand zueinander. Dieser freie Spektralbereich skaliert invers mit der opti-
schen Länge des Kammgenerators und ist bei den zuvor genannten Beispielen
um mehrere Größenordnungen zu klein, um diese Kammquellen in Systemen
wie etwa optischen Wellenlängenmultiplex-Telekommunikationsnetzen einzu-
setzen.

In jüngerer Vergangenheit wurden weitere Arten von Frequenzkammquellen
entwickelt, die grundsätzlich als optische Mikrochipsysteme integriert wer-
den können und die sich somit signifikant von existierenden, makroskopischen
Varianten unter anderem hinsichtlich des freien Spektralbereiches der emittier-
ten Frequenzkämme unterscheiden. Insbesondere eine Art von Kammquelle
ist dabei in den Vordergrund gerückt: Kerr-Mikroresonatoren. Hierbei handelt
es sich um millimetergroße optische Strukturen, in welche monochromati-
sches Licht von einer separaten Laserquelle eingekoppelt wird. Durch das
Auftreten optischer Nichtlinearitäten dritter Ordnung im Mikroresonator wer-
den neue Signale mit spektral äquidistanten Frequenzen erzeugt, die einen
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Abstract (German)

Kerr-Frequenzkamm bilden. Die komplexe nichtlineare Dynamik, welche der
Kammerzeugung hier zugrunde liegt, erlaubt in Verbindung mit der Variation
der Leistung und der genauen Frequenz des eingekoppelten Lichtes eine große
Vielfalt an möglichen Formen von Kerr-Frequenzkämmen. Von diesen besitzt
der Einzel-Soliton-Frequenzkamm die größte technische Bedeutung aufgrund
seines glatten Spektrums, seiner hohen optischen Bandbreite und der hohen
Kohärenz zwischen allen Kammlinien.

In den letzten Jahren wurden erste Anwendungsfelder dieser Soliton-Frequenz-
kämme erschlossen, wie etwa massiv-parallele optische Datenübertragung
mit Rekord-Übertragungsraten, optische Frequenzsynthese oder Mikrowel-
lengeneration mit geringem Phasenrauschen. Es stellt sich im Anbetracht
dieser ersten Ergebnisse die Frage, in welchen weiteren Anwendungen in-
tegrierte Kammquellen eingesetzt werden können. Hier kommen insbesondere
optische Distanzmessungen (engl. Light detection and ranging, LiDAR) als
weiteres, wichtiges Gebiet in Betracht, welches in der Vergangenheit bereits
vom Einsatz makroskopischer Frequenzkammquellen profitierte. Die zuneh-
mende Verwendung von LiDAR-Systemen, beispielsweise in der Überwachung
von industriellen Fabrikationsprozessen oder in der Umgebungserfassung au-
tonom navigierender Objekte, weckt den Bedarf nach hochperformanten und
zugleich kompakten Distanzmesssystemen, was den Einsatz von miniaturisier-
ten Frequenzkammgeneratoren als Lichtquellen motiviert. Dabei ist es nahe-
liegend, neben systematischen Anwendungsdemonstrationen auch grundlegen-
dere praxisbezogene Untersuchungen zu den Kammquellen mit theoretischen
Ansätzen durchzuführen. Dies gilt insbesondere bei den bislang vorwiegend
in ihren physikalischen Grundlagen erschlossenen Kerr-Mikroresonatoren, bei
denen beispielsweise die Fragen nach der maximal erzielbaren Konversions-
effizienz und der Eignung zur Massenproduktion mithilfe der weitverbreiteten
Silizium-Photonik anstelle von exotischeren Materialplattformen nicht ausrei-
chend beantwortet sind.

In der vorliegenden Arbeit werden Distanzmesssysteme basierend auf Soliton-
Frequenzkämmen aus Kerr-Mikroresonatoren sowie basierend auf moden-
gekoppelten Quanten-Strich-Laserdioden (engl. quantum-dash mode-locked
laser diodes) entwickelt, systematisch charakterisiert und verglichen. Da
insbesondere die maximale Leistung des emittierten Frequenzkamms in diesen
Systemen ein limitierender Faktor ist, wird eine theoretische, universelle
Untersuchung der Konversionseffizienz der nichtlinearen Prozesse in Kerr-
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Mikroresonatoren durchgeführt. Dieser theoretischen Analyse schließt sich
eine weitere theoretische Ausarbeitung an, die sich mit der Frage auseinan-
dersetzt, ob Kerr-Mikroresonatoren aus Silizium als Frequenzkammgenera-
toren bei Telekommunikationswellenlängen verwendet werden können. Dies
beinhaltet die Untersuchung des Einflusses von Zwei-Photonen-Absorption
und des Einflusses Freier-Ladungsträger-Absorption unter voller Berücksichti-
gung der Dynamik der freien Ladungsträger auf die Frequenzkammerzeugung.
Einzelne Kapitel der vorliegenden Arbeit wurden in den internationalen Fach-
zeitschriften Science, Physical Review A und Scientific Reports veröffentlicht.

Kapitel 1 gibt eine kurze Einführung in die Frequenzkammerzeugung in Kerr-
Mikroresonatoren, einen Überblick über den gegenwärtigen Stand der Technik
und stellt offene Fragen, die sich im Zusammenhang mit der Praxistauglichkeit
dieser Technologie ergeben.

In Kapitel 2 werden grundlegende theoretische Konzepte zu optischen Fre-
quenzkämmen, der Kammerzeugung in Kerr-Mikroresonatoren sowie zu
frequenzkamm-basierten Distanzmessungen erläutert. Die Erzeugung von
Kerr-Frequenzkämmen wird zunächst qualitativ beschrieben und im Anschluss
ein mathematisches Modell zur quantitativen Beschreibung der zugrundelie-
genden physikalischen Effekte eingeführt – die Lugiato-Lefever-Gleichung.
Basierend auf diesem Modell werden Bedingungen für die Erzeugung von
Frequenzkämmen in Kerr-Mikroresonatoren aufgestellt und die besonders
relevanten Soliton-Frequenzkämme formell beschrieben. Im letzten Abschnitt
des zweiten Kapitels werden verschiedene Methoden zur optischen Bestim-
mung von Distanzen vorgestellt. Dabei werden sowohl ein Verfahren mit
Frequenzkämmen als auch solche ohne Frequenzkämme beschrieben.

Gegenstand von Kapitel 3 ist die theoretische Analyse der in Kerr-Mikro-
resonatoren erzeugten Frequenzkämme hinsichtlich ihrer spektralen Band-
breite und der Leistungskonversionseffizienz, also dem Verhältnis von aus-
gehender optischer Kammleistung und eingehender optischer Pumpleistung.
Beide Kenngrößen sind in Distanzmesssystemen von elementarer Bedeutung.
Kapitel 3 bedient sich hierzu einer Bifurkationsanalyse der Lugiato-Lefever-
Gleichung und der numerischen Bestimmung von Näherungslösungen, die
Soliton-Frequenzkämmen entsprechen. Hiermit werden diese Frequenzkäm-
me in einem dreidimensionalen Parameterraum sowohl für normal-dispersive
als auch anomal-dispersive Kerr-Mikroresonatoren gefunden. Für den ersten
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Abstract (German)

Fall werden mit diesem Ansatz erstmals universelle Aussagen über die erziel-
bare optische Bandbreite und die maximale Konversionseffizienz getroffen.

Kapitel 4 befasst sich mit der Möglichkeit der Erzeugung von Kerr-Frequenz-
kämmen bei Telekommunikationswellenlängen in silizium-photonischen Mi-
kroresonatoren. Für kompakte LiDAR-Systeme wären solche Lichtquellen eine
Revolution, da dann ein Großteil des Messsystems auf einem einzigen Mi-
krochip untergebracht werden könnte. In dem Spektralbereich um 1550 nm
werden optische Felder bei der Propagation in Silizium allerdings durch die
Erzeugung freier Ladungsträger über Zwei-Photonen-Absorption sowie durch
freie Ladungsträger selbst gedämpft, was eine Frequenzkamm-Formierung er-
schwert. Zur Untersuchung dieses Prozesses führt Kapitel 4 ein neues Modell
zur Beschreibung der räumlichen Verteilung der Dichte der freien Ladungs-
träger in Kerr-Mikroresonatoren ein und kombiniert dieses mit der Lugiato-
Lefever-Gleichung. Basierend auf diesem Modell werden universelle Limits
für die Zwei-Photonen-Absorption und die Absorption durch freie Ladungs-
träger gefunden, oberhalb derer keine Frequenzkammerzeugung mehr mög-
lich ist. Darüber hinaus wird ein Design eines Silizium-Kerr-Mikroresonators
vorgestellt, in dem die Erzeugung von Frequenzkämmen möglich sein soll-
te, sofern freie Ladungsträger mithilfe eines in Sperrrichtung vorgespannten
p-i-n-Übergangs aus dem Mikroresonator entfernt werden. Mit Zeitintegratio-
nen der Lugiato-Lefever-Gleichung werden diese theoretischen Erkenntnisse
validiert und Unterschiede zwischen dem in Kapitel 4 vorgestellten Modell
und existierenden Modellen herausgearbeitet.

In Kapitel 5 wird, ungeachtet der offenen Fragestellungen zu dem optimier-
ten Design und der Materialplattform von Kerr-Mikroresonatoren, die An-
wendung von Soliton-Kerr-Kämmen in einem Distanzmessverfahren nach
dem Prinzip der frequenzkamm-basierten Interferometrie mit synthetischer
Wellenlänge beschrieben. Als Kammquellen kommen dabei Siliziumnitrid-
Mikroresonatoren mit einer hohen Güte zum Einsatz, in denen Soliton-Kerr-
Kämme erzeugt werden können. Es werden ultraschnelle optische Distanzmes-
sungen mit Messraten bis zu 96 MHz bei einer gleichzeitigen Tiefenpräzision
von 280 nm demonstriert. Exemplarisch wird das Profil einer fliegenden Luft-
gewehrkugel vermessen, welche sich mit einer Geschwindigkeit von 150 m s−1

fortbewegt.

Kapitel 6 behandelt die Messung von Distanzen mithilfe von modengekoppel-
ten Quanten-Strich-Laserdioden, welche eine technisch einfach zu handhaben-
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de und effiziente Alternative zu Kerr-Mikroresonatoren darstellen. Nach dem-
selben Messprinzip wie zuvor werden noch höhere Messraten bis zu 500 MHz
bei einer Tiefenpräzision von bis zu 1.7 𝜇m gezeigt. Neben den Hochgeschwin-
digkeitsmessungen wird zudem noch der Einfluss optischer Verluste im Frei-
strahl auf die erzielte Genauigkeit, Präzision und auf den Anteil der als verläss-
lich eingestuften Distanzdatenpunkte untersucht. Dabei wird demonstriert, dass
das Messsystem eine Signalminderung im Freistrahl von bis zu 71 dB, d.h. eine
Abschwächung um mehr als sieben Größenordnungen noch tolerieren kann,
bevor sich die zuvor genannten Kenngrößen überproportional verschlechtern.
Für Anwendungen, bei denen nicht die allerhöchste Präzision im Mittelpunkt
steht, sind Quanten-Strich-Laserdioden Kerr-Kämmen überlegen.

Schließlich wird die Arbeit in Kapitel 7 zusammengefasst und die gewonne-
nen praktischen Erkenntnisse über den Einsatz von integrierten Kammquellen
in LiDAR-Systemen interpretiert. Es werden Vorschläge gemacht, wie sich
die Leistungsfähigkeit dieser frequenzkamm-basierten Systeme weiter stei-
gern lässt, aber auch Möglichkeiten zur vollständigen Integration aufgezeigt,
welche für einen weitverbreiteten Einsatz von maßgeblichem Vorteil ist. Im
Rahmen von grundlegenderen Untersuchungen zu Kerr-Mikroresonatoren wird
die experimentelle Kerr-Kamm-Erzeugung in silizium-photonischen Varianten
basierend auf theoretischen Einsichten erörtert. Schließlich werden auf theore-
tischer Seite weitere Untersuchungen von praxisrelevanten Operationspunkten
von Kerr-Mikroresonatoren vorgeschlagen.
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Preface

As an optical frequency comb we denote an optical signal, whose spectrum
consists of a multitude of strictly equidistant spectral lines that are locked to
each other. Locking means that these spectral lines are in a time-linear phase
relationship to each other, and in the time domain this results in a periodic
waveform. In science, optical frequency combs are used in different areas,
for examples as optical “clock counters” in the development of ultra-precise
clocks, for the detection of exoplanets or in spectroscopy. Today, established
frequency comb sources such as Ti:sapphire lasers or Er-doped fiber lasers are
also used commercially, however, for some applications these comb sources are
inappropriate. Besides economic aspects such as the costs of the comb sources,
physical properties of the emitted frequency combs play a role. These include,
for example, the covered spectral range of the emitted spectral lines, as well as
their spectral distance from each other. This free spectral range scales inversely
with the optical length of the comb generator and is several orders of magnitude
too small to use the comb sources mentioned before in systems like optical
telecommunication networks based on wavelength division multiplexing.

Recently, further types of frequency comb sources have been developed which
can be integrated as optical microchip systems and which differ significantly
from existing macroscopic sources, for instance with respect to the free spectral
range of the emitted frequency combs. One type of comb source has become
particular relevant: Kerr-nonlinear microresonators. These are millimeter-sized
optical structures into which monochromatic light from a separate laser source
is coupled. Due to third-order optical nonlinearities in the microresonator,
new signals with spectrally equidistant frequencies are generated, which form
a Kerr frequency comb. The complex nonlinear dynamics causing the comb
formation and variations of the power and the exact frequency of the incoming
light allow for a wide variety of possible forms of Kerr frequency combs.
Amongst these, the single-soliton frequency comb has the greatest technical
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Preface

importance due to its smooth spectrum, its large optical bandwidth and the
high coherence among all comb lines.

Over the last couple of years, first implementations of these Kerr soliton fre-
quency combs in various applications were shown, such as massively parallel
optical data transmission with record transmission rates, optical frequency
synthesis or microwave generation with low phase noise. In view of these
first results, the question arises, which further applications might benefit from
integrated comb sources. Here, optical ranging (Light detection and ranging,
LiDAR) is another important field of interest, where the application potential
of macroscopic comb generators has already been demonstrated. The incre-
asing use of LiDAR systems, e.g., in the monitoring of industrial manufactu-
ring processes or in the environmental detection of autonomously navigating
objects, increases the demand for distance measurement systems with high-
performance and a compact form factor. This motivates the use of miniaturized
frequency comb generators as light sources in these systems. For a better under-
standing, such systematic application demonstrations should be accompanied
by fundamental investigations of integrated comb sources based on theoretical
analyses with focus on questions of practical relevance. This is especially true
for Kerr-nonlinear microresonators, which have so far been mostly investiga-
ted in terms of their physical fundamentals. For these comb sources, questions
such as the maximum achievable conversion efficiency and suitability for mass
production using the widespread silicon-photonic platform instead of more
exotic material platforms are not fully covered yet.

In this work, LiDAR systems based on soliton frequency combs emitted by
Kerr-nonlinear microresonators and based on quantum-dash mode-locked laser
diodes (QD-MLLDs) are developed, systematically characterized and com-
pared with each other. Since the maximum power of the emitted frequency
comb is a limiting factor in these ranging systems, a theoretical, universal
investigation of the conversion efficiency of the nonlinear processes in Kerr-
nonlinear microresonators is carried out. This theoretical analysis is followed
by a second theoretical investigation, which deals with the question whether
Kerr-nonlinear microresonators based on silicon photonics can be used as fre-
quency comb generators at telecommunication wavelengths. This includes the
analysis of the influence of two-photon absorption and the influence of free-
carrier absorption, taking into account the full dynamics of free carriers and
its impact on frequency comb generation. Chapters of this work have been pu-
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blished in the peer-reviewed international academic journals Science, Physical
Review A, and Scientific Reports.

Chapter 1 gives a brief introduction to frequency comb generation in Kerr-
nonlinear microresonators, and a brief overview of the state of the art for this
technology. Further, open questions are formulated, which arise in considera-
tion of the suitability of Kerr-nonlinear microresonator frequency combs for
large-spread use.

In Chapter 2 basic theoretical concepts of optical frequency combs, comb
generation in Kerr-nonlinear microresonators and frequency comb-based di-
stance measurements are explained. The generation of Kerr frequency combs
is described qualitatively in a first step. Then a mathematical model is introdu-
ced that allows to quantitatively describe the underlying physical effects – the
Lugiato-Lefever equation. Based on this model, conditions for the generation
of frequency combs in Kerr microresonators are formulated and the particular-
ly relevant soliton frequency combs are formally described. In the last part of
the second chapter, different methods for the optical determination of distances
with and without optical frequency combs are explained.

Chapter 3 covers a theoretical analysis of Kerr-nonlinear microresonators with
focus on the spectral bandwidth of Kerr frequency combs and the power con-
version efficiency, i.e. the ratio of the optical comb power and optical input
pump power. Both parameters are of fundamental importance in Kerr-comb-
based distance measurement systems. Chapter 3 uses a bifurcation analysis of
the Lugiato-Lefever equation and numerical methods to find approximate so-
lutions corresponding to soliton frequency combs. These frequency combs are
identified in a three-dimensional parameter space for both normal-dispersive
and anomalous-dispersive Kerr-nonlinear microresonators. For the first case,
this approach allows for the first time to make universal statements about the
achievable optical bandwidth and the maximum power conversion efficiency.

Chapter 4 deals with the possibility of Kerr frequency comb generation at tele-
communication wavelengths in silicon-photonic microresonators. For compact
LiDAR systems, such light sources would be a revolution, since a large part of
the measurement system could then be integrated on a single microchip. Howe-
ver, in the spectral regime around 1550 nm, optical fields are attenuated during
propagation in silicon through the generation of free carriers via two-photon
absorption as well as by free carriers themselves, which reduces the strength
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of nonlinear effects leading to frequency comb formation. To study comb for-
mation in presence of these absorption mechanisms, Chapter 4 introduces a
new model that describes the spatial distribution of the free-carrier density in a
Kerr-nonlinear microresonator and combines it with the Lugiato-Lefever equa-
tion. Based on this model, universal limits for the two-photon absorption and
the free-carrier absorption are found, above which formation is not possible
anymore. Furthermore, a design of a silicon-photonic Kerr-nonlinear micro-
resonator is presented, that should enable comb formation, provided that free
carriers are removed from the microresonator by a cointegrated, reverse-biased
p-i-n junction. Time integrations of the Lugiato-Lefever equation validate these
theoretical findings and demonstrate differences between the model presented
in Chapter 4 and existing models.

Despite the open questions regarding the optimized design and material plat-
form of Kerr-nonlinear microresonators, Chapter 5 describes the application
of soliton Kerr combs in a LiDAR system using the principle of frequency
comb-based synthetic wavelength interferometry. Here, the comb sources are
silicon nitride microresonators that feature a high quality factor and allow for
the generation of soliton Kerr combs. Ultrafast optical distance measurements
with measurement rates up to 96 MHz and a simultaneous depth precision
of 280 nm are demonstrated. The in-flight determination of the profile of an
air-gun pellet moving at a speed of 150 m s−1 is demonstrated with this system.

Chapter 6 discusses the measurement of distances using quantum-dash mode-
locked laser diodes, which represent an easy to handle and power-efficient
alternative to Kerr-nonlinear microresonators. Using the same measurement
principle as before, even higher measurement rates of up to 500 MHz with a
depth precision of 1.7 𝜇m are shown. In addition to the high-speed measu-
rements, the influence of optical losses in the free-space beam path on the
achieved accuracy, precision and on the proportion of reliable distance data
points is investigated. Here, it is demonstrated that the measurement system can
tolerate a signal reduction of up to 71 dB, i.e. an attenuation of more than seven
orders of magnitude, before the system performance deteriorates disproportio-
nately in terms of the parameters mentioned before. For applications where
highest precision is not the primary concern, quantum-dash mode-locked laser
diodes are superior to Kerr combs.

Finally, Chapter 7 summarizes this work and interprets the insights on the use of
integrated comb sources in LiDAR systems. Suggestions are proposed on how
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to further increase the performance of these frequency comb-based ranging
systems, and possibilities for full integration are shown. In the context of more
fundamental investigations on Kerr-nonlinear microresonators, the possibility
of Kerr comb generation in silicon-photonic microresonators is discussed based
on theoretical insights. Finally, on the theoretical side, further investigations
of operating points of Kerr-nonlinear microresonators are proposed that are of
practical relevance.
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Achievements of the present work

Optical ranging using chip-scale comb generators is a novel concept that may
lead to compact, high-performance distance measurement systems. Here, the
application of Kerr-nonlinear microresonators as comb sources show great po-
tential. An evaluation of LiDAR systems using Kerr combs requires not only
experimental demonstrations and characterizations, but also an understanding
of the comb generators. This refers to the question of the highest possible fre-
quency comb power, which is determined by the power conversion efficiency
of the nonlinear processes in Kerr-nonlinear microresonators. Furthermore, an
understanding of Kerr comb sources requires an investigation whether these
photonic structures can be implemented in the widespread silicon-photonic
material platform, where two-photon absorption and free-carrier absorption
impair comb formation at telecommunication wavelengths. Finally, the perfor-
mance of a ranging system based on Kerr-nonlinear microresonators should be
compared to a ranging system using other light sources. Here, quantum-dash
mode-locked laser diodes are a suitable alternative, since they also show great
potential as chip-scale frequency comb emitters.

This thesis focuses on these research aspects. In particular, the following main
results were achieved:

Determination and description of soliton Kerr comb states in microre-
sonators with normal and anomalous dispersion over a large space of
technically accessible parameters: In Chapter 3, we find single-soliton Kerr
comb states that can exist in Kerr-nonlinear microresonators based on a glo-
bal bifurcation analysis of the Lugiato-Lefever equation for a large parameter
space covering technically accessible parameters. This method allows to de-
rive the temporal and spectral form of soliton Kerr combs both for normal
and anomalous dispersion. Specifically, we identify the comb states with the
largest optical bandwidth. We characterize these comb states in terms of power
conversion efficiency and optical bandwidth. The associated publication has
been published in Physical Review A [J1]. This work is a collaboration with
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Achievements of the present work

scientists of the Institute for Analysis (IANA) and of the Institute for Applied
and Numerical Mathematics (IANM), Karlsruhe Institute of Technology (KIT)
within the Collaborative Research Centre “Wave Phenomena” of the Deutsche
Forschungsgemeinschaft (German research association).

Explanation of the impact of two-photon absorption and free-carrier ab-
sorption on Kerr comb formation in microresonators considering a spati-
ally varying free-carrier density: By analyzing an extended Lugiato-Lefever
equation including the generation of free-carriers through two-photon absorp-
tion, we show in Chapter 4 how two-photon absorption and free-carrier ab-
sorption influence the generation of frequency combs in Kerr-nonlinear mi-
croresonators. For this, we introduce a new model that allows to describe a
spatially varying free-carrier density along with its interaction with the optical
field. The model is general and can be applied to various waveguide platforms
and spectral regimes, where these effects are pronounced. Based on this model,
we derive fundamental limits for the two-photon absorption and free-carrier
absorption, beyond which comb formation through modulation instability is
not possible anymore. Time integrations of the Lugiato-Lefever equation con-
firm the theoretical findings. This work has been published in Physical Review
A [J2].

Design of silicon microresonators for Kerr comb generation at telecom-
munication wavelengths: With knowledge about the impact of two-photon
absorption and free-carrier absorption on comb formation in Kerr-nonlinear
microresonators, we present in Chapter 4 the design of a silicon microresonator
that may enable frequency comb formation at telecommunication wavelengths.
This result is a part of the publication [J2] mentioned before.

Demonstration of optical ranging with record measurement speed using
two soliton Kerr combs: In Chapter 5 we show the application of soliton Kerr
combs in a ranging system based on multi-heterodyne synthetic-wavelength
interferometry. We reach acquisition rates of up to 96 MHz while maintai-
ning a sub-𝜇m resolution. To the best of our knowledge, this was the highest
acquisition rate achieved by any distance measurement system so far at the
time of the demonstration. We highlight the ultra-fast acquisition capabilities
by determining the profile of a flying air-gun projectile moving at a speed of
150 m s−1. The work has been published in Science [J3].
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Demonstration of optical ranging at record measurement speed and high
optical losses using two quantum-dash mode-locked laser diodes: In an
experiment described in Chapter 6 we demonstrate the usage of frequency
combs emitted by two quantum-dash mode-locked laser diodes in a ranging
system with even higher sampling rates of up to 500 MHz. We show that
at sampling rates of 50 MHz, such a system can still operate at free-space
losses of up to 71 dB. The associated manuscript was published in Scientific
Reports [J4].
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1 Introduction

The first generation of optical frequency combs in 1999 [1] is a milestone
in physics, which paved the way for major breakthroughs in many scientific
disciplines over the past two decades. In timekeeping, frequency combs can be
used for fast and extremely precise comparisons of atomic clocks [2], which in
turn allows to verify the values of fundamental physical constants and confirm
fundamental physical models [3]. In astronomy, frequency combs allow to
detect exoplanets [4, 5], and may even enable to measure the expansion of the
universe [6]. In consideration of the tremendous impact of frequency combs in
the aforementioned and other disciplines, John L. Hall and Theodor W. Hänsch
were awarded with the Nobel prize of physics in 2005 for their contributions to
the development of frequency comb sources [7,8]. Nowadays, frequency comb
sources are commercially available mostly in form of mode-locked lasers [9]
and mostly used in scientific areas. In principle, frequency combs could be
deployed in many other fields, however established frequency comb sources
such as Ti:sapphire lasers or Er-doped fiber lasers are inappropriate in some
instances. Here, economic aspects such as the costs of the comb sources play
a role, but also the physical properties of the emitted frequency combs. These
include the spectral regime, where the frequency comb is emitted, and the
spacing of the comb lines that is known as free spectral range (FSR). For
example, optical telecommunication networks based on wavelength-division
multiplexing (WDM) would strongly benefit from frequency combs with an
FSR in the order of tens of Gigahertz, however such line separations can be
difficult to achieve with the comb sources mentioned before.

About one decade ago, a new frequency comb source was developed that
emits frequency combs with completely different comb properties and that has
considerable potential for wide-spread use, both in scientific and commercial
applications: High-Q microresonators with strong third-order (Kerr) nonlinea-
rities, also known as Kerr-nonlinear microresonators [10]. These are chip-scale
photonic structures, in which monochromatic light from a separate pump la-
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1 Introduction

ser can be converted into a multitude of frequencies with equidistant spectral
separation through the Kerr-nonlinearity and the strong field enhancement in
the microcavity [11]. Their small size results in a free spectral range that is or-
ders of magnitudes larger than for frequency combs generated in conventional
mode-locked solid-state lasers [11]. At the same time, Kerr combs can feature
extreme optical bandwidths covering up to a full octave [12], which enables f/2f
or 2f/3f self-referencing of the emitted light [13], and allows thus an absolute
determination of the emitted frequencies. In scientific applications, this feature
can be of great importance. When considering commercial applications, the
large comb line spacing makes Kerr combs suitable for, e.g., optical communi-
cations, where they can be used as light sources in the transmitter and receiver
of an optical fiber link based on wavelength-division-multiplexing [14]. Com-
pared to, e.g., mode-locked lasers relying on free-space optics, the small size
of Kerr comb generators is another advantage in such use cases. Over the
last decade, the size could be reduced from a benchtop-format down to a few
cm3 [15]. In the same manner, the total power consumption was reduced, such
that 100 mW of electric power supplied by an AAA-battery is sufficient for the
comb generator operation [15]. This remarkable progress indicates the strong
application potential of these comb sources.

So far, Kerr combs were used for, e.g., optical clocks [16], arbitrary waveform
generation [17], and optical communications [14]. In optical metrology, a
few applications have been investigated, for example spectroscopy [18], while
others, in particular LiDAR are still open for research. In the past, ranging
systems using optical frequency combs have shown strong performance [19,
20], however they were based on macroscopic comb sources prohibiting a
full integration. In consideration of the strong performance of comb-based
LiDAR systems and the unique properties of Kerr-nonlinear microresonator
frequency combs, it seems natural to combine these two aspects and investigate
the resulting ranging system. Here, dissipative Kerr soliton (DKS) frequency
combs are the primary Kerr comb state of interest, since they feature a smooth
spectrum, a large optical bandwidth and high coherence among all comb lines
[21]. Yet it is evident that there are challenges which need to be addressed
to increase the applicability of DKS frequency combs, in particular when
considering optical ranging as an application scenario.

First, the achievable total power of DKS combs and the power per line need
to be increased to match to application-specific requirements. In the past,
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research efforts often focused on a reduction of the optical and electric powers
necessary for operation, but not necessarily on achieving high comb powers
and/or high powers per comb line. Kerr comb generators optimized for low
power consumption reach comb line powers in the order of 1 . . . 10 𝜇W [15,
22, 23], which may not be enough in specific use cases. This holds especially
true for LiDAR, where the optical signal received by a ranging system is orders
of magnitude weaker than the emitted signal. Ideally, a Kerr comb generator
should be designed with application-specific comb properties in mind, such as
a certain comb power. This requires an understanding of the achievable pump-
to-comb power conversion efficiency as well as the achievable bandwidth of
DKS combs depending on the microresonator and pump laser parameters. A
universal understanding of these comb properties is, however, only partially
available today.

Second, it should be possible to manufacture Kerr-nonlinear microresonators
on a large scale in commercial foundries and cointegrate these devices with
other photonic components to build fully functional, integrated LiDAR systems
suitable for a commercial use. Both of these challenges refer to the fact that
most Kerr-nonlinear microresonators used for comb generation at the technical
relevant telecommunication C- and L-band are made of silicon nitride [24]
or silica [10], whose associated integration platforms offer a less developed
component portfolio compared to, e.g., silicon photonics, in particular when
considering active devices. As a result, these materials are less suited for the
monolithic co-integration of Kerr-nonlinear microresonators in highly func-
tional photonic circuits. Furthermore, mass production of silica Kerr-nonlinear
microresonators may not be possible on the same scale as for established plat-
forms for integrated photonic circuits. Ideally, Kerr comb generators would
be made from silicon, which is the dominating material platform for photonic
integrated circuits. At telecommunication wavelengths, however, two-photon
absorption (TPA) and free-carrier absorption (FCA) in silicon impair the for-
mation of Kerr combs, i.e., the occurrence of modulation instability (MI). It is
subject to ongoing discussions [25–28], whether MI can occur in presence of
TPA and FCA. It should be noted that the underlying models used so far might
not accurately capture the dynamics of Kerr comb generation in presence of
free carriers. Specifically, fast modulations of the free-carrier density along the
microresonator circumference are not considered in theoretical investigations
and only partially in simulations. Clearly, there is a need for further clarifica-
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tion how TPA and FCA influence the formation of frequency combs, and this
discussion would benefit from more refined models.

In this thesis, the potential of chip-scale Kerr-comb sources in distance metro-
logy is verified by performing high-speed high-precision ranging experiments
that rely on the concept of multi-heterodyne synthetic-wavelength interferome-
try. In a first set of experiments, we use soliton Kerr combs as light sources. At
an acquisition rate of 96 MHz, a ranging precision of 280 nm is demonstrated
that improves to 12 nm for a reduced acquisition rate of 74 kHz. The high-speed
sampling capabilities are demonstrated by reconstructing the profile of an air-
gun projectile, which crosses a measurement beam at a speed of 150 m s−1.
Further tests yield an accuracy of 188 nm, and demonstrate the reproducibility
of the measurement results as well as an agreement of this technique with other
measurement methods.

While Kerr-comb generators offer vast potential in high-speed high-precision
optical ranging, the underlying concept and the associated technical implemen-
tation are still rather complex. As a reference for evaluating the complexity-
performance trade-offs, we also explore quantum-dash mode-locked laser di-
odes (QD-MLLDs) as an attractive alternative chip-scale comb generator with
comb-line powers of approximately 400 𝜇W compared to 10 𝜇W for soliton
Kerr combs. Though these devices have a smaller overall optical bandwidth
and larger optical linewidths of the individual spectral lines compared to DKS
combs, their operation is much simpler, since applying a direct current suffices.
In a second LiDAR experiment using QD-MLLDs, we achieve a precision of
1.7 𝜇m for a sampling rate of up to 500 MHz. In the manner as before, the-
se high-speed measurement capabilities are demonstrated on flying air-gun
projectiles. A direct comparison between the two sets of experiments shows
that the ranging precision achieved with QD-MLLDs cannot compete with the
precision of the DKS comb-based system. However, the simple operation of
QD-MLLDs as well as their higher power per comb-line may compensate for
this fact, if highest precision is not the primary concern. The investigation is ac-
companied by inspecting the tolerable free-space losses of the ranging system.
Without using any optical amplifiers, a loss tolerance of 49 dB is reached that
increases up to 71 dB when using an Er:fiber amplifier to boost the free-space
beam power. These numbers indicate that QD-MLLD-based ranging systems
can be used for targets located several meters away from the measurement
system.
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However, the fact that target distances of a few meters already lead to con-
siderable round-trip losses clearly indicates that the achievable comb powers
of DKS combs need to be understood and optimized. Otherwise, their low
comb-line powers may limit their use in LiDAR systems. Using bifurcation
analysis and numerical continuation, DKS combs states are found for arbitrary
microresonator parameters and optimized pump field conditions in a techni-
cally relevant parameter space. This allows to derive the highest achievable
pump-to-comb power conversion efficiency and Kerr comb bandwidth. The
analysis is carried out in a universal manner both for normal and anomalous
dispersive microresonators, i.e., both dark and bright soliton Kerr combs are
investigated with the same methods. It is found that dark-soliton Kerr combs
have a significantly larger power conversion efficiency than their bright-soliton
counterparts, at the expense of a reduced optical bandwidth. These and other
insights serve as guidelines, what pump lasers and microresonators need to be
used to achieve application-specific Kerr combs with defined bandwidths and
comb powers – crucial aspects for integrated, comb-based LiDAR systems.

To explore the potential of the versatile silicon-photonic platform for integrated
ranging systems based on DKS combs, the impact of two-photon absorption
and free-carrier absorption on Kerr comb generation in microresonators is in-
vestigated. For this purpose, a new model is introduced that allows describing
the spatial distribution of free carriers along the microresonator waveguide as
well as the impact of free carriers on frequency comb formation. This model,
consisting of the Lugiato-Lefever equation as well as a modified rate-equation
for the free carriers, is then analyzed theoretically to find the conditions for
comb formation, i.e., for modulation instability. It is found that comb formati-
on is possible, if the ratio of the imaginary part and the real part of the Kerr
nonlinearity, i.e., the normalized two-photon absorption (TPA) coefficient, is
smaller than 1/

√
3. Below this threshold, a certain amount of free-carrier ab-

sorption is also tolerable. Considering specifically silicon-photonic microreso-
nators, free carriers need to be removed by a reverse-biased p-i-n-junction [29]
running in parallel to the microresonator waveguide with the aim to reach these
tolerable levels. Based on this insight, a silicon Kerr-nonlinear microresona-
tor is designed, which should support comb generation at telecommunication
wavelengths. The theoretical predictions are validated by simulations of Kerr
comb formation in a silicon microresonator, where the non-uniform distributi-
on of free carriers in the microresonator causes further dynamics of the optical
field.
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The insights obtained from experiments on comb-based optical distance me-
asurements provide crucial information for the design of integrated photonic
systems, which include Kerr-nonlinear microresonators as frequency comb
sources. In combination with the theoretical results, the findings of this work
may be used to, e.g., develop fully integrated, Kerr comb-based optical ranging
systems.
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2 Optical frequency combs

This chapter introduces fundamental concepts, which are relevant for this
work. In the first section, an introduction to frequency combs in general is
given. Then, quantitative models describing Kerr-nonlinear microresonators
and Kerr comb formation are introduced and soliton Kerr combs are described.
Other chip-scale comb sources are also briefly discussed. In the last section
of this chapter, an overview on optical distance metrology is presented, and
different techniques are described. Specifically, a short description of comb-
based multi-heterodyne synthetic wavelength interferometry is given, which is
the working principle of the ranging systems presented in Chapters 5 and 6.

In this work, optical fields are represented mathematically by their electric
fields. Unless specified otherwise, the electric field is assumed to be a scalar
quantity for simplicity. In this representation, the measurable, real-valued elec-
tric field 𝐸 (𝑡) with slowly varying complex field envelope 𝐸 (𝑡) and center
frequency1 𝜔0 is given as

𝐸 (𝑡) = ℜ
{
𝐸 (𝑡) e j𝜔0𝑡

}
=

1
2

(
𝐸 (𝑡) e j𝜔0𝑡 + 𝑐.𝑐.

)
. (2.1)

Here, ℜ{·} denotes the real part, j =
√
−1 is the imaginary unit, 𝑐.𝑐. the

complex conjugate and 𝑡 denotes time. Unless specified otherwise, a positive
time dependence of the electric field is assumed. In particular, Chapters 3 and
4 and the associated Appendices B and C are formulated for a negative time
dependence of the electric field, which is denoted as 𝐸 (𝑡) = ℜ

{
𝐸∗ (𝑡) e−j𝜔0𝑡

}
.

This choice is the standard when describing frequency combs in Kerr-nonlinear
microresonators via the Lugiato-Lefever-equation (LLE). Assuming a negative
time dependence in the mentioned chapters simplifies a comparison of the
presented work with literature.

1 In this work, optical frequencies are denoted as angular frequencies.
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2 Optical frequency combs

2.1 Frequency combs in mode-locked lasers

A frequency comb is an optical signal consisting of narrow spectral tones 𝜔𝜇

with a strictly equidistant spacing [30, 31]. The spectral separation 𝜔FSR of
these optical tones is called the free spectral range (FSR) of the comb. In most
instances, an optical tone𝜔𝜇 will not be an integer multiple of𝜔FSR, but shifted
by an offset that is defined as carrier-envelope offset frequency 𝜔CEO, which
is smaller than the FSR. Given these two parameters, the spectral positions of
the frequency comb lines with index 𝜇 are fully defined as

𝜔𝜇 = 𝜔CEO + 𝜇 𝜔FSR, 𝜇 ∈ N. (2.2)

Established frequency comb sources are mode-locked lasers (MLL), and well-
known examples of solid-state MLLs are Ti:sapphire lasers [1,32] and Er:fiber
ring lasers [33,34]. In such devices, the generated optical frequencies are in the
order of 100 THz or more, and the FSR is in the order of 100 MHz. Therefore
the comb line index 𝜇 is around 106 according to Eq. (2.2). Frequency combs
only cover a finite range of 𝜇 that does not extend down to zero and therefore
it is more practical to count the spectral tones from a center frequency 𝜔0 of
the frequency comb. The spectrum is then defined by

𝜔𝜇 = 𝜔0 + 𝜇 𝜔FSR, 𝜇 ∈ Z, (2.3)

such that |𝜇 | is in the order of 105 to 106 for the comb sources mentioned
before [1, 34].

In mode-locked lasers, a pulse train is generated and emitted [35]. This can be
achieved through active or passive means. In Figure 2.1, a laser source using a
passive mechanism for pulse generation is sketched: two mirrors and a pum-
ped gain medium form a laser cavity [36]. A fraction of the circulating light
in the cavity passes the semi-transparent mirror on the right. The mirror on
the left includes a saturable absorber, e. g., a layer of a semiconductor mate-
rial (semiconductor saturable absorber mirror, SESAM) [37]. Such a mirror
absorbs photons through excitation of carriers from the valence band to the
conduction band of the semiconductor. At high optical intensities, the free-
carrier generation rate is larger than their recombination rate, thus the valence
band will be depleted and the conduction band be filled, such that the material
eventually becomes transparent. As a result, the net gain per round-trip of an
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2.1 Frequency combs in mode-locked lasers

Figure 2.1: Passively mode-locked laser and emission of pulses. The mode-locked laser consists of
two mirrors and a pumped gain medium. The right mirror is semi-transparent, such that a part of
the light circulating in the cavity is coupled out of the laser. The other mirror on the left includes a
saturable absorber, which leads to a pulsed state of the optical signal (red). If one pulse circulates
in the cavity at a time, the cavity round-trip time 𝑡R is the inverse of the pulse repetition rate 𝑓 −1

rep .

optical pulse with strong peak intensity is higher compared to the net gain of
a continuous-wave (CW) field with weak peak intensity. In this configuration,
the laser will favour a pulsed operation, indicated in red in Fig. 2.1. A fraction
of the pulse circulating in the cavity will be emitted. The pulse repetition rate
𝑓rep is the inverse of the time between two consecutive pulses. Assuming that
only one pulse circulates in the cavity at a time, the time between two emitted
pulses is equal to the round-trip time 𝑡R in the MLL and therefore 𝑓 −1

rep = 𝑡R.
In a simple model, the emitted complex electric field 𝐸 (𝑡) is given as a pulse
train and depends on the pulse envelope 𝐸P (𝑡), the round-trip time 𝑡R and on
the center frequency 𝜔0:

𝐸 (𝑡) =
∞∑︁

𝜇=−∞
𝐸P (𝑡 − 𝜇 𝑡R) e j𝜔0𝑡 . (2.4)

It should be noted that this is a strongly idealized model of the output of an
MLL. In practice, the cavity round-trip time may not be perfectly stable and
individual pulses may experience additional phase fluctuations. An analytic
model considering these effects and their impact on the linewidth of individual
lines of the frequency comb can be found in [38]. To obtain the spectrum
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2 Optical frequency combs

of the time domain signal 𝐸 (𝑡) defined in Eq. (2.4), the Fourier transform
F

{
𝐸 (𝑡)

}
(𝜔) = 𝐸̂ (𝜔) is determined2:

𝐸̂ (𝜔) =F
{
𝐸 (𝑡)

}
(𝜔) =

∫ ∞

−∞
𝐸 (𝑡) e−j𝜔𝑡d𝑡

=

∞∑︁
𝜇=−∞

∫ ∞

−∞
𝐸P (𝑡 − 𝜇 𝑡R) e−j(𝜔−𝜔0)𝑡d𝑡

=
1
𝑡R

∞∑︁
𝜇=−∞

𝐸̂P (𝜔 − 𝜔0) 𝛿
(
𝜔

2𝜋
− 𝜔0

2𝜋
− 𝜇

1
𝑡R

)
= 𝑓rep

∞∑︁
𝜇=−∞

𝐸̂P (𝜔 − 𝜔0) 𝛿
( 𝜔
2𝜋

− 𝜔0
2𝜋

− 𝜇 𝑓rep

)
. (2.5)

Here, 𝐸̂P (𝜔 − 𝜔0) is the Fourier transform of the pulse envelope 𝐸P (𝑡) and
𝛿 (𝜔/(2𝜋)) the Dirac delta function, defined as

∫ ∞
−∞ 𝛿(𝑥)ℎ(𝑥)d𝑥 = ℎ(0) for a

test function ℎ(𝑥). We see that the Fourier transform of a pulse train is a frequen-
cy comb, whose FSR is defined by the pulse repetition rate 𝑓rep = 𝜔FSR/(2𝜋).
The pulse envelope 𝐸P (𝑡) defines the spectral envelope 𝐸̂P (𝜔 − 𝜔0) of the
frequency comb. Both of these quantities are assumed to be constant along
multiple pulse repetition periods. This requires that the various complex opti-
cal tones 𝐸̂P (𝜔 − 𝜔0) 𝛿 ((𝜔 − 𝜔0 − 𝜇 𝜔FSR)/(2𝜋)) of the frequency comb,
which are longitudinal modes of the laser cavity, remain locked to each
other. More specifically, this means that the phases of the modes, given by
arg

{
𝐸̂P (𝜔 − 𝜔0) 𝛿 ((𝜔 − 𝜔0 − 𝜇 𝜔FSR)/(2𝜋))

}
, are in a time-linear phase re-

lation to each other. At given points in time separated by 𝑓 −1
rep , the phases of

these modes are equal, such that the superposition of the modes results in op-
tical pulses, which, due to the saturable absorption of the SESAM experience
highest intra-cavity gain. Between pulses, the phases of the modes are not
equal, which leads to an absence of a measurable field intensity.

Besides using a SESAM, various other techniques allow for mode-locking
in lasers. Another passive approach is Kerr lens mode locking, where a Kerr-
nonlinear material is included into the laser cavity. The Kerr-nonlinear material
changes its refractive index based on the intensity of the laser beam and thus

2 The inverse Fourier transform is given by F−1 {
𝐸̂ (𝜔)

}
(𝑡) = (2𝜋)−1

∫ ∞
−∞ 𝐸̂ (𝜔) e j𝜔𝑡d𝜔.
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2.1 Frequency combs in mode-locked lasers

leads to an intensity-dependent self-focusing [39,40]. By including an aperture
after the Kerr lens in the laser cavity, the net gain of a self-focused laser beam
becomes higher than the gain a non-focused beam such that a pulsed operation
will be preferred. Active mode locking is performed by periodically changing
the net gain in a laser cavity or the phase accumulated over one round-trip.
This can be achieved , e. g., via pump current modulations of a semiconductor
laser [41] or by including an electro-absorption modulator [42] in the cavity.

For many different frequency comb sources, both the carrier-envelope off-
set frequency 𝜔CEO and the free spectral range 𝜔FSR are in the order of
2𝜋 × 100 MHz. The FSR can easily be measured by guiding light of the
frequency comb to a photodetector, which will produce an output current with
an oscillation at a frequency 𝑓 = 𝜔FSR/(2𝜋). A measurement of 𝜔CEO is more
difficult, but possible via, e. g., 𝑓 /2 𝑓 -self referencing [43]. In this scheme, a
frequency comb with frequencies 𝜔𝜇 = 𝜔CEO + 𝜇𝜔FSR is superimposed with
its second harmonic on a photodetector. The second harmonic is located at fre-
quencies 𝜔𝜇′ = 2𝜔CEO +2𝜇′𝜔FSR, which leads to beat signals at the difference
frequencies

��𝜔𝜇′ − 𝜔𝜇

�� = |𝜔CEO + (2𝜇′ − 𝜇) 𝜔FSR | in the photocurrent of the
detector. Amongst these beat signals, there is one for which 2𝜇′ = 𝜇 holds. It
is located at lowest frequency

��𝜔𝜇′ − 𝜔𝜇

�� = 𝜔CEO of all difference frequencies
and can therefore be used to determine the carrier-envelope offset frequency.

With these two measurements, the frequencies of all frequency comb lines can
be precisely determined. This allows for extremely precise frequency metro-
logy and spectral analysis of other optical signals, such as atomic lines [1]
or exoplanet-induced doppler-shifts of the light of distant stars [5]. The pre-
cisely known frequencies of a frequency comb were also used to build an
ultra-accurate clock [44]. Frequency combs showed also great potential in
applications such as light detection and ranging (LiDAR) [19] that may be
relevant not only in science, but also in commercial use cases. However mode-
locked lasers with rather small free spectral ranges in the order of 2𝜋×100 MHz
are not suited for all kinds of applications3. Increasing the free spectral range

3 This is reinforced by the fact that such small FSRs are associated with rather large optical
round-trip lengths of several meters, such that the comb generator may have a substantial overall
size, prohibiting its use in applications where the available space for a comb source is limited.
For example, a pulse repetition rate of 100 MHz corresponds to an optical round-trip length of
roughly 3 meters. The associated geometric length, which depends on the refractive indices of
the materials along the optical path, is smaller, but in the same order of magnitude.
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2 Optical frequency combs

can be achieved by, e.g., harmonic mode-locking [45] which however requires
additional active components compared to the scheme depicted in Fig. 2.1.
Here, a significant reduction of the round-trip length of an MLL down to a few
centimeters or less is a viable option, which motivates alternative concepts to,
e.g., free-space MLLs or fiber-based MLLs.

Chip-scale frequency comb sources emit combs with the highest FSR. In the
next section, frequency comb generation in Kerr-nonlinear microresonators is
described, followed by Section 2.3 that discusses quantum-dash mode-locked
laser diodes as an alternative to Kerr comb generators. These comb sources
sources differ from Kerr comb generators in terms of comb parameters such as
the overall optical bandwidth as well as in the complexity of their operation.
While Kerr combs generally allow for a higher performance of comb-based
systems in specific applications, they may more be difficult to use compared to
QD-MLLDs, which can make these devices a viable alternative.

2.2 Kerr comb generators

Kerr-nonlinear microresonators are chip-scale photonic structures, in which
monochromatic light is converted into a frequency comb through degenerate
and non-degenerate four-wave mixing. After the initial demonstration of the
comb formation principle [10], this technology rapidly evolved over the last
years. The generation of frequency combs in Kerr-nonlinear microresonators
was demonstrated based on various material platforms, including silicon nitri-
de [24], silica [10], silicon [46], diamond [47], AlGaAs [48] and others [49–51].
With the discovery of dissipative Kerr soliton frequency combs [21], the ge-
neration of a special class of mode-locked frequency combs in Kerr-nonlinear
microresonators was demonstrated. Improvements in the fabrication of Kerr-
nonlinear microresonators lead to a continuous increase of their quality (Q)-
factors, and consequently for a decrease of the required optical powers for
parametric conversion, such that today Kerr comb generators can be opera-
ted using AAA batteries as power supplies [15]. The underlying nonlinear
processes as well as the resulting frequency combs depend crucially on a
number of microresonator properties, which are discussed in Section 2.2.1. In
Section 2.2.2 the comb formation is described qualitatively and quantitatively.
Section 2.2.3 gives an overview on dissipative Kerr solitons.

12



2.2 Kerr comb generators

2.2.1 Properties of Kerr-nonlinear microresonators

The following description of Kerr-nonlinear microresonators refers to planar,
integrated waveguide structures. Figure 2.2 shows a schematic of a ring-shaped
microresonator waveguide that is coupled to a bus waveguide. Other variants,
where the microresonator is, e. g., a microsphere [52] or a microtoroid [53], and
light coupling is achieved using a prism [54] or a tapered optical fiber [55] can
be described using the same formalism that is introduced in the following. For
the moment, only linear optical properties of the microresonator are considered.

Light with angular frequency 𝜔0 propagates in a bus waveguide and is coupled
to a microresonator at the coupling section through evanescent coupling [56],
see Fig. 2.2. This process can be described by a matrix equation, that relates the
incoming field 𝐸 𝑖1

in the bus waveguide and the field 𝐸 𝑖2
in the microresonator

after one round-trip with the field 𝐸 𝑡1
in the bus waveguide after the coupling

section and with the field 𝐸 𝑡2
in the microresonator after the coupling section

[57]: (
𝐸 𝑡1

𝐸 𝑡2

)
=

(
𝑡 𝜅

−𝜅∗ 𝑡∗

) (
𝐸 𝑖1

𝐸 𝑖2

)
. (2.6)

Here, 𝑡 and 𝜅 are the complex transmission coefficient and the complex coupling
coefficient of the coupler. In absence of losses in the coupling section, they
are related by

��𝑡��2 + ��𝜅��2 = 1. The coupling coefficient 𝜅 is linked to the power
coupling coefficient 𝜃C via

��𝜅��2 = 𝜃C.

During one round-trip in the microresonator, light experiences attenuation by
a factor of exp (−𝛼𝑖𝐿MR/2) and a phase accumulation of exp (− j𝛽(𝜔0)𝐿MR).
The attenuation is caused by material absorption, by scattering at the wave-
guide boundaries as well as by radiation due to waveguide bending [58]. It is
characterized by the product of the power attenuation coefficient 𝛼𝑖 (dimensi-
on m−1) and the circumference of the microresonator 𝐿MR. The accumulated
phase depends on the propagation constant 𝛽(𝜔0) and 𝐿MR. Accordingly, the
fields 𝐸 𝑖2

and 𝐸 𝑡2
are linked via 𝐸 𝑖2

= exp (−𝛼𝑖𝐿MR/2 − j𝛽(𝜔0)𝐿MR) 𝐸 𝑡2
.
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2 Optical frequency combs

Figure 2.2: Sketch of light propagating in a coupled bus waveguide and microresonator. In this
visualization, nonlinear properties of the microresonator are not considered. The electromagnetic
field is defined by its complex amplitude𝐸0 and angular frequency 𝜔0 as well as by the propagation
constant 𝛽 (𝜔0) . At the coupling section, the incoming optical field 𝐸𝑖1

is separated into a part 𝐸𝑡1
that continues to propagate in the bus waveguide, and a part 𝐸𝑡2

that is coupled in the microreso-
nator. Over one round-trip inside the microresonator, the optical field experiences a phase accumu-
lation exp (− j𝛽 (𝜔0)𝐿MR) as well as a reduction of its amplitude by a factor of exp (−𝛼𝑖𝐿MR/2)
depending on the waveguide attenuation coefficient 𝛼𝑖 as well as on the circumference 𝐿MR of the
microresonator. The resulting field 𝐸𝑖2

inside the microresonator at the beginning of the coupling
section is linked to 𝐸𝑡2

accordingly via 𝐸𝑖2
= exp (−𝛼𝑖𝐿MR/2 − j𝛽 (𝜔0)𝐿MR) 𝐸𝑡2

.

Using Eq. (2.6), one can derive the power transmission ratio |𝐸 𝑡1
|2/|𝐸 𝑖1

|2 of
the combined waveguide and microresonator [57]4:

|𝐸 𝑡1
|2

|𝐸 𝑖1
|2

=
|𝑡 |2 + e−𝛼𝑖𝐿MR − 2|𝑡 |e−𝛼𝑖𝐿MR/2cos

(
−𝛽(𝜔0)𝐿MR + arg{𝑡}

)
1 + |𝑡 |2e−𝛼𝑖𝐿MR − 2|𝑡 |e−𝛼𝑖𝐿MR/2cos

(
−𝛽(𝜔0)𝐿MR + arg{𝑡}

) , (2.7)

where arg{𝑡} corresponds to the phase accumulated by the optical field when
passing the coupler through one of the two waveguides. In the following, this
phase is incorporated into the phase that is accumulated during one round-trip
in the microresonator for simplicity, −𝛽(𝜔0)𝐿MR + arg{𝑡} → −𝛽(𝜔0)𝐿MR.

4 In [57], the loss coefficient 𝛼 corresponds to e−𝛼𝑖𝐿MR/2 and the incoming field is set to 𝐸𝑖1
= 1.

Furthermore, note that in [57] field amplitudes with a negative time-dependency are described,
which leads to positive values 𝛽𝐿 = 𝛽0 (𝜔0)𝐿MR for the accumulated phase during one round-
trip in the microresonator, whereat in this work, for a positive time-dependency of the field
amplitudes, these values are negative −𝛽0 (𝜔0)𝐿MR.
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2.2 Kerr comb generators

In case of constructive interference, the accumulated phase 𝛽(𝜔0)𝐿MR corre-
sponds to a multiple of 2𝜋, such that Eq. (2.7) can be simplified to [57]

|𝐸 𝑡1
|2

|𝐸 𝑖1
|2

=

(
|𝑡 | − e−𝛼𝑖𝐿MR/2)2(

1 − |𝑡 |e−𝛼𝑖𝐿MR/2)2 =

(√
1 − 𝜃C − e−𝛼𝑖𝐿MR/2)2(

1 −
√

1 − 𝜃Ce−𝛼𝑖𝐿MR/2)2 . (2.8)

Inspecting Eq. (2.8) shows that the transmitted field vanishes if the condition√
1 − 𝜃C = e−𝛼𝑖𝐿MR/2 holds, a coupling state known as critical coupling [56]5.

Only critical coupling leads to a full power transfer of light from the bus
waveguide to the microresonator on resonance, and therefore this state is of high
practical relevance. If the power coupling coefficient 𝜃C has a smaller value,
i.e.,

√
1 − 𝜃C > e−𝛼𝑖𝐿MR/2, the microresonator is undercoupled, while for larger

𝜃C, i.e.,
√

1 − 𝜃C < e−𝛼𝑖𝐿MR/2 it is overcoupled. In the limit of small coupling
coefficients 𝜃C ≪ 1 and small values for the product 𝛼𝑖𝐿MR ≪ 1, these
relations can be simplified. Then one may approximate

√
1 − 𝜃C ≈ 1 − 𝜃C/2

and e−𝛼𝑖𝐿MR/2 ≈ 1 − 𝛼𝑖𝐿MR/2, which leads to the condition 𝜃C = 𝛼𝑖𝐿MR
for critical coupling, to 𝜃C < 𝛼𝑖𝐿MR for undercoupled microresonators, and to
𝜃C > 𝛼𝑖𝐿MR for overcoupled microresonators. In this limit, the total attenuation
of an optical signal during one round-trip in the microresonator may also be
approximated by a factor of

√
1 − 𝜃Ce−𝛼𝑖𝐿MR/2 ≈ e−(𝛼𝑖𝐿MR+𝜃C)/2.

An important measure of a microresonator related to the attenuation of the
optical field is the dimensionless Q-factor, which represents the ratio of the
stored energy in the microresonator and the dissipated energy per round-trip
[57]. For critical coupling and 𝛼𝑖𝐿MR, 𝜃C ≪ 1, the Q-factor of a specific
resonance with index 𝜈 can be expressed in terms of the resonance frequency
𝜔r,𝜈 , the waveguide loss coefficient 𝛼𝑖 , the microresonator circumference 𝐿MR

5 See also [56], Eq. (1.2) with the condition that the round-trip phase 𝛽 (𝜔)𝐿MR is an integer
multiple of 2𝜋. Note that in [56], the authors consider the field loss denotes as 𝛼 in their
formalism, which has only half of the value of the power attenuation coefficient 𝛼𝑖 used in this
work, 𝛼 → 𝛼𝑖/2.
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2 Optical frequency combs

and the round-trip time 𝑡R of an optical field envelope in the microresonator
[56]6

𝑄 =
𝜔r,𝜈𝑡R

2𝛼𝑖𝐿MR
. (2.9)

The accumulated phase during one round-trip is determined by the circumfe-
rence 𝐿MR and the propagation constant 𝛽(𝜔0), which is the product of the
angular carrier frequency 𝜔0 of the optical field and the effective refractive
index 𝑛e (𝜔0) divided by the speed of light in vacuum 𝑐0:

𝛽(𝜔0) = 𝜔0
𝑛e (𝜔0)

𝑐0
. (2.10)

The effective refractive index depends on the waveguide materials, the wa-
veguide geometry, and the vectorial field distribution E (𝑥, 𝑦) ,H (𝑥, 𝑦) of the
waveguide eigenmode, into which light is coupled from the bus waveguide.
The value of 𝑛e (𝜔) can be obtained in finite-element simulations of the eigen-
mode field distribution [59]. It is common practice to express the propagation
constant 𝛽(𝜔) as a Taylor series around the angular carrier frequency 𝜔0 of an
optical field of interest,

𝛽(𝜔) =
∞∑︁
𝑛=0

1
𝑛!

𝛽 (𝑛) (𝜔0) (𝜔 − 𝜔0)𝑛 , 𝛽 (𝑛) (𝜔0) =
𝜕𝑛𝛽(𝜔)
𝜕𝜔𝑛

����
𝜔=𝜔0

, (2.11)

where we assume 00 = 1 for 𝑛 = 0 and 𝜔 = 𝜔0. Of particular importance are
the first three Taylor coefficients 𝛽 (0) , 𝛽 (1) and 𝛽 (2) , which read

𝛽 (0) (𝜔0) = 𝜔0
𝑛e (𝜔0)
𝑐0

, (2.12)

6 See Eq. (1.1) in [56] with the substitutions 𝜔0 → 𝜔r,𝜈 , 𝜏R → 𝑡R, 2𝛼 → 𝛼𝑖 , and 𝐿 → 𝐿MR
for the Q-factor of a microresonator that is not coupled to a bus waveguide, i.e., the intrinsic
Q-factor. If critical coupling is assumed, the round-trip losses increase by a factor of 2, and the
expression for the Q-factor in [56] has therefore to be divided by 2, which leads to Eq. (2.9).
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2.2 Kerr comb generators

𝛽 (1) (𝜔0) =
𝜕𝛽(𝜔)
𝜕𝜔

����
𝜔=𝜔0

=
1
𝑐0

(
𝑛e (𝜔) + 𝜔

𝜕𝑛e (𝜔)
𝜕𝜔

)����
𝜔=𝜔0

=
𝑛eg (𝜔0)

𝑐0
=

1
𝑣g (𝜔0)

, (2.13)

𝛽 (2) (𝜔0) =
𝜕2𝛽(𝜔)
𝜕𝜔2

����
𝜔=𝜔0

=
𝜕𝛽 (1) (𝜔)

𝜕𝜔

����
𝜔=𝜔0

=
1
𝑐0

𝜕𝑛eg (𝜔)
𝜕𝜔

����
𝜔=𝜔0

. (2.14)

In these definitions, the effective group refractive index 𝑛eg (𝜔0) and the group
velocity 𝑣g (𝜔0) = 𝑐0/𝑛eg (𝜔0) were introduced to describe the speed, at which
the envelope of an optical field with angular carrier frequency 𝜔0 propagates
in a waveguide. The zeroth-order Taylor coefficient 𝛽 (0) (𝜔0) is the ratio of the
angular frequency 𝜔0 and the phase velocity 𝑐0/𝑛e (𝜔0) of the optical field.

The first-order Taylor coefficient 𝛽 (1) (𝜔0) is the inverse of the group velocity
and dictates the angular free spectral range 𝜔r,FSR (FSR) of the microresonator,
which will be shown in the following. Resonance frequencies 𝜔r,𝜈 are deter-
mined by the condition that the accumulated phase in one round-trip must be
a multiple of 2𝜋:

𝛽
(
𝜔r,𝜈

)
𝐿MR = 𝜔r,𝜈

𝑛e
(
𝜔r,𝜈

)
𝑐0

𝐿MR
!
= 𝜈 2𝜋, 𝜈 ∈ N∗. (2.15)

To find an expression for the free spectral range 𝜔FSR (𝜔r,𝜈), we perform a first-
order Taylor expansion of the propagation constant around 𝜔r,𝜈 and formulate
the resonance condition Eq. (2.15) for the next resonance frequency, which is
given by 𝜔r,𝜈+1 = 𝜔r,𝜈 + 𝜔FSR (𝜔r,𝜈):

𝛽
(
𝜔r,𝜈+1

)
𝐿MR ≈ 𝛽 (0) (

𝜔r,𝜈
)
𝐿MR + 𝛽 (1) (

𝜔r,𝜈
)
𝐿MR 𝜔FSR (𝜔r,𝜈)

!
= (𝜈 + 1)2𝜋. (2.16)

Subtracting Eq. (2.15) with 𝛽
(
𝜔r,𝜈

)
= 𝛽 (0) (

𝜔r,𝜈
)

from Eq. (2.16) allows to
solve the resulting expression for the free spectral range 𝜔FSR (𝜔r,𝜈),

𝜔r,FSR (𝜔r,𝜈) =
2𝜋

𝛽 (1) (
𝜔r,𝜈

) =
2𝜋𝑐0

𝑛eg
(
𝜔r,𝜈

)
𝐿MR

. (2.17)
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2 Optical frequency combs

The FSR and the first-order Taylor coefficient of the propagation constant are
linked to the round-trip time of the microresonator, which is given as

𝑡R =
2𝜋

𝜔r,FSR (𝜔r,𝜈)
= 𝛽 (1) (𝜔r,𝜈)𝐿MR = 𝑛eg (𝜔r,𝜈)𝐿MR/𝑐0. (2.18)

The second-order Taylor coefficient 𝛽 (2) (𝜔), also known as second-order di-
spersion coefficient or group-velocity dispersion (GVD), describes the fre-
quency dependence of the effective group refractive index. This dispersive
behaviour of the effective group refractive index 𝑛eg (𝜔) and the underlying ef-
fective refractive index 𝑛e (𝜔) are caused by chromatic material dispersion and
waveguide dispersion7 [60]. The sign of the second-order dispersion coefficient
𝛽 (2) (𝜔) determines whether a waveguide exhibits normal GVD (𝛽 (2) (𝜔) > 0),
or anomalous GVD (𝛽 (2) (𝜔) < 0). Group-velocity dispersion can also be
described as a dependence of the group refractive index on the wavelength
𝜆 = 2𝜋𝑐0/𝜔, 𝑛eg = 𝑛eg (𝜆). In this case the second-order dispersion coefficient
is given by the dispersion parameter 𝐷𝜆 (𝜆) = − 2𝜋𝑐0

𝜆2 𝛽 (2) (2𝜋𝑐0/𝜆) [61]. For
microresonators, it is also common practice to describe the dispersion as a
change of the FSR per resonance mode index 𝜈. For this, first the dependence
of the FSR on the resonance frequencies is computed, see Eq. (2.17):

𝜕𝜔r,FSR (𝜔r,𝜈)
𝜕𝜔r,𝜈

= − 2𝜋
𝐿MR

(
1

𝛽 (1) (𝜔r,𝜈)

)2
𝛽 (2) (𝜔r,𝜈)

= −
𝐿MR𝜔

2
r,FSR (𝜔r,𝜈)
2𝜋

𝛽 (2) (𝜔r,𝜈). (2.19)

The change of the FSR with the optical resonance frequency, 𝜕𝜔r,FSR/𝜕𝜔r,𝜈 ,
can also be expressed as a change of the FSR with respect to the resonance
frequency index 𝜕𝜔r,FSR/𝜕𝜈. These two derivatives are connected by the free
spectral range 𝜔r,FSR, which can also be written as a change of the resonance

7 Intermodal dispersion, i.e., differences of 𝑛e of different waveguide eigenmodes, also contributes
to the total dispersion, but is neglected in this work in most instances for simplicity.
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2.2 Kerr comb generators

frequency with the resonance index, 𝜔r,FSR (𝜔r,𝜈) = 𝜕𝜔r,𝜈/𝜕𝜈. Consequently,
we can write 𝜕/𝜕𝜈 = 𝜔r,FSR𝜕/𝜕𝜔r,𝜈 and rephrase Eq. (2.19) as

𝜕𝜔r,FSR (𝜔r,𝜈)
𝜕𝜈

= 𝜔r,FSR (𝜔r,𝜈)
𝜕𝜔r,FSR (𝜔r,𝜈)

𝜕𝜔r,𝜈
= −𝐿MR

𝑡R
𝜔2

r,FSR (𝜔r,𝜈)𝛽 (2) (𝜔r,𝜈)

= − 𝑐0
𝑛eg

𝜔2
r,FSR (𝜔r,𝜈)𝛽 (2) (𝜔r,𝜈). (2.20)

Anomalous dispersion, 𝛽 (2) (𝜔) < 0, leads to an increase of the free spec-
tral range with 𝜔r,𝜈 or 𝜈, whereas normal dispersion, 𝛽 (2) (𝜔) > 0, is as-
sociated with a decreasing microresonator FSR. In literature, the frequency-
dependence of a microresonator’s FSR is often also described by the term
𝐷2 = − 𝑐0

𝑛eg
𝛽 (2) (𝜔) 𝜔2

r,FSR (𝜔) [62]8, which has the same unit as the FSR. With
this definition, the resonance frequencies around a center resonance frequency
with index 𝜈 = 0 can be approximated as

𝜔r,𝜈 ≈ 𝜔r,0 +
𝜕𝜔r,𝜈

𝜕𝜈
𝜈 + 1

2
𝜕2𝜔r,𝜈

𝜕𝜈2 𝜈2

= 𝜔r,0 + 𝜈 𝜔r,FSR − 𝑐0
2𝑛eg

𝛽 (2) (
𝜔r,0

) (
𝜈 𝜔r,FSR

)2

= 𝜔r,0 + 𝜈 𝜔r,FSR + 𝐷2
2

𝜈2. (2.21)

In practice, light coupled into the microresonator will lead to a shift of these
resonance frequencies. The shift is caused by the absorption of light which leads
to an increased temperature and thereby an expansion of the microresonator
as well as a change of the refractive index, which both alter the resonance
condition, Eq. (2.15). Furthermore, in case of strong Kerr nonlinearities, a
strong pump wave can lead to a resonance shift via cross-phase modulation
(XPM). Therefore, Eq. (2.21) holds for a “cold” microresonator, where no light
is present.

All quantities described so far are linear optical properties of waveguides
and microresonators. For Kerr comb generation, however, the microresonator

8 Note that in [62], the authors consider the effective refractive index 𝑛e instead of the group
refractive index 𝑛eg. A discussion of this difference can be found in [57].
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waveguide needs to feature a nonlinear susceptibility 𝜒 (3) of third order9. In
general, the susceptibility describes the relation of the vectorial polarization
P in a material induced by a vectorial electric field E [65]. In appropriate
materials, the susceptibility can be approximated as a scalar [66]. Furthermore,
if the electric field 𝐸 (𝑡) and the polarization can be approximated by scalars
as well, the total polarization 𝑃t (𝑡) can be written as the following Volterra
series10:

𝑃t (𝑡) =𝜖0

∫ ∞

−∞
𝜒
(1)
h (𝑡1)𝐸 (𝑡 − 𝑡1)d𝑡1

+ 𝜖0

∬ ∞

−∞
𝜒
(2)
h (𝑡1, 𝑡2)𝐸 (𝑡 − 𝑡1)𝐸 (𝑡 − 𝑡2)d𝑡1d𝑡2

+ 𝜖0

∭ ∞

−∞
𝜒
(3)
h (𝑡1, 𝑡2, 𝑡3)𝐸 (𝑡 − 𝑡1)𝐸 (𝑡 − 𝑡2)𝐸 (𝑡 − 𝑡3)d𝑡1d𝑡2d𝑡3 + . . . .

(2.22)

Here, 𝜖0 is the vacuum permittivity and 𝜒
(𝑛)
h is the 𝑛th-order impulse response

function, i.e., the inverse Fourier transform of the 𝑛th-order susceptibility
𝜒 (𝑛) . Further assuming that the impulse responses only depend on the current
time, i.e., assuming 𝜒

(1)
h (𝑡) = 𝜒 (1)𝛿(𝑡), 𝜒 (2)

h (𝑡, 𝑡 ′) = 𝜒 (2)𝛿(𝑡)𝛿(𝑡 ′), . . . , the
expression for the polarization can be simplified to

𝑃t (𝑡) = 𝜖0𝜒
(1)𝐸 (𝑡)︸       ︷︷       ︸

=𝑃lin (𝑡)

+ 𝜖0𝜒
(2)𝐸2 (𝑡) + 𝜖0𝜒

(3)𝐸3 (𝑡) + . . .︸                                    ︷︷                                    ︸
=𝑃nl (𝑡)

. (2.23)

In the following, only the third-order nonlinear susceptibility is assumed
to contribute to the nonlinear polarization, i.e., 𝑃nl (𝑡) = 𝜖0𝜒

(3)𝐸3 (𝑡). In
Kerr-nonlinear microresonators, self-phase modulation (SPM) is an important
nonlinear process that allows to further investigate the nonlinear behaviour
when only light of a single frequency 𝜔0 is present11. In this case, the non-

9 Frequency comb formation in microresonators with a 𝜒 (2) nonlinearity is also possible [63,64],
but not discussed in this work.

10 In Equation (2.22), the impulse response functions 𝜒
(𝑛)
h are assumed be real-valued (i.e., a

loss-less medium is assumed) and temporally constant. Potential spatial dependencies are not
considered. For details, see, e.g., [67].

11 Four-wave-mixing also plays an important role, and is considered in the coupled-mode equations,
see Eq. (2.32).

20



2.2 Kerr comb generators

linear polarization 𝑃SPM (𝜔0, 𝑡) =
(
𝑃SPM (𝜔0)exp( j𝜔0𝑡) + 𝑐.𝑐.

)
/2 associated

with SPM oscillates at the same frequency as the incoming electric field
𝐸 (𝜔0, 𝑡) =

(
𝐸 (𝜔0)exp( j𝜔0𝑡) + 𝑐.𝑐.

)
/2. Only a subset of the terms occurring

in the product 𝐸3 (𝜔0, 𝑡) in Eq. (2.23) contributes to the nonlinear polarization,
which reads in the frequency domain

𝑃SPM (𝜔0) = 𝜖0𝜒
(3) 3

4
��𝐸 (𝜔0)

��2 𝐸 (𝜔0), (2.24)

where 𝜒 (3) = 𝜒 (3) (𝜔0 : 𝜔0,−𝜔0, 𝜔0) is the nonlinear susceptibility for SPM.
The nonlinear polarization leads to a change of the total refractive index 𝑛tot
of the Kerr-nonlinear, non-magnetic medium depending on the field intensity,
which, for the monochromatic electric field described above, is given by

𝐼 = 𝑛0

��𝐸 (𝜔0)
��2

2𝑍0
. (2.25)

Here 𝑛0 = (1 + 𝜒 (1) )1/2 is the linear refractive index of the non-magnetic
medium [65] and 𝑍0 the impedance of free space. To find an expression for
𝑛tot, the relative permittivity 𝜖r = 𝑛2

tot is considered [65],

𝜖r = 𝑛2
tot = 1 + 𝜒 (1) + 𝜒 (3) 3

4
��𝐸 (𝜔0)

��2 = 𝑛2
0 + 𝜒 (3) 3𝑍0

2𝑛0
𝐼 . (2.26)

Further assuming that the nonlinear contribution to 𝑛tot is small compared
to the linear part, i.e., 𝑛2

0 ≫ 𝜖0𝜒
(3) 3𝑍0

2𝑛0
𝐼, the total refractive index can be

approximated as

𝑛tot =

√︂
𝑛2

0 + 𝜒 (3) 3𝑍0
2𝑛0

𝐼 = 𝑛0

√︄
1 + 𝜒 (3) 3𝑍0

2𝑛3
0
𝐼

≈ 𝑛0

(
1 + 𝜒 (3) 3𝑍0

4𝑛3
0
𝐼

)
= 𝑛0 + 𝑛2𝐼, 𝑛2 =

3𝑍0

4𝑛2
0
𝜒 (3) , (2.27)

where the nonlinear refractive index 𝑛2 with unit [𝑛2] = m2/V was introduced.
This material-specific quantity can be used to describe the Kerr nonlinearity
in lossless media, where the third-order nonlinear susceptibility 𝜒 (3) can be
approximated as a scalar. Note that in other descriptions of the phase shift 𝑛2𝐼
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2 Optical frequency combs

induced by the Kerr effect, the nonlinear refractive index may be defined with
respect to the modulus squared of the electric field instead of the intensity. In
this case, the nonlinear refractive index 𝑛̃2 = 3/(8𝑛0)𝜒 (3) [65], related to 𝑛2

via 𝑛2𝐼 = 𝑛̃2
��𝐸̂ (𝜔0)

��2, has the unit [𝑛̃2] = m2/V2.

When describing the propagation of optical signals in nonlinear optical wave-
guides, it is common practice to describe the optical signal by complex electric
field amplitudes E normalized to the power of the field, i.e., with unit

√
W.

In this context, the effective mode field area 𝐴eff is another important metric
that describes how much of a certain field distribution of an optical field, re-
presented by its electric field E and magnetic field H, with carrier frequency
𝜔0 is located in a nonlinear waveguide. For a waveguide-orientation along the
𝑧-direction, i.e., with a waveguide cross-section located in the 𝑥-𝑦-plane, the
effective mode-field area reads [66]

𝐴eff =𝑍2
0

���∫ ∫
Total ℜ

{
E (𝑥, 𝑦) × H∗ (𝑥, 𝑦)

}
· e𝑧d𝑥d𝑦

���2∫ ∫
NL 𝑛

2
0

��E (𝑥, 𝑦)
��4 d𝑥d𝑦

. (2.28)

Here, e𝑧 is the unit vector in the direction along the waveguide, i.e., only the
third component of the product E × H∗ is considered in the integrand of the
upper integral. The integration of the upper integral has to be performed over
the full 𝑥-𝑦 plane, such that the whole field distribution is considered. The
denominator integral is performed only over the region, where the nonlinear
(NL) material with refractive index 𝑛0 is located. Given this expression for the
effective mode field area 𝐴eff, the Kerr-nonlinear response of a waveguide can
be determined by computing the nonlinearity parameter 𝛾, which reads

𝛾 =
𝜔0 𝑛2
𝑐0 𝐴eff

=
3𝜔0𝑍0

4𝑐0𝑛
2
0𝐴eff

𝜒 (3) . (2.29)

An example of the determination of this nonlinearity parameter, where the
effective mode field area is computed, can be found in Appendix C, Section C.4.

In this framework, the nonlinear phase shift for field amplitudes E due to SPM
amounts to 𝛾 |E |2. Such nonlinear processes induced by a Kerr nonlinearity are
commonly described by the nonlinear Schrödinger equation (NLSE) [65]. More
precisely, the NLSE describes the evolution of the slowly varying amplitude
E
𝑧
(𝑧, 𝜏) of an optical signal as a function of propagation distance 𝑧 in a Kerr-
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2.2 Kerr comb generators

nonlinear medium and as a function of a retarded time frame 𝜏. The index 𝑧 of
the electric field emphasizes its dependence on the spatial coordinate 𝑧. The
retarded time frame 𝜏 propagates with the group velocity of the optical signal
and is given as 𝜏 = 𝑡 − 𝛽 (1) 𝑧 = 𝑡 − 𝑧/𝑣g. The NLSE reads12

𝜕E
𝑧
(𝑧, 𝜏)
𝜕𝑧

= j
𝛽 (2) (𝜔)

2
𝜕2E

𝑧
(𝑧, 𝜏)

𝜕𝜏2 − j𝛾
��E

𝑧
(𝑧, 𝜏)

��2 E
𝑧
(𝑧, 𝜏). (2.30)

Note that Eq. (2.30) is valid for a positive time dependence exp( j𝜔𝑡) of the
electric field amplitude. To obtain the NLSE for an electric field with negative
time dependence exp(−j𝜔𝑡), Eq. (2.30) needs to be complex-conjugated. Such
a version of the NLSE can be found, e.g., in [65]. Statements before equations or
at the beginning of chapters clarify, whether they are formulated for a positive
or negative time dependence of the electric field. Unless specified otherwise,
this text uses a positive time dependence.

2.2.2 Theoretical description of Kerr frequency combs

Kerr-nonlinear microresonators rely on the parametric conversion of mono-
chromatic light. In Figure 2.3(a), a basic scheme of a planar-waveguide micro-
resonator with an optical pump laser is depicted. Continuous-wave (CW) light
from a tunable laser source (TLS) is sent to a photonic chip, which comprises a
Kerr-nonlinear microresonator13. The frequency 𝜔 = 𝜔0 of the light from the
TLS is adjusted such that light is coupled into a microresonator resonance with
center frequency 𝜔r,0. Inside the microresonator, degenerate four-wave mixing
(FWM) converts two photons of the pump light with frequency 𝜔0 into two

12 A derivation of the NLSE from Maxwell’s equations with a full description of the underlying
assumptions is beyond the scope of this work and can be found, e. g., in [65, 68]. In short, the
NLSE is valid in non-magnetic materials, where currents and charges are absent and where only
electric susceptibilities of first (𝜒 (1) ) and third order (𝜒 (3) ) are present. These susceptibilities are
assumed to be scalars, instantaneous and local in space. The nonlinear polarization 𝑃nl arising
from 𝜒 (3) is assumed to be much weaker than the the linear polarization 𝑃lin induced through
𝜒 (1) . Further the materials are assumed to be homogeneous, time-invariant and isotropic. The
optical field described by the NLSE is assumed to be linearly polarized, and the field amplitude is
assumed to vary much slower than the optical carrier. For more precise mathematical definitions
of these assumptions, see, e. g., [65, 68].

13 Other schemes without an external laser source exist [69,70], but are not discussed in this work.
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2 Optical frequency combs

new photons at frequencies 𝜔+|𝜇 | and 𝜔−|𝜇 | [11], which are defined according
to Eq. (2.3). This process is illustrated on the left-hand side of Fig. 2.3(b). Only
frequencies 𝜔𝜇 that are spectrally located within the resonances of the micro-
resonator around frequencies 𝜔r,𝜇 can be generated. It should be noted though
that the FSR 𝜔FSR of the frequency comb is not strictly bound to the FSR of
the (cold) microresonator. For example, changes of the pump parameters can
lead to minor changes of the comb FSR14. Still, this work only assumes the
case 𝜔FSR ≈ 𝜔r,FSR (𝜔0) in the explanations of this chapter for simplicity. In
a second step after the initial side-band formation, non-degenerate FWM will
convert two photons with frequencies 𝜔𝜇′ and 𝜔𝜇′′ into two different photons
with frequencies 𝜔𝜇′′′ and 𝜔𝜇′+𝜇′′−𝜇′′′ [11], as shown on the right-hand side
of Fig. 2.3(b). In both FWM processes, the conservation of the total photon
energy must be fulfilled, i.e., ℏ𝜔𝜇′ + ℏ𝜔𝜇′′ = ℏ𝜔𝜇′′′ + ℏ𝜔𝜇′+𝜇′′−𝜇′′′ , where ℏ is
the reduced Planck constant. According to the definition of the frequency comb
frequencies, Eq. (2.3), this is true. The newly generated frequencies have an
equidistant spacing, namely the FSR of the frequency comb. Furthermore, the
conservation of momentum is another perquisite. The photon momenta are gi-
ven as ℏ𝛽

(
𝜔𝜇′

)
, ℏ𝛽

(
𝜔𝜇′′

)
, ℏ𝛽

(
𝜔𝜇′′′

)
and ℏ𝛽

(
𝜔𝜇′+𝜇′′−𝜇′′′

)
, respectively. Using

the resonance condition of the microresonator, see Eq. (2.15), and assuming
𝛽

(
𝜔r,𝜇

)
≈ 𝛽

(
𝜔𝜇

)
∀ 𝜇, the conservation of momentum can be shown:

ℏ𝛽
(
𝜔𝜇′

)
+ ℏ𝛽

(
𝜔𝜇′′

)
− ℏ𝛽

(
𝜔𝜇′′′

)
− ℏ𝛽

(
𝜔𝜇′+𝜇′′−𝜇′′′

)
= ℏ

2𝜋
𝐿MR

(𝜇′ + 𝜇′′ − 𝜇′′′ − (𝜇′ + 𝜇′′ − 𝜇′′′)) = 0. (2.31)

The equidistant spacing of the frequency comb lines 𝜔𝜇 and the dispersion-
induced non-equidistant spacing of the microresonator frequencies15 𝜔r,𝜇 lead
to an increasing mismatch between 𝜔𝜇 and 𝜔r,𝜇 at the outer edges of the
frequency comb, see Fig. 2.3(c). Here, the upper part depicts an optical trans-
mission profile of a microresonator that can be obtained, e. g., by sweeping

14 It should also be noted that it is possible to truly dictate the comb FSR by modulating the
incoming pump with a modulation frequency that equals 𝜔FSR. However, this value still needs
to be close to the FSR 𝜔r,FSR of the microresonator, see, e.g., [71, 72].

15 From here on, the comb line index 𝜇 and the resonance index 𝜈 are set equal, 𝜇 = 𝜈, i.e., the
pumped mode 𝜔0 of the frequency comb is located within the resonance at 𝜔r,0 and every
resonance 𝜔r,𝜇 contains a line of the frequency comb 𝜔𝜇 . The latter is a simplifying assumption
– in practice, the comb lines may be spaced by a multiple of the microresonator FSR, i.e., not
each resonance of the microresonator may contain a Kerr frequency comb line.
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2.2 Kerr comb generators

Figure 2.3: Kerr comb generation in a microresonator. (a) Schematic of the system. A tunable
laser source (TLS) emits CW light with angular frequency 𝜔0 that is coupled into a Kerr-
nonlinear microresonator. Inside the resonator, a frequency comb forms, which is partially coupled
out again. (b) Underlying physical processes. Degenerate and non-degenerate four-wave mixing
(FWM) causes the generation of new frequencies. (c) Bandwidth-limitation of the frequency
comb. Resonance frequencies 𝜔r,𝜈 dictate the spectral positions of microresonator resonances,
as indicated by the microresonator transmission profile (top, gray). In this example, anomalous
dispersion causes an increase of the FSR 𝜔r,FSR with increasing resonance index 𝜈, see Eq. (2.20).
The frequency comb (bottom, red) forms around the pumped mode 𝜔0. Four-wave mixing ensures
that all comb lines have an equidistant spacing 𝜔FSR that is very similar to the microresonator
FSR at the pumped resonance, 𝜔FSR ≈ 𝜔r,FSR. As a result, a mismatch between the comb lines
and the dispersion-dependent resonance frequencies of the microresonator arises that increases for
comb lines further away from the pumped mode. This limits the bandwidth of the frequency comb
generated in the microresonator. In the depicted scheme in (c), this mismatch is exaggerated.

the frequency of the light emitted by the TLS and recording the optical output
power after the microresonator as a function of the TLS frequency16. Notches
in the transmitted power indicate microresonator resonances. In the examp-
le depicted in Fig. 2.3(c), the microresonator exhibits anomalous GVD and
therefore the FSR between the resonances increases with 𝜔, see Eq.(2.20). The
lower part of Fig. 2.3(c) shows the resonance frequencies 𝜔r,𝜇 as thin vertical
gray lines as well as the spectral position of a frequency comb (red) gene-
rated in the microresonator. The increasing mismatch between the resonance

16 The optical output power of the TLS has to be chosen weak enough such that nonlinear optical
effects are not initiated.
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frequencies and the frequency comb lines far off the pumped resonance leads
to decreasing comb line amplitudes and a finite comb bandwidth. With this
qualitative description in mind, two quantitative models for the description of
Kerr frequency combs introduced in the following sections.

Coupled-mode equations

The formation of Kerr combs can be described by a set of coupled equa-
tions covering the evolution of optical modes with slowly varying amplitudes
Er,𝜇 [73, 74]. Each mode corresponds to a continuous-wave electric field that
circulates in a microresonator17. The frequencies of these fields are the reso-
nance frequencies of the microresonator, defined in Eq. (2.21). Various effects
alter the amplitudes Er,𝜇 over time 𝑡, such that Er,𝜇 = Er,𝜇 (𝑡). Over one round-
trip in the microresonator, the modes experience an (amplitude) loss caused
by the microresonator waveguide as well as by the coupling to the bus wave-
guide, and they experience a parametric gain through the Kerr nonlinearity.
The resonator mode 𝜔r,0 is pumped by an external laser source with pump
frequency 𝜔p = 𝜔0, which corresponds to the center line of the frequency
comb. The coupled system of equations for the resonator modes Er,𝜇 (𝑡) of the
“cold” microresonator reads [74]18:

𝑡R
𝜕Er,𝜇 (𝑡)

𝜕𝑡
= − 𝛼𝑖𝐿MR + 𝜃C

2
Er,𝜇 + 𝛿𝜇0

√︁
𝜃C𝑃ine j(𝜔p−𝜔r,0)𝑡

− j𝛾𝐿MR
∑︁
𝜇′,𝜇′′

Er,𝜇′Er,𝜇′′E∗
r,𝜇′+𝜇′′−𝜇

× e j(𝜔r,𝜇′+𝜔r,𝜇′′−𝜔r,𝜇′+𝜇′′−𝜇−𝜔r,𝜇)𝑡 . (2.32)

17 While the individual modes are constant along the microresonator circumference, the superpo-
sition of these modes, introduced in Eq. (2.37) will show spatial variations.

18 In [74], field amplitudes are measured in units of photon numbers instead of
√

W, and the under-
lying electric fields are considered with a negative time dependence exp(−j𝜔𝑡) . The Eqs. (2.32),
described in the supplementary information of [74], have been adapted to be consistent with
the notation used in this work. For this purpose the resonator mode amplitudes 𝐴𝜇 in [74]
are rescaled and complex conjugated according to 𝐴𝜇

√︁
ℏ𝜔𝜇 → √

𝑡RE∗
r,𝜇 . Accordingly, the

phase shift induced by the Kerr nonlinearity changes its sign. Further, the internal decay rate
𝜅0 in [74] accounting for waveguide losses in the microresonator is replaced by 𝛼𝑖𝐿MR/𝑡R and
the coupling rate 𝜅ext accounting for coupling to the bus waveguide is replaced by 𝜃C/𝑡R.
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2.2 Kerr comb generators

In these equations, the first term on the r.h.s. −(𝛼𝑖𝐿MR + 𝜃C)/2 describes the
aforementioned losses in the limit of small 𝛼𝑖𝐿MR ≪ 1 and small 𝜃C ≪ 1, see
also the paragraph following Eq. (2.8) in Section 2.2.1. The second term on
the r.h.s. describes the pump field coupled into the microresonator (input field
power 𝑃in). Here, 𝛿𝜇0 is the Kronecker delta. The third term represents the Kerr
nonlinearity, which causes a coupling of the equations. The time dependence
of Er,𝜇 (𝑡) on the r.h.s. of Eq. (2.32) has been omitted for improved readability.
Since not the electric field amplitudes at the resonance frequencies 𝜔r,𝜇 are of
interest, but the amplitudes at the spectral positions 𝜔𝜇 = 𝜔p + 𝜇 𝜔FSR of the
frequency comb, a phase transformation is applied, that links the frequency
comb amplitudes E

𝜇
(𝑡) with the resonator mode amplitudes Er,𝜇 (𝑡):

E
𝜇
(𝑡) e j(𝜔p+𝜇 𝜔FSR)𝑡 = Er,𝜇 (𝑡) e j𝜔r,𝜇𝑡 ,

E
𝜇
(𝑡) = Er,𝜇 (𝑡) e j(𝜔r,𝜇−𝜔p−𝜇 𝜔FSR)𝑡 . (2.33)

Here, the spectral separation of the frequency comb modes E
𝜇
(𝑡), i.e., the

FSR 𝜔FSR of the comb is assumed to be the FSR 𝜔r,FSR of the microresonator
at the pumped mode. The phase transformation allows to describe the dyna-
mics of the field amplitudes of the frequency comb using the coupled mode
equations, which are defined for fields at the resonance frequencies of the mi-
croresonator. Applying the transformation described in Eq. (2.33) to the field
amplitudes Er,𝜇 (𝑡) in Eq. (2.32) and multiplying the result with the expression
e j(𝜔r,𝜇−𝜔p−𝜇 𝜔FSR)𝑡 yields

𝑡R
𝜕E

𝜇
(𝑡)

𝜕𝑡
= − 𝛼𝑖𝐿MR + 𝜃C

2
E
𝜇
+ j

(
𝜔r,𝜇 − 𝜔p − 𝜇 𝜔FSR

)
𝑡RE𝜇

+ 𝛿𝜇0
√︁
𝜃C𝑃in − j𝛾𝐿MR

∑︁
𝜇′,𝜇′′

E
𝜇′E𝜇′′E∗

𝜇′+𝜇′′−𝜇 . (2.34)

Note that these steps eliminate the explicit time dependence of the nonlinear
terms. The Eqs. (2.34) can be further simplified by using the definition of
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the resonance frequencies 𝜔r,𝜇, see Eq. (2.21). Additionally introducing the
detuning 𝛿0 =

(
𝜔r,0 − 𝜔p

)
𝑡R, the coupled-mode equations (CME) read

𝑡R
𝜕E

𝜇
(𝑡)

𝜕𝑡
= −

(
𝛼𝑖𝐿MR + 𝜃C

2
− j𝛿0

)
E
𝜇
− j

𝛽 (2)𝐿MR
2

(𝜇 𝜔FSR)2 E
𝜇

+ 𝛿𝜇0
√︁
𝜃C𝑃in − j𝛾𝐿MR

∑︁
𝜇′,𝜇′′

E
𝜇′E𝜇′′E∗

𝜇′+𝜇′′−𝜇 . (2.35)

Note that Eq (2.35) relies on a positive time dependence of the form exp( j𝜔𝑡),
which is commonly used in engineering. In contrast to this, most of the literature
on the description of Kerr frequency combs uses a negative time dependence of
the form exp(−j𝜔𝑡). The corresponding coupled-mode equations for an optical
signal with negative time dependence can be obtained by taking the complex
conjugate of Eqs. (2.35):

𝑡R
𝜕E∗

𝜇
(𝑡)

𝜕𝑡
= −

(
𝛼𝑖𝐿MR + 𝜃C

2
+ j𝛿0

)
E∗
𝜇
+ j

𝛽 (2)𝐿MR
2

(𝜇 𝜔FSR)2 E∗
𝜇

+ 𝛿𝜇0
√︁
𝜃C𝑃in + j𝛾𝐿MR

∑︁
𝜇′,𝜇′′

E∗
𝜇′E∗

𝜇′′E𝜇′+𝜇′′−𝜇 . (2.36)

Both versions of the CME allow to compute the evolution of the modes of
a frequency comb in a Kerr-nonlinear microresonator. However, the cubic
nonlinearity becomes computational expensive for an increasing number of
modes. For 𝑁 sidebands and the pumped mode, the number of nonlinear
elements in 𝑁 + 1 equations amounts to ≈ 𝑁3/3 for large 𝑁 ≈ 103, see
second page of the supplementary information in [21]. This results in increasing
computational effort when increasing the number of considered modes [21,73],
unless dedicated algorithms for the time integration of these equations are
used [75].

Instead of considering the CME, it may be more convenient to consider the
evolution of the superposition of the modes E

𝜇
(𝑡). Due to interference, the

amplitude of this superposition will show spatial variations along the mi-
croresonator circumference, which are described using a spatial intracavity
coordinate 𝜏. In literature, this coordinate is also referred to as fast time, even
though it is used as a spatial coordinate. Furthermore, the superposition will
share the dependence on the physical time 𝑡 with the individual modes, which is
also known as slow time in this context. The differentiation of a fast and a slow
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2.2 Kerr comb generators

time refers to the fact that changes of the optical field along the fast-time axis,
i.e., along the microresonator circumference, for at a given point in physical
time, happen much more rapidly compared to changes of the overall optical
field over multiple round-trips in the microresonator, i.e., along slow time19.
For a positive (slow-)time dependence of the electrical fields, the intracavity
field envelope E (𝑡, 𝜏), i.e., the superposition of the individual modes E

𝜇
(𝑡)

described by Eq. (2.35), is given as [76]20:

E (𝑡, 𝜏) =
∑︁
𝜇

E
𝜇
(𝑡) e−j2𝜋𝜇𝜏/𝑡R . (2.37)

When a negative (slow-)time dependence of the electric field is assumed, the
field envelope E∗ (𝑡, 𝜏) of the modes E∗

𝜇
(𝑡) as described by Eqs. (2.36) instead

reads [77]21

E∗ (𝑡, 𝜏) =
∑︁
𝜇

E∗
𝜇
(𝑡) e+j2𝜋𝜇𝜏/𝑡R . (2.38)

In the next section, an equation equivalent to the coupled Eqs. (2.35) and (2.36)
is presented that describes the evolution of E (𝑡, 𝜏).

Lugiato-Lefever equation

The Lugiato-Lefever equation (LLE) is a driven, damped nonlinear Schrödinger
equation (NLSE) commonly used to describe the dynamics of an electric field
circulating in a Kerr-nonlinear microresonator [77]. It was first introduced
by L. Lugiato and R. Lefever to describe a passive nonlinear cavity driven

19 For examples of simulated evolutions of an optical field in a microresonator, see Chapter 4,
Section 4.5. Here, the total range of the fast time, i.e., the microresonator round-trip time, is set
to 10 ps, whereas the slow time spans 72 184 × 626 fs ≈ 45.2 ns to capture the dynamics of the
optical field.

20 See Eq. (4) in [76]. Note however that the formalism and definitions used by the authors [76]
differ from the formalism in this work, and therefore this reference is only mentioned to highlight
the sign of the dependence of E (𝑡 , 𝜏) on the intracavity coordinate. In [76], the optical field
envelope is denoted as A(𝜃, 𝑡) , where 𝜃 is the intracavity coordinate 𝑡 the physical time.
Compared to the theoretical description given in this work, 𝜃 corresponds to 2𝜋𝜏/𝑡R.

21 See Chapter 3 and 4 in [77], in particular Equations (5) and (6), and the text before Eq. (6).
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2 Optical frequency combs

by a coherent stationary field [78]. While the authors do not give a direct
derivation of their equation in [78], it can be obtained through several different
approaches. One is to compute the slow-time temporal derivative 𝜕E (𝑡, 𝜏) /𝜕𝑡
of Eq. (2.37) or (2.38) and then insert the evolution of the individual modes,
Eqs. (2.35) or Eqs. (2.36) [76]. In another ansatz, the LLE can be derived from
a more general framework known as Ikeda map [77].

In the present work, two aspects are considered to derive the LLE. First, the
propagation of the slowly varying envelope E

𝑧
(𝑧, 𝜏) of an optical field in a

straight Kerr-nonlinear waveguide with spatial coordinate 𝑧 is considered via
the NLSE [65]. The NLSE for an electric field with positive time dependence,
see Eq. (2.30), including losses caused by the propagation in the waveguide
reads

𝜕

𝜕𝑧
E
𝑧
(𝑧, 𝜏) = − 𝛼𝑖

2
E
𝑧
(𝑧, 𝜏) + j

𝛽 (2)

2
𝜕2

𝜕𝜏2 E𝑧
(𝑧, 𝜏)

− j𝛾
��E

𝑧
(𝑧, 𝜏)

��2 E
𝑧
(𝑧, 𝜏). (2.39)

The second coordinate 𝜏 = 𝑡 − 𝑧/𝑣g of the field envelope E
𝑧
(𝑧, 𝜏) is a retarded

time frame that describes the (fast) changes of the field envelope. For a given
time 𝑡, it can also be considered as a re-scaled spatial coordinate of the localized
electric field E

𝑧
(𝑧, 𝜏). In the context of Kerr microresonators, this means that

𝜏 is used to describe the variations of the field along the microresonator
circumference, with values of 𝜏 being in the range [0, 𝑡R). The coordinate
𝑧 generally describes the waveguide-position of the field envelope E

𝑧
(𝑧, 𝜏)

moving with group velocity 𝑣g. Therefore, this coordinate is directly linked to
the natural time 𝑡 via 𝑧 = 𝑣g𝑡. In the following, the 𝑧-dependence of the electric
field E

𝑧
(𝑧, 𝜏) is replaced by a dependence on the natural time 𝑡 by setting

E
𝑧
(𝑧, 𝜏) = E(𝑡, 𝜏). For this purpose, Eq. (2.39) is multiplied by 𝑣g 𝑡R = 𝐿MR

and 𝑧 is replaced by 𝑧 = 𝑣g 𝑡, which results in

𝑡R
𝜕

𝜕𝑡
E(𝑡, 𝜏) = − 𝛼𝑖𝐿MR

2
E(𝑡, 𝜏) + j

𝛽 (2)𝐿MR
2

𝜕2

𝜕𝜏2 E(𝑡, 𝜏)

− j𝛾𝐿MR
��E(𝑡, 𝜏)��2 E(𝑡, 𝜏). (2.40)
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2.2 Kerr comb generators

The switched roles of the spatial and the temporal coordinate can also be deri-
ved from the NLSE in the non-retarded time-frame22. The NLSE as represented
in Eq. (2.40) considers linear losses, dispersive and nonlinear effects affecting
the optical field during its propagation in the nonlinear medium, i.e., during its
propagation along the microresonator with circumference 𝐿MR.

The other aspect to consider in the derivation of the LLE is the boundary
condition of the field envelope E(𝑡, 𝜏) at the coupling section. Here, a frac-
tion

√
𝜃C 𝑃in of the pump light is coupled in the microresonator. Further,

the field in the resonator is damped by a factor of
√

1 − 𝜃C in each round-
trip, where 𝜃C ≪ 1, and experiences a phase shift given by the detuning
𝛿0 =

(
𝜔r,0 − 𝜔p

)
𝑡R, where |𝛿0 | ≪ 1. Thus, the field E(𝑡 + 𝑡R, 𝜏) after one

round-trip in the microresonator is related to the previous field E(𝑡, 𝜏) by

E(𝑡 + 𝑡R, 𝜏) =
√︁
𝜃C 𝑃in +

√︁
1 − 𝜃C e j𝛿0E(𝑡, 𝜏)

≈
√︁
𝜃C 𝑃in + (1 − 𝜃C/2 + j𝛿0) E(𝑡, 𝜏). (2.41)

Assuming the field does not change much over one round-trip, one may appro-
ximate E(𝑡 + 𝑡R, 𝜏) − E(𝑡, 𝜏) = 𝑡R 𝜕E(𝑡, 𝜏)/𝜕𝑡 and obtain

𝑡R
𝜕

𝜕𝑡
E(𝑡, 𝜏) =

√︁
𝜃C 𝑃in − (𝜃C/2 − j𝛿0) E(𝑡, 𝜏). (2.42)

In summary, Eq. (2.40) describes the temporal evolution of a field envelope in a
nonlinear waveguide without the consideration of the boundary conditions of a
microresonator, whereas Eq. (2.42) describes the temporal evolution of a field
envelope caused by the boundary conditions in a microresonator neglecting
changes due to the nonlinear waveguide. In reality, both aspects will determine
the temporal evolution of the optical field envelope in parallel. Thus, the full

22 See [68], Eq. (3.116) with 𝛽
(3)
0 = 0 and 𝛽

(0)
0 = 𝛽ref. Introducing a retarded space frame, which

reads 𝑍 = 𝑧 − 𝑣g𝑡 for the notation given in [68] as well as a time variable 𝑇 = 𝑡 in Eq. (3.116)
in [68], leads to a set of terms 𝑣2

g
𝜕2

𝜕𝑍2 𝐴(𝑇, 𝑍) , −2𝑣g
𝜕2

𝜕𝑇 𝜕𝑍
𝐴(𝑇, 𝑍) and 𝜕2

𝜕𝑇2 𝐴(𝑇, 𝑍) . Of
these terms, the first one is significantly larger than the others, therefore the second and the third
term are neglected. Switching to the notation used in this dissertation via 𝑇 → 𝑡 , 𝑍 → 𝑣g𝜏 and
𝐴→ E and multiplying the result by 𝐿MR yields Eq. (2.40).
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2 Optical frequency combs

description of the temporal field evolution is obtained by considering the
physical effects on the r.h.s. of Eqs. (2.40) and (2.42) in a single equation:

𝑡R
𝜕

𝜕𝑡
E(𝑡, 𝜏) =

√︁
𝜃C 𝑃in −

(
𝛼𝑖𝐿MR + 𝜃C

2
− j𝛿0

)
E(𝑡, 𝜏)

+ j
𝛽 (2)𝐿MR

2
𝜕2

𝜕𝜏2 E(𝑡, 𝜏) − j𝛾𝐿MR
��E(𝑡, 𝜏)��2 E(𝑡, 𝜏). (2.43)

Equation (2.43) is valid for electric fields amplitudes with positive time de-
pendence of the form exp( j𝜔𝑡). The well-known Lugiato-Lefever equation
(LLE) is the equivalent equation for electric fields amplitudes with negative
time dependence of the form exp(−j𝜔𝑡). The LLE can be obtained by taking
the complex conjugate of all quantities in Eq. (2.43):

𝑡R
𝜕

𝜕𝑡
E∗ (𝑡, 𝜏) =

√︁
𝜃C 𝑃in −

(
𝛼𝑖𝐿MR + 𝜃C

2
+ j𝛿0

)
E∗ (𝑡, 𝜏)

− j
𝛽 (2)𝐿MR

2
𝜕2

𝜕𝜏2 E
∗ (𝑡, 𝜏) + j𝛾𝐿MR

��E∗ (𝑡, 𝜏)
��2 E∗ (𝑡, 𝜏).

(2.44)

Note that other, mathematically more rigorous procedures as, e. g., in [77]
derive the same LLE. These results validate the assumptions of the simplified
method, which was used to derive the LLE in this work.

Depending on the waveguide material and dimensions, it may be appropriate
to include further effects in this model. Such extensions include higher-order
dispersion terms, Raman-scattering, self-steepening, multi-photon absorption
in conjunction with the generation of free-carriers, the interaction of different
transverse mode families, and temperature effects [25,77,79,80]. In Chapter 4
and Appendix C, the LLE including two-photon absorption and free-carrier
absorption is analyzed in detail. In Section 4.6, the influence of the Raman effect
is also briefly discussed. In absence of consideration of aforementioned effects,
a normalization allows to reduce Eq. (2.44) to its relevant parameters, see
Table 2.1. In this normalization, the natural time (slow time) is normalized to
the photon lifetime of the microresonator. The intracavity coordinate (fast time)
is normalized to the round-trip time of the optical signal in the microresonator,
such that the FSR of the normalized field components is equal to 1. In these
normalized units, the LLE reads
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2.2 Kerr comb generators

Table 2.1: Normalized quantities and substitutions.

Natural time (slow time) 𝑡′ = 𝑡
𝛼𝑖𝐿MR+𝜃C

2𝑡R

Intracavity coordinate (fast time) 𝜏′ = 𝜏 2𝜋
𝑡R

Optical field envelope 𝑎 (𝑡′, 𝜏′) = E∗ (𝑡 , 𝜏)
√︃

2𝛾𝐿MR
𝛼𝑖𝐿MR+𝜃C

Pump power (forcing) 𝐹 = 𝑃in
8𝛾𝐿MR 𝜃C

(𝛼𝑖𝐿MR+𝜃C)3

Detuning 𝜁 = 𝛿0
2

𝛼𝑖𝐿MR+𝜃C
=

(
𝜔r,0 − 𝜔p

) 2𝑡R
𝛼𝑖𝐿MR+𝜃C

Dispersion 𝛽′ = −𝛽 (2) 4𝜋2𝐿MR
(𝛼𝑖𝐿MR+𝜃C)𝑡2

R

𝜕𝑎 (𝑡 ′, 𝜏′)
𝜕𝑡 ′

=
√
𝐹 − (1 + j𝜁) 𝑎 (𝑡 ′, 𝜏′) + j𝛽′

𝜕2

𝜕𝜏′2
𝑎 (𝑡 ′, 𝜏′)

+ j
��𝑎 (𝑡 ′, 𝜏′)

��2 𝑎 (𝑡 ′, 𝜏′) . (2.45)

In the same manner as for the electrical field envelope E∗ (𝑡, 𝜏), the normalized
field envelope in Eq. (2.45) can be written as a superposition of normalized
field modes 𝑎

𝜇
(𝑡), see also Eq. (2.38):

𝑎 (𝑡 ′, 𝜏′) =
∑︁
𝜇

𝑎
𝜇
(𝑡 ′)e j𝜇𝜏′ . (2.46)

Equation (2.45) can be used to derive fundamental insights on Kerr comb
generation. For example, the minimum optical pump power 𝑃in = 𝑃th required
for modulation instability (MI), i.e., for the first step of comb formation, is
an important quantity. In the next section, this onset of comb generation is
discussed using the normalized quantities defined in Table 2.1. An expression
for the normalized threshold pump power 𝐹 = 𝐹th to achieve MI is derived,
which is then converted back into a physical power 𝑃th.
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2 Optical frequency combs

Modulation instability

In materials with suitable nonlinear and dispersive properties, parametric am-
plification can lead to the growth of optical signals due to the presence of a
strong field. In a pumped Kerr-nonlinear microresonator, this parametric gain
may lead to the growth of certain modes 𝑎

𝜇
(𝑡 ′) from quantum noise, if the

power of the (normalized) pumped mode |𝑎0 |2 is high enough and the resulting
parametric gain is larger than the losses of the microresonator. This process,
which is known as modulation instability (MI) [65], is associated with the
degenerate four-wave mixing mentioned at the beginning of Section 2.2.2 and
is the first step of frequency comb formation in microresonators. To find the
conditions for MI, the field envelope is modelled as a superposition of the
pumped mode 𝑎0 and two sidebands 𝑎±𝑀 , 𝑀 = 1, 2, 3 . . . , which may grow
over time 𝑡 ′ [81]:

𝑎 (𝑡 ′, 𝜏′) =𝑎0 + 𝑎+𝑀 (𝑡 ′, 𝜏′) + 𝑎−𝑀 (𝑡 ′, 𝜏′)
=𝑎0 + 𝑎̂+𝑀e 𝑔𝑡′e j𝑀𝜏′ + 𝑎̂−𝑀e 𝑔∗𝑡′e−j𝑀𝜏′ (2.47)

The sidebands may grow exponentially over time, if the real part 𝑔 of the
complex gain parameter 𝑔 = 𝑔+ j𝑔j is positive. The imaginary part 𝑔j describes
a potential movement of the optical field along the fast time scale, for an
example see, e.g., Section 4.5, Figure 4.4. The ansatz described in Eq. (2.47)
can be inserted in Eq. (2.45). Neglecting terms of order 2 or more in 𝑎̂±𝑀 and
sorting terms by their fast time oscillation e j𝑀𝜏′ , e j0 or e−j𝑀𝜏′ yields three
equations:

0 =
√
𝐹 − (1 + j𝜁) 𝑎0 + j

��𝑎0
��2 𝑎0, (2.48)

𝑔𝑎+𝑀 =

[
− (1 + j𝜁) − j𝛽′𝑀2 + j2

��𝑎0
��2] 𝑎+𝑀 + 𝑎2

0 𝑎
∗
−𝑀 , (2.49)

𝑔∗𝑎−𝑀 =

[
− (1 + j𝜁) − j𝛽′𝑀2 + j2

��𝑎0
��2] 𝑎−𝑀 + 𝑎2

0 𝑎
∗
+𝑀 . (2.50)

Equation (2.48) can be used to find an implicit expression for the intracavity
(IC) power 𝐴 =

��𝑎0
��2 of the normalized field 𝑎0 for a given normalized pump

power (forcing) 𝐹 and detuning 𝜁 :

𝐹 =

(
1 + (𝐴 − 𝜁)2

)
𝐴. (2.51)
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It should be noted that it is possible to derive an explicit expression for the
(real-valued, non-negative) IC power 𝐴 by solving the cubic Eq. (2.51) [82],
however, for the scope of this work, these extensive expressions for 𝐴 are not
required. In order to find an expression for the gain parameter 𝑔, Eqs. (2.49)
and (2.50) are considered. Taking the complex conjugate of Eq. (2.50) and
combining it with Eq. (2.49) leads to an eigenvalue problem for 𝑔:(

−1 − j𝜁 − j𝛽′𝑀2 + j2𝐴 𝑎2
0(

𝑎∗0
)2 −1 + j𝜁 + j𝛽′𝑀2 − j2𝐴

) (
𝑎+𝑀
𝑎∗−𝑀

)
= 𝑔

(
𝑎+𝑀
𝑎∗−𝑀

)
.

(2.52)

Solving Eq. (2.52) for the gain parameter 𝑔 yields

𝑔 (𝑀) = −1 ±
√︃
𝐴2 −

(
𝜁 + 𝛽

′
𝑀2 − 2𝐴

)2
. (2.53)

Sideband growth is determined by the condition, that the real part of 𝑔 needs
to be positive. Therefore, the solution of 𝑔 with a negative sign in front of
the square root is not relevant and the expression for the real part of the gain
parameter reads

ℜ{𝑔 (𝑀)} = 𝑔(𝑀) = −1 + ℜ
{√︃

𝐴2 −
(
𝜁 + 𝛽

′
𝑀2 − 2𝐴

)2
}
. (2.54)

The sidebands separated by ±𝑀max from the pumped mode that experience the
highest gain 𝑔(𝑀max) are determined by

𝛽′𝑀2
max = 2𝐴 − 𝜁, (2.55)

𝑔 (𝑀max) = −1 + 𝐴. (2.56)

For the modes located at a separation of ±𝑀max with respect to the pumped
modes, the IC power has to reach at least 𝐴 = 1 for a non-negative gain,
see Eq. (2.56). This requires a minimum threshold forcing 𝐹th = 1 for an
optimized detuning 𝜁 = 𝐴 according to Eq. (2.51). The condition 𝐹th = 1
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allows to compute the physical threshold pump power by back-transforming
𝐹th into a physical power 𝑃th, see Table 2.1, leading to

𝑃th =
(𝛼𝑖𝐿MR + 𝜃C)3

8𝛾𝐿MR𝜃C
. (2.57)

Assuming critical coupling of the microresonator, i.e., 𝛼𝑖𝐿MR = 𝜃C, the ex-
pression for the physical threshold pump power 𝑃th simplifies to

𝑃th =
𝛼2
𝑖
𝐿MR

𝛾
. (2.58)

The threshold pump power depends on the waveguide power loss 𝛼𝑖 , the wave-
guide nonlinearity parameter 𝛾, and on the circumference 𝐿MR of the micro-
resonator. If the power of an external laser source coupled to a microresonator
surpasses 𝑃th, MI may occur and a frequency comb forms. When designing
Kerr comb generators according to the scheme depicted in Fig. 2.3(a), the
available power of a (tunable) pump laser as well as a waveguide technology
defining 𝛼𝑖 and 𝛾 may be predetermined. Then, Eq. (2.58) defines an upper
limit for the microresonator circumference 𝐿MR, since the power of the pump
laser needs to be at least equal to the threshold pump power 𝑃th. Here, addi-
tional losses that may occur between the laser output and the microresonator
need to be taken into account. The maximum value for the circumference will
determine the minimum free spectral range of the Kerr comb. Kerr frequen-
cy combs with an FSR of less than 100 GHz at moderate pump powers were
demonstrated [22, 83, 84].

Besides this estimation of the lower required pump power for modulation
instability, the previous formalism also allows to derive conclusions on the
necessary dispersion, if the power transfer from the pump to the pumped mode,
Eq. (2.51), should be optimum, i.e., 𝜁 = 𝐴. The modes with the highest gain are
then defined by 𝛽′𝑀2

max = 𝐴, see Eq. (2.55). Since 𝑀max and 𝐴 are both positive
numbers, the dispersion parameter 𝛽′ also has to be positive, which corresponds
to anomalous dispersion. In principle, the real part of the gain parameter can
also become positive for normal dispersion 𝛽′ < 0 according to Eq. (2.54), if
the detuning 𝜁 and the forcing 𝐹 are chosen properly. However in practice,
this is usually not possible due to temperature effects [61], for details see
Appendix A. Fabricating waveguides with anomalous dispersion 𝛽′ > 0, small
waveguide losses 𝛼𝑖 and high waveguide nonlinearities 𝛾 is instrumental for
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the development of Kerr comb generators and the development of fabrication
processes of such waveguides has become a research topic on its own [85].

2.2.3 Dissipative Kerr solitons

In Kerr-nonlinear microresonators, different kinds of stationary frequency
combs can be generated23. These combs differ, e. g., in their free spectral range,
which may not only be equivalent to a single FSR 𝜔r,FSR of the microresonator
around the pumped resonance, but also to an integer multiple thereof [86].
Further, the combs can differ in their mutual comb line coherence [86], and
they can differ in their comb envelopes.

A particular important class of Kerr combs are dissipative Kerr solitons (DKS)
[21]. In the time domain, these combs correspond to strongly localized optical
pulses circulating in the microresonator24. Very similar to optical solitons
propagating, e. g., in an optical fiber, these pulses do not change their shape,
spectral composition and time-linear phase relation between the individual
modes over time due to a balance of dispersion and Kerr nonlinearity. However,
the relatively high losses in a microresonator due to waveguide losses and the
coupling between the resonator and the bus waveguide require a constant CW
background that “refreshes” the DKS. This distinguishes DKS from regular
solitons, which may propagate without the need of a CW background signal,
assuming that no relevant loss mechanisms are present. A DKS comb state can
be identified, e. g., by sending the frequency comb out of the microresonator
to a frequency-resolved optical gating (FROG) setup [21], which allows to
reconstruct the temporal shape of ultra-short optical pulses. Another indicator
is the linewidth of an RF-signal that is obtained by detecting the Kerr frequency
comb with a high-speed photodiode. The width of this beat note, which is
spectrally located at a frequency corresponding to the FSR of the comb, may
vary between tens of MHz for non-soliton Kerr combs [21,74] and significantly
less than 1 MHz for soliton comb states [21].

23 Dynamic pump parameters 𝐹 and 𝜁 can also lead to different, non-stationary frequency combs
states. For more information, see Chapter 5.

24 See also Chapter 4, Figs. 4.4(d), 4.5(d) and 4.6(d) for examples of field distributions of soliton
and non-soliton comb states.
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Microresonators support the existence of several DKS circulating in the micro-
resonator at the same time [21]. These comb states are known as multi-soliton
comb states. They can be distinguished and identified by the comb envelope
that depends on the amount of circulating solitons and their distribution to each
other along the microresonator waveguide [21]. A specific class of multi-soliton
states are soliton crystals [87]. In these comb states, multiple solitons are propa-
gating with a defined spatial separation to each other in the microresonator. The
distribution of soliton pulses in soliton crystals is linked to the spectrum of the
overall circulating field. The spectrum depends, amongst other parameters, on
the dispersion of the microresonator. In microresonators, where the waveguide
supports the propagation of multiple waveguide (transversal) eigenmodes, a
coupling of different eigenmodes at certain resonance frequencies will alter
the spectral position of these resonances, which locally alters the dispersion of
the microresonator. This in turn affects the spectrum of the frequency comb
and thereby the distribution of solitons in the microresonator [87].

For many applications, the (bright) single-soliton state is of particular interest,
which features a smooth broadband spectral envelope. In this comb state, only
a single pulse circulates in a microresonator with anomalous dispersion 𝛽′ > 0
(𝛽 (2) < 0). Experimentally, the single soliton state can be obtained by applying
a constant forcing 𝐹 and sweeping the detuning 𝜁 from a blue-detuned value
(𝜁 < 0, 𝜔p > 𝜔r,0) to a final red-detuned value25 (𝜁 > 0, 𝜔p < 𝜔r,0). In the
formalism of the normalized LLE, see Eq. (2.45), the single soliton comb state
𝑎soliton (𝜏′) with a soliton center position 𝜏′0 can be approximated as [21]

𝑎soliton (𝜏
′) ≈ 𝑎0 +

√︁
2𝜁e

j arccos
( √

8𝜁
𝜋
√
𝐹

)
sech

(√︁
𝜁/𝛽′

(
𝜏′ − 𝜏′0

) )
. (2.59)

Here, the CW background 𝑎0 is determined by the detuning 𝜁 and forcing 𝐹,
see Eq. (2.48). The arccos function in the exponent on the r.h.s. of Eq. (2.59)
implies an upper limit for the detuning 𝜁 that still allows for a soliton in the
Kerr-nonlinear microresonator. Specifically, the expression

√︁
8𝜁/(𝜋

√
𝐹) must

not be larger than 1, which leads to a maximum value of the detuning of
𝜁max = 𝜋2𝐹/8 [21].

25 For a simulated example, see Chapter 4, Section 4.5. For a description of an experimental
realization, see Chapter 5 Section 5.2
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2.2 Kerr comb generators

The spectrum of a soliton pulse form consists of a strong peak associated
with the first term on the r.h.s. of Eq. (2.59). The second term on the r.h.s
of Eq. (2.59) determines the remaining part of the comb spectrum, whose
smoothly decaying comb envelope can be computed by a Fourier transform26:��F {

𝑎̂soliton (𝜏
′) − 𝑎0

}
(𝜇)

��2 =2𝜁
���F {

sech
(√︁

𝜁/𝛽′
(
𝜏′ − 𝜏′0

) )}���2
∝ sech2

( 𝜋
2
√︁
𝛽′/𝜁 𝜇

)
. (2.60)

Single solitons can also be obtained for normal dispersion, i.e., 𝛽′ < 0 [61].
In this case, a so-called “dark” soliton forms, which can be thought of as a
a localized drop of the intensity of the field circulating in the microresona-
tor27. In both dispersion cases, a strong localization of the DKS will lead to
a large comb bandwidth, which is a key advantage of DKS combs for num-
erous comb-based applications. These include optical communications based
on wavelength-division multiplexing (WDM) [C1, C2] [J5], frequency syn-
thesis [88], frequency metrology [89], spectroscopy [18], and optical distance
metrology [90] [C3,C4] [J3].

In a laboratory environment, DKS frequency combs can remain stable for
several hours or even weeks [91]. Spontaneous breakdown can be caused, e.g.,
by a drift of the pump light power coupled into the bus waveguide, or by a drift
of the pump laser frequency. It was observed that such a breakdown may be
accompanied by a short, strong increase of the frequency comb power. Such
power spikes can potentially be harmful for optical components when being
amplified by an optical amplifier. While these power spikes occurring during
the breakdown of a soliton are not directly relevant for the results of this work,
a more detailed discussion of them is given in Appendix A, Section A.2.

26 For a numerically computed spectrum, see Chapter 4, Section 4.5. For an experimentally obtai-
ned spectrum with a suppressed mode 𝑎0, see Chapter 5, Section 5.2

27 A detailed discussion of the difference between the two kinds of DKS with emphasis on
practically relevant properties is given in Chapter 3.
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2.3 Quantum-dash mode-locked laser diodes

Following the descriptions of Kerr comb generators in the previous section,
another comb source is introduced in this section: quantum-dash mode-locked
laser diodes (QD-MLLDs). In this work, these comb sources are used for comb-
based distance measurements. Details on the experiment and the MLLDs in
use can be found in Chapter 6.

Quantum-dash mode-locked laser diodes (QD-MLLDs) are chip-scale frequen-
cy comb emitters based on an electrically pumped InAs/InGaAsP quantum-
dash gain medium [92, 93]. They emit frequency combs when a DC (direct
current) is applied, see Fig. 2.4 for a schematic. The active medium, a stack of
InAs quantum-dash layers separated by InGaAsP layers, is indicated as bright
and dark red stripes the MLLD cross-section schematic. Charge carriers of
the applied DC enter the active medium vertically through p-doped InP and
n-doped InP and recombine in the quantum dashes. The current is confined to
the center region of the device by proton implantation (H+) of the surrounding
InP. Varying geometric properties of the QD lead to an inhomogeneous broa-
dening of the gain medium, such that multiple longitudinal mode can oscillate
simultaneously. A combination of a Kerr-nonlinear interaction and cross-gain
modulation leads to strongly correlated phases of the optical tones, similar to
mode-locking, and thereby to the emission of a pulse train, i.e., a frequency
comb [94,95].

The free spectral range of these devices depends on the cavity length. Values
between 10 GHz [96,97] and 300 GHz [98] have been reported [99]. The mean
band-gap of the QD is in the order of 0.8 eV, which results in frequency comb
center frequencies around 1550 nm. The 3-dB gain bandwidth is approximately
10 nm (≈ 1 THz). The small size and the simple operation of QD-MLLDs make
them interesting light sources, e. g., in optical communication links based on
coherent wavelength-division multiplexing (WDM) [C5–C7]. Using MLLDs
as transmitter and the receiver light sources, data transmission rates between 3
and 10 TBit s−1 were demonstrated [J6, J7].

This concludes the introduction on integrated frequency comb sources in this
work. In the next section, different techniques for optical ranging are discussed,
which is an important application field for optical frequency combs.
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Figure 2.4: Schematic of quantum-dash mode-locked laser diodes (QD-MLLDs). QD-MLLDs
emit frequency combs by applying a DC. The DC crosses the device vertically through a top-
and a bottom contact, indicated as orange bars in the MLLD cross-section schematic. Proton (H+)
implantation in InP restricts the current flow to the center region. There, radiative recombination
occurs in the gain-medium, indicated as a stack of horizontal red lines (QD-InAs / InGaAsP).

2.4 Application of frequency combs in optical
ranging

An important application for optical frequency combs is optical distance metro-
logy, generally known as light detection and ranging (LiDAR). Optical ranging
systems (ORS) emit light towards a target, which is then reflected back from the
target surface to the ORS. Typical application scenarios comprise environment
detection by autonomously navigating vehicles [100], terrestrial laser scanning
of the earth surface [101], as well as 3D object scanning [102]. Depending on
the type of ORS, further information on the target can be retrieved in addi-
tion to the distance, such as the reflectivity [103] or its speed relative to the
ORS [104].
In this work, the determination of distances using integrated frequency comb
sources is investigated. In particular, a measurement scheme known as dual-
comb synthetic wavelength interferometry is used. It is described in the next
section along with other LiDAR measurement techniques.

2.4.1 Optical ranging techniques

Optical ranging can be performed using many different techniques [105]. This
section discusses most basic variants as well as the one used in this work.
For other methods using for example intensity-based, confocal or triangulation
sensors see, e. g., [105]. A noteworthy method, though not relevant for this
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work, is frequency-modulated continuous-wave (FMCW) LiDAR [104], where
the integration of subsystems into photonic integrated circuits has already been
demonstrated [106].

Time-of-flight techniques

Time-of-flight (ToF) techniques are some of the most common distance me-
asurement schemes [105]. In most instances, a ranging system based on ToF
emits short laser pulses. These pulses are reflected and/or scattered by the
target, and a small fraction of the returning light is detected by a photodetector
at the ORS. The time delay Δ𝑡 between the emission of a specific pulse and the
detection of the reflected light is related to the target distance 𝑑 via

2𝑑 = Δ𝑡 𝑐0/𝑛g,air. (2.61)

The refractive index of air 𝑛air has almost no dispersion28, such that one
can approximate the group refractive index as 𝑛g,air ≈ 𝑛air and therefore
𝑑 = Δ𝑡 𝑐0/(2𝑛air). Today, time of flight sensors are well established, and com-
mercially available as ToF cameras using different versions of the underlying
approach. Flash LiDAR systems [108] emit light to all points of an area to
be scanned in parallel and detect the returning light with a CCD camera chip,
which reduces or eliminates the need for mechanically moving components.
Such systems can be then improved by making use of shuttered sensors [109].

Interferometry

The most basic interferometric ORS is the Michelson interferometer, see Figu-
re 2.5 for a fiber-based schematic. Here, light of a CW laser with frequency 𝜔0
(vacuum wavelength 𝜆 = 2𝜋𝑐0/𝜔0) is split in two parts at a 50/50 coupler. One
part is sent to the upper collimator (COL) and reaches a reference target after
traversing a distance 𝑑ref. The other part is sent towards the target of interest
located at a distance 𝑑 via a second collimator. The light reflected from both the
target and the reference is superimposed again at the 50/50 coupler and guided

28 In a wavelength range of 400 nm to 1600 nm, the GVD parameter of air has a value of less than
0.05 ps2/km [107].
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2.4 Application of frequency combs in optical ranging

Figure 2.5: Schematic of a fiber-based Michelson interferometer. A laser emits monochromatic
light, which is split into two parts at 50/50 coupler. One part is guided towards the upper collimator
(COL) and sent towards a reference mirror, while the other part reaches the target through the
lower collimator. Both parts are reflected and combined again at the 50/50 coupler before reaching
a photodetector (PD). The path length difference between the reference path length 𝑑ref and the
distance 𝑑 of the target determine the signal reaching the PD.

to a photodetector (PD). On the two free-space paths, light will accumulate a
phase of

Φ𝜔0 ,meas = 2𝑑
𝜔0𝑛air
𝑐0

= 2𝜋
2𝑑𝑛air
𝜆

, and (2.62)

Φ𝜔0 ,ref = 2𝑑ref
𝜔0𝑛air
𝑐0

= 2𝜋
2𝑑ref𝑛air

𝜆
. (2.63)

Note that this description neglects phase accumulated by the optical signals
in optical fibers as well as when passing the 50/50 coupler for simplicity.
Assuming that the optical losses on both signal propagation paths are the
same, the power 𝑃(𝑑, 𝑑ref) of the optical field on the photodetector is given by
the phase difference 𝛿Φ𝜔0 according to

𝑃(𝑑, 𝑑ref) = 𝑃max cos2 (
𝛿Φ𝜔0/2

)
, (2.64)

𝛿Φ𝜔0 = Φ𝜔0 ,meas −Φ𝜔0 ,ref

= 2(𝑑 − 𝑑ref)
𝜔0𝑛air
𝑐0

= 2𝜋
2(𝑑 − 𝑑ref)𝑛air

𝜆
, (2.65)

𝑑 − 𝑑ref =
𝜆

2𝑛air

𝛿Φ𝜔0

2𝜋
. (2.66)

Here, 𝑃max is the maximum power. Relative changes of 𝑑 with respect to 𝑑ref
can be detected by monitoring the photodetector current that is proportional to
𝑃(𝑑, 𝑑ref).
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This basic configuration comes with a couple of drawbacks. First, changes of the
target distance can only be determined unambiguously within the unambiguity
distance 𝑑ua of the interferometric ORS. The measurement range is limited by
the fact that the phase difference 𝛿Φ𝜔0, see Eq. (2.65), can only be determined
up to a multiple of 2𝜋 by monitoring changes of the power 𝑃(𝑑, 𝑑ref). As a
result, the unambiguity distance is given by

𝑑ua =
𝜆

2𝑛air
. (2.67)

Here, 𝜆 is the vacuum wavelength. For ORS operated at wavelengths around
1550 nm, this translates into unambiguity distances of less than 1 𝜇m, which
limits the use of such an ORS in many applications.

Another drawback is the dependence of the sensitivity d𝑃/d𝑑 of the ORS on the
distance difference 𝑑 − 𝑑ref. The sensitivity will be low at points near construc-
tive or destructive interference. The measurement sensitivity also depends on
the difference of losses along the two light paths. If the signals returning from
the reference and the target have different power, they cannot interfere comple-
tely in a constructive or destructive manner. Formally this can be expressed as
an additional constant term on the r.h.s. of Eq. (2.64). Since there is an upper
limit for the detectable power, this constant offset will reduce the effectively
available power measurement range and thereby the measurement sensitivity.
Furthermore, even if these phase changes can be determined precisely, the
determination of 𝑑 − 𝑑ref requires a precise knowledge of the optical frequen-
cy 𝜔0 that is usually not available. Finally, the measurable length difference
2(𝑑 − 𝑑ref) is limited by the coherence time of the laser29.

While these aspects limit the performance of such an ORS, very small changes
of the target position can still be determined. For example, a mirror setup can be
implemented, such that the measurement beam is reflected between the target
mirror and a mirror belonging to the ORS multiple times before reentering
the ORS, see Fig. 1 in [111]. Changes of the target position will then lead to
a change of the measured displacement, that is roughly proportional to the
number of reflections30. Dividing the measured distance change by the number
of reflections yields the actual target displacement, of which changes on a pm-

29 It should be noted though that fiber lasers can achieve coherence lengths of several km [110].
30 In [111], 100 reflections between a target mirror and a static mirror were used.
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scale can be determined. Achieving such a resolution with a ToF techniques as
described in the previous subsection is not possible.

Heterodyne synthetic wavelength interferometry

Synthetic wavelength interferometry (SWI) [112] allows to overcome some of
the drawbacks of basic interferometry as described above. In such a scheme,
instead of one CW laser, multiple lasers with different optical frequencies are
used. In the following, SWI using two lasers [113] is explained.

Figure 2.6 depicts a fiber-optic SWI setup scheme relying on heterodyne detec-
tion to recover the phase information required for the distance determination of
the target. In this configuration, light of two signal (SI) lasers with frequencies
𝜔0 and 𝜔0 + Δ𝜔 is superimposed and split again at a 50/50 coupler. The light
emitted at one output of the 50/50 coupler is directly guided to a balanced
photodetector (BDref). The traversed distance is associated with 2𝑑ref. The
light at the second output of the 50/50 coupler is sent to the target through a
collimator (COL), reflected and received by a second balanced photodetector
(BDmeas). Here, the total covered distance amounts to 2𝑑. On the two photo-
detectors, the optical signals of the signal lasers are superimposed with light
of two other lasers acting as local oscillators (LO) with frequencies 𝜔LO,0
and 𝜔LO,0 + Δ𝜔LO, respectively. The detection of the superimposed optical
signals by the photodetectors generates mixing products at RF frequencies��𝜔0 − 𝜔LO,0

�� and
��𝜔0 + Δ𝜔 − (𝜔LO,0 + Δ𝜔LO)

�� 31. The phases of these RF si-
gnals on the respective photodetector contain the phases Φ𝜔0 ,ref, Φ𝜔0+Δ𝜔,ref,
Φ𝜔0 ,meas and Φ𝜔0+Δ𝜔,meas as defined in Eqs. (2.62) and (2.63), which can be
used to compute the phase differences 𝛿Φ𝜔0 and 𝛿Φ𝜔0+Δ𝜔 , see Eq. (2.65)32.
The phase differences 𝛿Φ𝜔0 and 𝛿Φ𝜔0+Δ𝜔 are linked to the distance difference
𝑑 − 𝑑ref according to

31 Other mixing products are neglected here for simplicity.
32 This description does not consider the impact of the LO laser phases on the measured phases at

the photodetectors for simplicity. A full description can be found in Appendix D, Section D.1

45



2 Optical frequency combs

Figure 2.6: Schematic of a fiber-based ORS with synthetic wavelength and heterodyne detection.
Light of two signal (SI) lasers with frequencies 𝜔0 and 𝜔0 + Δ𝜔 is combined and split at a
50/50 coupler. The light of one output of the 50/50 coupler is guided to a reference balanced
photodetector (BDref) over a distance corresponding to 2𝑑ref. The light at the other output passes
a second coupler, is then sent to the target by a collimator, reflected at the target and guided to a
second balanced photodetector (BDmeas). On the photodetectors, the optical signals of the two SI
lasers are superimposed with two lasers acting as local oscillators (LO) that allow for heterodyne
coherent detection of the accumulated phases Φ𝜔0 ,ref, Φ𝜔0+Δ𝜔,ref, Φ𝜔0 ,meas and Φ𝜔0+Δ𝜔,meas.

𝑑 − 𝑑ref =
1
2
𝛿Φ𝜔0

𝜔0

𝑐0
𝑛air

, (2.68)

𝑑 − 𝑑ref =
1
2
𝛿Φ𝜔0+Δ𝜔
𝜔0 + Δ𝜔

𝑐0
𝑛air

. (2.69)

These two equations can be combined into a single expression for the distance
difference 𝑑 − 𝑑ref, which reads

𝑑 − 𝑑ref =
1
2
𝛿Φ𝜔0+Δ𝜔 − 𝛿Φ𝜔0

Δ𝜔

𝑐0
𝑛air

=
ΛS

2𝑛air

𝛿Φ𝜔0+Δ𝜔 − 𝛿Φ𝜔0

2𝜋
, (2.70)

ΛS =
2𝜋𝑐0
Δ𝜔

. (2.71)

Here the synthetic wavelength ΛS was introduced. Comparing Eqs. (2.66) and
(2.70), one can see that the synthetic wavelength of an SWI ranging system
corresponds to the optical wavelength in a single-wavelength interferometric
ranging system. Using two lasers for interference-based distance measure-
ments offers several advantages. First, the synthetic wavelength and thereby
the unambiguity distance 𝑑ua = ΛS/(2𝑛air), see Eq. (2.67), is usually orders
of magnitude larger compared to single-color interferometry. Second, the fre-
quency difference Δ𝜔, i.e., ΛS can be measured with high precision relatively
easy by using high-speed electronics, if Δ𝜔 is in the range of up to tens of
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gigahertz. However, the increased measurement range also implies that uncer-
tainties of measured phase differences 𝛿Φ𝜔0+Δ𝜔 − 𝛿Φ𝜔0 will result in larger
absolute distance errors.

2.4.2 Comb-based synthetic wavelength interferometry

The dual-color measurement principle described in the previous section can
be extended to 𝑁b = 10 . . . 100 comb lines of an optical frequency comb, see
also Appendix D, Section D.1 for a more rigorous description. In this case, the
SI lasers as well as the LO lasers in the setup depicted in Fig. 2.6 are each
replaced by an optical frequency comb source [20, 114]. The frequencies of
the signal comb reaching the target are given by 𝜔SI,𝜇 = 𝜔SI,0 + 𝜇𝜔SI,FSR, see
also Eq. (2.3). The frequencies of the LO comb should be chosen such that the
RF signals generated at the photodetectors BDref and BDmeas, see Fig. 2.6, are
located at detectable frequencies. Furthermore, the FSR of the LO comb needs
to differ from the FSR of the SI comb, since otherwise the corresponding
RF signals spectrally overlap and a phase readout of the individual phase
differences 𝛿Φ is not possible, for details see Appendix D, Section D.1. In the
following, the phase difference of the 𝜇th comb line is denoted as 𝛿Φ𝜇. It is
related to the distance difference 𝑑−𝑑ref, as described in Eqs. (2.68) and (2.69),
via

𝑑 − 𝑑ref =
1
2

𝛿Φ𝜇

𝜔0 + 𝜇𝜔SI,FSR

𝑐0
𝑛air

,

𝛿Φ𝜇 = 𝜇𝜔SI,FSR
𝑛air
𝑐0

2 (𝑑 − 𝑑ref) + 𝜔0
𝑛air
𝑐0

2 (𝑑 − 𝑑ref)

= 𝐷 (𝑑, 𝑑ref) 𝜇 + 𝜔0
𝑛air
𝑐0

2 (𝑑 − 𝑑ref) . (2.72)

The distance difference 𝑑 − 𝑑ref can be determined by fitting a straight line
to a set of measured phase differences 𝛿Φ𝜇 over the comb line index 𝜇. The
slope parameter 𝐷 (𝑑, 𝑑ref) = 𝜔SI,FSR

𝑛air
𝑐0

2 (𝑑 − 𝑑ref) of the fit contains the
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distance information. The unambiguity range is given by the fact that the slope
𝐷 (𝑑, 𝑑ref) can only be determined up to a multiple of 2𝜋, which results in

𝑑ua =
1
2

2𝜋
𝜔SI,FSR

𝑐0
𝑛air

=
ΛS

2𝑛air
, (2.73)

ΛS =
2𝜋𝑐0
𝜔SI,FSR

. (2.74)

Dispersion in the setup-internal optical paths induces additional phase contri-
butions to the phases on the measurement detector Φ𝜇,meas and the reference
detector Φ𝜇,ref, which may not necessarily be equal. As a result, the phase dif-
ferences 𝛿Φ𝜇 may be impaired by the dispersion in the ranging system, which
results in a nonlinear relation of the phase differences 𝛿Φ𝜇 and the comb line
index 𝜇, see Appendix D, Section D.4 for details. This will disturb a linear fit
used to retrieve the distance information. By performing an additional calibra-
tion measurement, these dispersion effects can be mitigated, see Section D.1,
Eq. (D.13). This may become necessary, when the optical frequency combs
cover large optical bandwidths and setup-internal (fiber) path-lengths are not
matched perfectly. While this adds additional effort to the ranging method,
the usage of optical frequency combs in synthetic wavelength interferometry
is still extremely promising, since the achievable precision can be improved
greatly. By determining the slope parameter 𝐷 (𝑑, 𝑑ref) not only for two, but
for 100 phase differences 𝛿Φ𝜇, the associated distance information becomes
much more resilient against, e.g., electronic noise in the receiver circuits.
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3 Bandwidth and conversion
efficiency analysis of dissipative
Kerr soliton frequency combs
based on bifurcation theory

In this chapter, an analysis of the bandwidth and power conversion efficiency
of dissipative Kerr soliton combs based on bifurcation theory and numerical
continuation is described. The content of this chapter has been published in
Physical Review A [J1] and was adapted to fit the layout, structure and notation
of this dissertation. Supplementary information can be found in Appendix B
and further mathematical details in [115]. This chapter assumes a negative time
dependence of the optical signal of the form exp(−j𝜔𝑡).

J. Gärtner and R. Mandel developed the bifurcation analysis for the Lugiato-
Lefever equation and investigated soliton frequency comb states along bifur-
cation branches, see Sections 3.2, 3.3 and Appendices B.1, B.2 and B.5. The
author of this dissertation developed the idea of exploiting these tools for
studying conversion efficiency of Kerr-soliton comb generators and develo-
ped the associated metrics such as bandwidth and conversion efficiency, see
Section 3.4. Based on these metrics, J. Gärtner characterized the soliton fre-
quency combs quantitatively, see Section 3.4. The author of this dissertation
then translated the results into physical quantities, see Appendices B.3 and B.4.
The author wrote Appendices B.3 and B.4 and contributed substantial parts of
Sections 3.4, and 3.5. The work was jointly supervised by T. Jahnke, W. Rei-
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Dissipative Kerr soliton frequency combs generated in high-Q microresona-
tors may unlock novel perspectives in a variety of applications and crucially
rely on quantitative models for systematic device design. Here, we present a
global bifurcation study of the Lugiato-Lefever equation which describes Kerr
comb formation. Our study allows systematic investigation of stationary comb
states over a wide range of technically relevant parameters. Quantifying key
performance parameters of bright and dark-soliton combs, our findings may
serve as a design guideline for Kerr comb generators.

3.1 Introduction and main results

Kerr frequency combs have the potential to revolutionize a variety of appli-
cations such as high-speed data transmission [14, 116] [J5], high-precision
optical ranging [90] [J3] and spectroscopy, [18] as well as highly accurate
optical frequency synthesis [88]. Kerr frequency combs stand out due to their
high optical bandwidth that may exceed an octave of frequencies, narrow li-
newidths down to 1 kHz, and large line spacings of tens of GHz [12, 23, 117].
Moreover, Kerr comb generators feature a small footprint and are amenable
to efficient wafer-level mass production, thereby paving the path to large-scale
industrial deployment. On a physical level, Kerr comb generators rely on third-
order nonlinear interaction in high-Q microresonators that are pumped by a
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continuous-wave (CW) laser [11]. Under appropriate pump conditions, cas-
caded degenerate and non-degenerate four-wave mixing can lead to a soliton
waveform that circulates in the cavity, balancing self-phase modulation and
dispersion, as well as cavity loss and parametric gain [21]. These dissipative
Kerr soliton combs consist of strictly equidistant phase-locked optical tones
and stand out due to smooth spectral envelopes and extraordinary robustness
with respect to variations of the pump conditions.
Mathematically, Kerr frequency comb generators are represented by nonlinear
systems with rather complex dynamics. Systematic design and theory-guided
improvement of Kerr comb sources therefore require reliable mathematical
models that cover practically relevant parameter spaces and that combine in-
tuitive qualitative understanding with quantitatively correct predictions of the
behavior of the nonlinear system. Kerr comb dynamics are described by the
Lugiato-Lefever equation (LLE), a damped, driven and detuned nonlinear
Schrödinger equation [78, 118, 119]. The LLE has been extensively studied,
using, e.g., numerical simulations of the temporal comb formation dynamics,
which have reached remarkable accuracy in predicting and explaining experi-
mental results [120, 121]. However, time-domain integration of the LLE only
allows to access specific comb states that strongly depend on the individual
device parameters as well as on the complex interplay of the initial conditi-
ons and the time-dependent tuning of the pump. Specifically, time-integration
techniques do not permit us to globally study the variety of different stationary
Kerr comb states that can be accessed by exploiting the full range of techni-
cally accessible device and operation parameters. This gap can be closed by
bifurcation analysis, which allows us to investigate the structure of stationary
solutions and to obtain qualitative as well as quantitative insights. So far, sta-
tionary states of the LLE have been mainly investigated by local bifurcation
analysis [118, 119, 122–128], focusing on states in the vicinity of the trivial
LLE solution that consists of a single CW tone at the pumped resonance. Glo-
bal aspects, in particular, concerning the snaking behavior of solution branches
are discussed in Refs. [119,123,124] and, recently, a rigorous stability analysis
of stationary states closing the gap between linearized stability and nonlinear
stability was achieved in Ref. [129]. These methods revealed a large variety of
comb states, and were partially extended via numerical continuation methods
to regions further away from the trivial state where solitons occur. However, a
global study that identifies pronounced soliton states and favorable operation
regimes across the full range of technical accessible device and operation pa-
rameters has not been presented so far.
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In this chapter, we present a global bifurcation study of the LLE, covering a
large space of technically accessible parameters. Our analysis comprises bo-
th bright-soliton (BSO) states in resonators with anomalous group-velocity
dispersion (GVD) [21] as well as dark-soliton (DSO) states that form in the
presence of normal GVD [130]. For both types of combs, we classify branches
associated with single and multi-soliton states and characterize single-soliton
states by their optical bandwidth as well as by the pump-to-comb power transfer
efficiency. Our bifurcation analysis hence allows determining and systematical-
ly optimizing the performance of Kerr comb generators in integrated photonic
systems, which is of significant importance for industrial adoption of these
devices. This chapter is organized as follows: In Sec. 3.2, we introduce the
LLE and derive sufficient conditions for bifurcations from the trivial state. In
Sec. 3.3, we identify bifurcation branches leading to single-soliton states and
investigate the behavior of the soliton and its characteristics along these bran-
ches. Section 3.4 is dedicated to a quantitative characterization of single-soliton
frequency combs using the bandwidth and the power conversion efficiency as
performance metrics. Mathematical details and derivations can be found in
Appendices B.1– B.5.

3.2 Bifurcation analysis for the Lugiato-Lefever
equation

We start our our analysis from the LLE,

j
𝜕

𝜕𝑡 ′
𝑎 = −𝛽′ 𝜕2

𝜕𝜏′2
𝑎 − (j − 𝜁)𝑎 − |𝑎 |2𝑎 + j

√
𝐹 (3.1)

and its stationary version,

−𝛽′ 𝜕2

𝜕𝜏′2
𝑎 − (j − 𝜁)𝑎 − |𝑎 |2𝑎 + j

√
𝐹 = 0. (3.2)

Here, 𝑎(𝑡 ′, 𝜏′) represents the optical intracavity field as a function of norma-
lized time 𝑡 ′ and angular position 𝜏′ ∈ [0, 2𝜋] within the cavity. Hence 𝑎 is
2𝜋-periodic with respect to 𝜏′. Moreover, 𝛽′ is the GVD parameter, and 𝜁 the
detuning of the input pump laser as a free real-valued parameter. The forcing√
𝐹 corresponds to the amplitude of the optical driving field. Relations that
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connect the normalized quantities 𝛽′, 𝜁 ,
√
𝐹 to their physical counterparts can

be found in Appendix B.4. In the following, we consider 2𝜋-periodic solutions
𝑎 of Eq. (3.2), which feature even symmetry about 𝜏′ = 𝜋 and therefore fulfill
the Neumann boundary conditions:

𝜕𝑎

𝜕𝜏′
(0) =

𝜕𝑎

𝜕𝜏′
(𝜋) = 0. (3.3)

Thus, from now on we restrict our attention to functions 𝑎 : [0, 2𝜋] → C, which
satisfy Eq. (3.2) on [0, 𝜋] together with Eq. (3.3) and are evenly reflected around
𝜏′ = 𝜋. In Fourier modes, the solution is represented as 𝑎(𝜏′) = ∑

𝜇∈Z 𝑎𝜇e j𝜇𝜏′

with 𝑎−𝜇 = 𝑎
𝜇
. The intracavity power of the field is given by the square of

the 𝐿2-norm ∥𝑎∥2
2 :=

∑
𝜇∈Z |𝑎𝜇 |2. There are trivial solutions 𝑎0 of Eqs. (3.2)

and (3.3) which are complex constants. Let us assume that the trivial solution
𝑎0 can be parametrized (locally) as 𝑎0 = 𝑎0 (𝜁).1 As an example, the curve
(𝜁, 𝑎0 (𝜁)) of constant solutions is shown in black for

√
𝐹 = 2 in Fig. 3.1(a) in

the case of anomalous dispersion (𝛽′ = 0.1) and in Fig. 3.2(a) in the case of
normal dispersion (𝛽′ = −0.1). For each 𝜁 , the squared 𝐿2-norm of 𝑎0 (𝜁) is
plotted.2 Note that three different constant solutions exist for certain values of 𝜁 .
Nontrivial solutions associated with frequency combs may arise from the curve
of trivial solutions at bifurcation points, which can be defined in the simplest
form applicable for our purposes as follows: A point 𝑃 = (𝜁0, 𝑎0 (𝜁0)) ∈ R × C
on the trivial curve is called a bifurcation point for Eqs. (3.2) and (3.3) if there
exists a second curve (𝜁𝑝 , 𝑎𝑝

) of solutions of Eqs. (3.2) and (3.3), which is
parameterized by 𝑝 in some interval and crosses transversally the trivial curve
at 𝑃.

1 This assumption is for simplicity of the presentation. It fails only at the turning points of
the trivial curve, which does not lead to any undesirable effect. Other parametrizations 𝜁0 =

𝜁0 (𝑝1) = 𝐹 (1 − 𝑝2
1 ) + 𝑝1/(1 − 𝑝2

1 )
1/2, 𝑎0 = 𝑎0 (𝑝1) =

√
𝐹 (1 − 𝑝2

1 ) − j
√
𝐹𝑝1 (1 − 𝑝2

1 )
1/2

with 𝑝1 ∈ (−1, 1) are also possible, cf. Ref. [125].
2 In all figures, units on axes are dimensionless.
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Figure 3.1: Bifurcation maps and nontrivial comb states for bright solitons in anomalous-dispersion
(𝛽′ > 0) microresonators. Quantities on axes are dimensionless. (a) Bifurcation map of the LLE
for

√
𝐹 = 2 and 𝛽′ = 0.1, indicating the normalized intracavity power

����𝑎����22 vs. the normalized
detuning 𝜁 . The constant solution is indicated in black, the single soliton state bifurcation branch
(𝜅 = 1) in red, while blue corresponds to other bifurcation branches of multisoliton states with
𝜅 = 2, . . . , 8 pulses circulating in the cavity. Circles indicate bifurcation points. (b) Spatial power
distribution as a function of normalized intracavity position 𝜏′ of single-soliton states correspon-
ding to points A, B, and to the turning point C indicated in (a). (c) Spectral power distribution of
single-soliton states corresponding to points A, B, and to the turning point C indicated in (a). Note
that for illustrative purposes, a relatively low forcing

√
𝐹 = 2 was chosen, resulting in a quick drop

of the power of spectral modes further away from the pump. Here the bifurcation-and-continuation
method is sufficiently precise to correctly predict spectral components which are more than 150 dB
below the pump, hence safely covering technical relevant power ranges.
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Figure 3.2: Bifurcation maps and nontrivial comb states for dark solitons in normal-dispersion
microresonators (𝛽′ < 0). Quantities on axes are dimensionless. (a) Bifurcation map of the LLE
for

√
𝐹 = 2 and 𝛽′ = −0.1, indicating the normalized intracavity power

����𝑎����22 vs. the normalized
detuning 𝜁 . The constant solution is indicated in black, the single soliton state bifurcation branch
in red, while blue corresponds to other bifurcation branches. Circles indicate bifurcation points.
(b) Spatial power distribution as a function of normalized intracavity position 𝜏′ of single-soliton
states corresponding to points D, E, and to the turning point F indicated in (a). (c) Spectral
power distribution of single-soliton states corresponding to points D, E, and to the turning point F
indicated in (a).

The structure of the solution set near (𝜁0, 𝑎0 (𝜁0)) depends on the properties of
the linearized operator 𝐿̂, defined by

𝐿̂𝑎
𝜙

:= − 𝛽′
𝜕2

𝜕𝜏′2
𝑎
𝜙
− (j − 𝜁0)𝑎𝜙

− 2|𝑎0 |
2𝑎

𝜙
− 𝑎2

0𝑎̄𝜙
, (3.4a)

𝜕𝑎
𝜙

𝜕𝜏′
(0) =

𝜕𝑎
𝜙

𝜕𝜏′
(𝜋) = 0, (3.4b)
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where we write 𝑎0 instead of 𝑎0 (𝜁0). The spectrum of 𝐿̂ consists of countably
many complex eigenvalues whose real parts tend to +∞ in the case 𝛽′ > 0 and
to −∞ in the case 𝛽′ < 0. This can be shown via Fourier series expansion as in
Ref. [125], Proposition 4.3. Because of the implicit function theorem, cf. Ref.
[131], Theorem I.1.1, nontrivial solutions can only bifurcate from the trivial
branch at (𝜁0, 𝑎0 (𝜁0)) if the kernel Ker 𝐿̂ = {𝑎

𝜙
: 𝐿̂𝑎

𝜙
= 0, 𝜕𝑎

𝜙
(0)/𝜕𝜏′ =

𝜕𝑎
𝜙
(𝜋)/𝜕𝜏′ = 0} is at least one-dimensional. This is the case provided that

there is an integer 𝜇 ∈ N such that

(𝜁0 + 𝛽′𝜇2)2 − 4|𝑎0 (𝜁0) |2 (𝜁0 + 𝛽′𝜇2) + 1 + 3|𝑎0 (𝜁0) |4 = 0. (3.5)

Solving Eq. (3.5) yields

𝜇1,2 :=

√√√
2|𝑎0 (𝜁0) |2 − 𝜁0 ±

√︃
|𝑎0 (𝜁0) |4 − 1

𝛽′
. (3.6)

For details on the derivation of Eqs. (3.5) and (3.6), see Appendix B.1. The wave
number 𝜇1,2 obtained by evaluating the expression on the right side of Eq. (3.6)
defines the angular periodicity 2𝜋/𝜇1,2, after which the nontrivial comb state in
the vicinity of the bifurcation point repeats itself, i.e., 𝑎(𝜏′) = 𝑎(𝜏′+2𝜋/𝜇1,2).
Equations (3.5) and (3.6) naturally occur in bifurcation studies of Eq. (3.2). In
Refs. [118, 119, 123, 128], for instance, bifurcations are considered from the
point of view of spatial dynamics both for normal and anomalous dispersion,
and parameter regimes are determined where Turing patterns as well as 1-
soliton states bifurcate from trivial solutions. In Ref. [124], a similar approach
is taken to study bifurcation of DSOs from trivial solutions in the normal-
dispersion regime. In most of these works, local bifurcations from the trivial
solution family are determined analytically and a numerical global bifurcation
analysis is performed for periodic solutions (cf. Refs. [119, 123, 124, 128]).
Typically, the forcing parameter

√
𝐹 is taken as the bifurcation parameter. In

contrast, we study global bifurcations of 2𝜋-periodic solutions with respect to
the detuning 𝜁 , whose physically accessible parameter space is usually larger
than the parameter space for

√
𝐹. Our central goal is the localization of the

most pronounced 1-solitons in the global bifurcation picture. With the help
of Eq. (3.6), we can formulate the following bifurcation result, which explains
under what conditions bifurcations from the line of trivial solutions occur:
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3.2 Bifurcation analysis for the Lugiato-Lefever equation

For a point 𝑃 = (𝜁0, 𝑎0 (𝜁0)) on the curve of trivial solutions, the following is
true:

(i) If exactly one of the two numbers 𝜇1,2 from Eq. (3.6) is an integer and if
the transversality condition

2|𝑎0 (𝜁0) |4 ( |𝑎0 (𝜁0) |2 − 𝜁0)

∓ (1 + 𝜁2
0 − |𝑎0 (𝜁0) |4)

√︃
|𝑎0 (𝜁0) |4 − 1 ≠ 0 (3.7)

holds with “−” if 𝜇1 ∈ N and “+” if 𝜇2 ∈ N, then P is a bifurcation
point for Eqs. (3.2) and (3.3).

(ii) If neither 𝜇1 nor 𝜇2 is an integer, then 𝑃 is not a bifurcation point
for Eqs. (3.2) and (3.3), and near 𝑃 only trivial solutions of Eqs. (3.2)
and (3.3) exist.

In the remaining cases, where either the condition from Eq. (3.7) fails or both
𝜇1 and 𝜇2 are integers, no statement can be made. Let us add that Eq. (3.7) is in
general not implied by Eq. (3.6) and therefore has to be checked separately. The
above result mainly goes back to Theorem 4 in [125]. Compared to Ref. [125],
its present formulation as well as its proof allow substantial simplifications as
we will show in Appendix B.2. Computations reveal that our bifurcation points
on the trivial solution family are either of center or of saddle center type in the
language of spatial dynamics as used, e.g., in Ref. [124], Table 3.1. To see this,
notice that for the bifurcation of periodic solutions from a constant solution
𝑐0 of 𝜕𝑐/𝜕𝜏′ = 𝐹𝜏′

(
𝑐
)
, 𝑐 =

(
ℜ

{
𝑎
}
,ℑ

{
𝑎
}
,ℜ

{
𝜕𝑎/𝜕𝜏′

}
,ℑ

{
𝜕𝑎/𝜕𝜏′

})
at

least one pair of purely imaginary eigenvalues of 𝜕𝐹𝜏′/𝜕𝜏′
(
𝑐0

)
is necessary.

The eigenvalues Λ of 𝜕𝐹𝜏′/𝜕𝜏′
(
𝑐0

)
solve Eq. (3.5) with 𝜇 replaced by ±jΛ,

and the solutions eΛ𝜏′ (𝑣1, 𝑣2, 𝑣3, 𝑣4) of the linearized spatial dynamics system
correspond to solutions cos(𝜇𝜏′) (𝑣1 + j𝑣2) in the kernel of 𝐿̂ as defined in
Eqs. (3.4).

For the cases
√
𝐹 = 2 and 𝛽′ = ±0.1, we numerically computed the bifurcation

points determined by Eq. (3.5). We also checked, for all bifurcation points,
which of the numbers 𝜇1,2 in Eq. (3.6) is an integer, and whether the transver-
sality condition from Eq. (3.7) holds, cf. Table 3.1. The computed bifurcation
points on the trivial branch are marked by circles in Figs. 3.1(a) and 3.2(a) for
𝛽′ = 0.1 and 𝛽′ = −0.1, respectively. In case (i) of the above result, we may
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Table 3.1: Bifurcation points on the trivial branch for anomalous dispersion 𝛽′ = 0.1,
√
𝐹 = 2.

The coordinates (𝜁0, 𝑎0 (𝜁0)) shown in the first two columns are determined so at least one of the
values 𝜇1,2 (third and fourth columns) from Eq. (3.6) is an integer. The integer value of either 𝜇1
or 𝜇2 determines the periodicity of the field in the vicinity of the corresponding bifurcation point.
The last column lists the values obtained from evaluating the left side of Eq. (3.7) to determine
whether the transversality condition is fulfilled.

𝜁0 a0 (𝜁0) 𝜇1 𝜇2 Transv.

−0.6770 0.51 + 0.87j 5.44 5 3.67
−0.1117 0.66 + 0.94j 6 4.35 5.56

0.3325 0.79 + 0.98j 6.35 4 4.49
1.1508 1.05 + 1.00j 7 3.47 12.26
1.9646 1.34 + 0.94j 7.65 3 4.44
2.4179 1.50 + 0.87j 8 2.74 16.42
3.4759 1.87 + 0.49j 8.72 2 4.12
4.0242 2.00 − 0.05j 8.85 1 3.85
3.8603 1.73 − 0.68j 8 1.56j −22.26
3.4893 1.43 + 0.90j 7 2.13j −23.74
3.1793 1.17 − 0.99j 6 2.49j −21.14
2.9576 0.96 − 1.00j 5 2.76j −17.57
2.8218 0.80 − 0.98j 4 2.96j −14.19
2.7541 0.68 − 0.95j 3 3.09j −11.41
2.7293 0.61 − 0.92j 2 3.14j −9.32
2.7239 0.57 − 0.90j 1 3.15j −8.00

apply Rabinowitz’s global bifurcation theorem from Ref. [132]. As a result,
we obtain that a branch bifurcating from the trivial curve at (𝜁0, 𝑎0 (𝜁0)) either
returns to the trivial curve at some other bifurcation point or joins another
branch of nontrivial solutions, since unbounded branches are excluded due to
Theorems 1 and 2 in Ref. [125].

In Fig. 3.1(a), a complete picture of all branches bifurcating from the trivial
branch is shown for anomalous dispersion with 𝛽′ = 0.1. For clarity of the
figures, we did not include any secondary bifurcation branches, i.e., branches
not directly coming off the trivial branch. A discussion of secondary bifurcation
points is given in Appendix B.5. The analytical and numerical description of
secondary bifurcations coming with the effect of period-doubling, -tripling
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etc. is provided in Ref. [133]. Let us mention that this phenomenon was
discovered in earlier bifurcation analyses, cf. Refs. [128], Fig. 5, and [119],
Fig. 10 for BSOs and [124], Fig. 12 for DSOs. We recall that in these studies the
detuning was fixed and the forcing parameter was considered as a bifurcation
parameter. The bifurcation branches in Fig. 3.1 and 3.2 were computed by
the software pde2path (cf. Refs. [134,135]) which is designed to numerically
treat continuation and bifurcation of PDE systems. Given a starting point on the
trivial branch together with a tangent direction, pde2path starts a continuation
algorithm to compute the trivial branch. Whenever a simple eigenvalue of the
linearization crosses zero, a bifurcation point is detected and the bifurcating
branch can be followed.

For the example given in Fig. 3.1(a), all calculated bifurcation points in Table I
were reproduced by pde2path. Bifurcation branches determined by pde2path
are shown in Fig. 3.1(a) as colored lines. Here, the single-soliton branch (𝜅 = 1)
is highlighted in red. Blue branches are related to higher-order soliton frequen-
cy combs (𝜅 = 2, . . . , 8). Note that the bifurcation branches seem to stop at
the points where a maximal value of 𝜁 is reached. But, in fact, these points are
turning points, and each branch continues in opposite directions on nearly the
same path. A finer resolution of the turning of the branches reveals a snaking
behavior shown in Fig. B.1(b) in Appendix B.5. In Fig. 3.2(a), the same ana-
lysis is performed for normal dispersion (𝛽′ = −0.1). The single dark-soliton
branch is again marked in red, higher-order soliton branches are marked in
blue. Note that pde2path does not only generate the bifurcation map, but also
allows us to calculate the stationary solutions of the LLE along the various
branches.
Our choice of resonator length equals 2𝜋 in contrast to 100 in Ref. [128] and
160 in Refs. [119, 124]. Rescaling the solutions from larger periodicities to
2𝜋 changes the dispersion from |𝛽′ | = 1 in Refs. [119, 124, 128] to values of
|𝛽′ | ≈ 10−3, which is much smaller than our choice of |𝛽′ | = 0.1. Notice that
smaller dispersion parameters |𝑑 | lead to a larger number of bifurcation points,
cf. Ref. [125], Theorems 1.4 and 1.5, so it is to be expected that the diagrams
in Refs. [119,124,128] show more bifurcation branches than shown here. Our
choice of

√
𝐹 = 2 is for illustrative purposes, so global features in Fig. 3.1 and

3.2 can be visualized more easily.
Complementing Figures 3.1 and 3.2, we give further information on the con-
nectedness of the branches as well as stability properties of solutions including
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those with multiple peaks in Appendix B.5. In the following, we will study the
properties of the 1-solitons.

3.3 Solitons along bifurcation branches

For a global study, we use pde2path to explore a much more extensive para-
meter space aiming at the detection of 1-soliton states on bifurcating branches.
Based on a large number of numerical experiments, we developed heuristics
that allow us to identify branches with single-soliton states and to find the
solitons with the strongest spatial localization. Let us number the bifurcation
points and bifurcating branches along (𝜁, 𝑎0 (𝜁)), starting from the left end of
the trivial branch.

(i) For anomalous dispersion (𝛽′ > 0), bright 1-solitons occur on the last
bifurcating branch. The most localized 1-solitons occur near the first
turning point of this branch (locally maximizing 𝜁). In Fig. 3.1(a), the
corresponding branch is labeled 𝜅 = 1. It contains the solutions A,B,C
that are illustrated with regard to the spatial and spectral power distri-
bution in Figs. 3.1(b) and 3.1(c), respectively. The first turning point is
indicated by C.

(ii) For normal dispersion (𝛽′ < 0), dark 1-solitons occur on the first bi-
furcating branch. The most localized 1-solitons occur near the second
turning point of this branch (locally maximizing 𝜁). In Fig. 3.2(a), the
corresponding branch contains the solutions D,E,F that are illustrated
with regard to the spatial and spectral power distribution in Figs. 3.2(b)
and 3.2(c), respectively. The second turning point is indicated by F.

These heuristics are illustrated in Fig. 3.3, where the full width at half maxi-
mum (FWHM𝑎) in case of BSOs as well as the full width at half minimum
(FWHM𝑖) in the case of DSOs are plotted for the spatial field distribution along
the bifurcating branch starting from the initial bifurcation point. Note that the
bright 1-soliton at point C in Fig. 3.1(a) has slightly smaller FWHM𝑎 = 0.3330
than the bright 1-soliton at point B (FWHM𝑎 = 0.3393). Both for normal and
anomalous dispersion, the common feature of the most localized 1-solitons
is their occurrence at maximal detuning values within all turning points of
the bifurcating branch. These heuristics are illustrated in Fig. 3.1 and 3.2. For
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3.3 Solitons along bifurcation branches

Figure 3.3: Full width at half maximum (FWHM𝑎) of bright solitons along the bifurcating branch
for anomalous dispersion (red, 𝛽′ = 0.1) and full width at half minimum (FWHM𝑖) of dark
solitons for normal dispersion (blue, 𝛽′ = −0.1) for

√
𝐹 = 2. Horizontal axis shows normalized

arc length along bifurcation branches. Quantities on both axes are dimensionless.

different points A, B, C along the bright-single-soliton branch and D, E, F
along the dark-single-soliton branch, respectively, comb states are depicted in
the spatial and frequency domain in Figs. 3.1(b), 3.1(c), 3.2(b), and 3.2(c). As
expected, the comb states with the smallest FWHM𝑎/𝑖 identified in points C
and F by using the aforementioned heuristics show the strongest localization
in the spatial domain. Furthermore, we can see that in the case of anomalous
dispersion, there is no other state on the branch 𝜅 = 1 for the same value of
𝜁 . However, in the case of normal dispersion, we find another DSO state with
equal detuning marked by point D in Fig. 3.2(a), cf. Ref. [118]. Yet point F in
Fig. 3.2(a) shows a stronger spatial localization, cf. Fig. 3.3, and has a broader
frequency comb than D.
In this example, the soliton character of the solutions, i.e., their strong loca-
lization in the spatial domain at the turning point is visible but not yet very
pronounced due to the moderate value of

√
𝐹. With increasing

√
𝐹, the soliton

localization as well as the comb power and comb bandwidth will be much
enhanced. At the same time, the graphs of the bifurcation branches will be
less illustrative due to a steeply increasing number and density of bifurcation
points. Therefore,

√
𝐹 = 2 is chosen merely for illustrative reasons, and much

larger ranges of
√
𝐹 are covered in Sec. 3.4.

61



3 Bandwidth and conversion efficiency analysis of dissipative Kerr soliton frequency . . .

3.4 Quantitative characterization of soliton
frequency combs

Using the heuristics from the previous section, we are able to identify single-
soliton states with the strongest spatial localization for any fixed forcing both
in the normal as well as anomalous-dispersion regime. Based on this approach,
we now characterize these comb states 𝑎(𝜏′) = ∑

𝜇∈Z 𝑎𝜇e j𝜇𝜏′ by their comb
bandwidth 𝜇★ and their power conversion efficiency (PCE) 𝜂. The comb band-
width is quantified by the 3dB point, i.e., by the minimal integer 𝜇★ that fulfills
|𝑎

𝜇★
|2 ≤ 1

2 |𝑎1 |2. Note that the 3dB comb bandwidth is defined with respect to
the power |𝑎1 |2 of the mode directly adjacent to the pumped mode rather than
the power |𝑎0 |2 of the pumped mode itself, which is usually much stronger
than all other modes of the comb. The PCE is the ratio between the intracavity
comb power

𝑃FC =
∑︁

𝜇∈Z\{0}
|𝑎

𝜇
|2 (3.8)

and the pump power 𝐹. Note that the intracavity comb power does not con-
tain the zero mode, since |𝑎0 |2 mostly stems from the pump and is therefore
nonzero even if no comb is formed in the microresonator. For BSOs, under
the assumption of small damping and small forcing, approximation formulas
for the comb bandwidth as well as the PCE exist, cf. Refs. [21, 136–139].
Assuming a detuning set to the maximum value that permits a single soliton
𝜁BSO,max = 𝜋2𝐹/8 [21, 137], they read as follows:

2𝜇★BSO,max ≈
√

2 ln(1 +
√

2)
√︁
𝐹/𝛽′, (3.9a)

𝜂BSO,max ≈
√︁
𝛽′/(2𝐹). (3.9b)

More details on these equations can be found in Appendix B.3. Expressions
for the approximation of DSOs resembling a flipped sech function on top of a
cw background are given in Ref. [124]; compare the green curve in Fig. 3.2(b).
They are valid near the bifurcation point and are obtained using multiple scale
asymptotics. As mentioned before, this kind of solitons, indicated in Fig. 3.2(a)
by point D, is of less interest due to its weaker localization, reduced comb band-
width, and power compared to the DSO at point F. For DSOs of the latter type,
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3.4 Quantitative characterization of soliton frequency combs

no formula for the comb bandwidth or PCE is available, to the best of our
knowledge.
For dispersion parameters 𝛽′ = ±0.1,±0.15,±0.2,±0.25 and

√
𝐹 > 1, we have

carried out a large parameter study. For 𝛽′ > 0, we computed the last bifurca-
tion point and its corresponding bifurcating branch. Based on the heuristics in
Sec. 3.3, we stopped the computation as soon as we reached the first turning
point, i.e., point C in Fig. 3.1(a), where the most localized BSO is found. In
the same manner, the strongest localized DSO in the case 𝛽′ < 0 is at the
second turning point of the first bifurcating branch, i.e., point F in Fig. 3.2(a).
For all of the above values of the dispersion 𝛽′ and the pump power

√
𝐹, the

corresponding solitons at the turning point were investigated and their comb
bandwidth as well as their PCE were evaluated.
The results are plotted in Fig. 3.4. For BSOs, gray lines corresponding to the
approximate expressions in Eqs. (3.9a) and (3.9b) are also shown in Figs. 3.4(a)
and 3.4(c). As mentioned before, the validity of these approximations is gua-
ranteed only for small damping, small forcing, and large forcing/damping
ratio [138, 139]. This explains the deviations from the curves computed by
numerical bifurcation and continuation which occur for PCE in the small

√
𝐹

regime [damping in Eq. (3.2) is set to 1] in Fig. 3.4(c) and for comb bandwidth
in the large

√
𝐹 regime in Fig. 3.4(a). The comb bandwidth increases with an

increasing
√
𝐹 at the expense of a decreasing conversion efficiency. Additio-

nally, one can see that with 𝛽′ → 0 the comb bandwidth increases whereas the
PCE decreases.
For DSOs, the overall dependence of the conversion efficiency and comb band-
width shows the same trends as for BSOs, see Figs. 3.4(b) and 3.4(d). In direct
comparison, DSOs have a decreased bandwidth along with a higher conver-
sion efficiency for the same values of

√
𝐹 and |𝛽′ |. We attribute this to the

strong constant background of the DSOs in the spatial domain which enables
a more efficient power transfer from the CW pump to the soliton. However,
the increased spatial width of the DSOs is also linked to a narrower frequency
comb in the spectral domain. We note that the comb bandwidth of both BSOs
and DSOs does not increase strictly linearly with an increasing forcing. For
DSOs, the nonlinear behavior is more pronounced.
For the physical properties of soliton frequency combs in non-normalized units,
the bandwidth 2𝜇★ as well as the conversion efficiency𝜂 have to be converted.
The physical comb bandwidth Ω3dB/(2𝜋) is obtained by multiplying 2𝜇★ with
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3 Bandwidth and conversion efficiency analysis of dissipative Kerr soliton frequency . . .

Figure 3.4: Bandwidths 2𝜇★ and power conversion efficiencies (PCE) 𝜂 for bright-soliton combs
(a), (c) and dark-soliton combs (b), (d) as a function of dispersion 𝛽′ = ±0.1, ±0.15, ±0.2, ±0.25
and the forcing

√
𝐹. Quantities on axes are dimensionless. (a) Bandwidth of bright-soliton combs

obtained by numerical bifurcation and continuation (NBC, colored lines) along with an approxi-
mation according to Eq. (3.9a). The linear approximation is in good agreement with the numerical
results and deviates only for a strong forcing. A stronger dispersion leads to a decreasing comb
bandwidth. (b) Bandwidth of dark-soliton combs obtained by NBC. (c) PCE of bright-soliton
states obtained by NBC (colored lines) along with an approximation according to Eq. (3.9b) (gray
lines). The approximation is in good agreement with the numerical results, but deviates strongly
for weak forcing. A weaker dispersion leads to a decreasing PCE. (d) PCE of dark-soliton states
obtained by NBC. The PCE decreases with an increasing forcing, but is overall higher as for bright
solitons. Here, weaker dispersion also leads to a decreasing PCE.

the free spectral range FSR of the resonator, i.e., the inverse of the round-trip
time 𝑡R of the light inside:

Ω3dB/(2𝜋) = 𝜔FSR/(2𝜋) × 2𝜇★ = 𝑡−1
R × 2𝜇★. (3.10)
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3.5 Summary

To determine the physical conversion efficiency outside the resonator 𝜂out, the
physical power coupling coefficient 𝜃C between the bus waveguide and the
microresonator as well as the physical round-trip-power-loss coefficient 𝛼 have
to be taken into consideration via the relation

𝜂out =
4𝜃2

C

(𝛼 + 𝜃C)2 𝜂. (3.11)

For details on Eq. (3.11), see Appendix B.4. To achieve high external power
conversion efficiencies > 30 % as, e.g., in Ref. [140], an overcoupled resonator
with 𝛼 ≪ 𝜃C is preferable. As visible in Figs. 3.4(c) and 3.4(d), a microresona-
tor with normal dispersion-enabling DSO states will tend to improve the PCE.
It should be noted, however that the generation of normal dispersion frequen-
cy combs generally requires an avoided mode crossing for initial modulation
instability [130], which makes the design of the device more complex.

3.5 Summary

We have performed a global bifurcation analysis of the LLE and provided
an overview on the structure of nontrivial solutions. We find single-soliton
frequency combs both in the normal and anomalous-dispersion regime. Our
investigation covers a broad space of technically relevant device and operation
parameters. It allows us to identify the broadest soliton combs and to bench-
mark them with respect to bandwidth and pump-to-comb power conversion
efficiency. Our findings are in good agreement with simplified analytic mo-
dels. Comparing the results for BSOs and DSOs, we find that DSOs outperform
BSOs significantly in terms of power conversion efficiency at the expense of a
reduced bandwidth.
The bifurcation and continuation method allows us to determine the perfor-
mance parameters of single-soliton comb states even for the cases where sim-
plified analytic models are not valid, e.g., for certain DSOs. Our approach can
be further extended to include additional effects such as two-photon absorption
and to study their impact on the stationary comb states, see Ref. [141]. The
results of our investigation allow for targeted design of soliton comb genera-
tors for specificapplications. In this context, the power conversion efficiency
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3 Bandwidth and conversion efficiency analysis of dissipative Kerr soliton frequency . . .

and the comb bandwidth are key performance characteristics that need to be
optimized under technical restrictions such as limited optical input power.

[End of publication [J1]]
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4 Analysis of Kerr comb generation
in silicon microresonators under
the influence of two-photon
absorption and fast free-carrier
dynamics

In this chapter, an analysis of Kerr comb formation in microresonators under the
influence of two-photon absorption and free-carrier absorption is performed.
The content of this chapter has been published in Physical Review A [J2] and
was adapted to fit the layout, structure and notation of this dissertation. The
related appendices are given in Appendix C. This chapter assumes a negative
time dependence of the optical signal of the form exp(−j𝜔𝑡). Furthermore, in
this chapter as well as in Appendix C the unit of electric fields is assumed to
be

√
W [77,86,142]. As a consequence, magnetic fields have the unit

√
WA/V

and the power 𝑃 of an electric field is given by 𝑃 =
��E��2 =

��E∗��2.

The publication predominantly relies on the contributions of the author of this
dissertation. The scope of the publication and the underlying physical model
were developed by the author jointly with C. Koos and further discussed with
P. Marin-Palomo, see Sections 4.1 and 4.2. The mathematical computations
described in Sections 4.3, 4.4 and Appendix C.1 were verified by J. Gärtner and
W. Reichel. Numerical methods used for the time integration of the Lugiato-
Lefever equation, see Section 4.5 and Appendix C.5, were discussed with T.
Jahnke and C. Koos. The manuscript was written by the author with support of
W. Freude and C. Koos. The work was supervised by W. Freude, W. Reichel,
and C. Koos.

[Start of publication [J2]]
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Kerr frequency comb generation relies on dedicated waveguide platforms that
are optimized toward ultra-low loss while offering comparatively limited func-
tionality restricted to passive building blocks. In contrast to that, the silicon-
photonic platform offers a highly developed portfolio of high-performance
devices, but suffers from strong two-photon absorption (TPA) and subsequent
free-carrier absorption (FCA) at near-infrared telecommunication wavelengths,
thereby rendering Kerr comb generation a challenge. Here we present a mo-
del to investigate the impact of TPA and FCA on Kerr comb formation. Our
model combines a modified version of the Lugiato-Lefever equation with a
refined relation to precisely describe the fast space and time dependence of
the free-carrier concentration along the circumference of the microresonator.
Using this refined model, we derive conditions for modulation instability, in
particular for necessary pump powers depending on TPA parameters and free-
carrier lifetimes. We validate our analytical predictions by time integration and
study the impact of fast free-carrier dynamics on Kerr comb formation. We
find that silicon microresonators may be suitable for Kerr comb generation in
the NIR, provided that the dwell time of the TPA-generated free carriers in
the waveguide core is reduced by a reverse-biased p-i-n-junction and that the
pump parameters are chosen appropriately.
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4.1 Introduction

Generation of optical frequency combs in high-Q Kerr-nonlinear microreso-
nators [10, 11] has the potential to unlock a wide range of applications such
as timekeeping [16], frequency synthesis [88], optical communications [J5],
spectroscopy [18] and optical ranging [J3] [90]. Among different frequency
comb states, dissipative Kerr solitons (DKSs) [21] are particularly attractive,
offering broadband optical spectra with hundreds of phase-locked optical to-
nes spaced by free spectral ranges of tens of gigahertz. As a key advantage
in comparison to conventional comb sources built from discrete components,
Kerr comb generators offer a small footprint and can be integrated into ro-
bust chip-scale photonic systems that lend themselves to cost-efficient mass
production. So far, integrated optical Kerr comb sources have mostly been rea-
lized using specifically optimized silica and silicon nitride based waveguides
that offer ultra-low propagation loss down to 5.5 dB m−1 along with anoma-
lous group-velocity dispersion [143,144], and that can bear high power levels.
The functionality of these integration platforms, however, is still limited to
merely passive devices. In contrast to that, silicon photonics offers a highly
developed portfolio of active and passive devices that are specifically geared
toward operation at near-infrared (NIR) telecommunication wavelengths bet-
ween 1200 nm and 1700 nm. These devices can be reliably fabricated at low
cost on large-area silicon substrates [145–147] and lend themselves to coin-
tegration with electronic devices [148]. Expanding the silicon-photonic inte-
gration platform by monolithically integrated Kerr comb sources could have
transformative impact regarding functionality, performance, footprint and cost
of comb-based optical systems. For wavelengths in the mid infrared, Kerr
comb formation in silicon microresonators under the influence of three-photon
absorption and free-carrier absorption was already experimentally demonstra-
ted [149]. In contrast to that, at NIR telecommunication wavelengths, Kerr
generation comb in silicon microresonators is impaired by of two-photon ab-
sorption (TPA) and subsequent free-carrier absorption (FCA) and has so far
only been investigated theoretically [26–28]. Interestingly, Ref. [26] predicts
that generation of NIR Kerr combs should also be possible in silicon micro-
resonators, provided that TPA-generated free carriers are removed from the Si
waveguide core by reverse-biased p-i-n-junctions [29]. Specifically, the effec-
tive dwell times of the carriers in the waveguide core should be reduced from
1 . . . 5 ns [25, 29, 77, 149, 150] to, e.g., 100 ps , which is of the same order as
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4 Analysis of Kerr comb generation in silicon microresonators under the influence . . .

the round-trip time of the soliton pulses in the cavity [6, 11]. This conclusion,
however, conflicts with the fact that Ref. [26] builds upon a formalism [77] that
ignores fast carrier dynamics and assumes a spatially uniform distribution of
the free carriers along the microresonator circumference.

In this paper, we expand the theoretical analysis of Kerr comb formation
by including fast dynamics of TPA-generated free-carriers. Building upon
an analytical model that complements the Lugiato-Lefever equation (LLE
[76, 142]) by including TPA and dispersion anomalies of the ring resonances
caused by avoided mode crossings, we introduce a description of the fast
free-carrier dynamics based on a spatially non-uniform distribution along the
microresonator circumference. Our approach allows us to describe the full
spatio-temporal evolution of the free-carrier density within the ring and serves
as a starting point for subsequent analysis of necessary conditions that must
be fulfilled for achieving modulation instability (MI) and subsequent comb
formation. Based on this analysis, we formulate simple conditions that must be
fulfilled for achieving modulation instability and subsequent comb formation in
dependence of the underlying TPA coefficient, the free-carrier lifetime and FCA
cross-section. We describe the dependence on the MI threshold pump power on
TPA and FCA parameters, and we find an upper limit for the TPA coefficient,
above which comb formation is impossible even in the absence of FCA. The
theoretical predictions are independently confirmed by numerical simulations
that are based on time integration of the Lugiato-Lefever equation and the
modified rate equation for the free carriers. While the model is general and can
be broadly applied to different material platforms, we focus our investigation
on silicon-photonic microresonators, in which the free-carrier dwell time can
be artificially reduced by a reverse-biased p-i-n-junction that is built around
the respective waveguide core. We find that Kerr comb generation in silicon
microresonators can be achieved within technically realistic parameter ranges
for free-carrier lifetime and pump power. We further develop and numerically
validate a design for a silicon-photonic Kerr comb source that has a free spectral
range (FSR) of 100 GHz and a threshold pump power of 12 mW and that should
even be suitable for dissipative Kerr-soliton (DKS) comb formation. It turns
out that the incorporation of fast free-carrier dynamics changes the behaviour
of the optical waveforms in the microresonator to a notable degree, whereas
the conditions for MI are essentially unaffected and remain consistent with the
findings from simpler models [26–28].
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4.2 Model

In our model, we describe the electric field E(𝑧, 𝑡) = ℜ
{
E∗ (𝑧, 𝑡)e−j𝜔p𝑡

}
in the

Kerr-nonlinear microresonator (MR) by a carrier at the (angular) frequency
𝜔p of the optical pump wave in combination with a complex slowly-varying
amplitude E∗ (𝑧, 𝑡) that depends on time 𝑡 and on the position 𝑧 along the
resonator circumference. The presence of the strong pump leads to parametric
gain for a pair of modes located symmetrically to both sides of the pump
frequency 𝜔p. If the parametric gain for any of these modes exceeds the
resonator losses, the corresponding mode amplitudes are amplified by resonant
four-wave mixing, drawing energy from the pump wave. At the same time, the
presence of a strong pump wave leads to generation of free carriers (FCs)
through two-photon absorption (TPA). These carriers accumulate and lead to
additional optical losses through free-carrier absorption (FCA). For silicon-
photonic microresonators, the dwell time 𝑡eff and the associated concentration
𝑁car of the free carriers can be influenced by a reverse-biased p-i-n-junction
[29, 151], see Fig. 4.1. In the following, we consider the evolution of the field
amplitude and of the free-carrier density over multiple cavity round-trip times
𝑡R = 𝐿MR/𝑣g = 2𝜋/𝜔FSR, where 𝜔FSR/(2𝜋) denotes the free spectral range of
the cavity as defined by the perimeter 𝐿MR and by the optical group velocity
𝑣g = 𝑐0/𝑛g that is obtained at the pump frequency 𝜔p in the absence of
free carriers. The number of round-trips is denoted by an integer 𝜅, and we
introduce a long time scale (“slow” time variable) 𝑡 = 𝜅 𝑡R, which we consider
to be continuous. At the same time, we model the evolution of the complex
slowly varying amplitude E∗ within the cavity using a short time scale (“fast”
time variable) 𝜏 = 𝑡 − 𝑧/𝑣g that is retarded according to the position 𝑧 inside
the cavity, thus accounting for the propagation of the optical amplitude E∗

with optical group velocity 𝑣g. The slowly varying amplitude E∗ (𝑡, 𝜏) inside
the resonator is modelled as a superposition of fields with complex envelopes
E∗
𝜇
(𝑡), oscillating at equidistant angular frequencies which are offset from the

pump frequency 𝜔p = 𝜔0 by 𝜔Δ𝜇 = 𝜇×𝜔FSR (𝜇 = 0,±1,±2,±3, . . . ) and thus
given as

E∗ (𝑡, 𝜏) =
∑︁
𝜇

E∗
𝜇
(𝑡) e j𝜔Δ𝜇 𝜏 =

∑︁
𝜇

E∗
𝜇
(𝑡) e j2𝜋𝜏/𝑡R . (4.1)
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4 Analysis of Kerr comb generation in silicon microresonators under the influence . . .

Figure 4.1: Silicon-photonic microresonator as an example of a device suffering from both TPA
and FCA. The bus waveguide as well as the resonator ring waveguide are connected to 𝑝+-doped
(red) and 𝑛−-doped silicon (Si) regions (blue) that form a p-i-n-junction. This junction allows the
reduction of the dwell time of free carriers by applying a reverse bias voltage 𝑈 through contact
pads and vias. At the coupling section between the bus and the ring waveguide, the doping is
locally inverted from an 𝑛−-doping to a 𝑝+-doping next to the bus waveguide to ensure maximum
free-carrier removal in the microresonator [152]. The geometrical dimensions of the waveguide
cross-section can be chosen such that the waveguide features anomalous group-velocity dispersion
(GVD) at wavelengths near 1550 nm, see, e.g., [153]. Further, the microresonator diameter can be
chosen to achieve a specific free spectral range of, e.g., 𝜔FSR/(2𝜋) = 100 GHz, corresponding to
a round-trip time 𝑡R = (𝜔FSR/(2𝜋))−1 = 10 ps. For details on the geometrical dimensions used
in our simulations, see Section 4.5.
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In contrast to the optical amplitudeE∗ (𝑡, 𝜏), generated free carriers do not move
inside the microresonator. Therefore, we model them on another, stationary
fast time scale 𝜏S = −𝑧/𝑣g to describe their spatial distribution 𝑁car (𝑡, 𝜏S)
along the microresonator circumference. The stationary fast time scale 𝜏S
and its retarded counterpart are related by 𝜏 = 𝜏S + 𝑡. The optical field and
the free-carrier density in the retarded time frame are transformed between
the retarded and the static fast time scale via E∗ (𝑡, 𝜏) = E∗ (𝑡, 𝜏S + 𝑡), and
𝑁car (𝑡, 𝜏 − 𝑡) = 𝑁car (𝑡, 𝜏S). The field obeys periodic boundary conditions,
E∗ (𝑡, 𝜏) = E∗ (𝑡, 𝜏 + 𝑡R). Disregarding temperature effects, self-steepening,
higher-order dispersion, and higher-order multi-photon absorption, the LLE
and the stationary FC equation read [25, 77]

𝑡R
𝜕E∗ (𝑡, 𝜏)

𝜕𝑡
=

√︁
𝜃CEin +

[
−𝛼𝑖𝐿MR

2
− 𝜃C

2
− j𝛿0 − j

𝛽 (2)𝐿MR
2

𝜕2

𝜕𝜏2 + jΦ̂AMC

+
(
j𝛾𝐿MR − 𝛽TPA𝐿MR

2𝐴eff

) ��E∗ (𝑡, 𝜏)
��2

−𝜎carΓC𝐿MR
2

(1 + j𝛽car) 𝑁car (𝑡, 𝜏 − 𝑡)
]
E∗ (𝑡, 𝜏) ,

(4.2)

𝜕𝑁car (𝑡, 𝜏S)
𝜕𝑡

=
𝛽TPA
2ℏ𝜔p

��E∗ (𝑡, 𝜏S + 𝑡)
��4

𝐴2
eff

− 𝑁car (𝑡, 𝜏S)
𝑡eff

. (4.3)

In these relations, the quantity Ein denotes the electric field amplitude of the
pump with power 𝑃in = |Ein |2 in the bus waveguide, see Fig. 4.1, 𝜃C describes
the power coupling to the microresonator, and 𝛼𝑖 (unit m−1) is the waveguide
power loss coefficient inside the MR. The resonator parameters are assumed to
be the same for all complex envelopes E∗

𝜇
(𝑡), unless specified otherwise. The

detuning 𝛿0 =
(
𝜔r,0 − 𝜔p

)
𝑡R corresponds to the offset of the pump frequency

𝜔p from the resonance frequency𝜔r,0 of the pumped mode. The coefficient 𝛽 (2)

describes the second-order dispersion of the cavity. The nonlinearity parameter
of the resonator waveguide is denoted by 𝛾 = 𝜔p𝑐

−1
0 𝑛2𝐴

−1
eff (unit m−1W−1) with

the nonlinear Kerr coefficient 𝑛2 (unit m2W−1), the vacuum speed of light 𝑐0,
and the effective mode-field area 𝐴eff. The quantity 𝛽TPA denotes the two-
photon absorption coefficient, 𝜎car is the free-carrier absorption cross-section,
and 𝛽car the free-carrier dispersion parameter which describes the influence of
FC on the real part of the refractive index. The reduced Planck constant is ℏ.
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The model additionally includes a field confinement factor ΓC which accounts
for the fact that only a fraction of the optical mode field experiences the
attenuation and dispersion by FCs generated in the resonator waveguide [154].
Since we consider only modes for which the field is strongly confined to
the waveguide, we may assume ΓC ≈ 1, whereas other waveguide designs,
e.g., slot waveguides with a nonlinear organic cladding [155, 156] may lead
to values of ΓC that are significantly smaller than 1. Finally, we include the
possibility of local resonance shifts 𝛿𝜔𝜇 caused by avoided mode crossings
(AMCs) [61, 157, 158]. These resonance shifts lead to additional phase shifts
𝛿𝜔𝜇𝑡R for the respective electric field envelopes E∗

𝜇
(𝑡). The impact of AMCs

can hence be described by an operator Φ̂AMC acting on the envelope field
E∗ (𝑡, 𝜏) of Eq. (4.1),

Φ̂AMCE∗ (𝑡, 𝜏) =
∑̃︁
𝜇

(
𝛿𝜔𝜇̃ exp ( j2𝜋𝜇̃/𝑡R)

∫ 𝑡R

0
E∗ (𝑡, 𝜏1) e−j2𝜋𝜇̃𝜏1/𝑡Rd𝜏1

)
=
∑̃︁
𝜇,𝜇

(
𝛿𝜔𝜇̃𝑡RE∗

𝜇
(𝑡)exp ( j2𝜋𝜇̃𝜏/𝑡R) 𝛿𝜇̃𝜇

)
=
∑︁
𝜇′

(
𝛿𝜔𝜇′𝑡RE∗

𝜇′ (𝑡)exp ( j2𝜋𝜇′𝜏/𝑡R)
)
, (4.4)

where 𝛿𝜇̃𝜇 denotes the Kronecker delta. In the absence of AMCs, all resonance
shifts 𝛿𝜔𝜇 are zero and thus do not lead to any additional phase shifts 𝛿𝜔𝜇𝑡R
for the electric field envelopes E∗

𝜇
(𝑡). In the following, we simplify Eq. (4.2) by

assuming critical coupling , i.e., 𝛼𝑖𝐿MR = 𝜃C. For normalization, we multiply
Eq. (4.2) with (𝛾𝑛2

g/(𝛼3
𝑖
𝑡2R𝑐

2
0))

1/2 and Eq. (4.3) with 𝑛2ℏ𝜔
2
p/

(
𝛼2
𝑖
𝑐0

)
. We intro-

duce the normalized quantities specified in Table 4.1 and reformulate Eq. (4.2),
(4.3) and (4.4):

𝜕𝑎 (𝑡 ′, 𝜏′)
𝜕𝑡 ′

=
√
𝐹 +

[
−1 − j𝜁 + j𝛽′

𝜕2

𝜕𝜏′2
+ jΦ̂′

AMC + (j − 𝑟)
��𝑎 (𝑡 ′, 𝜏′)

��2
− 𝜎′

car (1 + j𝛽car) 𝑁 ′
car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′)

]
𝑎 (𝑡 ′, 𝜏′) ,

(4.5)
𝜕𝑁 ′

car
(
𝑡 ′, 𝜏′S

)
𝜕𝑡 ′

=𝑟
��𝑎 (

𝑡 ′, 𝜏′S + 𝑡 ′𝑣′
) ��4 − 𝑁 ′

car
(
𝑡 ′, 𝜏′S

)
𝑡 ′eff

, (4.6)
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Table 4.1: Normalized quantities and substitutions.

Slow time 𝑡′ =
𝛼𝑖𝐿MR

𝑡R
𝑡 =

𝛼𝑖𝑐0
𝑛g

𝑡

Fast time (retarded) 𝜏′ = 2𝜋
𝑡R

𝜏

Fast time (stationary) 𝜏′S = 2𝜋
𝑡R

𝜏S

Normalized group velocity 𝑣′ =
2𝜋𝑛g
𝑡R𝛼𝑖𝑐0

Optical field 𝑎 (𝑡′, 𝜏′) =

√︃
𝛾

𝛼𝑖
E∗ (𝑡 , 𝜏)

Free-carrier density 𝑁 ′
car (𝑡′, 𝜏′) =

ℏ𝜔2
p𝑛2

𝛼𝑖𝑛g
𝑁car (𝑡 , 𝜏)

Pump field
√
𝐹 =

√︂
𝛾𝑛g

𝑐0𝛼
2
𝑖
𝑡R

√
𝑃in

Detuning 𝜁 =
𝑛g

𝛼𝑖 𝑡R𝑐0
𝛿0

Phase shift operator Φ̂′
AMC =

𝑛g
𝛼𝑖 𝑡R𝑐0

Φ̂AMC

Phase shifts 𝜙𝜇̃ =
𝑛g

𝛼𝑖𝑐0
𝛿𝜔𝜇̃

Dispersion 𝛽′ = − 2𝜋2

𝛼𝑖 𝑡
2
R
𝛽 (2)

TPA parameter 𝑟 =
𝑐0

2𝜔p 𝑛2
𝛽TPA

FC dwell time 𝑡′eff =
𝛼𝑖𝑐0
𝑛g

𝑡eff

FC cross-section 𝜎′
car =

ΓC𝑛g
2𝑛2ℏ𝜔

2
p
𝜎car

Φ̂′
AMC𝑎 (𝑡 ′, 𝜏′) =

∑̃︁
𝜇

𝜙𝜇̃

2𝜋

∫ 2𝜋

0
𝑎 (𝑡 ′, 𝜏1) e−j𝜇̃𝜏1 d𝜏1e j𝜇̃𝜏′ . (4.7)

In Equations (4.5) and (4.6), we have introduced the normalized group velocity
𝑣′ = 2𝜋𝑛g/(𝑡R𝛼𝑖𝑐0) to describe the speed, at which the normalized optical field
𝑎 (𝑡 ′, 𝜏′) = 𝑎

(
𝑡 ′, 𝜏′S + 𝑡 ′𝑣′

)
propagates on the normalized stationary fast time

scale 𝜏′S. In the same manner, the FC density in the normalized retarded fast
time frame is described by 𝑁 ′

car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′) = 𝑁 ′
car

(
𝑡 ′, 𝜏′S

)
.

75



4 Analysis of Kerr comb generation in silicon microresonators under the influence . . .

4.3 Investigation of modulation instability
considering fast-time free-carrier dynamics

To investigate the circumstances under which modulation instability can occur
when pumping the resonator, we need to know whether any pair of resonator
modes experiences a sufficiently high parametric gain to overcome the total loss
in the resonator. This loss includes linear propagation loss and coupling loss,
which are equal for critical coupling, 𝛼𝑖𝐿MR = 𝜃C, and which are expressed by
−1 in Eq. (4.5), two-photon absorption, expressed by−𝑟

��𝑎 (𝑡 ′, 𝜏′)
��2 in Eq. (4.5),

and free-carrier absorption, expressed by −𝜎′
car𝑁

′
car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′) in Eq. (4.5),

where the normalized density of accumulated carriers strongly depends on the
carrier dwell time 𝑡eff and its normalized counterpart 𝑡 ′eff, see Eq. (4.6). For
exploring modulation instability, we use an ansatz for the normalized optical
resonator field 𝑎 (𝑡 ′, 𝜏′), consisting of a strong field 𝑎0 in the pumped resonator
mode (normalized power 𝐴 = |𝑎0 |2) and a pair of weak fields 𝑎±𝑀 (“sidebands”
for short) in resonator modes which are offset from the pump frequency 𝜔p by
𝜔±Δ𝑀 = ±𝑀 × 𝜔FSR, (𝑀 ∈ N+) [81]. The amplitude of these sidebands may
change, which is expressed by a complex normalized gain rate 𝑔 = 𝑔 + j𝑔j,
𝑔, 𝑔j ∈ R. This leads to a three-wave ansatz of the form

𝑎 (𝑡 ′, 𝜏′) = 𝑎0 + 𝑎̂+𝑀e𝑔𝑡
′
e j𝑔j𝑡

′
e j𝑀𝜏′

+ 𝑎̂−𝑀e𝑔𝑡
′
e−j𝑔j𝑡

′
e−j𝑀𝜏′ ,

��𝑎̂±𝑀 �� ≪ ��𝑎0
�� . (4.8)

In the stationary fast time frame, this ansatz reads

𝑎
(
𝑡 ′, 𝜏′S + 𝑡 ′𝑣′

)
= 𝑎0 + 𝑎̂+𝑀e𝑔𝑡

′
e j𝑔j𝑡

′
e j𝑀 (𝜏′S+𝑡′𝑣′)

+ 𝑎̂−𝑀e𝑔𝑡
′
e−j𝑔j𝑡

′
e−j𝑀 (𝜏′S+𝑡′𝑣′) . (4.9)

We assume that the sideband amplitudes 𝑎̂±𝑀 are initially much smaller than the
amplitude of the pumped mode 𝑎0, |𝑎̂±𝑀 | ≪ |𝑎0 |, such that we can treat them
as a weak perturbation by linearizing Eqs. (4.5) and (4.6) in 𝑎̂+𝑀 , 𝑎̂−𝑀 about
the strong field of the pumped mode 𝑎0. Inserting Eq. (4.8) into the linearized
version of Eq. (4.5) and inserting Eq. (4.9) into Eq. (4.6) allows us to derive an
expression for normalized the gain rate 𝑔 (𝑀), see Appendix C.1. Modulation
instability occurs for ℜ{𝑔 (Ω)} = 𝑔 (𝑀) > 0, in which case the sideband
amplitudes at ±𝑀 grow exponentially with time. The initial field oscillates
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with ±𝑀 with respect to the normalized fast time 𝜏′, and it experiences a phase
shift ±j𝑔j𝑡

′ with normalized slow time 𝑡 ′.

To identify resonator and pump parameters for which modulation instability
can occur, we first derive an expression for 𝑔 in terms of these parameters. To
this end, we first solve the differential equation for the normalized free-carrier
density, Eq. (4.6), and then substitute the resulting relation for 𝑁 ′

car
(
𝑡 ′, 𝜏′S

)
in

Eq. (4.5). In this step, we assume the modulation instability to be weak, i.e.,
|𝑔 | ≪ 1/𝑡 ′eff. Since we are looking at the onset of MI just above its threshold,
the gain parameter 𝑔 is barely larger than zero and is smaller than the inverse
of the free-carrier lifetime, i.e., |𝑔 | ≪ 1/𝑡 ′eff. The latter assumption is justified
by the fact that, for proper choice of reverse-bias conditions, the carrier dwell
time is of the order of the cavity-round-trip time, whereas the MI sidebands
build up slowly over tens of cavity round-trips if the resonator is operated
slightly above its MI threshold. Further details on the derivation and on the
underlying approximations can be found in Appendix C.1. We further assume
the imaginary part 𝑔j of the gain parameter to be small, in particular

��𝑔j
�� ≪ 𝑀𝑣′,

which is justified by the fact that MI sidebands will occur in close spectral
vicinity of a ring resonance, for details see Appendix C.1. With an expression
for the free-carrier density at hand (see Eqs. (C.8) and (C.9) of Appendix C.1),
we substitute Eq. (4.8) in Eq. (4.5) and neglect all small second-order products
of the form 𝑎̂2

±𝑀 , |𝑎̂±𝑀 |2, 𝑎̂+𝑀 𝑎̂−𝑀 . We then solve the resulting equation for 𝑔
(see Appendix C.1), and obtain two complex solutions 𝑔

±
= 𝑔± + j𝑔j,±. From

these solutions, we select the one for which the real part 𝑔+ can assume positive
values, corresponding to modulation instability,

𝑔 (𝑀) = − 1 − 2𝑟𝐴 − 𝑟𝑡 ′eff𝜎
′
car

3 +
(
𝑀𝑡 ′eff𝑣

′)2

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴

2 + ℜ{Δ}, ℜ{Δ} > 0,

(4.10)

𝑔j (𝑀) =𝜙+𝑀 − 𝜙−𝑀
2

+ 2
𝑟𝑡 ′eff𝜎

′
car𝑀𝑡 ′eff𝑣

′

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴2 + ℑ{Δ},
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Δ =

𝐴2

(
𝑟 +

2𝑟𝑡 ′eff𝜎
′
car

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴 − j

2𝑟𝑡 ′eff𝜎
′
car𝑀𝑡 ′eff𝑣

′

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴

)2

+ 𝐴2

(
1 −

2𝑟𝑡 ′eff𝜎
′
car𝛽car

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴 + j

2𝑟𝑡 ′eff𝜎
′
car𝛽car𝑀𝑡 ′eff𝑣

′

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴

)2

−
(
𝜁 + 𝛽′𝑀2 − 𝜙+ + 𝜙−

2
− 2𝐴 + 𝑟𝑡 ′eff𝜎

′
car𝛽car

3 +
(
𝑀𝑡 ′eff𝑣

′)2

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴

2

− j
2𝑟𝑡 ′eff𝜎

′
car𝛽car𝑀𝑡 ′eff𝑣

′

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴2

)2
1/2

.

Both the real part 𝑔 and the imaginary part 𝑔j of the gain parameter show
a dependence on the normalized power 𝐴 of the pumped mode. For a given
normalized pump power 𝐹, the normalized power 𝐴 in the pumped mode can
be determined by evaluating the expression

𝐹 =

[ (
1 + 𝑟𝐴 + 𝑟𝑡 ′eff𝜎

′
car𝐴

2
)2

+
(
𝐴 − 𝜁 + 𝜙0 − 𝑟𝑡 ′eff𝜎

′
car𝛽

′
car𝐴

2
)2︸                                   ︷︷                                   ︸

(∗)

]
𝐴. (4.11)

A derivation of Eq. (4.11) can be found in Appendix C.1.

4.4 Parameter ranges of TPA, FCA and pump
power leading to modulation instability

Using Equations (4.10) and (4.11) for a specific parameter set
(
𝑟, 𝜎′

car, 𝑡
′
eff, 𝛽car,

𝛽′, 𝑣′, 𝜙𝜇

)
and for specific operating conditions (𝐹, 𝜁), we can determine whe-

ther MI can occur and at which sidebands 𝜇 = ±𝑀 it will happen. To reduce the
complexity of the evaluation, we simplify Eq. (4.10) by considering technical-
ly relevant sets of normalized parameters

(
𝑟 ≈ 1, 𝜎′

car ≈ 5, 𝑡 ′eff ≈ 0.05 . . . 0.5,
𝛽car ≈ 10, 𝑣′ ≈ 200, 𝐹 ≈ 10) and by assuming that the side modes, for which
MI will occur, are not affected by AMC, i.e., 𝜙+𝑀 = 𝜙−𝑀 = 0. The normalized
parameters are obtained using the relations in Table 4.1 in combination with the
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physical parameters listed in Tables C.1 and C.2, see Appendix C.7. Specifical-
ly, we assume that TPA-generated free carriers are removed by a reverse-biased
p-i-n-junction and thus have a small dwell time 𝑡eff ≈ (12 . . . 100) ps [29],
which is of the same order of magnitude as the cavity round-trip time. For
estimating the normalized intracavity power 𝐴 of the pumped mode, we use
Eq. (4.11) and assume that a detuning 𝜁 = 𝐴 + 𝜙0 − 𝑟𝑡 ′eff𝜎

′
car𝛽car𝐴

2 is cho-
sen for optimized power transfer from the pump 𝐹 to the pumped resonator
mode, which makes the expression (*)

(
𝐴 − 𝜁 + 𝜙0 − 𝑟𝑡 ′eff𝜎

′
car𝛽car𝐴

2)2 on the
right-hand-side of Eq. (4.11) vanish. With the above-mentioned parameters,
Eq. (4.11) can then be written as 𝐹 =

(
1 + 𝑟𝐴 + 𝑟𝑡 ′eff𝜎

′
car𝐴

2)2
𝐴, leading to

𝐴 ≈ 1 for a large range of technically relevant normalized pump powers 𝐹

between 1 and 100. Note that the following investigation aims at identifying
the dominant terms in Eq. (4.10) and that the symbol “≈” is to be understood as
an order-of-magnitude quantification rather than as an approximate equality.

To identify the side bands at which MI will occur first, we need to find values of
the side-band offset 𝑀 that maximize the gain rate 𝑔. To this end, we simplify
Eq. (4.10) by reducing it to its dominant terms, assuming that the offset of the
MI-generated side-bands from the pump is of the order of 𝑀 ≈ 10. With the
above-mentioned parameters, this leads to

𝑔 (𝑀) = −1 − 𝑟
(
2 + 𝑡 ′eff𝜎

′
car𝐴

)
+ ℜ

{√︂
𝐴2 (

𝑟2 + 1
)
−

(
𝜁 + 𝛽′𝑀2 − 2𝐴 + 𝑟𝑡 ′eff𝜎

′
car𝛽car𝐴2

)2
}
,

(4.12)

see Appendix C.2 for details. This formula was also obtained in a previous
study neglecting the fast-time dynamics of free-carriers [26]. We therefore
conclude that the fast-time dynamics of 𝑁 ′

car have negligible impact on MI.
This can be understood by the fact that, at the onset of MI, the optical power
is still uniformly distributed along the circumference of the resonator, such
that fast carrier dynamics on a time scale smaller than the round-trip time
do not play a big role. In the absence of FCA, i.e., for 𝜎 = 0, Eq. (4.12)
is consistent with results from previous studies investigating the impact of
TPA on modulation stability [27,28]. Similarly, maintaining only FCA-related
terms in Eq. (4.12) leads to relations that have previously been derived for
resonators impaired by free carriers only [28]. We simplify the further analysis
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of modulation instability by treating 𝑀 as a continuous non-negative real-
valued variable, even though it was originally defined as an integer parameter
𝑀 ∈ N+. The sidebands experiencing the highest gain rate are then obtained
from the condition 𝜁 + 𝛽′𝑀2 − 2𝐴 + 𝑟𝑡 ′eff𝜎

′
car𝛽car𝐴

2 = 0, which is the only term
depending on 𝑀 in Eq. (4.12). This leads to

𝑀max =

√︂(
2𝐴 − 𝑟𝑡 ′eff𝜎

′
car𝛽car𝐴2 − 𝜁

)
/𝛽′. (4.13)

Note that Eq. (4.13) implies an appropriate choice of the detuning 𝜁 such
that

(
2𝐴 − 𝑟𝑡 ′eff𝜎

′
car𝛽car𝐴

2 − 𝜁
)
/𝛽′ > 0. Note also that a strict derivation of

𝑀max by computing d𝑔/d𝑀 = 0 will yield 𝑀 = 0 as an additional local
extremum, specifically a local maximum for 𝑑

(
𝜁 − 2𝐴 + 𝑟𝑡 ′eff𝜎

′
car𝛽car𝐴

2) > 0
and a local minimum for 𝑑

(
𝜁 − 2𝐴 + 𝑟𝑡 ′eff𝜎

′
car𝛽car𝐴

2) < 0. This extremum
is not considered further, since the associated gain parameter 𝑔(0) is always
smaller than 𝑔 (𝑀max), which is given by

𝑔 (𝑀max) = − 1 − 𝑟
(
2 + 𝑡 ′eff𝜎

′
car𝐴

)
+ 𝐴

√︁
𝑟2 + 1

= − 1 +
(√︁

𝑟2 + 1 − 2𝑟
)
𝐴 − 𝑟𝑡 ′eff𝜎

′
car𝐴

2. (4.14)

Note also Eq. (4.14) reproduces the well-known fact that 𝐴 > 1 is a necessary
condition for MI to occur in the absence of TPA and FCA. The presence of
these effects may either increase the required normalized power 𝐴 to values
larger than 1 or completely inhibit MI. Specifically, 𝑔 (𝑀max) is negative for
any value of 𝐴 for sufficiently high TPA parameters 𝑟 ≥ 1/

√
3, i.e., MI cannot

occur, irrespective of the pump power. On the other hand, positive values of
𝑔 (𝑀max) may be found for certain normalized powers 𝐴 if both of the following
conditions are satisfied:

0 ≤ 𝑟 <
1
√

3
, 0 ≤ 𝑡 ′eff𝜎

′
car <

1
4𝑟

(√︁
𝑟2 + 1 − 2𝑟

)2
. (4.15)

Note that the upper limit of 1/
√

3 for the TPA parameter 𝑟 is exact. In a
bifurcation study of the LLE [141], 𝑟 = 1/

√
3 was also found as a threshold

value for the TPA-parameter preventing bifurcations from the steady-state
solution 𝑎 (𝑡 ′, 𝜏′) = 𝑎0. Further, 𝑟 < 1/

√
3 is also a necessary condition for

bistability of the continuous-wave (CW) intracavity power 𝐴 =
��𝑎0

��2 as a
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function of the detuning 𝜁 [27]. Note also that other investigations previously
described the impact of the TPA parameter on the intracavity power 𝐴 required
for MI in the presence of TPA and FCA [26] and in the presence of TPA only,
see again [27] and [28]. In both cases, the required intracavity (IC) power
diverges for 𝑟 → 1/

√
3. We therefore conclude that a TPA parameter 𝑟 ≥ 1/

√
3

prohibits a multitude of nonlinear phenomena comprising bifurcations from
the steady-state solution, bistability and modulation instability. Also note that
the upper limit for the free-carrier lifetime is consistent with the results of [26].

An important quantity to derive is the threshold power that leads to MI in
the presence of TPA and FCA. For the values of 𝑟 and 𝑡 ′eff𝜎

′
car specified by

Eq. (4.15), we use Eq. (4.14) to compute the minimum threshold power 𝐴th of
the pumped resonator mode that is required to achieve MI, i.e., 𝑔 (𝑀max) > 0.
The forcing 𝐹th required to achieve 𝐴th is then determined from Eq. (4.11). For
maximizing the power transfer from 𝐹th to 𝐴th, the detuning is chosen as 𝜁 =

𝐴th+𝜙0−𝑟𝑡 ′eff𝜎
′
car𝛽car𝐴

2
th by appropriate adjustment of the pump frequency, thus

eliminating the expression marked by a star (*) in Eq. (4.11). For this detuning,
maximum gain is found for modes with offset 𝑀max =

√︁
(𝐴th − 𝜙0)/𝛽′. For

anomalous dispersion, 𝛽′ > 0 (𝛽 (2) < 0), real-valued 𝑀max can be found as
long as 𝜙0 < 𝐴th, which includes also the complete absence of AMC, 𝜙0 = 0.
In contrast to that, normal dispersion, 𝑑 < 0 (𝛽 (2) > 0), requires 𝜙0 > 𝐴th, i.e.,
a spectral shift of the resonance caused by sufficiently strong AMC to yield a
real-valued 𝑀max. For real 𝑀max, Figure 4.2 displays the color-coded threshold
forcing 𝐹th that is required to achieve MI as a function of the normalized TPA
coefficient 𝑟 and the free-carrier influence 𝑡 ′eff𝜎

′
car. The color-coded map is

limited to the ranges within which MI can be achieved, see Eq. (4.15), while
the remainder of the plot is kept in gray. We find that 𝐹th increases continuously
with increasing 𝑟 and 𝑡 ′eff𝜎

′
car, which is caused by both an increase of 𝐴th needed

to achieve positive 𝑔 (𝑀max) according to Eq. (4.14), and a reduced power
transfer from the pump 𝐹 to the pumped mode 𝐴, Eq. (4.11). In the absence
of FCA, i.e., 𝑡 ′eff𝜎

′
car = 0, MI is possible for sufficiently weak TPA 𝑟 < 1/

√
3,

indicated by a vertical dashed line, and the associated threshold forcing 𝐹th
diverges for 𝑟 → 1/

√
3. This can be seen in Eq. (4.14), wherein the factor√

𝑟2 + 1 − 2𝑟 → 0 vanishes for 𝑟 → 1/
√

3 and thus 𝐴th → ∞ is needed to
achieve positive 𝑔 (𝑀max) for 𝑡 ′eff𝜎

′
car → 0. For 𝑟 < 1/

√
3 the threshold forcing

at the edge of the MI-enabling parameter space remains finite.
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Figure 4.2: Threshold forcing needed to achieve MI as a function of 𝑟 and 𝑡′eff𝜎
′
car. Modulation

instability and comb formation can be observed only to the left of the vertical dashed line 𝑟 = 1/
√

3.
The gray area indicates the parameter space for which modulation instability does not occur.
Magenta crosses mark data points reported for silicon photonic waveguides [25, 29, 159–162],
assuming waveguide losses of 𝛼𝑖 = 46m−1 (2 dB cm−1) [29]. Reference [29] reports on silicon-
photonic waveguides in which free carriers are actively removed by a reverse-biased p-i-n-junction,
leading to a dwell time of 𝑡eff = 12 ps. In all other cases, no free-carrier removal was used, leading
to dwell times of the order of 1 . . . 5 ns according to [25, 29, 77, 149, 150]. Specifically, a value
of 3 ns was used for the data points related to the references [159–162], which do not specify
values for 𝑡eff. The value for the FCA cross-section 𝜎car = 1.45 × 10−21 m2 is consistently found
in various publications [25, 29, 160]. The operating wavelength is 1550 nm.

Note that all these findings are based on various approximations that make
Eq. (4.10) amenable to an analytic investigation. In Appendix C.3, we check
the result of Fig. 4.2 for a specific set of parameters 𝜎′

car, 𝛽car, 𝑣
′, 𝛽′ by eva-

luating Eqs. (4.10) and (4.11) numerically for varying 𝑟 and 𝑡 ′eff without the
approximations involved in Eq. (4.14). In this investigation, we again assume
that AMC is absent, i.e., 𝜙𝜇 = 0∀ 𝜇. The relative deviation of the threshold
forcing found by the numerical evaluation from its analytically approximated
counterpart stays below 1 %. We hence conclude that the simplified procedure
leading to Fig. 4.2 can be considered sufficiently accurate.

Figure 4.2 also shows published experimental data (magenta crosses) for the
TPA coefficient 𝑟 and for the product 𝑡 ′eff𝜎

′
car of the FC cross-section and dwell

time. The published values for 𝑟 are all in the same order of magnitude [25,
29,159–162] and stay below the limiting value of 1/

√
3 as given in Eq. (4.15).

For simple silicon-photonic waveguides without active free-carrier removal,
dwell times 𝑡eff are of the order of 1 . . . 5 ns [25, 29, 77, 149, 150], thereby
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clearly inhibiting MI. However, active free-carrier removal by a reverse-biased
p-i-n-junction can effectively reduce the dwell time to values of, e.g., 12 ps
[29], such that modulation instability and frequency comb formation become
possible at telecommunication wavelengths. The lower limit for 𝑡 ′eff𝜎

′
car that

is achievable by active free-carrier removal is dictated by the saturation drift
velocity 𝑣car of the free carriers, which is of the order of 105 m s−1 for electrons
in silicon [163]. For a microresonator with an assumed waveguide width of
𝑤 = 480 nm, the theoretically estimated carrier dwell time can be as small as
𝑡eff = 𝑤/𝑣car = 4.8 ps which leads to 𝑡 ′eff𝜎

′
car = 0.05 and clearly enables MI.

4.5 Silicon microresonator for Kerr comb
generation at telecom wavelengths: Design
study and numerical simulations

With the general model of the Section 4.4 at hand, we can now design a specific
implementation of a silicon-photonic microresonator which is geared toward
Kerr comb generation at telecom wavelengths around 1550 nm. Fig. 4.1 shows
the general layout of the device. The silicon waveguide is undoped and is
part of the intrinsic zone of a p-i-n-junction [149, 152]. A reverse voltage
applied through vertical interconnect accesses (vias) to the 𝑝+-doped (red)
and 𝑛−-doped (blue) regions of the p-i-n-junction leads to efficient removal
of free carriers such that dwell times of the order of the round-trip time can
be achieved. To determine suitable waveguide parameters, we perform finite-
element simulations for a specific waveguide geometry. We choose the width
of the center waveguide as 𝑤 = 480 nm, the height as 260 nm and the slab
height as 40 nm, such that the total height amounts to ℎ = 300 nm. The width
of the undoped region is set to 1300 nm. This geometry of the cross-sectional
design for fast carrier removal is similar to the one used in [29] and results in
anomalous group velocity dispersion around 1550 nm [153]. Specifically, we
obtain a second-order dispersion parameter of 𝛽 (2) = −0.587 ps2 m−1 a group
refractive index of 𝑛g = 4.15, and a nonlinearity parameter of 𝛾 = 257 W−1 m−1

at 1550 nm, see Appendix C.4 for details. The value of the group refractive
index along with a targeted free spectral range (FSR) of 100 GHz leads to a
microresonator diameter of 230 𝜇m. For the TPA and FCA parameters marked
by a magenta cross in Fig. 4.2 [29], the threshold forcing for MI amounts to
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𝐹th = 2.06. Assuming a power loss coefficient of 𝛼𝑖 = 46 m−1 (2 dB cm−1) and
critical coupling, which corresponds to a Q-factor of approximately 2 × 105,
this threshold forcing translates into a threshold pump power of 𝑃in ≈ 12 mW
measured in the on-chip bus waveguide. Q-factors of the order of 105 have been
demonstrated using commercial silicon-photonic foundry processes [164].

Based on this resonator design, we next perform a time integration of the LLE
to validate our theoretical predictions on comb formation and to study the as-
sociated impact of fast free-carrier dynamics. Our model accounts for the full
dynamics of free carriers both on the slow and on the stationary fast time scale
and complements previous investigations of Kerr comb generation in silicon
microresonators such as [25], which formulates the free-carrier dynamics on
the retarded fast time scale and accounts for the temporal evolution on the slow
time scale by appropriate boundary conditions. We start our consideration from
the Kerr microresonator design described before, which features a normalized
group velocity 𝑣′ = 189, a dispersion coefficient 𝑑 = 0.0025, a TPA coefficient
𝑟 = 0.133, an FCA cross-section 𝜎′

car = 0.0157, and an FC dispersion coeffici-
ent 𝛽car = 7.5 [25, 165], see Appendix C.7, Tables C.1 and C.2 for a list of the
underlying physical microresonator parameters along with their connection to
the normalized quantities. Forcing 𝐹, detuning 𝜁 , and FC dwell time 𝑡 ′eff are
externally controllable parameters and are varied in our simulations. We use a
discretization of Δ𝜏′ = 2𝜋/1024 (Δ𝜏 = 9.8 fs) for the normalized fast time by
dividing the round-trip time into 1024 parts, and we set the slow-time step-size
to Δ𝑡 ′ = 64 × 𝜏′/𝑣′ = 2.1 × 10−3 (Δ𝑡 = 64 × Δ𝜏 = 626 fs). Note that in or-
der to correctly simulate the slow- and fast-time dynamics of both the optical
field 𝑎 (𝑡 ′, 𝜏′) and the free-carriers 𝑁 ′

car (𝑡 ′, 𝜏′), the slow-time increment and
the fast-time increment are linked, see Appendix C.5 for details. We run each
simulation until 𝑡 ′ = 150, corresponding to 72174 time steps for the slow time.
The initial field for each simulation is given by 1024 complex numbers with
random phases between 0 and 2𝜋 and random amplitudes between 0 and 10−14.
The maximum amplitude of the initial field is chosen such that the power of the
initial field is negligible compared to the forcing but can still act as a seed for
starting the evolution of the differential equation system. More details on the
integration of the coupled Eqs. (4.5) and (4.6) can be found in Appendix C.5.
We analyze four different cases, see Figure 4.3 – 4.6 for the results.

In Figure 4.3 (Inhibited modulation instability), the parameters are set as fol-
lows: Forcing 𝐹 = 5 (pump power 𝑃in = 30 mW), dwell-time 𝑡 ′eff = 0.1665
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Figure 4.3: Results of time integration of the LLE: Dispersion profiles, gain rates, field and FC
evolution for case I: Modulation instability inhibited by long free-carrier dwell time 𝑡eff, which
corresponds to five times the cavity round-trip time 𝑡R. (a) Simulation parameters and dispersion
profile for the central 101 modes. (b) Computed normalized gain rate at the beginning of the
simulation (slow time 𝑡′ = 0). (c) Evolution of power spectrum and spectrum at stationary state
for 𝑡′ = 150. (d) Color-coded intracavity (IC) power evolving during comb formation over 𝑡′ as a
function of normalized the fast time 𝜏′ and quasi-stationary IC power at 𝑡′ = 150. (e) Free-carrier
density 𝑁 ′

car (𝑡′ = 150, 𝜏′ − 150𝑣′) at final state.
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(𝑡eff = 50 ps), detuning 𝜁 = 2.2 (Δ𝜔 = 2𝜋×1.16 GHz), and 𝛽′ = 0.0025, corre-
sponding to anomalous dispersion, i.e., 𝛽 (2) < 0, see Table 4.1. The simulation
parameters are listed in Figure 4.3(a) on the l.h.s. The dispersion profile of
the 101 central frequency comb modes, represented in normalized terms by
𝜑′ (𝜇) = −𝛽′𝜇2 + 𝜙𝜇, is shown in (a) on the r.h.s. as a function of the mode
index 𝜇. In physical terms, the dispersion profile 𝜑 (𝜇) corresponds to the
phase deviation accumulated by each comb mode 𝜇 over a single round-trip
𝑡R in the resonator due to dispersion and avoided mode crossings. This can
be seen by introducing Eq. (4.1) into a reduced version of Eq. (4.2), where
only the fifth and sixth term j

[
−(𝛽 (2)𝐿MR/2)𝜕2/𝜕𝜏2 + Φ̂AMC

]
E(𝑡, 𝜏) on the

r.h.s. are maintained. Using Eq. (4.4), and the normalized quantities defined in
Table 4.1, we obtain

j
[
− 𝛽 (2)𝐿MR

2
𝜕2

𝜕𝜏2 + Φ̂AMC

] ∑︁
𝜇

E
𝜇
e j2𝜋𝜇𝑡/𝑡R

= j
∑︁
𝜇

𝜑 (𝜇) E
𝜇
e j2𝜋𝜇𝑡/𝑡R , (4.16)

𝜑 (𝜇) = 𝛽 (2)𝐿MR
2

(
𝜇 × 2𝜋

𝑡R

)2
+ 𝛿𝜔𝜇𝑡R,

𝜑′ (𝜇) =
𝑛g

𝛼𝑖𝑡R𝑐0
𝜑 (𝜇) = −𝛽′𝜇2 + 𝜙𝜇 .

The above-mentioned choice of forcing and dwell time ensures that the norma-
lized gain rate 𝑔(𝜇) (with 𝑀 = |𝜇 |), Eqs. (4.10) and (4.11), is always negative,
see Fig. 4.3(b). As a consequence, modulation instability cannot occur, and the
only mode with nonzero power is the pumped mode at modal index 𝜇 = 0. In
Fig. 4.3(c) on the l.h.s., the color-coded power spectrum |𝑎

𝜇
(𝑡 ′) |2 is shown as

a function of the normalized (slow) time 𝑡 ′ in the range 0 ≤ 𝑡 ′ ≤ 150 and of the
modal index 𝜇 in the range −50 ≤ 𝜇 ≤ 50. Fig. 4.3(c), r.h.s., displays the final
power spectrum at 𝑡 ′ = 150 as a function of the modal index 𝜇. In Fig. 4.3(d)
on the l.h.s., the color-coded intracavity (IC) power |𝑎(𝑡 ′, 𝜏′) |2 is depicted as a
function of normalized slow time 𝑡 ′ and normalized fast (retarded) time 𝜏′. In
the absence of modulation instability, the IC power remains constant along the
circumference of the resonator, |𝑎(𝑡 ′, 𝜏′) |2 = 1.11, see Fig. 4.3(d). Similarly,
the free-carrier density is also constant, as depicted in Fig. 4.3(e).
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Figure 4.4: Results of time integration of the LLE: Dispersion profiles, gain rates, field and
FC evolution for case II: Modulation instability with sufficiently reduced carrier dwell time 𝑡eff =

1.22×𝑡R. (a) Simulation parameters and dispersion profile for the central 101 modes. (b) Computed
normalized gain rate at the beginning of the simulation (slow time 𝑡′ = 0). (c) Evolution of power
spectrum and spectrum at stationary state for 𝑡′ = 150. (d) Color-coded intracavity (IC) power
evolving during comb formation over 𝑡′ as a function normalized of the fast time 𝜏′ and quasi-
stationary IC power at 𝑡′ = 150. We observe a temporal shift of the IC power distribution within
the retarded time frame of the fast time axis 𝜏′, which can, e.g., be caused by FC dispersion or
avoided mode crossings. Besides this shift along the 𝜏′-axis, the IC power does not change, and
we name this state “quasi-stationary”. (e) Free-carrier density 𝑁 ′

car (𝑡′ = 150, 𝜏′ − 150𝑣′) at final
state.
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In Figure 4.4 (Modulation instability), we keep all parameters of Fig. 4.3 except
for 𝑡 ′eff, which is reduced to 0.0406. This corresponds to a physical dwell time
𝑡eff = 12.2 ps, which has previously been demonstrated in a comparable silicon-
photonic waveguide [29]. In this case, the computed normalized gain rate is
positive within a certain range of modal indices 𝜇, see Fig. 4.4(b) (red dots).
During the evolution of the power spectrum with slow time 𝑡 ′, the first sidebands
emerge near 𝑡 ′ = 55, Fig. 4.4(c) l.h.s. A visual comparison with the gain rate
plot in (b) shows that the positions 𝜇 ≈ ±25 of the initial sidebands coincide
with the maxima of the gain parameter 𝑔(𝜇). A power spectrum at 𝑡 ′ = 150 is
to be seen on the r.h.s. of Fig. 4.4(c). The phase-locked modes lead to a regular
temporal pulse pattern which is visible in Fig. 4.4(d). Note that there is a small
slow drift of this pulse train within the retarded time frame 𝜏′, which may be
inferred from the nearly vertical, but slightly inclined lines that correspond
to the pulse peaks on the fast time scale, see Fig. 4.4(d) l.h.s. A possible
explanation of this drift might be the fact that the rise of the free-carrier density
during each pulse leads to a slightly increased attenuation of the trailing pulse
edge and hence to an effectively higher propagation velocity. Mathematically,
this behavior can be also seen from the terms exp

(
±j𝑔j𝑡

′) exp (±j𝑀𝜏′) =

exp
(
±j𝑀 (𝑔j𝑡

′/𝑀 + 𝜏′)
)

in Eq. (4.8), which describe a time shift of the optical
field 𝑎 (𝑡 ′, 𝜏′) that continuously increases with slow time 𝑡 ′ within the fast
time scale. The FC density 𝑁 ′

car (𝑡 ′ = 150, 𝜏′ − 150𝑣′) in Fig. 4.4(e) shows
modulations. These are however small, since the assumed FC lifetime of 12.2 ps
is much larger than the narrow temporal spacing of the 25 optical pulses
circulating in the cavity, which amounts to approximately 10 ps/25 = 0.4 ps.

In Figure 4.5 (Dissipative Kerr soliton generation), we increase the forcing to
𝐹 = 8 (48 mW). The detuning is kept constant at 𝜁 = 3 until 𝑡 ′ = 90, then
increased linearly to 𝜁 = 3.8 until 𝑡 ′ = 120, and then kept constant again
until the end of the simulation, see Fig. 4.5(a) l.h.s. Such a procedure allows
generating single-soliton states [120]. In Fig. 4.5(b), the gain rate is depicted
for 𝑡 ′ = 0, i.e., before the detuning sweep, showing a broad range of modes
that experience parametric gain. In the simulated slow-time evolution of the
spectrum, Fig. 4.5(c) l.h.s., the first sidebands become visible around 𝑡 ′ = 70,
and the spectral position of these sidebands coincides with the maxima of
computed gain rate in (b). The maximum of the gain parameter in Fig. 4.5 is
slightly smaller than the one obtained for the scenario described in Fig. 4.4,
and thus the sidebands only become visible at a later normalized time 𝑡 ′.
The final power spectrum obtained at the end of the simulation, Fig. 4.5(c)
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Figure 4.5: Results of time integration of the LLE: Dispersion profiles, gain rates, field and FC
evolution for case III: Single soliton formation for dynamically increasing detuning. (a) Simulation
parameters and dispersion profile for the central 101 modes. (b) Computed normalized gain rate at
the beginning of the simulation (slow time 𝑡′ = 0). (c) Evolution of power spectrum and spectrum
at stationary state for 𝑡′ = 150. (d) Color-coded intracavity (IC) power evolving during comb
formation over 𝑡′ as a function of the normalized fast time 𝜏′ and quasi-stationary IC power
at 𝑡′ = 150. We observe a temporal shift of the IC power distribution within the retarded time
frame of the fast time axis 𝜏′, which can, e.g., be caused by FC dispersion or avoided mode
crossings. Besides this shift along the 𝜏′-axis, the IC power does not change, and we name this
state “quasi-stationary”. (e) Free-carrier density 𝑁 ′

car (𝑡′ = 150, 𝜏′ − 150𝑣′) at final state.
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r.h.s., is a very regular frequency comb with a smooth envelope, which is
typical for a single dissipative Kerr soliton [21] circulating in the ring. The
evolution of the color-coded intracavity power, shown in Fig. 4.5(d), reveals the
emergence of multiple pulses at modulation instability onset around 𝑡 ′ ≈ 70.
Due to the swept detuning, most of the pulses vanish over time, which is in
line with experimental observations [120]. The final value of 𝜁 was chosen
such that a single pulse remains in the cavity, which can be seen from the plot
of the IC power |𝑎(𝑡 ′ = 150, 𝜏′) |2 in Fig. 4.5(d) r.h.s. In this simulation, FCA
causes an even more pronounced change of the group velocity as compared to
Fig. 4.4(d) l.h.s., leading to a stronger temporal shift of the soliton pulse within
the retarded time frame 𝜏′, while the spectrum remains constant. Such drifts
of soliton pulses due to FCA have been reported and investigated in [28]. At
higher pump powers, this drift can be even more severe, see, e.g., Appendix C.5.
Comparing the propagation of a single soliton pulse in the presence of free
carriers with and without fast time dynamics, we find that this drift can only
be observed when including these dynamics, see again Appendix C.5. The
free-carrier density, Fig. 4.5(e), shows a stronger modulation compared to the
previous case shown in Fig. 4.4. The soliton pulse increases the local free-
carrier density by 28 % compared to its cavity mean value. Note that the
soliton pulse is accompanied by a constant CW-background, which also a
contributes a constant part to the FC density. For single-soliton states with
stronger pump powers, the fast-time dynamics of the free-carrier density are
more pronounced, see again Appendix C.5 for an example. Overall, the FC
density is lower compared to the cases shown in Figs. 4.3 and 4.4. This is
explained by a reduced FC lifetime compared to Fig 4.3 and to a significantly
reduced number of pulses propagating in the cavity compared to Fig. 4.4.

In Figure 4.6 (Modulation instability via avoided mode crossing), the forcing
is set back to 𝐹 = 5, and the anomalous dispersion profile used in Figs. 4.3, 4.4
and 4.5 is inverted to obtain normal group-velocity dispersion, 𝛽′ = −0.0025,
see Fig. 4.6(a) on the l.h.s. for all parameters. Additionally, we introduce an
avoided mode crossing (AMC) which causes phase shifts 𝜙𝜇 that disturb the
dispersion profile. The AMC arises due to a coupling of resonator modes
with similar resonance frequency, but different transverse field distributions.
The two coupled modes belong to different mode families, characterized by
their respective free spectral range. Representing the dispersion profile of the
second waveguide mode family in the dispersion diagram of the first mode
family leads to equidistant points on an approximately straight line, which
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Figure 4.6: Results of time integration of the LLE: Dispersion profiles, gain rates, field and
FC evolution for case IV: Comb formation in a normal-dispersion resonator with avoided mode
crossing. (a) Simulation parameters and dispersion profile for the central 101 modes. (b) Computed
normalized gain rate at the beginning of the simulation (slow time 𝑡′ = 0). (c) Evolution of power
spectrum and spectrum at stationary state for 𝑡′ = 150. (d) Color-coded intracavity (IC) power
evolving during comb formation over 𝑡′ as a function of the normalized fast time 𝜏′ and quasi-
stationary IC power at 𝑡′ = 150. We observe a temporal shift of the IC power distribution within
the retarded time frame of the fast time axis 𝜏′, which can, e.g., be caused by FC dispersion or
avoided mode crossings. Besides this shift along the 𝜏′-axis, the IC power does not change, and
we name this state “quasi-stationary”. (e) Free-carrier density 𝑁 ′

car (𝑡′ = 150, 𝜏′ − 150𝑣′) at final
state.
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is indicated in red in Figure 4.6(a) r.h.s. The resonance frequencies of the
coupled modes are indicated by blue filled circles connected by gray lines,
which deviate from the resonance frequencies of the unperturbed modes 𝜔r,𝜇
by 𝛿𝜔𝜇, see Appendix C.6 and Ref. [166] for details. The FSR of the second
mode family and the coupling strength of the two transverse modes are chosen
such that the strongest resonance shift amounts to 𝛿𝜔−10 = −2𝜋 × 875 MHz
(𝜙−10 = −1.65, 𝜙0 = 0.06, 𝜙+10 = 0.03). This corresponds to a local 1 %
change of the FSR, which is the same order of magnitude as reported for
experimentally investigated microresonators [157, 166]. The phase shifts 𝜙𝜇

induced by the avoided mode crossing alter the gain parameter such that it
becomes positive for certain sidebands, with a gain maximum at sidebands
𝜇 = ±10, see Fig. 4.6(b). In the evolution of the power spectrum, Fig. 4.6(c)
on the l.h.s., comb lines emerge at these positions. For better visibility, the
comb line at 𝜇 = 10 is framed by a broken line and horizontally enlarged. Note
that pumping a resonance directly adjacent to an avoided mode crossing may
allow for generation of dark soliton frequency combs, where the spacing of the
comb lines is equal to a single FSR of the microresonator instead of a multiple
thereof [130]. Dark solitons might even experience stronger impact from fast
free-carrier dynamics than their bright counterparts.

The stationary power spectrum in Figure 4.6(c) shows a pronounced asymme-
try. Compared to the previously considered scenarios, the IC power distribution
exhibits a stronger temporal shift of the soliton pulse within the retarded time
frame 𝜏′. This is caused by a contribution of the AMC-induced phase shifts to
the imaginary part of the gain rate, see Eq. (4.10). Apart from this time shift,
the final power distribution inside the resonator exhibits a stationary regular
pattern, Fig. 4.6(c) r.h.s. The FC density is again nearly constant due to the
presence of multiple pulses circulating in the cavity, see Fig. 4.6(e).

Note that silicon-photonic waveguides with anomalous group-velocity disper-
sion around 1550 nm need a careful design and can only be achieved in a
limited parameter space of widths 𝑤 and heights ℎ [153]. To ensure the tech-
nical relevance of the scenarios investigated in Figs. 4.3 – 4.5, we derived the
normalized dispersion parameter along with the corresponding nonlinearity
parameter from a specific waveguide design (𝑤 = 480 nm, ℎ = 300 nm), see
Table 4.11 and Appendix C.4 for details. In contrast to that, normal dispersi-
on can be achieved for a rather large parameter range of waveguide widths
and heights, including waveguides with standard heights of 220 nm or with

92



4.6 Discussion and conclusions

rather large cross-sections that support multi-mode propagation and avoided
mode-crossings [153]. Silicon-photonic microresonators corresponding to the
scenario considered in Fig. 4.6 may therefore by realized for multiple different
waveguide geometries.

4.6 Discussion and conclusions

The simulation results indicate that modulation instability in silicon-photonic
microresonators at telecommunication wavelengths is most likely to be ob-
served if the waveguide is designed for anomalous group-velocity dispersion,
if FCA is mitigated by a reverse-biased p-i-n-junction which leads to a suf-
ficiently small carrier dwell time, and if the pump power and detuning are
chosen properly. If an avoided mode crossing induces local dispersion shifts,
microresonators with otherwise normal dispersion can also exhibit modulati-
on instability. In both cases, moderate on-chip pump powers in the range of
10 mW to 50 mW are sufficient to initiate modulation instability and to genera-
te frequency combs. The required pump powers depend strongly on the actual
values of the TPA coefficient 𝛽TPA, which is expressed by the normalized TPA
parameter 𝑟 , and on the actual FC dwell time 𝑡eff and its normalized counterpart
𝑡 ′eff. We illustrate this dependence in Fig. 4.7(a), where the on-chip threshold
pump power 𝑃th for modulation instability is displayed as a function of the TPA
coefficient with the FC dwell time as a parameter. We assume critical coupling,
a resonator design and waveguide properties as described in Section 4.5, a Kerr
coefficient of 𝑛2 = 6.5 × 10−18 m2 W−1, and a pump wavelength of 1550 nm.
We find that 𝑡eff has to be of the order of 100 ps or less to enable comb forma-
tion across the range of reported values for 𝛽TPA in silicon, which reach from
0.45 cm GW−1 [159] to 1.5 cm GW−1 [25] as indicated by vertical dashed lines
in Fig. 4.7(a). For larger dwell times, FCA prevents comb formation, which
is indicated by the fact that the green and magenta lines in Fig. 4.7(a) do not
enter the range of reported values for 𝛽TPA. For 𝑡eff = 10 ps (red), the threshold
pump power varies between 10 mW and 60 mW, close to the threshold powers
in absence of FCA (𝑡eff = 0 ps, black curve) within the range of reported values
of 𝛽TPA. Note that these values for the threshold pump power only apply for an
optimized detuning 𝜁 , that minimizes the expression (*) in Eq. (4.11). Note also
that the proper choice pump power and the corresponding optimum detuning 𝜁

is an essential prerequisite for observing MI and subsequent comb formation.
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4 Analysis of Kerr comb generation in silicon microresonators under the influence . . .

Figure 4.7: (a) On-chip threshold pump power for the onset of modulation instability as a function
of TPA coefficient 𝛽TPA for different FC dwell times 𝑡eff. We assume a silicon microresonator
with an FSR 𝜔FSR/(2𝜋) = 100 GHz at 1550 nm, see Section 4.5 for details. The microresonator
is assumed to have 2 dB cm−1 waveguide loss, anomalous dispersion and critical coupling to the
bus waveguide. Reported values of 𝛽TPA for silicon range from 0.45 cm GW−1 to 1.5 cm GW−1 as
indicated by the vertical dashed lines. (b) Soliton comb spectrum obtained in the bus waveguide
after the microresonator. The resonator is identical to the one considered in (a). We assume
𝛽TPA = 0.7 cm GW−1, 𝑡eff = 12 ps, and 𝑃in = 50 mW. The spectrum derived from the normalized
intra-cavity comb spectrum indicated in Fig.4.5(c).
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4.6 Discussion and conclusions

For numerical simulations with non-optimum pump parameters, MI and comb
formation may not be observed [25] even though the underlying device should
support these processes in consideration of its TPA- and FCA-parameters.

For illustration of a specific comb source, we again assume a resonator de-
sign and waveguide properties as specified in Section 4.5, along with a Kerr
coefficient of 𝑛2 = 6.5 × 10−18 m2 W−1 and a pump wavelength of 1550 nm.
Based in these parameters, we calculate the physical frequency comb spectrum
that is obtained in the bus waveguide after the microresonator, see Fig. 4.7(b).
The TPA coefficient, the effective carrier dwell time, and the pump power are
chosen as 0.7 cm GW−1 [29], 12 ps [29], and 50 mW, respectively. The physi-
cal spectrum shown in Fig. 4.7(b) is derived from the normalized intra-cavity
comb spectrum indicated in Fig. 4.5(c) on the r.h.s.

The model presented in Eqs. (4.2), (4.3), and (4.4) can be further refined by
including additional physical effect such as higher-order dispersion, Raman
shift [167], or self-steepening. We expect that these effects may lead to minor
corrections of the quantitative predictions on modulation instability without
changing the qualitative behaviour. Note that the incorporation of such additio-
nal effects in Eq. (4.2) is straightforward, see, e.g., [25], and can be performed
independently of our description of stationary free carriers, Eq. (4.3). Note
also that, while the Raman effect has no significant impact on the initial comb-
formation conditions [28], it severely affects the spectrum of broadband soliton
frequency combs [28,168,169], as well as the power conversion efficiency [137]
and the pump parameter space in which solitons can exist [28]. In addition, the
results may be improved by using more accurate data for 𝛽TPA and achievable
ranges of 𝑡eff, which will help to obtain a more precise estimate of the threshold
power for MI – a key parameter from a practical point of view.

For practical devices, further reduction of the pump power is key, especially
when it comes to integrated Kerr-comb modules in which the available pump
power is limited [15, 22, 83, 170]. In this context, improvements in waveguide
fabrication may allow reducing the linear propagation losses to values of, e.g.,
0.4 dB m−1 [171], which is well below the 2 dB m−1 assumed in this work,
but still far above the intrinsic absorption of silicon of less than 0.01 dB m−1

at telecommunication wavelengths [172]. As an alternative or an addition to
reverse-biased p-i-n-junctions, silicon self-ion implantation may be used to
reduce of the FC dwell time at the expense of slightly increased waveguide
losses [173]. Alternative waveguide concepts such as, e.g., silicon-organic-
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hybrid (SOH) waveguides [155,156] with a high Kerr nonlinearity of order of
𝛾 = 100 m W−1 and low normalized TPA absorption coefficients of 𝑟 ≈ 0.036,
corresponding to 𝛽TPA = 0.5 cm GW−1 for 𝑛2 = 1.7×10−17 m2 W−1 [155] may
also be used in a microresonator.

In summary, we have presented a theoretical analysis of the impact of nonlinear
loss mechanisms such as TPA and FCA on Kerr comb formation based on a
model that accounts for fast-time free-carrier dynamics in a stationary frame
for the fast time. Our model is based on normalized quantities and can thus be
applied to wide range of resonator design, materials, and operation conditions,
including devices that are affected by avoided mode crossings (AMCs). We
derive the maximum two-photon absorption and free-carrier lifetime that still
allow for modulation instability at sufficiently low pump powers and that can
thus lead to frequency comb formation. We show that microresonators realized
on the silicon-photonic platform are not necessarily unsuited for Kerr comb
generation at NIR telecommunication wavelengths around 1550 nm, provided
that the dwell time of the free-carriers in the waveguide core is reduced by
a reverse-biased p-i-n-junction and that the pump parameters are chosen ap-
propriately, and we present a specific design of a silicon microresonator with
anomalous group-velocity dispersion that may even support formation of dissi-
pative Kerr solitons. A numerical solution of the Lugiato-Lefever equation and
our suggested free-carrier rate equation shows the onset of comb formation in
agreement with our theoretical small-signal analysis. The impact of fast-time
free-carrier dynamics is rather small as long as no comb is present or multiple
pulses circulate in the microresonator. However, once single soliton pulses
propagate, the FC density clearly deviates from its fast time mean value, and
the optical field shows an additional fast-time drift. Both the numerical and the
theoretical small-signal analysis demonstrate that modulation instability can
also occur for normal-dispersion resonators if an avoided mode crossing comes
into play. This would permit Kerr comb generation in silicon ring resonators
with a standard waveguide height of 220 nm. We believe that our findings will
help to design microresonators for Kerr comb generation on different photo-
nic integration platforms that are affected by nonlinear loss and free-carrier
absorption.

[End of publication [J2]]
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5 Ultrafast optical ranging using
microresonator soliton frequency
combs

In this chapter, distance metrology using dissipative Kerr soliton frequency
combs is described. The following text was published in Science [J3] and was
adapted to fit the layout, structure, notation and conventions of this dissertation.
The supplementary information are given in Appendix D. Parts of the results
described in this chapter have been presented at conferences [C3,C4,C8,C9].

Note that the author of this dissertation, Denis Ganin and Maxim Karpov con-
tributed equally to this publication. The idea of the experiment was conceived
jointly by P. Trocha, D. Ganin, and C. Koos. The author of this dissertation and
Denis Ganin jointly developed and implemented the experimental setup depic-
ted in Figure 5.2, that is based in previous work by C. Weimann, with support
of S. Wolf, J. Krockenberger, P. Marin-Palomo. D. Ganin conducted the experi-
ments discussed in Sections 5.2 and 5.3 as well as Appendices D.1, D.5 and D.6
with support of the author. The author of this dissertation developed and imple-
mented the digital signal processing that is described in the Appendices D.1,
D.2 and D.3 and that is used to derive the results shown in Sections 5.2 and 5.3,
building upon previous work by C. Weimann and supported by D. Ganin. M.
Karpov, M.H.P. Pfeiffer, and A. Kordts from the Laboratory of Photonics and
Quantum Measurements at École Polytechnique Fédérale de Lausanne (EPFL)
developed, fabricated, and characterized the Kerr-nonlinear microresonators
for comb generation as well as the soliton-generation technique described in
Section 5.2 and Appendix D.7 under supervision of T. Kippenberg. The manu-
script was written by the author together with D. Ganin and M. Karpov, with
support of W. Freude, T.J. Kippenberg, and C. Koos. The work was jointly
supervised by S. Randel, W. Freude, T.J. Kippenberg, and C. Koos.

[Start of publication [J3]]
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Light detection and ranging is widely used in science and industry. Over the
past decade, optical frequency combs were shown to offer advantages in optical
ranging, enabling fast distance acquisition with high accuracy. Driven by emer-
ging high-volume applications such as industrial sensing, drone navigation, or
autonomous driving, there is now a growing demand for compact ranging
systems. Here, we show that soliton Kerr comb generation in integrated sili-
con nitride microresonators provides a route to high-performance chip-scale
ranging systems. We demonstrate dual-comb distance measurements with Al-
lan deviations down to 12 nanometers at averaging times of 13 microseconds
along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for
in-flight sampling of gun projectiles moving at 150 meters per second. Com-
bining integrated soliton-comb ranging systems with chip-scale nanophotonic
phased arrays could enable compact ultrafast ranging systems for emerging
mass applications.

5.1 Introduction

Laser-based light detection and ranging (LiDAR) is a key technology in in-
dustrial and scientific metrology, offering high-precision, long-range, and fast
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acquisition [105, 174]. LiDAR systems have found their way into a wide va-
riety of applications, comprising, for example, industrial process monitoring,
autonomous driving, satellite formation flying, or drone navigation. When it
comes to fast and accurate ranging over extended distances, optical frequency
combs [30] have been demonstrated to exhibit characteristic advantages, ex-
ploiting time-of-flight (ToF) schemes [175], interferometric approaches [176],
or combinations thereof [19]. In early experiments [175], mode-locked fiber la-
sers were used for ToF ranging, thereby primarily exploiting the stability of the
repetition rate. Regarding interferometric schemes, optical frequency combs
were exploited to stabilize the frequency interval between continuous-wave
(CW) lasers used in synthetic-wavelength interferometry [176, 177]. Dual-
comb schemes, which rely on multiheterodyne detection by coherent superpo-
sition of a pair of slightly detuned frequency combs [178], allow combining of
ToF measurements with optical interferometry, thereby simultaneously exploi-
ting the radio-frequency coherence of the pulse train and the optical coherence
of the individual comb tones [19]. More recently, comb-based schemes have
been demonstrated as a viable path to high-speed sampling with acquisition
times down to 500 ns [179].

However, besides accuracy and acquisition speed, footprint is becoming in-
creasingly important for LiDAR systems. On the technology side, recent ad-
vances in photonic integration show that large-scale nanophotonic phased ar-
rays [180, 181] open a promising path towards ultracompact systems for rapid
high-resolution beam steering. To harness the full potential of these approa-
ches, the optical phased arrays need to be complemented by LiDAR engines
that combine high precision with ultrafast acquisition and that are amenable to
chip-scale integration. Existing dual-comb LiDAR concepts cannot fulfill these
requirements because they rely either on cavity-stabilized mode-locked fiber
lasers [19] or on spectral broadening of initially narrowband seed combs [179],
which typically require delicate fiber-based dispersion management schemes,
usually in combination with intermediate amplifiers.

Here, we show that dissipative Kerr soliton (DKS) states [21, 182] in micro-
resonator-based optical frequency combs [10,11] provide a route to integrated
LiDAR systems that combine sub-wavelength accuracy and unprecedented ac-
quisition speed with scalable fabrication, robust implementation, and compact
form factors. DKSs are solutions of a driven, damped, and detuned nonlinear
Schrödinger equation, often referred to as a Lugiato-Lefever equation [78].
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5 Ultrafast optical ranging using microresonator soliton frequency combs

Such ultrashort temporal solitons can circulate continuously in the cavity, re-
lying on a double balance of dispersion and nonlinearity as well as parametric
gain and cavity loss [21]. In the frequency domain, DKS pulse trains cor-
respond to optical frequency combs, which combine large bandwidths and
smooth spectral envelopes with free spectral ranges in the range from tens of
gigahertz to a few terahertz. Microresonator-based DKSs have recently been
used in low-noise microwave generation [183], frequency metrology [89], dual-
comb spectroscopy [18], coherent communications [J5], and optical frequency
synthesis [88]. In our demonstrations, we exploit DKS combs for synthetic-
wavelength interferometry with massively parallel multiheterodyne detection.
Our scheme is based on a pair of free-running comb generators and does not
require phase locking of the combs to each other. The large optical bandwidth
of more than 11 THz leads to highly precise distance measurements with Allan
deviations reaching 12 nm at an averaging time of 14 𝜇s, whereas the large
free spectral range (FSR) enables high-speed measurements at rates of up to
100 MHz. We prove the viability of our technique by sampling the naturally
scattering surface of air-gun projectiles on the fly, achieving lateral spatial
resolutions of more than 2 𝜇m for object speeds of more than 150 m/s.

5.2 Experimental setup and system
characterization

For DKS comb generation, we use a pair of CW-pumped silicon nitride (Si3N4)
microring resonators on separate chips [24,184,185]. The devices (Fig. 5.1(a))
are fabricated using the photonic Damascene process [85], which enables crack-
free fabrication of high-quality (Q) microresonators (Q > 1 million) with large
waveguide dimensions (1.65 by 0.85 𝜇m). DKS comb generation is achieved by
sweeping the pump laser frequency from the effectively blue-detuned to a defi-
ned point in the effectively red-detuned regime of a selected cavity resonance,
where the microresonator system supports soliton formation [21] (Fig. 5.1(b)).
Once the laser scan stops, typically a multisoliton state is generated. By next
applying the backward frequency tuning technique [120], a single-soliton state
corresponding to an optical frequency comb with a spectrally smooth squared
hyperbolic secant (sech2) shape envelope (Fig. 5.1(c)) is achieved in a deter-
ministic manner. A more detailed description of the experimental setup and of
the microresonator devices can be found in Appendix D.
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Figure 5.1: Dissipative Kerr soliton (DKS) generation in silicon nitride (Si3N4) microresonators.
(a) Scanning electron microscopy image of a silicon nitride microresonator with a radius of
240 𝜇m. The checkerboard pattern results from the photonic Damascene fabrication process [85].
(b) Visualization of the backward tuning technique. The pump laser wavelength is changed from
an effective blue-detuning into an effective red-detuned state, thereby increasing the intracavity
power and giving rise to modulation instability (arrow I). Eventually, the intracavity field switches
from this chaotic state into a multisoliton state when the laser tuning is stopped. From there on,
the laser wavelength is tuned toward lower wavelengths, decreasing the number of solitons until
a single-soliton state is reached. The decreasing number of solitons is visible by the decreasing
steps of the intracavity power (arrow II). (c) Spectrum of a DKS optical frequency comb with
zoom-in. The spectrum combines large bandwidth and a smooth spectral envelope and features a
line spacing of 100 GHz.

The experimental setup used for dual-comb ranging is depicted in Fig. 5.2(a).
To enable multiheterodyne detection, we use two Kerr comb generators wi-
th slightly different free spectral ranges of 𝜔SI,FSR/2𝜋 = 95.842 GHz and
𝜔LO,FSR/2𝜋 = 95.746 GHz, respectively. To demonstrate that our concept does
not require phase locking of the DKS combs, we used a pair of free-running
CW lasers to pump the microresonators and compensate for the stochastic
phase drifts by digital signal processing, see Appendix D. The pump light for
the signal and the Local oscillator (LO) comb is amplified by erbium-doped
fiber amplifiers (EDFA) to power levels of 3.5 and 2.6 W, respectively, and then
coupled to the microresonator chips with a coupling efficiency of 60 % per
facet. The resulting combs feature overall power levels of 4.3 and 2.5 mW and
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5 Ultrafast optical ranging using microresonator soliton frequency combs

are amplified by a pair of C+L-band (1530 to 1565 nm and 1565 to 1625 nm)
EDFA to 450 mW to improve the measurement precision1. A spectrum of an
amplified comb is shown in Fig. 5.2(b). The gain bandwidth of the EDFA limits
the number of usable lines to about 115, which is sufficient for our experiments.

For distance measurements, the signal comb is split by a fiber-based 50/50
coupler, and one part is routed to the target and back to a balanced measu-
rement photodetector (Meas. PD), while the other part is directly sent to the
balanced reference detector (Ref. PD); see Fig. 5.2(a). Measurement and refe-
rence PDs feature bandwidths of 43 GHz. Similarly, the LO comb is split into
two portions, which are routed to the measurement PD and the reference PD
for multiheterodyne detection. The resulting baseband signal contains discrete
beat notes, which are recorded by a 33-GHz real-time sampling oscilloscope
and separated by means of a numerically calculated Fourier transform. The di-
stance to the target is extracted from the phase of the baseband beat notes. Data
processing and evaluation are performed offline; see Appendix D for details of
the underlying algorithms.

Figure 5.2(c) shows the Fourier transform of a recorded baseband signal, reve-
aling the various beat notes between the signal and LO comb lines. The spacing
of the beat notes is given by the difference of the line spacing of the LO and
the signal comb and amounts to Δ 𝑓FSR = Δ𝜔FSR/2𝜋 = 96.4 MHz, thereby
dictating a minimum possible acquisition time of 𝑇min = 1/Δ 𝑓FSR = 10.4 ns
and a maximum possible distance acquisition rate of 96.4 MHz.

For a thorough stability and precision analysis of our dual-comb scheme, we
measure the distance to a static mirror and evaluate the Allan deviation. The
entire measurement contains a series of≈ 1.1×106 individual data points taken
at an acquisition time of 10.4 ns per point, leading to a total duration of≈ 12 ms.
The extracted Allan deviation is plotted in Fig. 5.2(d). At an averaging time
of 10.4 ns, the Allan deviation amounts to 284 nm, and it decreases to 12 nm
for an averaging time of 13 𝜇s. At small averaging times, the Allan deviation
decreases with increasing averaging time, as expected for dominating white
noise such as shot noise or amplified spontaneous emission (ASE) originating
from the EDFA. For larger averaging times, the Allan deviation increases,

1 In [J3], the text refers to the measurement “accuracy”, however in the terminology of this thesis,
the underlying physical quantity is the measurement “precision” and therefore the text changed
where applicable, see also Appendix D.
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Figure 5.2: Experimental demonstration and performance characterization. (a) Experimental setup.
DKS combs are generated by a pair of silicon nitride (Si3N4) microresonators, which are pumped
by free-running CW lasers and EDFA. After suppressing residual pump light by fiber Bragg
gratings (not shown), the combs are amplified by another pair of EDFA. The signal comb (red)
is split, and one part is routed to the target and back to a balanced measurement photodetector
(Meas. PD) by optical fibers, an optical circulator (CIRC), and a collimator (COL), while the
other part is directly sent to the balanced reference detector (Ref. PD). Similarly, the LO comb
is split into two portions, which are routed to the measurement PD and the reference PD for
multi-heterodyne detection. The resulting baseband beat signals are recorded by a 33-GHz real-
time sampling oscilloscope. Digital signal processing is performed offline. (b) Optical spectra of
the signal comb (red) and the local oscillator comb (blue) after amplification. (c) Numerically
calculated Fourier transform of a recorded time-domain signal. (d) Allan deviation of measured
distances as a function of averaging time. The increase toward longer averaging times is attributed
to drifts and to mechanical vibrations of the fibers that lead to the target, see Appendix D. (e) (Top)
Scan of measured position versus set position in steps of 50 𝜇m over the full unambiguity distance
(marked by dashed lines). (Bottom) Residual deviations (“residuals”) between measured and set
positions, with standard deviations as error bars.
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5 Ultrafast optical ranging using microresonator soliton frequency combs

which we attribute to thermal drift of the fibers and to mechanical vibrations
at acoustic frequencies. The current measurement precision is hence only
limited by a nonideal implementation of the system. Further improvements are
possible by reducing the ASE noise floor of the EDFA and by avoiding thermal
drift and mechanical vibrations. Fundamentally, the measurement precision is
only limited by inevitable shot noise and possibly by additional ASE noise of
ideal EDFA. For comb powers of 10 mW, this would allow for measurement
precisions of better than 10 nm at the highest acquisition rate of 100 MHz; see
Appendix D for details.

Besides the Allan deviation, we also estimated the accuracy of our technique by
measuring variable distances to a target that is moved over a full unambiguity
distance2 𝑑ua = 𝑐

2
2𝜋

𝜔SI,FSR
(Fig. 5.2(e)). In this experiment, the target mirror

is stepped in increments of 50 𝜇m using a feedback-stabilized stage with a
positioning accuracy of more than 50 nm. To reduce the impact of fiber drift,
the distance measurement is continuously switched between the movable target
mirror and a static calibration mirror in quick succession, taking between 6500
and 9500 measurements with the full acquisition rate of ≈ 96 MHz on each
mirror; see Appendix D. From these measurements, we extract the distance
to the target mirror and the associated standard deviation; see Appendix D
for details. In the upper part of Fig. 5.2(e), the measured distance is plotted
as a function of the distance set by the translation state. Measured distances
exceeding the unambiguity distance of 𝑑ua = 1.56 mm are unwrapped manually.
The bottom part of Fig. 5.2(e) shows the residual deviations of the measured
positions from the set positions along with the respective standard deviations
indicated as error bars. Importantly, no cyclic error is observed throughout
the unambiguity distance. We determine the accuracy of our measurement
to 188 nm, defined as the standard deviation of the residuals, which are of
the same order of magnitude as the 50-nm positioning accuracy of the stage
specified by the manufacturer. In this measurement, the refractive index of air
is considered according to Ciddor’s formula for ambient laboratory conditions.
The measured 188 nm standard deviation of the residuals is still dominated
by drift and acoustic vibrations of the measurement setup rather than by the
measurement system itself, despite compensation via the static calibration

2 In the formalism presented in [J3] and therefore in this chapter, the refractive index of light is
considered in the speed of light 𝑐 = 𝑐0/𝑛air at this position in the text. This definition of the
unambiguity distance is consistent with the definition presented in Section 2.4.2, Eq. (2.73).
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mirror. This can be inferred from the fact that the standard deviation of 188 nm
is still much larger than the intrinsic system-related errors of 5 nm that should
be expected for the averaging time of 100 𝜇s; see Appendix D for a more
detailed discussion.

5.3 Distance data reproducibity and ultrafast
ranging

To validate the reproducibility of our system and to benchmark the results with
respect to existing techniques, we measured the profile of a quickly rotating
disk with grooves of different depths on its surface (see Fig. 5.3(a)). In this
experiment, the measurement beam is focused to the surface near the edge of
the disk, which rotates at a frequency of about 600 Hz, thus resulting in an edge
velocity of 160 m/s. The distance acquisition rate in this experiment amounts to
96.5 MHz, limited by the spectral spacing of Δ𝜔FSR/(2𝜋) of the beat notes in
the baseband photocurrent but not by the acquisition speed of our oscilloscopes.
The resulting profiles are shown in Fig. 5.3(b) for two measurements, which
were taken independently from one another during different round-trips of
the disc. Measurement points close to the edges of the grooves may suffer
from strong scattering and low power levels, which lead to unreliable distance
information. Using the fit error of the linear phase characteristic as a quality
criterion, our technique allows identification of such nonusable measurement
points and allows automatically discarding them from the data; see Appendix D
for details. The raw data of both measurements was further subject to vibrations
of the disk arising from the driving engine. These vibrations have been removed
by fitting a polynomial to the top surface of the disk and by using it for
correction of the overall measurement data. In a first experiment, we analyze
the reproducibility of the technique by a detailed comparison of the results
obtained from the two measurements (see Fig. 5.3(b), Inset 1). The measured
profiles exhibit good agreement regarding macroscopic features such as the
groove depth, as well as microscopic features such as surface texture and a
decrease of depth toward the edge of the groove. Deviations are attributed to
the fact that the two measurements have been taken independently and might
hence not have sampled the exact same line across the groove. In addition,
we benchmark our technique by comparing the obtained profile of a single
groove with a profile obtained from an industrial optical coordinate-measuring
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Figure 5.3: Reproducibility, benchmarking, and ultrafast ranging demonstration. (a) Setup for
reproducibility and benchmarking experiments. The measurement beam is focused on the surface
of a spinning disk with grooves of different depths. (b) Measured surface profile of the disk as
a function of position (bottom scale) and time (top scale). The plot contains two independent
measurements depicted in blue and green. (Inset 1) Reproducibility demonstration by detailed
comparison of the two independent measurements plotted in (b). The measured profiles exhibit
good agreement regarding both macroscopic features, such as the groove depth, and microscopic
features. (Inset 2) Benchmarking of the high-speed dual-DKS-comb measurement to the results
obtained from an industrial optical CMM. (c) Setup of ultrafast ranging experiment. (d) Measured
profile of the projectile obtained from single-shot in-flight dual-DKS-comb measurement (red),
along with a swept-source optical coherence tomography (OCT) profile scan that was recorded on
the static projectile after recovery from the backstop. The deviations toward the back end of the
projectile are attributed to strong corrugations in this area; see (e). (e) Image of the projectile after
recovery from the backstop.

machine (CMM, Werth VideoCheck HA) (Fig. 5.3(b), Inset 2). Both profiles
are in good agreement, with some minor deviations that we again attribute to
slightly different measurement positions along the analyzed groove.

Ultrafast ranging is demonstrated by measuring the profile of a flying air-gun
bullet that is shot through the focus of the measurement beam (see Fig. 5.3(c)).
The projectile moves at a speed of 150 m/s (Mach 0.47), which, together with
the acquisition rate of 96.2 MHz, results in a lateral distance of 1.6 𝜇m between
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neighboring sampling points on the surface of the bullet. The full profile of
the projectile is taken during a single shot and depicted in red in Fig. 5.3(d)
along with a reference measurement obtained from the static bullet using a
swept-source optical coherence tomography system (dark blue). For better
comparison, the two profiles were rotated and an actual speed of the bullet of
149 m/s was estimated for best agreement. Both curves clearly coincide and
reproduce the shape of the fired projectile. Missing data points in the dual-
DKS comb measurement at the tip of the projectile are caused by low power
levels of the back-coupled signal, which is inevitable for such steep surfaces in
combination with the limited numerical aperture of the lens used for collecting
the backscattered light. As before, these measurement points have been dis-
carded from the data based on a large fit error of the linear phase characteristic,
see Appendix D. An image of the projectile after recovery from the backstop
exhibits a strong corrugation of the bullet toward its back (Fig. 5.3(e)). This
leads to deviations of the measured profiles in Fig. 5.3(d) toward the right-hand
side, since the strongly corrugated surface of the projectile in this area has very
likely been sampled at two different positions.

To make dual-DKS-comb ranging a viable option for practical applications, the
limited unambiguity distance of 1.56 mm must be overcome. This can be achie-
ved, for example, by switching the role of the LO comb and the measurement
comb [19] or by sending the LO comb also to the target while evaluating not on-
ly the difference signal of the balanced photodetectors but also the sum [186].
Using such techniques, high-precision ranging over extended distances should
be possible, only limited by coherence lengths of the individual comb lines,
which amount to several kilometers. The high acquisition rate allows tracking
continuous movements of objects at any practical speed, with an unambiguity
limit of ~145 000 m/s.

5.4 Summary and outlook

Our experiments demonstrate the viability of chip-scale DKS comb genera-
tors to act as optical sources for high-performance ranging systems and are
a key step toward fully integrated chip-scale LiDAR engines, as illustrated as
an artist’s view in Fig. 5.4. In this vision, the LiDAR system is realized as a
photonic multichip assembly, in which all photonic integrated circuits are con-
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Figure 5.4: Artist’s view of a dual-comb chip-scale LiDAR engine. The system consists of a dual-
frequency comb source (A), a photonic integrated circuit (PIC) for transmission and detection of
the LiDAR signal [114] (B), and data acquisition and signal processing electronics (C). The system
is realized as a photonic multichip assembly that combines the distinct advantages of different
photonic integration platforms. The insets show various technologies that could be used to realize
the envisioned LiDAR engine. (Inset 1) Si3N4 microresonator for comb generation [85,185]. (Inset
2) Photonic wire bonds for chip-chip connections [187]. (Inset 3) Facet-attached microlens for
collimation of the emitted free-space beam [188].

nected by photonic wire bonds (Fig. 5.4, Inset 2) [187]. The comb generators
are pumped by integrated CW lasers, and a dedicated optical chip is used to
transmit and receive the optical signals [114]. The receiver is equipped with
a chip-attached microlens that collimates the emitted light toward the target
(Fig. 5.4, Inset 3) [188]. The electrical signals generated by the photodetectors
are sampled by analog-to-digital converters (ADC) and further evaluated by di-
gital signal processing in powerful field-programmable gate arrays (FPGA) or
application-specific integrated circuits. Free-running pump lasers greatly sim-
plify the implementation in comparison with configurations where two comb
generators are simultaneously pumped by a single light source. Although most
of the technological building blocks for realizing this vision have already be-
en demonstrated, one of the remaining key challenges is to reduce the power
levels required for DKS generation to typical output power levels of state-of-
the-art diode lasers. This requires silicon nitride microresonators with higher
quality factors that can be achieved by optimizing the waveguide geometry
and the fabrication processes. We expect that such optimizations will allow
increasing the Q-factor by about one order of magnitude, thus reducing the
pump power requirements by two orders of magnitude. Alternatively, other
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integration platforms, such as silicon oxide or AlGaAs, can be used, permit-
ting comb generation with only a few milliwatts of pump power [48]. These
power levels are realistically achievable with integrated pump laser diodes.
Based on these findings, we believe that DKS-based dual-comb LiDAR could
have a transformative impact on all major application fields that require com-
pact LiDAR systems and high-precision ranging, in particular when combined
with large-scale nanophotonic phased arrays [180, 181]. Acquisition rates of
hundreds of megahertz could enable ultrafast three-dimensional imaging with
megapixel resolution and update rates of hundreds of frames per second.

[End of publication [J3]]
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6 Ultrafast optical ranging using
quantum-dash mode-locked laser
diodes

In this chapter, distance metrology using optical frequency combs emitted
by quantum-dash mode-locked laser diodes (QD-MLLDs) is described. The
following text [J4] was published in Scientific Reports and was adapted to fit the
layout, structure and notation of this dissertation. The related supplementary
information are given in Appendix E, Sections E.1 to E.6.

The scope of the manuscript was developed by the author of this dissertation
together with C. Koos. The experiments described in Sections 6.3, 6.4 and
6.5 as well as Appendices E.1, E.5 and E.6 were conducted by the author of
this dissertation. The laser diodes described in Section 6.3 were fabricated
and provided by Q. Gaimard, G. Aubin, F. Lelarge, and A. Ramdane from the
Centre de Nanosciences et de Nanotechnologies at Université Paris-Saclay and
from Almae Technologies, Marcoussis. Setups for operating the QD-MLLDs
were developed and implemented by J. Kemal with support of the author.
The author of this dissertation developed the digital signal processing (DSP)
required for data evaluation, which is an advanced version of the DSP used in the
experiments described in Chapter 5, see Sections 6.3 and 6.4 and Appendix E.5.
The analysis of fundamental limitations of the distance measurement system
described in the Appendices E.3 and E.4 was performed by the author of this
dissertation under supervision and in discussion with C. Koos, S. Randel, and
W. Freude. The manuscript was written by the author with support of W. Freude
and C. Koos. The work was supervised by W. Freude, S. Randel, and C. Koos.

[Start of manuscript [J4]]

111



6 Ultrafast optical ranging using quantum-dash mode-locked laser diodes

Copyright © Springer Nature. Reprinted with permission.

Ultra-fast optical ranging using quantum-dash mode-locked laser diodes

Scientific Reports, 12(1076), 1–12 (2022)

P. Trocha,1 J. Kemal,1 Q. Gaimard,2 G. Aubin,2 F. Lelarge,3 A. Ramdane,2
W. Freude,1 S. Randel,1 C. Koos,1,4

1 Institute of Photonics and Quantum Electronics (IPQ), Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany
2 Centre de Nanosciences et de Nanotechnologies, Centre national de la recherche scientifique,
Université Paris-Saclay, Palaiseau, France
3 Almae Technologies, Marcoussis, France
4 Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Karls-
ruhe, Germany

Laser-based light detection and ranging (LiDAR) is key to many applications
in science and industry. For many use cases, compactness and power efficiency
are key, especially in high-volume applications such as industrial sensing,
navigation of autonomous objects, or digitization of 3D scenes using hand-
held devices. In this context, comb-based ranging systems are of particular
interest, combining high accuracy with high measurement speed. However, the
technical complexity of miniaturized comb sources is still prohibitive for many
applications, in particular when high optical output powers and high efficiency
are required. Here we show that quantum-dash mode-locked laser diodes (QD-
MLLD) offer a particularly attractive route towards high-performance chip-
scale ranging systems. QD-MLLD are compact, can be easily operated by
a simple DC drive current, and provide spectrally flat frequency combs with
bandwidths in excess of 2 THz – thus lending themselves to coherent dual-comb
ranging. In our experiments, we show measurement rates of up to 500 MHz,
which corresponds to the highest rate demonstrated with any ranging system so
far. We attain reliable measurement results with optical return powers of only
−40 dBm, corresponding to a total loss of 49 dB in the ranging path – the highest
loss tolerance demonstrated so far for dual-comb ranging with chip-scale comb
sources. Combing QD-MLLD with advanced silicon photonic receivers offers
an attractive route towards robust and technically simple chip-scale LiDAR
systems.
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6.1 Introduction

Optical distance metrology is key to many applications in science and indus-
try [101,103,189–191]. Among various techniques, dual-comb ranging based
on multi-heterodyne detection [J3] [19, 179, 192] stands out due to a unique
combination of measurement accuracy and acquisition speed. As an example,
dual-comb ranging based on mode-locked fiber lasers was demonstrated to pro-
vide a measurement precision of 5 nm, achieved by combining a time-of-flight
scheme with optical interferometry [19]. More recently soliton Kerr comb ge-
nerators have gained importance as light sources for optical ranging [193,194],
permitting measurement rates of up to 100 MHz with sub-micrometer precision
when used in dual-comb multi-heterodyne detection [J3]. However, while these
experiments demonstrate impressive performance parameters, the underlying
comb sources are still rather complex, involving, e.g., discrete components
such as fiber ring lasers [19], high-power optical amplifiers [J3], or fiber-
coupled electro-optic modulators [179,192]. It might hence be challenging for
these schemes to fulfil the stringent requirements with respect to robustness,
size, weight and power consumption that are associated with many technically
relevant applications. In addition, only few publications explicitly [192, 195]
address the optical loss tolerance of comb-based ranging systems, which is a
key performance metric in many ranging applications.

In this paper, we demonstrate that high-precision dual-comb ranging can be
greatly simplified by using quantum-dash mode-locked laser diodes (QD-
MLLD) as light sources. These devices are compact and robust and offer easy
operation by a simple DC drive current [92,93]. QD-MLLD provide spectrally
flat frequency combs with line spacings of tens of gigahertz and have pre-
viously been used for high-speed optical communications [J6,J7] [196]. In our
experiments, we use a pair of QD-MLLDs with slightly detuned free spectral
ranges (FSR) of approximately 50 GHz and demonstrate measurement rates
of up to 500 MHz with a precision of 1.7 𝜇m. To the best of our knowledge,
this is the highest measurement rate demonstrated with any ranging system so
far. When reducing the measurement rate to 10 kHz, the precision improves
to 23 nm. We further demonstrate reliable ranging with optical return powers
of only −40 dBm, corresponding to a total round-trip loss of 49 dB in the
free-space measurement path. To the best or our knowledge, this is the highest
loss tolerance demonstrated so far for a comb-based measurement system that
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relies on chip-scale comb sources. When using an erbium-doped fiber amplifier
(EDFA) for boosting the transmitted power, the maximum tolerable round-trip
loss increases to 71 dB, without any impairment of the achievable precisi-
on. We demonstrate the measurement speed of our system by high-precision
in-flight sampling of air-gun pellets moving at a speed of 150 m s−1. We be-
lieve that our experiments pave the path towards practically viable chip-scale
ranging systems that combine robust and technically simple frequency comb
sources with advanced silicon photonic receivers [197] and solid-state beam-
steering circuits [180,191,198], thus providing an unprecedented combination
of compactness, accuracy, measurement speed, and loss tolerance.

6.2 Comb-based integrated LiDAR systems and
quantum-dash mode locked laser diodes

An application scenario of an ultrafast chip-scale LiDAR system is illustrated in
Fig. 6.1(a). Due to its compact and lightweight implementation, the chip-scale
LiDAR module can be mounted to autonomously navigating carrier systems
such as drones, offering, e.g., new perspectives in structural health monitoring
of large buildings or critical infrastructures such as bridges. In such applicati-
ons, high-speed ranging is crucial for fast scanning of 3D surface profiles with
sub-millimeter or even micrometer-scale precision during movement of the
carrier system. The 3D surface profiles may complement 2D camera images
for a reliable quantitative analysis of damage patterns.

Figure 6.1(b) illustrates the concept of a fully integrated dual-comb LiDAR
system that exploits multi-heterodyne reception for high-speed high-precision
ranging [J3] [114]. The system is realized as a multi-chip assembly that com-
bines a pair of MLLD-based frequency comb sources (A), silicon photonic
transmitter and receiver circuits (B), as well as processing electronics (C) in a
compact lightweight package. One MLLD emits the so-called signal frequency
comb (SI MLLD, red) while the other one generates the local-oscillator (LO)
comb (LO MLLD, blue). Photonic wire bonds [199, 200] are used to couple
the frequency combs to the transmitter and receiver circuit, where they are
split in two parts each. One part of the SI comb leaves the LiDAR system
through a micro-lens directly attached to the chip [188], is collimated by a
macroscopic lens and directed towards the target. Note that the beam scanning
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Figure 6.1: Application scenario and technical concept of an ultrafast chip-scale LiDAR system. (a)
Compact lightweight LiDAR modules lend themselves to application in autonomously navigating
carrier systems such as drones. High-resolution scanning of 3D surface profiles may complement
2D camera images for a reliable quantitative analysis of damage patterns, e.g., in structural health
monitoring of large buildings or critical infrastructures. (b) Concept of a fully integrated dual-comb
LiDAR system realized as a multi-chip assembly that combines a pair of MLLD-based frequency
comb sources realized on InP substrates (A), silicon photonic transmitter and receiver circuits (B),
and processing electronics (C) in a compact lightweight package. For distance measurements, light
is emitted through a micro-lens directly attached to the chip, collimated by a macroscopic lens and
directed towards the target via a beam scanner (not shown). The back-scattered light is coupled
back to the chip and sent to a balanced photodetector (BDM) for multi-heterodyne reception.
An electronic application-specific integrated circuit (ASIC) is used for digital signal processing
and extraction of the distance information. (c) Schematic of the QD-MLLD. The active medium
comprises a stack of three InAs QD layers separated by InGaAsP layers. The pump current is
applied via the bottom and top contact. The cavity is formed by the cleaved end facets of the chip
with roughly 30 % reflectivity each. Due to the inhomogeneously broadened gain spectrum of the
QD material, multiple longitudinal lasing modes can oscillate simultaneously in the laser cavity,
mode-locked by self-induced carrier density modulations. This leads to a time-periodic optical
signal with a comb-like spectrum, where the FSR is determined by the round-trip time and hence
the length of the cavity.

system is omitted in Fig. 6.1(b) for simplicity. The other part of the SI comb
is superimposed with one part of the LO comb and received by a balanced
reference photodetector (BDR). The LO MLLD and the SI MLLD are slightly
detuned in center frequency and free-spectral range, leading to a photocurrent
with comb-like spectrum that reveals the phase relations of the various optical
tones [J3] [114]. The light backscattered from the target is collected by a large
lens, focused into a waveguide of the receiver chip via a micro-lens [188],
and guided to another balanced measurement photodetector (BDM), where
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it is superimposed with the second portion of the LO comb. The distance
can be extracted by comparing the phases of the spectral components in the
comb-like photocurrent of the measurement detector to the phases extracted
from the photocurrent of the reference detector. In the concept illustrated in
Fig. 6.1(b), the electrical output signals from BDR and BDM are transferred to
chip (C) by electrical wire bonds, amplified, and processed by an application
specific integrated circuit (ASIC). The data evaluation scheme exploits the
concept of synthetic-wavelength interferometry and is described in more detail
in Refs. [J3] [114].

The MLLD rely on InAs/InGaAsP quantum-dash (QD) structures on InP sub-
strates and are driven by a simple DC pump current, see Fig. 6.1(c). The active
medium consists of three stacked layers of InAs QD, which are separated by
InGaAsP barriers, such that charge carriers injected into the layer stack be-
come trapped in the QD-layers and recombine radiatively. The optical field is
vertically and laterally confined to the InAs-QD / InGaAsP stack through the
surrounding low-index InP material. The cavity is formed by the cleaved end
facets with roughly 30 % reflectivity each. Multiple longitudinal lasing modes
can oscillate simultaneously in this Fabry-Pérot laser cavity. These longitudinal
modes experience mode-locking due to self-induced carrier density modula-
tions of the gain medium [92], leading to a time-periodic optical signal with
a comb-like spectrum, where the FSR of the comb lines is determined by the
roundtrip-time and hence the length of the cavity. The comb spectrum is cen-
tered around a photon energy of approximately 0.81 eV (195 THz, 1538 nm),
with a relatively large optical bandwidth of more than 1.5 . . . 2 THz, owing to
the inhomogeneously broadened gain spectrum arising from the shape and size
variations of the quantum dashes.

In the following, we denote the comb-line frequencies by 𝜔SI,𝜇 for the SI
MLLD and by 𝜔LO,𝜇′ for the LO MLLD,

𝜔SI,𝜇 = 𝜔SI,0 + 𝜇 𝜔SI,FSR, (6.1)
𝜔LO,𝜇′ = 𝜔LO,0 + 𝜇′𝜔LO,FSR. (6.2)

In these relations, 𝜔SI,0 and 𝜔LO,0 are the center comb lines, the integer
comb line indices are denoted as 𝜇 for the SI comb and as 𝜇′ for the LO
comb, and the corresponding free spectral ranges are 𝜔SI,FSR and 𝜔LO,FSR,
respectively. Spectra of the SI-MLLD comb and the LO-MLLD comb are
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Figure 6.2: Optical spectra and RF beat notes of QD-MLLDs. (a) Left: Emission spectrum of the
MLLD used as signal comb (SI MLLD), having an FSR of 49.72 GHz. Right: Emission spectrum
of MLLD used as local oscillator (LO MLLD), for which the FSR amounts to 50.21 GHz. (b)
RF beat notes of both MLLDs. The narrow RF linewidth of the order of 10 kHz indicates stable
mode-locking of neighboring optical tones. The noise floor in this measurement is limited by the
effective number of bits (ENOB ≈ 5) of the high-speed oscilloscopes (Keysight UXR0804A) that
were used to digitize the signals, see Appendix E, Section E.3 for a more detailed discussion.

shown in Fig. 6.2(a). To determine the FSR of the combs experimentally,
we connect both combs simultaneously to a balanced photodetector with a
3 dB-bandwidth of 43 GHz, record the photocurrent and compute the Fourier
transform. Due to the limited photodetector bandwidth, only mixing products of
directly neighboring comb lines are visible in the RF beat signal, see Fig. 6.2(b).
The left beat signal corresponds to the FSR𝜔SI,FSR = 2𝜋 × 49.72 GHz of the SI
MLLD, and the right beat signal reveals the FSR𝜔LO,FSR = 2𝜋 × 50.21 GHz of
the LO MLLD. The 3 dB-bandwidth of the individual beat notes, also referred
to as the RF linewidth of the QD MLLD comb, is typically of the order of 10 kHz
[J6], which indicates efficient mode-locking of the longitudinal modes. Note
that the RF linewidth only indicates low relative phase noise of neighboring
comb tones. The absolute phase noise of the tones, as, e.g., measured with
respect to an ultra-stable continuous-wave (CW) reference tone, is usually
much stronger, indicated by optical linewidth of 10 MHz [J6] or more, see
Section 6.3 for details. In contrast to other comb generators, QD-MLLD emit
frequency combs by simply applying a DC current [92, 93], without the need
for high-speed RF devices [114, 179, 192] or fiber-based amplifiers [J3] [19].
Typically, QD-MLLD offer around 50 comb lines with FSR in the range of
10 GHz to 100 GHz. In our devices, the total comb power amounts to 20 mW
with an average line power of 400 𝜇W. The simple operation of QD-MLLD and
their relatively large power per comb line along with the potential for hybrid
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or monolithic integration with photonic integrated circuits make the devices
attractive for chip-scale LiDAR systems.

6.3 System, operation principle and digital
signal processing

In our proof-of-principle experiments we use the setup depicted in Fig. 6.3,
which consists of a transmitter (Tx) and a receiver (Rx) part. The SI MLLD
at the transmitter is driven by a DC pump current of 200 mA at a voltage
of 1.8 V, leading to a single-facet optical output power of 13 dBm. This cor-
responds to a wall-plug efficiency (WPE) of 5.6 %, which compares well to
that of continuous-wave laser diodes. The output of the SI MLLD is cou-
pled into a lensed fiber (LF) with a coupling loss of approximately 1 dB. A
fiber-optic circulator (not shown) attached to the lensed fiber prevents spurious
back-reflections into the MLLD. Optionally, the signal comb power can be am-
plified using an erbium-doped fiber amplifier (EDFA, dashed). The LO comb is
generated in an equivalent setup, which does not contain an amplifier. We split
the SI comb in two parts using a 90/10 coupler. Light leaving the 90 %-port is
collimated (COLO) and radiated towards the target located at a distance 𝑑. The
emitted optical power amounts to 9 dBm without and to 31 dBm with EDFA.
The collimated signal beam is scattered back from the target and collected
by a second collimator (COLI) after traversing the measurement path with a
free-space length of 2𝑑. A more detailed description of the free-space optics
is given in Appendix E, Section E.1.

In the receiver, the LO comb is split by a 50/50 coupler. Signal light returning
from the measurement path is superimposed with light of the LO comb in
another 50/50 coupler and received with a balanced photodetector (BDM).
The second fraction of the SI comb does not leave the setup and is directly
superimposed with the second fraction of the LO comb in another 50/50
coupler and sent to a balanced reference photodetector (BDR). The electrical
signals are amplified by electrical amplifiers (EA) and recorded using a high-
speed oscilloscope (Keysight UXR0804A) with an analog-to-digital converter
(ADC) operated at a sampling rate of 128 GSa s−1, such that the RF beat notes
of the individual combs at approximately 50 GHz can be extracted for exact
determination of the respective FSR, see Fig 6.2. More detailed information
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Figure 6.3: Experimental setup of our proof-of-concept demonstration. In the transmitter (Tx), the
signal (SI) comb generated by a first MLLD is coupled into a lensed fiber (LF), optionally amplified
in an EDFA (dashed lines), and then split by a 90/10 coupler. A first portion is emitted towards
the target through an output collimator (COLO). After free-space propagation and reflection at
the target, the comb re-enters the system at the input collimator (COLI). In the receiver (Rx),
the captured light is sent to a 50/50 coupler where it is superimposed with a first portion of the
local oscillator (LO) comb emitted by a second MLLD. The superimposed signals are then sent
to a balanced photodetector, which is referred as the measurement detector (BDM). An electrical
amplifier (EA) boosts the electrical signal, which is captured by a high-speed analog-to-digital
converter (ADC). The second portion of the SI comb is superimposed with a second portion of
the LO comb in another 50/50 coupler, detected by a reference photodetector (BDR), and fed to a
second channel of the ADC. Digital signal processing (DSP) of the recorded signals is performed
offline to obtain the distance 𝑑 from the recorded signals. Details regarding the components used
in the experimental setup can be found in Appendix E, Section E.7.

regarding the components used in the experimental setup can be found in
Appendix E, Section E.7. Digital signal processing (DSP) is performed offline
to extract the target distance 𝑑. Figure 6.4(a) shows the power spectral density
(PSD) of the RF beat signal between the SI-MLLD and the LO-MLLD as
extracted from BDR. In general, the PSD contains all RF beat notes of the SI
comb lines, Eq. (6.1), (index 𝜇) and the LO comb lines, Eq. (6.1), (index 𝜇′),
appearing at RF frequencies [J3]

Δ𝜔𝜇′,𝜇 =
��𝜔LO,0 − 𝜔SI,0 + (𝜇′ − 𝜇) 𝜔SI,FSR + 𝜇′ ��𝜔LO,FSR − 𝜔SI,FSR

���� . (6.3)

After low-pass filtering of the RF signal, only beat notes of LO comb lines with
the respective nearest SI comb lines are retained, which are represented by 𝜇′ =
𝜇 in Eq. (6.3), such that Δ𝜔𝜇 =

��𝜔LO,0 − 𝜔SI,0 + 𝜇
��𝜔LO,FSR − 𝜔SI,FSR

����, see
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Figure 6.4: Measured RF spectra of our proof-of-concept demonstration. (a) Power spectral density
(PSD) of the electric signal emitted, as obtained from the measurement photodetector for an
incident signal power of −5 dBm. The spectrum shows discrete RF tones that are generated by
mixing of pairs of optical tones of the SI MLLD and the LO MLLD. The comb line spacing is
approximately 497 MHz, corresponding to the FSR difference of the two comb sources. The RF
tones exhibit substantial linewidths of 10 MHz and more, which vary across the spectrum and which
are caused by the rather high optical linewidth of the corresponding comb lines. Also here, the
noise floor is limited by the effective number of bits (ENOB ≈ 5) of the high-speed oscilloscopes
(Keysight UXR0804A) that were used to digitize the signals, see Appendix E, Section E.3 for a
more detailed discussion.(b) Beat note of a QD-MLLD comb line with a narrow-linewidth ECL,
showing an optical 3-dB linewidth of approximately 15 MHz.

Fig. 6.4(a). In our measurement, the center frequency
��𝜔LO,0 − 𝜔SI,0

�� = Δ𝜔0
is located at 2𝜋 × 12 GHz and is adjusted by temperature tuning of the MLLDs
via small pump current changes such that the mixing products of the two combs
can be clearly separated. The spectral separation

��𝜔LO,FSR − 𝜔SI,FSR
�� = Δ𝜔FSR

of the beat signals is approximately about 2𝜋 × 497 MHz. This FSR difference
may drift by a few MHz on a long time-scale, unless stabilization techniques
are used [201].

For extracting the distance, we evaluate the phasesΦmeas,𝜇 of the RF beat notes
at the output of BDM and compare them to the corresponding phases Φref,𝜇
extracted from BDR. The phases Φmeas,𝜇 (𝑑) depend on the target distance 𝑑,
whereas the phases Φref,𝜇 are independent of 𝑑 and serve as a reference for
the initial phases of the various tones, see [J3] for a detailed mathematical
description of the measurement technique. The free-space distance 𝑑 can be
determined from the phases differences 𝛿Φ𝜇 (𝑑) = Φmeas,𝜇 (𝑑) − Φref,𝜇 of the
various RF beat notes [J3],

𝛿Φ𝜇 (𝑑) = 𝜇𝜔SI,FSR
𝑛air
𝑐0

2 (𝑑 − 𝑑0) , 𝑛air = 1.000266. (6.4)
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In this relation, 𝑐0 denotes the vacuum speed of light, and the refractive index
of air 𝑛air was obtained from Ciddor’s formula [107]. The quantity 𝑑0 denotes
a constant distance offset dictated by the lengths of the various fibers between
the comb sources and the balanced detectors, see [J3] for details.

Note that the RF beat notes shown in Fig. 6.4(a) exhibit substantial linewidths
of 10 MHz and more, which vary across the spectrum and which are caused by
the rather high optical linewidth of the individual comb lines. For comparison,
we also record a beat note of an MLLD comb line with a highly stable tunable
external-cavity laser (ECL, linewidth < 10 kHz), see Fig.6.4(b), which exhibits
an optical linewidth of approximately 15 MHz. These numbers are typical for
QD-MLLD, see [J6] for a more detailed discussion. For the measurements
presented in this work, phase noise does not have a significant impact on
the result since the path differences are much smaller than the coherence
length 𝑐0/15 MHz = 20 m. The phase-noise of the beat notes on the reference
and the measurement detector is hence strongly correlated and does not have
strong impact on the phase differences 𝛿Φ𝜇 (𝑑) = Φmeas,𝜇 (𝑑) − Φref,𝜇. For
larger measurement distances, it is possible to additionally apply linewidth-
reduction techniques for the MLLDs, exploiting, e.g., external-cavity feedback
[196,202,203] or injection locking [93].

For extracting the distance information from the measured phases, we nume-
rically unwrap the measured phases by adding integer multiples of 2𝜋 to each
phase difference 𝛿Φ𝜇 (𝑑) such that the pairs

(
𝜇, 𝛿Φ𝜇 (𝑑)

)
can be fitted by a

straight line according to Eq. (6.4). From the slope of this fit, we then deter-
mine 𝑑. Note that the 2𝜋-unambiguity of the phase differences 𝛿Φ𝜇 (𝑑) leads
to an unambiguity of the slope of 2𝜋 and hence to an unambiguity distance
𝑑ua = 2𝜋𝑐0/

(
2𝑛air𝜔SI,FSR

)
= 3.01 mm of the measured distance 𝑑. The mini-

mum observation time needed for evaluating the phases Φmeas,𝜇 (𝑑) and Φref,𝜇
is the period 𝑇r = 2𝜋/Δ𝜔FSR = 2.02 ns of the SI-MLLD – LO-MLLD beat
signal generated on the two balanced photodetectors. For smaller evaluation
times 𝑇eval, the frequency resolution 𝑇−1

eval would be insufficient to discriminate
neighboring RF beat notes at frequencies Δ𝜔𝜇. Figure 6.4(a) shows the cal-
culated power spectrum of a sequence of 𝑁eval = 4000 pulse periods 𝑇r at a
received signal comb power of −5 dBm. The evaluation time 𝑇eval = 𝑁eval𝑇r
and the corresponding frequency resolution 𝑇−1

eval define the effective noise-
filtering bandwidth, which we call evaluation bandwidth and which, in case
of Fig. 6.4(a), amounts to 𝐵eval = (𝑁eval𝑇r)−1 = 124 kHz. While this narrow
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6 Ultrafast optical ranging using quantum-dash mode-locked laser diodes

noise-filtering bandwidth 𝐵eval suppresses noise effectively and therefore re-
sults in an accurate spectrum, it is not the setting of choice if evaluation speed
is important. For high-speed measurements, we may choose 𝑁eval = 1, i.e.,
𝐵eval = 497 MHz, which can be increased to 𝑁eval = 10, i.e., 𝐵eval = 49.5 MHz
in case an increased signal-to-noise power ratio is needed.

The measured phase differences 𝛿Φ𝜇 (𝑑) of the 𝑁b beat notes are subject to
various impairments such as shot noise, electronic noise of the receiver circuits,
or impairments of the ADC, which makes the extracted distances 𝑑 unreliable,
see Sections E.3 and E.4 of Appendix E for details. As a reliability metric
for each measured distance, we extract the residual errors of the data points(
𝜇, 𝛿Φ𝜇 (𝑑)

)
with respect to the linear fit. We define an overall fit error 𝜀 as the

root-mean-square of the fit errors of the 𝑁b ≈ 25 fitted beat note phases

𝜀 (𝑑𝑖) =

√√√√
1

𝑁b − 1

⌊𝑁b/2⌋∑︁
𝜇=−⌊𝑁b/2⌋+1

(
𝛿Φ𝜇,meas (𝑑𝑖) − 𝛿Φ𝜇,fit (𝑑𝑖)

)2
, (6.5)

where the floor operator ⌊•⌋ denotes the nearest smaller integer. If 𝜀(𝑑𝑖) is small,
the linear fit is a good approximation to the measured phase differences 𝛿Φ𝜇 (𝑑),
and the result should be reliable. In contrast, if 𝜀(𝑑𝑖) is high, impairment due
to noise may be substantial. We define a limit 𝜀th (𝑑𝑖) to distinguish between
reliable distance data points, where 𝜀(𝑑𝑖) < 𝜀th (𝑑𝑖), and unreliable distance
data points defined by 𝜀(𝑑𝑖) ≥ 𝜀th (𝑑𝑖), which are eventually discarded. For
details on the determination of the fit error threshold 𝜀th (𝑑𝑖), see Appendix E,
Section E.2.

6.4 System precision and accuracy

In our experiments, we characterize the achievable precision of the system
by repeatedly measuring the distance to a fixed target mirror. We record time
series of an overall duration of 1.56 ms, limited by the memory size of the
oscilloscope. For finding the distance, we evaluate the same recording for two
different evaluation times 𝑇eval = 𝑁eval𝑇r with 𝑁eval = 1 (𝐵eval = 495 MHz),
and 𝑁eval = 10 (𝐵eval = 49.5 MHz). We extract 𝑁d distance values, 105 ≤
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𝑁d ≤ 106, and compute the Allan deviation 𝜎A as a function of the averaging
time 𝑇av. To this end introduce the number of averaged distance values

𝑁av = ⌊𝑇av𝐵eval⌋ =
⌊

𝑇av
𝑁eval𝑇r

⌋
, (6.6)

The number 𝑁av of averaged samples leads to the averaged distance values
𝑑 𝑗 (𝑁av),

𝑑 𝑗 (𝑁av) =
1
𝑁av

𝑁av−1∑︁
𝑖=0

𝑑 𝑗𝑁av+𝑖 , (6.7)

based on which we calculate the Allan deviation [204],

𝜎2
A (𝑁av) =

1
2

1
⌊𝑁d/𝑁av⌋ − 1

⌊𝑁d/𝑁av ⌋−1∑︁
𝑗=1

(
𝑑 𝑗+1 (𝑁av) − 𝑑 𝑗 (𝑁av)

)2
. (6.8)

For comparison, we also compute the standard deviation 𝜎
𝑑
(𝑁av) of all mea-

sured distances to the fixed target mirror as a function of number of averaged
samples,

𝜎2
𝑑
(𝑁av) =

1
2

1
⌊𝑁d/𝑁av⌋ − 1

⌊𝑁d/𝑁av ⌋∑︁
𝑗=1

(
𝑑 𝑗 (𝑁av) − 𝑑 𝑗 (𝑁av)

)2
, (6.9)

𝑑 𝑗 (𝑁av) =
1

⌊𝑁d/𝑁av⌋

⌊𝑁d/𝑁av ⌋∑︁
𝑗=1

𝑑 𝑗 (𝑁av) .

Note that distance points 𝑑𝑖 for which the fit error 𝜀(𝑑𝑖) exceeds the threshold
𝜀th (𝑑𝑖) are not considered when evaluating Eqs. (6.6). . . (6.9).

To quantify the sensitivity of our system with respect to low optical return
power, we characterize the Allan deviation and the standard deviation of the
measured distances for three different optical power levels, which are adjusted
by introducing attenuators and neutral-density (ND) filters in the free-space
beam path. The table in Fig. 6.5 lists the parameters of the three measurements,
i.e., the optical return power, the free-space loss, the number 𝑁eval of pulse
repetition periods per distance data point, and the corresponding evaluation
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6 Ultrafast optical ranging using quantum-dash mode-locked laser diodes

Figure 6.5: Performance of ranging system for varying optical return powers without booster
EDFA, see Fig. 6.3 for the underlying experimental setup and Section E.7 of Appendix E for
further details. The table lists the optical return power, the associated round-trip loss in the free-
space path, the number of repetition periods 𝑁eval used for signal evaluation per distance data
point, the corresponding evaluation bandwidth 𝐵eval, and the percentage of accepted data points.
The upper plot shows the Allan deviation as a function of distance averaging time 𝑇av for all five
configurations, and the lower diagram depicts the standard deviation. Deviations of less than 2 𝜇m
were demonstrated at record-high effective measurement rates of up to 495 MHz.
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6.4 System precision and accuracy

bandwidth 𝐵eval = (𝑁eval𝑇r)−1 along with the percentage of accepted data
points. Note that the evaluation bandwidth may slightly vary between the
measurements due to a slow drift of the FSR difference Δ𝜔FSR = 2𝜋/𝑇r.

The lowest return power in our experiments is −40 dBm. At this power level,
the beat signals in the electric spectrum are barely detectable, and we did not
included the recordings at maximum bandwidth (𝑁eval = 1), which are subject
to large standard deviations of 500 𝜇m or more with less than 5 % of the data
points accepted according to the criteria discussed after Eq. (6.5). The upper
graph of Fig. 6.5 shows the Allan deviation as a function of averaging time
𝑇av = 𝑁av𝑁eval𝑇r. For the highest optical return power and for a measurement
bandwidth of 𝐵meas = 𝐵eval = 495 MHz (blue curve), the Allan deviation for
𝑇av = 2.02 ns (𝑁eval = 1) amounts to 1.67 𝜇m (blue circle). To the best of our
knowledge, this is the highest measurement bandwidth demonstrated with any
ranging system. Specifically, this measurement bandwidth can well compete
with recently demonstrated values of up to 400 MHz, which were achieved
with highly stable, but bulky and technically complex mode-locked fiber lasers
[205,206]. When averaging over 𝑁av > 1 consecutively measured distances, the
Allan deviation decreases to 𝜎A = 23 nm for an effective measurement rate of
meas 𝐵meas = 9.87 kHz (𝑇av = 101 𝜇s, 𝑁av = 50 119, 𝐵eval = 495 MHz).
Similar results are achieved when the same data record is evaluated at
𝐵eval = 49.5 MHz (red curve) beginning at 𝑇av = 20.2 ns with 𝑁av = 1.
The red and the blue curves approximately coincide, confirming that averaging
over, e.g., 𝑁av = 10 distance samples subsequently acquired at a high eva-
luation bandwidth and sufficiently high return power leads to approximately
the same result as 10-fold increased evaluation period 𝑇eval for each distance
measurement.

Reducing the optical return power leads to an increase of the Allan deviation
for all averaging times and evaluation bandwidths. At −20 dBm optical return
power (green and magenta line), the Allan deviation increases to 3.9 𝜇m for an
effective measurement rate of 𝐵meas = 𝐵eval = 497 MHz (𝑇av = 2.01 ns, 𝑁av =

1), and reduces to 26 nm for 𝐵meas = 9.91 kHz (𝑇av = 101 𝜇s, 𝑁av = 50 119).
At even lower return power levels, proper phase unwrapping for distance re-
construction according to Eq. (6.4) is not possible at the highest evaluation
bandwidths, since the accuracy of the phase differences 𝛿Φ𝜇 (𝑑) suffers from
electrical noise. To still obtain reliable distance values at a return power of
−40 dBm, we reduce the evaluation bandwidth to 𝐵eval = (10𝑇r)−1 = 48.7 MHz
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6 Ultrafast optical ranging using quantum-dash mode-locked laser diodes

(orange curve). To the best or our knowledge, this represents the highest loss
tolerance demonstrated so far for dual-comb distance metrology that fully
relies on chip-scale frequency comb generators. We believe that the loss to-
lerance of such systems can be further improved, considering the outstanding
sensitivity levels that have been demonstrated for ranging with comb sources
built from fiber-optic or discrete components [207–210]. At 𝐵meas = 𝐵eval
(𝑇av = 20.5 ns, 𝑁av = 1), i.e., without averaging of subsequently acquired di-
stance samples, the Allan deviation amounts to 16 𝜇m, and reduces to 0.26 𝜇m
for 𝑇av = 101 𝜇s (𝑁av = 4 898), corresponding to an effective measurement
rate of 𝐵meas = 9.95 kHz.

The lower graph of Fig. 6.5 shows the standard deviation of the distance measu-
rements with the same color coding as in the upper graph. Allan deviation and
standard deviation are nearly identical. This indicates that the distance measu-
rement errors can be described by spectrally white noise and are not impaired
by any drift processes [204]. For an optical return power of 7 dBm, orange line,
the measurement accuracy is limited by the noise floor of our ADC, whereas
shot noise and the thermal noise of the detector electronics represent the domi-
nant limitation for the lower received power levels of −20 dBm and −40 dBm.
The theoretically achievable precision of all measurements is approximately
a factor of 3 . . . 10 better than the values we demonstrated here, indicating
that the system can benefit from a further optimized implementation. A more
detailed discussion can be found in Appendix E, Sections E.3 and E.4.

In a second set of experiments, we boost the SI comb power in the receiver by
an EDFA and repeat the measurements for larger target distances correspon-
ding to higher free-space losses. To avoid damaging the reference balanced
photodetector (BDR) depicted in Fig. 6.3, we additionally include a variable
optical attenuator (VOA) between the 90/10 coupler after the EDFA and the
50/50 coupler before BDR. We set the attenuation at the VOA such that the
power of the SI comb reaching BDR is approximately 0 dBm, which is sufficient
for the detection of reference beat signals and read-out of the corresponding
phase. The measurement and evaluation parameters are again listed in the ta-
ble at the top of Fig. 6.6, and the corresponding Allan deviations and standard
deviations are shown in the graphs below the table. At highest optical return
powers of +5 dBm (26 dB free-space loss), the Allan deviation increases by
approximately a factor of 2 compared to the measurement without an EDFA.
We attribute this to the ASE noise of the EDFA, for which a noise figure of
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approximately 5 dB is specified by the manufacturer. At lower optical return
powers, however, both the Allan deviation and the standard deviation beco-
me comparable to the measurement without an EDFA, see see Figs. 6.5 and
6.6 (orange curves), which supports the notion that the phase measurement
errors in this case are dominated by shot noise caused by the LO comb and
by thermal noise of the receiver electronics, see Section E.3 of Appendix E
for a more detailed analysis. An Allan deviation of 0.26 𝜇m for an effective
measurement rate of 𝐵meas = 9.95 kHz (𝑇av = 100 𝜇s, 𝑁av = 5 012) is achieved
at a free-space loss of 71 dB. Note that the standard deviation of the measu-
rement at +5 dBm (Fig. 6.6, lower graph, blue and red curve) does not conti-
nuously decrease when increasing the averaging time, but reaches a plateau of
𝜎𝑑 = 70 nm near 𝑇av = 100 𝜇s. We relate this to a drift of the optical path
lengths in our setup during this specific measurement.

Next we move the target mirror in Fig. 6.3 with a feedback-stabilized stage
(Physik Instrumente, M511.HD) to 𝑁p = 16 positions and record the distances
obtained with our ranging system. The 𝑁p = 16 mirror positions are evenly
spaced by Δ𝑧 = 200 𝜇m, and the absolute positioning accuracy of the stage
is specified to be better than 50 nm. The range of distances covers the full
unambiguity distance of our system. To eliminate the impact of fiber drift
on the measured distance [J3], we periodically compare the measured free-
space distance 𝑑tar to the target mirror with the distance 𝑑fix to a second fixed
reference mirror by alternating the measurement paths at a rate of 2 kHz, see
Appendix E, Section E.1 for details of the underlying setup. At each mirror
position, 4 970 distance values are acquired for 𝑑tar and 𝑑fix over a period of
100 𝜇s at an evaluation bandwidth of 𝐵eval = 1/(10𝑇r) ≈ 49.7 MHz. Out of
these 4 970 measurements, a number of 𝑁accept ≈ 4 100 values are accepted
based on the associated fit errors 𝜀(𝑑𝑖), Eq. (6.5). Examples of measured and
evaluated data can be found in Appendix E, Figs. E.5 and E.6. For evaluating
the accuracy of the ranging system, we first calculate the measured position 𝑧tar
of the target mirror at each of the 𝑁p = 16 stage positions, which is given by
the path-length differences of the individual measurements. In the following,
the mirror position is indicated by a subscript 𝑚 = 1 . . . 𝑁p and a subscript
𝑙 = 1 . . . 𝑁accept is used to refer to the individual pairs of measured distances
to the target and the reference mirror, 𝑧tar,𝑚,𝑙 = 𝑑tar,𝑚,𝑙 − 𝑑fix,𝑙 . To quantify the
precision and the accuracy of our ranging system, we first calculate the average
of the measured target position 𝑧tar,𝑚 for each stage position 𝑚 along with
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Figure 6.6: Performance of ranging system for varying optical return powers with an optical
booster amplifier (EDFA), see Fig. 6.3 for the underlying experimental setup and Section E.7 of
Appendix E for further details. The table lists the optical return power, the associated round-trip
loss in the free-space path, the number of repetition periods 𝑁eval used for signal evaluation per
distance data point, the corresponding evaluation bandwidth 𝐵eval, and the percentage of accepted
data points. The upper plot shows the Allan deviation as a function of distance averaging time
𝑇av for all five configurations, and the lower diagram depicts the standard deviation. The optical
booster amplifier increases the loss tolerance and therefore permits a longer measurement reach
compared to Fig. 6.5. At an effective measurement rate of 10 kHz, we demonstrate reliable ranging
with standard deviations of less than 1 𝜇m for free-space losses of more than 70 dB.
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the associated measurement uncertainty, quantified by the standard deviation
𝜎𝑧tar ,𝑚,

𝑧tar,𝑚 =
1

𝑁accept

𝑁accept∑︁
𝑙=1

𝑑tar,𝑚,𝑙 − 𝑑fix,𝑙 ,

𝜎2
𝑧tar ,𝑚 =

1
𝑁accept − 1

𝑁accept∑︁
𝑙=1

(
𝑧tar,𝑚,𝑙 − 𝑧tar,𝑚

)2
. (6.10)

Each of the measured target-mirror positions 𝑧tar,𝑚 is associated with a nominal
position 𝑧stage,𝑚 = 𝑚Δ𝑧 + 𝑧0 of the mirror as set by the translation stage, where
𝑧0 accounts for constant offset between the 𝑧-scale of our ranging system and
the 𝑧-scale of the stage encoder. For each mirror position 𝑚, we then calculate
the distance error, i.e., the deviation of averaged measured mirror positions
𝑧tar,𝑚 to the nominal positions 𝑧stage,𝑚 set by the stage,

𝜀𝑧,𝑚 = 𝑧tar,𝑚 − 𝑚Δ𝑧 − 𝑧0. (6.11)

For simplicity, the constant offset 𝑧0 is chosen to achieve a zero-mean deviation
of the nominal mirror position from its measured counterpart when averaging
over all of the 𝑁p mirror positions,

∑𝑁p
𝑚=1 𝜀𝑧,𝑚 = 0.

To quantify the performance of our ranging system, we extract the distance
error 𝜀𝑧,𝑚 along with the associated measurement uncertainty 𝜎𝑧tar ,𝑚 at each
mirror position 𝑚. This procedure is repeated for a wide range of optical return
powers with and without EDFA, see Figs. 6.7 and 6.8. For each measurement,
the return power and the evaluation parameters are listed in the top tables of
Figs. 6.7 and 6.8. The plots below these tables show the distance errors 𝜀𝑧,𝑚
according to Eq. (6.11) as a function of the target position 𝑚Δ𝑧, recorded over
a full unambiguity distance 𝑑ua = 3.01 mm centered at 𝑧0 ≈ 1 m. The error
bars represent the standard deviations 𝜎𝑧tar ,𝑚 according to Eq. (6.10). We do
not observe any outliers throughout our measurements, which demonstrates the
reliability of the approach. Moreover, we do no observe any cyclic errors, which
would lead to a systematic variation of 𝜀𝑧,𝑚 over the unambiguity distance.
For the system without optical amplifier, we find measurement uncertainties
𝜎𝑧tar ,𝑚 of approximately 19 𝜇m even for return power levels as low as−40 dBm.
For the system with optical amplifier, the measurement uncertainties 𝜎𝑧tar ,𝑚
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increase to approximately 25 𝜇m for the same power level, corresponding to a
free-space loss of 70 dB.

As an additional performance metric, we calculate the variance 𝜎2
𝜀𝑧

of the
distance errors 𝜀𝑧,𝑚 for the various mirror positions by determining the variance

𝜎2
𝜀𝑧

=
1

𝑁p − 1

𝑁p∑︁
𝑚=1

𝜀2
𝑧,𝑚. (6.12)

This figure is an indicator of the overall accuracy of ranging system and is
specified in the second to last row of the tables in Figs. 6.7 and 6.8. We find
this number to be approximately 1 𝜇m, merely independent of the optical
return power. We attribute this observation to additional ranging errors which
are caused by the periodic alternation between target and reference mirror,
see Appendix E, Section E.5, and which are independent of the return power
levels. The quantity 𝜎𝜀𝑧 does hence not represent the fundamental accuracy
limitation of our optical ranging system, but is rather to be understood as
an upper boundary of the achievable measurement accuracy, dictated by the
specific experimental setup.

To overcome the limited unambiguity distance 𝑑ua = 3.01 mm of our system,
several approaches can be used. Evidently, it is always possible to combine
the dual-comb scheme with a simple time-of-flight system for coarse ranging.
Alternatively switching the role of the LO comb and the SI comb allows to
greatly extend the unambiguity distance via the Vernier effect [19]. In another
approach, the LO comb can also be sent to the target and the sum of the
resulting phases detected at the balanced photodetectors can be evaluated [186].
These approaches allow for high-precision ranging over distances that are
limited only by the coherence length of the QD-MLLD. For the devices used
in our current experiments, the coherence length is in the order of tens of
meters and can be increased further by applying linewidth-reduction techniques
[93, 196, 202, 203].
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Figure 6.7: Unambiguity-distance sweep for varying free-space losses without EDFA, see Fig. 6.3
for the underlying experimental setup and Section E.7 of Appendix E for further details. The table
lists the optical return power, the associated optical loss per path, the amount of considered pulse
repetition periods per distance data point 𝑁eval, the corresponding evaluation bandwidth 𝐵eval
averaged over the measurement series, the percentage of accepted data points, and the variance 𝜎𝜀𝑧

of the distance errors 𝜀𝑧,𝑚 for three different measurement series. The figure shows the residual
distance error of each target mirror position, i.e., the difference between the set and the mean of the
measured position as a function of the nominal target mirror position 𝑧stage,𝑚 − 𝑧0 = 𝑚Δ𝑧 as set
by the stage over the unambiguity distance of the system. Error bars indicate the standard deviation
𝜎𝑧tar ,𝑚 of the point-wise computed difference between the beam-path length to the static reference
mirror and the beam-path length to the target mirror. For better readability, the data points and
error bars belonging to the same position 𝑧stage,𝑚 − 𝑧0 = 𝑚Δ𝑧, 𝑚 = 1 . . . 16, Δ𝑧 = 200 𝜇m of
the target mirror are slightly offset horizontally with respect to each other. Further details on the
experiment and the data evaluation can be found in Section E.5 of Appendix E.
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Figure 6.8: Unambiguity-distance sweep for varying free-space losses with EDFA, see Fig. 6.3
for the underlying experimental setup and Section E.7 of Appendix E for further details. The table
lists the optical return power, the associated optical loss per path, the amount of considered pulse
repetition periods per distance data point 𝑁eval, the corresponding evaluation bandwidth 𝐵eval
averaged over the measurement series, the percentage of accepted data points, and the variance 𝜎𝜀𝑧

of the distance errors 𝜀𝑧,𝑚 for three different measurement series. The figure shows the residual
distance error of each target mirror position, i.e., the difference between the set and the mean of the
measured position as a function of the nominal target mirror position 𝑧stage,𝑚 − 𝑧0 = 𝑚Δ𝑧 as set
by the stage over the unambiguity distance of the system. Error bars indicate the standard deviation
𝜎𝑧tar ,𝑚 of the point-wise computed difference between the beam-path length to the static reference
mirror and the beam-path length to the target mirror. For better readability, the data points and
error bars belonging to the same position 𝑧stage,𝑚 − 𝑧0 = 𝑚Δ𝑧, 𝑚 = 1 . . . 16, Δ𝑧 = 200 𝜇m of
the target mirror are slightly offset horizontally with respect to each other. Further details on the
experiment and the data evaluation can be found in Section E.5 of Appendix E.
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6.5 High-speed ranging

To demonstrate the ultrafast-sampling capabilities of our ranging system, we
measure the profile of a flying air-gun projectile. To simplify free-space beam
alignment, we replace the two separated collimators of Fig. 6.3 with a sin-
gle collimator and a fiber-optic circulator, see Section E.6 see of Appen-
dix E for further details of the experiment. We focus the free-space beam
at the anticipated projectile trajectory. In Fig. 6.9(a), we depict the recor-
ded profile of a projectile that is shot through the measurement beam at
a speed of approximately 150 m s−1. We use a measurement bandwidth of
𝐵meas = 𝐵eval = (10𝑇r)−1 = 49.1 MHz and perform the experiment without
an EDFA (red trace) and with EDFA (green trace). For the given projectile
speed, this corresponds to a separation of neighboring sample points of ap-
proximately 3 𝜇m. For the measurement without EDFA, an average of 61 %
of the evaluated distance data points are accepted using the fit-error criterion
according to Eq. (6.5). The black dashed line on top of the red trace is the
result of an optical coherence tomography (OCT) measurement that was per-
formed on the static projectile after recovery from the back-stop. For better
comparison, the OCT-based profile and the profile obtained from the flying
projectile were rotated with respect to each other, and an actual speed of the
projectile of 151 m s−1 was estimated for best agreement. The same procedure
was performed for the measurement with EDFA, for which the signal comb
power emitted from the collimator amounts to 22 dBm. In this experiment,
65 % of the measured distance points are accepted, and a speed of 153 m s−1

was estimated by comparing the profile on the flying projectile to the OCT
measurement. Figure 6.9(b) shows a photograph of the projectile used in the
ranging experiments without EDFA.

6.6 Summary and Outlook

We have demonstrated high-precision dual-comb ranging with quantum-dash
mode-locked laser diodes (QD-MLLD) as particularly compact and efficient
frequency comb sources. The devices offer easy operation by a simple DC drive
current and provide spectrally flat frequency combs with line spacings of tens of
gigahertz. We demonstrate measurement rates up to 500 MHz, corresponding
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Figure 6.9: Surface profile measurements of air-gun projectile passing the measurement beam at a
speed of approximately 150 m s−1. (a) Surface profiles measured on the flying projectile, using the
one port ranging system Appendix E, Fig. E.7, with EDFA (green) and without EDFA (red). The
free space signal beam power amounts to 9 dBm and 22 dBm for the measurement with and without
EDFA, respectively. For better visibility, the red and the green curve are separated by a vertical
offset. The black dashed curves denote the profiles of both investigated projectiles, obtained from
an optical coherence tomography (OCT) measurement on the static projectile after recovery from
the back stop. (b) Photo graph of the projectile measured in (a), red curve.

to the highest measurement rate demonstrated with any ranging system so
far. In comparison to other chip-scale comb sources, QD-MLLDs provide
comparatively high comb line powers of the order of 500 𝜇W – more than
one order of magnitude higher than those of Kerr soliton frequency comb
generators [15, 22, 23]. This leads to high tolerance with respect to optical
loss in the free-space path of a ranging system. In our experiments, we find a
high loss tolerance of 49 dB without optical amplifiers and of 71 dB in case
a booster EDFA is used. To the best of our knowledge, this is the highest
loss tolerance demonstrated so far for a comb-based measurement system that
relies on chip-scale light sources. The loss tolerance can be further improved
by increasing the free-space beam power and by reducing the measurement
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rate, see Sections E.3 and E.4 of Appendix E for a more detailed analysis
of the noise limitations in dual-comb ranging systems. We demonstrate the
measurement speed of our system by high-precision in-flight sampling of air-
gun pellets moving at a speed of 150 m s−1. Based on our findings, we believe
that quantum-dash mode-locked laser diodes (MLLD) are an attractive option
for comb generation in compact power-efficient LiDAR systems.

[End of manuscript [J4]]
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7.1 Summary

Chip-scale frequency comb generators are unique tools that have the poten-
tial to unlock compact LiDAR systems with exceptional performance. In this
work, optical ranging systems were demonstrated that make use of Kerr mi-
croresonators and quantum-dash mode-locked laser diodes as chip-scale comb
generators. The large free spectral range and the large number of comb lines of
microresonator-based Kerr soliton frequency combs enables ultrafast measure-
ments with sampling rates up to 96 MHz at a precision of 280 nm. This unique
combination was demonstrated by measuring the profile of a flying air-gun pro-
jectile. In a comparative ranging experiment, quantum-dash mode-locked laser
diodes were used in the same manner. Here, a precision of 1.7 𝜇m was achieved
at a sampling rate of 500 MHz. In direct comparison, the QD-MLLD-based
system has a worse relative precision 𝜎𝑑/𝑑ua = 950 nm/3 mm = 3.2×10−4 at a
distance sampling rate of 100 MHz1 compared to the soliton Kerr comb-based
system, with 𝜎𝑑/𝑑ua = 280 nm/1.5 mm = 1.9 × 10−4. Still, considering the
achieved absolute precision and accuracy, both comb sources may be viable
options for comb-based LiDAR systems. From a practical point of view, the
simple operation of QD-MLLDs for comb generation is an additional advantage
compared to Kerr comb generators. Furthermore the high comb line power of
approximately 400 𝜇W of QD-MLLD combs enables distance measurements
at higher losses compared to Kerr soliton frequency combs, where the average
comb line power is in the order of 10 𝜇W. Given these considerations, both
comb sources may be viable options in LiDAR systems. For measurements at
the highest precision, Kerr soliton frequency combs are better suited, whereas

1 The value 𝜎𝑑 = 950 nm is taken from Fig. 6.5, blue curve in the lower plot for the standard
deviation of distance measurements at an averaging time of 𝑇av = (100 MHz)−1 = 10 ns.
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QD-MLLDs are favourable, if a simple comb source operation and a higher
loss-tolerance are required.

While these results show the enormous potential of existing microresonator-
based comb generators, there are still many aspects of this technology that
require further research and development. In this work, two theoretical studies
were performed that aim at the optimization of Kerr-nonlinear microresona-
tors under practical considerations. First, in a joint effort with scientists of
the Institute for Analysis (IANA) and the Institute for Applied and Numerical
Mathematics (IANM), Karlsruhe Institute of Technology (KIT), a method was
developed that allows to benchmark single-soliton Kerr combs in terms of
their bandwidth and pump-to-comb power conversion efficiency for arbitra-
ry pump and microresonator parameters. This allows for the targeted design
of Kerr comb generators for given application-specific comb requirements.
Second, the impact of two-photon absorption and free-carrier absorption on
Kerr comb formation in a microresonator in consideration of fast-time free-
carrier dynamics was investigated. Limits were derived, below which these
loss mechanisms are weak enough, such that modulation instability may still
occur. Based on these insights, a silicon microresonator design was developed
that may support comb formation at telecommunication wavelengths despite
presence of TPA and FCA. Silicon is the most common material platform for
integrated photonics, and therefore silicon-based Kerr-nonlinear microresona-
tors could significantly boost the wide-spread application of Kerr combs.

7.2 Future work

The research carried out in this work can be continued on both its experimental
as well as its theoretical aspects. In the following, several different topics are
discussed.

Advanced comb-based distance measurements

After the proof-of-principle experiments using chip-scale frequency comb
sources for optical distance measurements, one can either improve their perfor-
mance further or improve their applicability. A potentially massive increase in
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precision could by achieved by not only relying on synthetic wavelength inter-
ferometry, but also simultaneously on optical interferometry of the individual
comb lines when measuring distances. Comb-based synthetic wavelength inter-
ferometry achieves already sub-𝜇m precision and accuracy, therefore it should
be possible to relate the distance information obtained from both methods simi-
lar as, e.g., in [19] while keeping high sampling rates. Optical interferometry,
executed simultaneously for 100 comb lines or more could provide extreme
precision and accuracy in the order of 1 nm or better over a comparatively
large ambiguity distance of a few millimeters when combined with synthetic
wavelength interferometry.

A different route to follow is the integration of comb-based LiDAR systems.
As comb sources, one can rely either on already integrated Kerr comb genera-
tors [15], QD-MLLDs or others [192,211]. The integration of further photonic
circuits required in ranging systems has already been demonstrated [114]. A
remaining challenge is the design of suitable optics for light emission and
collection by the photonic integrated circuits, considering the high optical
round-trip losses during the distance measurement. In particular, large recei-
ver apertures are necessary to maximize the signal received from the target.
Furthermore, both the receiver and the transmitter optics may need to be com-
bined with scanning mirrors that allow for beam steering, unless optical phased
arrays are used [180, 181]. This will add further complexity to the design of
optical components.

Kerr comb generation in nonlinear absorbing microresonators

Following the research presented in Chapter 4, the next step is the experimental
verification of comb generation in silicon microresonators at telecommunicati-
on wavelengths. To this end, photonic chips with silicon microresonators need
to be designed and characterized. The design proposed in [J2] can be used,
provided that silicon waveguides with a height of up to 300 nm can be fabrica-
ted, which is key to achieve waveguides with anomalous dispersion [153]. If
only standard silicon waveguides with a height of 220 nm [212] are available,
the microresonator design needs to be altered. To enable comb formation,
multi-mode waveguides with appropriate width need to be designed, such that
avoided mode crossings can occur and local dispersion anomalies can induce
locally anomalous dispersion.
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In both cases, the waveguides need to be part of a cointegrated, reverse-
biased p-i-n-junction for free-carrier removal according to, e.g., the layout
demonstrated in [29]. Furthermore, the chip section, where the microresonator
is coupled to the bus waveguide requires careful design to ensure free-carrier
removal in the microresonator and the bus waveguide [149, 152], as well as
to ensure efficient optical coupling. Finally, the maximum tolerable length of
the bus waveguide needs to be estimated in consideration of TPA and FCA.
All these crucial design aspects were investigated in a separate Master thesis,
and multiple chip designs were derived [213]. In this thesis, the presence of
avoided mode crossings in passive silicon microresonators with multi-mode
waveguides was confirmed, and shifts of resonance frequencies in the order of
2 GHz (approx. 2 % of the microresonator FSR) were observed.

With chip-designs at hand, devices can be fabricated and characterized, thereby
building the base for comb generation experiments. If Kerr comb generation
should prove successful, these comb generators could be integrated with other
active and passive devices for application-specific comb-based photonic inte-
grated circuits operated at 1550 nm. However, if no frequency combs can be
obtained, an in-depth analysis of the different optical loss mechanisms should
reveal the cause. In particular, this may result in a more precise determination
of the normalized TPA parameter 𝑟 , whose measured or assumed value varies
by more than half an order of magnitude across literature.

Quasi-stationary drifting field distributions in Kerr-nonlinear
microresonators and third-order dispersion

It was noted that the inclusion of free-carrier dynamics in the Lugiato-Lefever
equation leads to quasi-stationary field distributions 𝑎QS, see Chapter 4,
Figs. 4.4, 4.5 and 4.6. These field distributions do not show a dependence
on the slow time 𝑡 ′, i.e., the natural time, aside from a constant drift along
the fast time 𝜏′, i.e., the retarded spatial coordinate. This drift is characterized
by the field drift velocity 𝑣D, such that the optical field circulating in the
microresonator can be written as 𝑎(𝑡 ′, 𝜏′) = 𝑎QS (𝜏′ − 𝑣D𝑡

′). Such drifts were
also observed in simulations where third-order dispersion (TOD) was included
in the LLE [214, 215]. Here, it would be interesting to understand how the
field drift velocity 𝑣D is related to other parameters in the LLE, how such a
drift affects comb formation and which single-soliton Kerr comb states can be
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obtained in presence of TOD. From a practical point of view, this becomes
relevant when microresonators are designed to achieve the largest possible
frequency comb bandwidths. According to Fig. 3.4(a) and (b), these are ob-
tained for vanishing second-order dispersion 𝛽′ → 0. In this case, third-order
dispersion will dominate and therefore needs to be understood.

Since the quasi-stationary field distributions 𝑎QS (𝜏′− 𝑣D𝑡
′) are assumed to not

show any further dependence on the slow time 𝑡 ′ aside from a drift, a derivative
with respect to the slow time can be written as

𝜕𝑎 (𝑡 ′, 𝜏′)
𝜕𝑡 ′

=
𝜕𝑎QS (𝜏′ − 𝑣D𝑡

′)
𝜕𝑡 ′

= −𝑣D
𝜕𝑎QS (𝜏′ − 𝑣D𝑡

′)
𝜕𝜏′

. (7.1)

Introducing the drifting fast time coordinate 𝜏′D = 𝜏′ − 𝑣D𝑡
′, the normali-

zed LLE, see Eq. (2.45), including third-order dispersion [25] for the quasi-
stationary field 𝑎(𝑡 ′, 𝜏′) = 𝑎QS (𝜏′D) reads

0 =
√
𝐹 − (1 + j𝜁) 𝑎QS

(
𝜏′D

)
+ 𝑣D

𝜕

𝜕𝜏′D
𝑎QS

(
𝜏′D

)
+ j𝛽′

𝜕2

𝜕𝜏′2D
𝑎QS

(
𝜏′D

)
+ 𝛽 (3) ′ 𝜕3

𝜕𝜏′3D
𝑎QS

(
𝜏′D

)
+ j

���𝑎QS
(
𝜏′D

) ���2 𝑎QS
(
𝜏′D

)
. (7.2)

Here 𝛽 (3) ′ = 𝛽 (3)𝐿MR (2𝜋/𝑡R)3 /(3 (𝛼𝑖𝐿MR + 𝜃C)) is the normalized third-
order dispersion coefficient. Equation (7.2) can be further investigated, in par-
ticular with respect to possible soliton comb states. Approximate expressions
for bright solitons have been derived [216], however a description with the
same universal scope as done in Chapter 3 is still lacking.

Ultimately, a method to deterministically derive the spectrum, power conversi-
on efficiency and other properties of DKS combs generated in Kerr-nonlinear
microresonators with arbitrary dispersion profiles would be desirable. “Re-
versing” such a method could enable designing microresonators with specific
properties of the generated DKS frequency combs in mind.
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Pumping of multiple modes of a microresonator and time-dependent
pump terms

It was observed that pumping multiple resonances of a microresonator with
multiple phase-locked pump tones leads to the formation of frequency combs in
a normal-dispersive microresonator [217]. This is usually difficult to achieve,
unless avoided mode crossings are exploited. From a theoretical point of view,
additional pump tones can be desribed as additional terms in the coupled-mode
equations, see Eqs. (2.32). In the following, the inclusion of a single additional
pump term is considered. This second forcing, described by its frequency 𝜔p,𝜅
and amplitude Ein,𝜅 =

√︁
𝑃in,𝜅 , is applied to the microresonator resonance with

index 𝜅. The resulting coupled-mode equations read

𝑡R
𝜕Er,𝜇 (𝑡)

𝜕𝑡
= − 𝛼𝑖𝐿MR + 𝜃C

2
Er,𝜇

+ 𝛿𝜇0
√︁
𝜃C𝑃ine j(𝜔p−𝜔r,0)𝑡 + 𝛿𝜇𝜅

√︁
𝜃C𝑃in,𝜅e j(𝜔p,𝜅−𝜔r,𝜅)𝑡

− j𝛾𝐿MR
∑︁
𝜇′,𝜇′′

Er,𝜇′Er,𝜇′′E∗
r,𝜇′+𝜇′′−𝜇

× e j(𝜔r,𝜇′+𝜔r,𝜇′′−𝜔r,𝜇′+𝜇′′−𝜇−𝜔r,𝜇)𝑡 . (7.3)

For simplicity, we assume the coupling coefficient 𝜃C to be the same for both
pump terms. Following the same procedure that leads to the final form of the
coupled-mode equations, see Eqs. (2.32) to (2.35), leads to

𝑡R
𝜕E

𝜇
(𝑡)

𝜕𝑡
= −

(
𝛼𝑖𝐿MR + 𝜃C

2
− j𝛿0

)
E
𝜇
− j

𝛽 (2)𝐿MR
2

(𝜇 𝜔FSR)2 E
𝜇

+ 𝛿𝜇0
√︁
𝜃C𝑃in + 𝛿𝜇𝜅

√︁
𝜃C𝑃in,𝜅e j(𝜔p,𝜅−𝜔p−𝜅 𝜔FSR)𝑡

− j𝛾𝐿MR
∑︁
𝜇′,𝜇′′

E
𝜇′E𝜇′′E∗

𝜇′+𝜇′′−𝜇 . (7.4)

142



7.2 Future work

We introduce the detuning of the second pump, 𝛿𝜅 = (𝜔p,𝜅−𝜔p−𝜅 𝜔FSR)𝑡R and
insert the Eqs. (7.4) into Eq. (2.37) to obtain an equation for the field envelope
E(𝑡, 𝜏),

𝑡R
𝜕E (𝑡, 𝜏)

𝜕𝑡
=
∑︁
𝜇

𝑡R
𝜕E

𝜇
(𝑡)

𝜕𝑡
e−j2𝜋𝜇𝜏/𝑡R

= −
(
𝛼𝑖𝐿MR + 𝜃C

2
− j𝛿0

)
E(𝑡, 𝜏) + j

𝛽 (2)𝐿MR
2

𝜕2

𝜕𝜏2 E(𝑡, 𝜏)

+
√︁
𝜃C𝑃in +

√︁
𝜃C𝑃in,𝜅e j(𝛿𝜅 𝑡−2𝜋𝜅𝜏)/𝑡R − j𝛾𝐿MR

��E(𝑡, 𝜏)��2 E(𝑡, 𝜏).
(7.5)

Complex-conjugating Eq. (7.5) to an equation for electric fields with negati-
ve time dependence of the form exp(−j𝜔𝑡) and normalizing the result, see
Table 2.1, leads to the LLE with a second pump term,

𝜕𝑎 (𝑡 ′, 𝜏′)
𝜕𝑡 ′

=
√
𝐹 +

√︁
𝐹𝜅e−j(𝜁𝜅 𝑡′−𝜅𝜏′) − (1 + j𝜁) 𝑎(𝑡 ′, 𝜏′)

+ j𝛽′
𝜕2

𝜕𝜏′2
𝑎(𝑡 ′, 𝜏′) + j

��𝑎(𝑡 ′, 𝜏′)��2 𝑎(𝑡 ′, 𝜏′). (7.6)

Here, the second forcing 𝐹𝜅 = 𝑃in,𝜅8𝛾𝐿MR𝜃C/(𝛼𝑖𝐿MR + 𝜃C)3 and the second
normalized detuning 𝜁𝜅 = 𝛿𝜅2/(𝛼𝑖𝐿MR + 𝜃C) were introduced in the same
manner as 𝐹 and 𝜁 before, see Table 2.1. Generally, the field 𝑎 (𝑡 ′, 𝜏′) cannot
be stationary in such a system due to the slow-time dependence of the second
pump term in Eq. (7.6). However, in principle the detuning 𝜁𝜅 of the second
pump can be zero, if the two pump frequencies 𝜔p,0 and 𝜔p,𝜅 are separated by
a multiple of the FSR 𝜔FSR of the frequency comb (that is assumed to be nearly
equal to the microresonator FSR). In this case, the total forcing

√
𝐹 +

√
𝐹𝜅ej𝜅𝜏′

is constant in slow time 𝑡 ′ and shows a periodic fast-time dependence with
period 𝜅.

Experimentally, such a precisely defined forcing, consisting of multiple coher-
ent signals, could be generated by modulating a CW laser to generate sidebands,
see, e.g., [217]. In conjunction with optical amplifiers, attenuators and spec-
tral filters, an adjustment of the pump parameters 𝐹, 𝐹𝜅 , 𝜅, and 𝜁𝜅 would be
possible.
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7 Summary and future work

From this point on, the investigation can be continued by considering slow-
and fast-time dependent, complex forcings 𝐹 (𝑡 ′, 𝜏′) both experimentally and
theoretically. The generation of frequency combs in a microresonator pumped
by optical pulses was already studied numerically and experimentally [218]
and offers many different directions for further research.
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List of abbreviations

ADC Analogue-to-digital converter

ASE Amplified spontaneous emission

ASIC Application-specific integrated circuit

ATT Attenuator

BD Balanced photodetector

BS Beam splitter

BSO Bright dissipative Kerr soliton

CIRC Circulator

CM Calibration mirror

CMM Coordinate measuring machine

COL Collimator

CPW Chopper wheel

CW Continuous-wave

DC Direct current

DFT Discrete Fourier transform

DKS Dissipative Kerr soliton

DSO Dark dissipative Kerr soliton
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DSP Digital signal processing

EA Electric amplifier

ECL External cavity laser

EDFA Erbium-doped fiber amplifier

ENOB Effective number of bits

FC Free carriers

FCA Free-carrier absorption

FCD Free-carrier density

FFT Fast Fourier transform

FMCW Frequency-modulated continuous-wave

FPGA Field programmable gate array

FSR Free spectral range

FWHM Full width at half maximum

GVD Group velocity dispersion

IANA Institute for Analysis

IANM Institute for Applied and Numerical Mathematics

IC Intracavity

IMT Institute of Microstructure Technology

IPQ Institute of Photonics and Quantum Electronics

KIT Karlsruhe Institute of Technology

LF Lensed fiber

LiDAR Light detection and ranging

LLE Lugiato-Lefever equation

LO Local oscillator
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MEMS Micro-electro-mechanical systems

MI Modulation instability

MLL Mode-locked laser

MLLD Mode-locked laser diode

MR Microresonator

NBC Numeric bifurcation and continuation

ND Neutral-density

NIR Near-infrared

NLSE Nonlinear Schrödinger equation

OCT Optical coherence tomography

OSA Optical spectrum analyzer

OSC (Electric) oscillator

P-MOD Phase modulator

PC Polarization controller

PCE Power conversion efficiency

PD Photodiode

PDE Partial differential equation

PIC Photonic integrated circuit

PR Photoreceiver

PSD Power spectral density

QD Quantum-dash

RBW Resolution bandwidth

RCW Rotating chopper wheel

RF Radio frequency
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RMS Root mean square

RX Receiver

SI Signal

SLS Swept laser source

SNR Signal-to-noise power ratio

SOH Silicon-organic-hybrid

SPD Spectral power density

SPM Self-phase modulation

SWI Synthetic wavelength interferometry

TE Transverse electric

TEC Temperature controller

TM Target mirror

ToF Time of flight

TPA Two-photon absorption

TX Transmitter

VOA Variable optical attenuator

WG Waveguide

WPE Wall-plug efficiency

XPM Cross-phase modulation

XYZ XYZ stage
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Latin symbols

𝑎(𝑡 ′, 𝜏′) Amplitude of normalized optical field propagating in a micro-
resonator

𝑎
𝜇
(𝑡 ′), 𝑎̂

𝜇
(𝑡 ′) Fourier coefficients of normalized field 𝑎

𝐴 Power
��𝑎��2 of normalized field

𝐴beam Cross-sectional area of a free-space laser beam

𝐴eff Effective mode field area

𝐴illum Illuminated area on distance measurement target

𝐴PD Photosensitive area of photodetector

𝐵eval Evaluation bandwidth / rate of a ranging system for a distance
data point

𝐵meas Effective measurement bandwidth / rate of a ranging system
after averaging of distance data points

𝑐 Speed of light in a medium

𝑐 Complex constant function

𝑐0 Speed of light in vacuum: 299 792 458 m
s

𝑑 Geometric free-space distance

𝑑ua Geometric unambiguity distance

𝐷 (𝑑, 𝑑0) Linear fit coefficient of a fit to a set of unwrapped phases

𝐷2 Second-order microresonator dispersion coefficient

𝐷𝜆 Second-order dispersion coefficient

𝐷̂ Dispersive operator

e Euler’s number: 2.718 281 828 . . .

e𝑧 Unit vector along microresonator waveguide (𝑧-) direction
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E Vectorial electric field components of optical signal

𝐸 , 𝐸 (𝑡) Electric field amplitude of an optical signal

𝐸P (𝑡) Field envelope of a single pulse of a pulsed optical signal

𝐸̂ , 𝐸̂ (𝜔) Fourier transform of 𝐸 (𝑡)

𝐸̂P (𝑡) Fourier transform of 𝐸P (𝑡)

E, E(𝑡) Complex amplitude of the electric field with unit
√

W

E(𝑡, 𝜏),
E
𝑧
(𝑧, 𝜏)

Field envelope of electric field propagating in a waveguide /
microresonator with unit

√
W

E in Amplitude of input pump field with unit
√

W

Er,𝜇 (𝑡) Electric field amplitude of optical signal oscillating at the
resonance frequency 𝜔r,𝜇 of a microresonator with unit

√
W

E
𝜇
(𝑡) Kerr comb mode oscillating in 𝜇th microresonator resonance

with unit
√

W

𝑓 Frequency

𝑓ADC Bandwidth of an analogue-to-digital (ADC) converter

𝑓CEO Carrier-envelope offset frequency

𝑓rep Pulse repetition rate of a pulsed optical signal

𝐹 Normalized pump power or forcing coupled into a Kerr-
nonlinear microresonator

𝐹n Noise figure of an electric amplifier

𝐹th Normalized threshold pump power or forcing for modulation
instability in a Kerr-nonlinear microresonator

FWHM𝑎 Full width at half maximum

FWHM𝑖 Full width at half minimum
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𝑔 Complex gain parameter of sidebands growing due to modula-
tion instability in a pumped Kerr-nonlinear microresonator

𝑔, 𝑔j Real part and imaginary part of gain parameter

𝐺 / 𝐺eff Gain / effective gain of an electric amplifier

H Vectorial magnetic field components of optical signal

ℏ Reduced Planck constant: 6.626 070 15 × 10−34/(2𝜋) Js

𝑖 Electric current

𝐼 Intensity of an optical signal

𝐼R Near-field intensity of reflected light on a reflecting surface

Id Identity matrix

j Imaginary unit:
√
−1

𝑘B Boltzmann constant: 1.380 649 × 10−23 J/K

𝐿 Radiance of reflected light on a reflecting surface

𝐿MR Geometric circumference of a microresonator

𝐿obj Optical path length of an object allowing for optical signal
propagation

𝐿
(g)
obj Geometric path length of an object allowing for optical signal

propagation

𝐿̂ Linearized operator

𝑀 Normalized spectral separation between the primary sidebands
of an emerging Kerr comb and the pumped mode

𝑛 Integer

𝑛0 Refractive index

𝑛2 Nonlinear refractive index

𝑛air Refractive index of air: ≈ 1.000266 under ambient conditions
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𝑛e Effective refractive index

𝑛eg, 𝑛g (Effective) group refractive refractive index

𝑁accept Number of accepted distance data points from a larger set of
distance data points

𝑁av Number of averaged distance data points used to obtain a single,
more reliable distance data point

𝑁b Number of beat notes used in a SWI scheme for the determi-
nation of a distance between a target and a ranging system

𝑁car Free-carrier density

𝑁 ′
car Normalized free-carrier density

𝑁d Number of distance measurements

𝑁eval Number of pulses / number of pulse repetition periods used for
the determination of a distance

𝑁FC Number of lines of a frequency comb

𝑁p Number of set positions of a mirror on a moving stage

𝑁̂ Nonlinear operator

𝑝 Parameter of a curve parametrization

𝑃 Power of an optical signal received by photodetector

𝑃/𝑃(𝑡) Amplitude of the polarization in a material

𝑃beam Power of a free-space laser beam

𝑃beam,R Power of a free-space laser beam after reflection at a surface

𝑃F Far-field intensity of an optical signal

𝑃FC Power of a frequency comb

𝑃in Power of the pump field coupled in a Kerr-nonlinear microre-
sonator
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𝑃lin (𝑡) Scalar linear polarization induced by a scalar electric field in a
medium

𝑃n,shot Shot noise power in an electric receiver system

𝑃n,ther Thermal noise power in an electric receiver system

𝑃nl (𝑡) Scalar nonlinear polarization induced by a scalar electric field
in a medium

𝑃th Power of pump field coupled in microresonator required for
modulation instability

𝑃tot (𝑡) Scalar total polarization induced by a scalar electric field in a
medium

𝑃𝜇 Power of the 𝜇th mode of a frequency comb

𝑞e Elementary charge: 1.602 176 634 × 10−19C

𝑄 Microresonator quality factor

𝑟 Normalized two-photon absorption parameter

𝑟A Radius of the input aperture of an optical ranging system

R Photodetector responsivity

𝑠 Normalized free-carrier cross-section

𝑡 Physical time / slow time

𝑡 ′ Normalized physical time / slow time

𝑡 Complex transmission coefficient of an optical waveguide
coupler

𝑡eff Free-carrier lifetime / dwell time in a waveguide

𝑡 ′eff Normalized free-carrier lifetime / dwell time in a waveguide

𝑡R Round-trip time of an optical signal in a microresonator

𝑇 Temperature
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𝑇av Averaging period of a ranging system, inverse of its effective
measurement rate 𝐵meas

𝑇eval Evaluation period of a ranging system required for measuring
a distance, inverse of its evaluation bandwidth 𝐵eval

𝑇min Minimum acquisition time of a ranging system required for
measuring a distance

𝑇O Observation time defined in digital signal processing of a ran-
ging system for the evaluation of multiple consecutive distances

𝑇r Repetition period of a periodic (baseband) signal

𝑈 Voltage

𝑣′ Normalized group velocity of a field in a microresonator

𝑣car Saturation drift velocity of free carriers in a p-i-n-junction

𝑣D Drift velocity of an optical signal in a retarded time frame
moving a the group velocity of the optical signal

𝑣g Group velocity of an optical signal propagating in a waveguide

𝑤 Width of a waveguide

𝑥 Spatial coordinate

𝑦 Spatial coordinate

𝑧 Spatial coordinate, longitudinal coordinate in microresonator
waveguide

𝑧tar Position of a target mirror used in optical ranging experiments

𝑍 Impedance of an electric component

𝑍0 Impedance of free space: 376.730 313 . . . Ω
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Greek symbols

𝛼 Coefficient of round-trip power-loss of an optical field due to
linear waveguide losses in a microresonator

𝛼𝑖 Power-loss coefficient of an optical waveguide accounting for
linear propagation losses

𝛽, 𝛽(𝜔) Propagation constant of an optical field in a waveguide

𝛽′ Normalized second-order dispersion coefficient

𝛽 (𝑛) 𝑛th Taylor-expansion coefficient of the propagation constant
𝛽(𝜔) / 𝑛th-order dispersion coefficient

𝛽car Free-carrier dispersion parameter

𝛽TPA Two-photon absorption parameter

𝛾 Nonlinearity parameter of a Kerr-nonlinear waveguide

ΓC Confinement factor of a transversal field distribution in a
waveguide

𝛿 (𝜔) Dirac delta function

𝛿0 Detuning, i.e., spectral separation of the frequency of pump
light coupled in a Kerr-nonlinear microresonator and the center
of the pumped microresonator resonance

𝛿𝜇𝜈 Kronecker-delta for indices 𝜇, 𝜈

𝛿Φ𝜇 (𝑑) Phase difference of two beat notes generated on a measure-
ment and a reference detector at frequency Δ𝜔𝜇 in a multi-
heterodyne SWI ranging system

𝛿𝜔𝜇̃ Spectral shift of a microresonator resonance frequency 𝜔r,𝜇
caused by avoided mode crossings

Δ 𝑓n Noise bandwidth of shot noise and thermal noise impairing
multi-heterodyne SWI distance measurements
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Δ𝑡 Slow-time (physical time) increment in time integrations of the
Lugiato-Lefever equation

Δ𝑡 ′ Normalized slow-time (physical time) increment in time inte-
grations of the normalized Lugiato-Lefever equation

Δ𝜏,Δ𝜏S Fast-time (intracavity coordinate) increment in time integrati-
ons of the Lugiato-Lefever equation in the retarded and statio-
nary fast-time frame

Δ𝜏′,Δ𝜏′S Normalized fast-time (intracavity coordinate) increment in
time integration of the normalized Lugiato-Lefever equation
in the retarded and stationary fast-time frame

ΔΦ𝜇 (𝑑, 𝑑0) Phase difference of two beat notes generated on a measurement
and a reference detector at frequency 𝜔𝜇 in a multi-heterodyne
SWI ranging system, referenced with respect to a reference
distance 𝑑0

Δ𝜔𝜇, Δ𝜔𝜇,𝜇′ Frequencies of beat notes caused by superposition of two fre-
quency combs with frequencies 𝜔𝜇 and 𝜔𝜇′ on a photodetector

Δ𝜔FSR Difference of free spectral ranges of two frequency combs

𝜖0 Vacuum permittivity: 8.854 187 813 . . . × 10−12 As
V m

𝜖r Relative permittivity

𝜀 Root-mean-square (RMS) of errors of a linear fit to a set of
unwrapped phase differences 𝛿Φ𝜇 (𝑑) orΔΦ𝜇 (𝑑, 𝑑0) in a multi-
heterodyne SWI ranging system

𝜀th Upper boundary the RMS error 𝜀 of each distance data point
for allowing for its acceptance

𝜀th,lo Globally defined lowest value (lower limit) for local upper
boundary 𝜀th,loc of the RMS error 𝜀

𝜀th,loc Local upper boundary of RMS error 𝜀 of each distance data
point for its acceptance, neglecting global limits and an addi-
tional offset for 𝜀th
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𝜀th,o Constant offset added to the local upper boundary 𝜀th,loc of the
RMS error 𝜀

𝜀th,up Globally defined upper value (upper limit) for local upper boun-
dary 𝜀th,loc of the RMS error 𝜀

𝜀𝑧 Distance error, i.e., the difference between the true distance and
the measured distance between a target and a ranging system

𝜁 Normalized detuning, i.e., spectral separation of the frequency
of pump light coupled in a Kerr-nonlinear microresonator and
the center of the pumped microresonator resonance

𝜂 Normalized pump-to-frequency comb power conversion effi-
ciency in a Kerr-nonlinear microresonator

𝜂out Physical pump-to-comb power conversion efficiency in the bus
waveguide attached to a Kerr-nonlinear microresonator

𝜃 Angular coordinate

𝜃C Power coupling coefficient between a bus waveguide and a
microresonator

𝜃C,M Coupling coefficient of transverse mode families of a microre-
sonator

𝜅 Integer

𝜅 Complex coupling coefficient of an optical waveguide coupler

𝜆 Wavelength of an optical signal

ΛS, ΛS,𝜇 Synthetic wavelength of an SWI ranging system

Λ Eigenvalue

𝜇 Integer

𝜈 Integer

𝜋 Pi: 3.141 592 654 . . .

𝜌 Reflectivity of a surface
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𝜎A Allan deviation

𝜎car Free-carrier cross-section

𝜎′
car Normalized free-carrier cross-section

𝜎2
𝑑
, 𝜎2

𝑑
Variance of a set of measured (and averaged) distances 𝑑

𝜎2
𝑑,shot Variance of a set of measured distances 𝑑 induced by shot noise

𝜎2
n,shot Variance of an electric current induced by shot noise

𝜎2
𝑟 Variance of a set of measured distances normalized to the

squared unambiguity distance 𝑑2
ua

𝜎𝜀𝑧 Standard deviation of distance errors 𝜀𝑧

𝜎2
𝜙

Variance of a set of measured phases of an electric signal

𝜏, 𝜏S Microresonator intracavity coordinate in a retarded (stationary)
time frame

𝜏′, 𝜏′S Normalized microresonator intracavity coordinate in a retarded
(stationary) time frame

𝜙n Phase noise of measured phase differences ΔΦ𝜇 (𝑑, 𝑑0)

𝜙𝜇 Normalized phase shift affecting 𝜇th Kerr comb mode over one
round-trip in a Kerr-nonlinear microresonator, induced by an
avoided mode crossing

Φ𝜇 Phase of the 𝜇th beat note at frequency 𝜔𝜇, comb 1 − 𝜔𝜇, comb 2
generated by the superposition of two combs on a photodetector

Φ̂AMC Phase shift operator describing the accumulated phase shifts of
all Kerr comb modes over one round-trip in a microresonator,
induced by avoided mode crossings

Φ̂′
AMC Normalized shift operator describing the normalized accumu-

lated phase shifts of all Kerr comb modes over one round-trip
in a microresonator, induced by avoided mode crossings

𝜑 Angular coordinate
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𝜑(𝜇) Phase accumulated by 𝜇th Kerr comb mode during one round-
trip in a microresonator due to second-order dispersion and
avoided mode crossings

𝜑′(𝜇) Normalized phase accumulated by 𝜇th Kerr comb mode during
one round-trip in a microresonator due to second-order disper-
sion and avoided mode crossings

𝜒 (𝑛) 𝑛th order nonlinear susceptibility

𝜒
(𝑛)
h 𝑛th order impulse response function

𝜔 Frequency of optical field

𝜔FSR Free spectral range of a frequency comb

𝜔p Frequency of the pump field coupled in Kerr-nonlinear micro-
resonator

𝜔r,𝜇 𝜇th resonance frequency of a microresonator

𝜔r,FSR Free spectral range of the resonance frequencies of a microre-
sonator around a given optical frequency

𝜔Δ𝜇 Frequency difference between the frequency 𝜔𝜇 of the 𝜇th
comb line of a Kerr comb and its pumped comb line 𝜔p = 𝜔0

𝜔𝜇 Frequency of the 𝜇th line of a frequency comb

Ω Solid angle

Ω3dB 3dB-comb bandwidth

Ωtot Total comb bandwidth
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A.1 Parameter regions of modulation instability
and thermal effects on comb formation

In practice Kerr combs are usually generated in microresonators with (at least
partial) anomalous dispersion, since comb generation in normal-dispersive
devices is more difficult [61]. Considering Eqs. (2.54) and (2.51) from Sec-
tion 2.2.2, theoretically a positive gain ℜ{𝑔(𝑀)} > 0 can be observed for
normal dispersion (𝛽′ < 0) for certain sidebands 𝜇 located at spectral positions
𝜇 = ±𝑀 , if the pump parameters 𝜁 and 𝐹 are chosen properly. In literature,
thermal effects are said to play a crucial role on this difference between theory
and experimental observations [61]. In this section, this statement is explained
more in-depth using the normalized LLE, Eq. (2.45). An explanation is given,
why modulation instability for normal dispersive microresonators is difficult to
achieve even when excluding thermal effects and how thermal effects prevent
comb formation experimentally.
According to Eq. (2.54), sidebands 𝜇 at 𝜇 = ±𝑀max with the highest gain are
defined by the condition 𝜁 + 𝛽′𝑀2

max − 2𝐴 = 0, which leads to

𝑀max =
√︁
(2𝐴 − 𝜁) /𝛽′. (A.1)

Note that 𝑀max is an integer, see Eq. (2.47), so in practice the (non-integer)
expression on the r.h.s. of Eq. (A.1) has to be rounded to find the sidebands
with the highest gain. Equation (A.1) implies that the following condition must
be fulfilled such that the underlying ansatz for modulation instability is valid:

(2𝐴 − 𝜁) /𝛽′ > 0. (A.2)

For further investigation of this condition, we note that the intracavity power
(IC) power 𝐴 =

��𝑎0
��2 of a constant solution 𝑎0 of the LLE, Eq. (2.45), depends
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on the detuning 𝜁 , as well as the forcing 𝐹, see Eq. (2.51). A change of the
IC power 𝐴 caused by a changing detuning can always be compensated by
an increase or decrease of the forcing 𝐹. Therefore, we consider 𝐴 and 𝜁 as
independent parameters, whose combinations (𝜁, 𝐴) may or may not fulfill the
condition for MI defined in Eq. (A.2). For anomalous dispersion 𝛽′ > 0, this
leads to the condition 2𝐴 > 𝜁 for modulation instability. For normal dispersion
𝛽′ < 0, one finds 𝜁 > 2𝐴. Together with the necessary prequisite 𝐴 = 1 for a
positive real part 𝑔 of the gain parameter, see Sec. 2.2.2, Eq. (2.56), this leads
to the following regions of modulation instability in a (𝜁, 𝐴) parameter space:

𝛽′ > 0 : 1 < 𝜁/2 < 𝐴 (A.3)
𝛽′ < 0 : 1 < 𝐴 < 𝜁/2 (A.4)

These regions of modulation instability are depicted in Fig. A.1 as blue (an-
omalous dispersion, 𝛽′ > 0) and red (normal dispersion, 𝛽′ < 0) shaded areas.
In addition, several curves are depicted in gray that represent the IC power
𝐴(𝜁) of constant solutions 𝑎0 (𝜁) for varying forcings 𝐹. These curves are
obtained by numerically solving Eq. (2.51).
In an experiment or in a numeric time-integration of the LLE, specific points
(𝜁 ,𝐴(𝜁)) can be reached by, e.g., choosing a fixed pump power 𝐹 and an initial
pump frequency (detuning) 𝜁 that is usually far off the s-shaped part of the
curves depicted in Fig. A.1. Then, the detuning is increased or decreased, until
a specific point (𝜁 ,𝐴(𝜁)) has been reached that is within the regions of modu-
lation instability. With this procedure, the center branch in the s-shaped region
can however not be accessed. Furthermore, even if by any means a point on the
center branch would be reached, small perturbations would lead to a drop to a
state of the field to the lower branch, since the center branch is unstable [61].
The center branch is defined by the turning points of the curve 𝐴(𝜁), where
d𝐴/d𝜁 diverges. The turning points can only occur, if for a given forcing 𝐹 and
a given 𝜁 multiple values of the intracavity power 𝐴 exist. In formal terms, this
corresponds to the condition that the function 𝐹 (𝐴, 𝜁), given by Eq. (2.51), has
the same value 𝐹 for three different 𝐴 and therefore there must be values for
𝐴(𝜁) where d𝐹/d𝐴 = 0:

d𝐹
d𝐴

=1 + (𝜁 − 𝐴)2 + 𝐴 (1 − 2 (𝜁 − 𝐴))

=3𝐴2 − 4𝜁 𝐴 + 1 + 𝜁2 = 0. (A.5)
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A.1 Parameter regions of modulation instability and thermal effects on comb formation

Figure A.1: Modulation instability regions for anomalous and normal dispersion defined by
Eqs. (A.3) and (A.4) along with intracavity CW states for different forcings 𝐹. The blue-shaded
area shows the parameter space (𝜁 , 𝐴) for which modulation instability can occur, provided that
the microresonator features anomalous dispersion (𝛽′ > 0) and that the detuning 𝜁 and the for-
cing 𝐹 are chosen such that the power 𝐴 of the IC field is within this area. In the same manner,
the red shaded area indicates the region where MI can occur in a normal-dispersive microre-
sonator (𝛽′ < 0). The gray lines show the intracavity power 𝐴(𝜁 ) for different applied forcings
𝐹 = 2, 4, 6, 8. Higher values for the forcing lead to a higher IC power 𝐴(𝜁 ) for a given detuning 𝜁 .
The black curve marks turning points of the curves of 𝐴(𝜁 ) , where the curve transitions between
three different branches. The center branch, located in the area framed by the black curve, cannot
be accessed in time-integrations of the LLE or experimentally. Accessible states on the upper and
the lower branch that are located in the MI regions are highlighted in blue and red. If the IC power
𝐴(𝜁 ) field is located on these positions for a given detuning 𝜁 , MI may occur, provided that the
dispersion has the matching sign.
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Equation (A.5) can be solved for 𝐴, which yields the curve of the upper turning
points (𝜁, 𝐴+ (𝜁)) and the lower turning points (𝜁, 𝐴− (𝜁)) of the curves 𝐴(𝜁)
depicted in Fig. A.1:

𝐴± (𝜁) =
1
3

(
2𝜁 ±

√︃
𝜁2 − 3

)
. (A.6)

Computing the turning point locations yields the black curve shown in Fig. A.1.
Stable states of the IC power 𝐴(𝜁) that can be accessed in time integrations of
the LLE or in an experiment for different forcings 𝐹 are located outside of this
black framed area.

Therefore, the effective regions of modulation instability are reduced. In Figu-
re A.1, blue and red sections on the gray curves 𝐴(𝜁) mark points (𝜁, 𝐴(𝜁)) that
lead to modulation instability for either anomalous or normal dispersion. One
can see that for any 𝐹, the detuning range for normal dispersion allowing for
MI is roughly two orders of magnitude smaller than the range for for anomalous
dispersion. This explains why MI is difficult to achieve in time-integrations of
the LLE for 𝛽′ < 0. The pump parameters 𝜁 and 𝐹 have to be chosen very
carefully.

Thermal effects occurring in an experiment can be considered in this formalism
by considering the influence of temperature changes on the detuning 𝜁1. When
light is coupled in a microresonator, its temperature 𝑇 will increase due to
absorption of light in the material. Mathematically, this can be expressed as
𝜕𝑇/𝜕𝐴 > 0 or equivalently 𝜕𝐴/𝜕𝑇 > 0. An increase of the temperature
leads to an expansion of the microresonator, and as a result, the pumped
resonance frequency 𝜔r,0 will decrease. Consequently, the detuning, which
given as 𝜁 = (𝜔r,0 − 𝜔p)2𝑡R/(𝛼𝑖𝐿MR + 𝜃C), will also decrease2, and therefore
we can write 𝜕𝜁/𝜕𝑇 < 0, or 𝜕𝑇/𝜕𝜁 < 0. Thus, there is a temperature-induced
link between the IC power 𝐴 and the detuning 𝜁 , for which we can write
𝜕𝐴/𝜕𝜁 = 𝜕𝐴/𝜕𝑇 𝜕𝑇/𝜕𝜁 < 0.

1 Thermal effects can also be included in the LLE explicitly [80].
2 Assuming critical coupling 𝛼𝑖𝐿MR = 𝜃C, the detuning reads 𝜁 = (𝜔r,0 − 𝜔p)𝑡R/(𝛼𝑖𝐿MR)
= (𝜔r,0−𝜔p)𝑛eg/(𝛼𝑖𝑐0) . Here, the temperature dependence of 𝑛eg/(𝛼𝑖𝑐0) is negligible com-
pared to the temperature dependence of 𝜔r,0, according to experimentally observed behaviours.
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A.2 Power spikes during soliton Kerr comb breakdown

This relation between 𝐴 and 𝜁 can now be compared to their dependence given
by the nonlinear microresonator in the two different MI regions for normal
and anomalous dispersion in Fig. A.1: For normal dispersion (red curves), the
the derivative 𝜕𝐴/𝜕𝜁 has the same sign as the temperature dependence. This
means that fluctuations of 𝐴 induced by temperature fluctuations are reinforced
by the nonlinearity of the system. As a result, IC states in the red region are
unstable experimentally and the system will drift out of the (small) MI region.
For the MI region for anomalous dispersion, the opposite holds: Here, IC power
𝐴 is linked to the detuning 𝜁 according to 𝜕𝐴/𝜕𝜁 > 0 for essentially every
part of all blue curves, except for very small regions right to their respective
maxima 𝐴max = 𝜁 . Consequently, fluctuations of 𝐴 induced by temperature
changes are counter-balanced by the nonlinearity of the system. As a result,
an equilibrium state of the IC power is possible, such that MI may occur for
anomalous dispersion in presence of thermal effects.

A.2 Power spikes during soliton Kerr comb
breakdown

In experiments, it was observed that single-soliton comb states may sponta-
neously break down in a laboratory environment. Possible reasons for this are
slow thermal drifts or vibrations, which lead to a misalignment of the optics
used for coupling pump light into the photonic chip containing Kerr-nonlinear
microresonators and therefore a reduction of the available pump power. Me-
asurements showed that a soliton breakdown is accompanied by a short, but
very strong increase of the comb power (excluding the pump). Such power
spikes may be harmful for optical devices, in which light of the soliton Kerr
comb is coupled in.

In Figure A.2(a) top, the power of a soliton comb with suppressed pump,
measured in an optical fiber following the Kerr-nonlinear microresonator, is
depicted before, during and after a soliton breakdown. The peak in the center
is the moment at which the soliton comb disappears. At that point in time,
the comb power in the fiber increases from 5 dBm to 18 dBm for a period
in the order of 1 𝜇s. While such a power level is tolerable for most devices
for a short period of time, the power spike effect becomes more severe when
the soliton comb with suppressed pump is amplified in an EDFA. The power
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Figure A.2: Investigation of soliton-breakdown in Kerr-nonlinear microresonators accompanied
by power-spikes. (a) Experimentally observed power spikes. Top: Comb power as a function of
time, with the soliton breakdown in the center of the figure. Bottom: Same as top, but with the
comb power monitored after the comb has been amplified in an EDFA. (b) – (d): Results of time
integration of the LLE. (b) Evolution of IC field, plotted as a function of normalized fast time
𝜏′ describing the IC field distribution inside the microresonator and as a function of normalized
slow time 𝑡′. At the beginning of the simulation, a single soliton located at 𝜏′ = 1.5𝜋 circulates
in the cavity. Around 𝑡′ = 12, the soliton breaks down. (c) Normalized IC power and detuning 𝜁

as a function of normalized time 𝑡′. The soliton breakdown is accompanied by a strong increase
of the IC power in the order of 10 dB, as the detuning is decreased over time. The forcing is kept
constant at 𝐹 = 16. (d) Soliton generation and breakdown on a map showing the mean IC power
(2𝜋)−1

∫ 2𝜋
0

��𝑎 (𝑡′, 𝜏′) ��2 d𝜏′ as a function of the slow-time dependent detuning 𝜁 . The light gray
curve shows the CW curve 𝐴(𝜁 ) for 𝐹 = 16 based on Eq. (2.51) and the dark gray curve shows
the analytical approximation for single-soliton states, see Eq. (2.59). The blue-dotted curve shows
the transition of the IC field into a single-soliton state during initial single-soliton generation. The
final state is located on the dark gray curve, as visible in the green zoom-in. The red-dotted curve
shows the simulation already depicted in (b) and (c). As soon as the dark gray soliton branch ends
and detuning is further decreased, a transition to the upper branch of the CW curve occurs, which
is accompanied by a strong increase of the IC comb power.
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A.2 Power spikes during soliton Kerr comb breakdown

spike during soliton breakdown can also be observed after amplification of the
comb, as shown in Fig. A.2(a) bottom. Here, the power increases from 23 dBm
to 34 dBm. Power levels of several Watts can damage optical devices even
when applied only over short periods of time.

Time integrations of the LLE with 𝐹 and 𝜁 varying over time showed that
a decreasing 𝜁 will cause the break-down of a soliton and the associated
increase of the IC power. This behaviour is depicted in Fig. A.2(b) and (c).
In Figure A.2(b) the IC power distribution is plotted as a function of the
normalized fast time 𝜏′ and normalized slow time 𝑡 ′. The initial IC state is a
single soliton, as visible by the vertical power distribution at 𝑡 ′ = 0 . The forcing
is set to 𝐹 = 16 and the detuning decreased linearly over 𝑡 ′, as depicted in black
in A.2(c). Figure A.2(c) also shows the mean IC power 1

2𝜋

∫ 2𝜋
0

��𝑎(𝑡 ′, 𝜏′)��2 d𝜏′
as a function of normalized time 𝑡 ′ in red. Around 𝑡 ′ = 12, the soliton breaks
down, and this is accompanied by a strong increase of the IC power from
−5 dB, to 8 dB, see Fig. A.2(c), which is roughly the same increase as observed
in the experiment. Increasing 𝜁 , or changing the forcing 𝐹 over time can also
lead to the break-down of a soliton, however these do not show short increases
of the IC power (not shown).

For a better understanding of the occurrence of this power spike, one can
consider a map that shows the mean IC power as a function of the detuning
𝜁 for different comb states, see Fig. A.2(d). Here, the curve of a constant field
(CW curve), 𝑎(𝜏′) = 𝑎0, is plotted in light gray and the curve of a single-
soliton state 𝑎soliton in dark gray, assuming a forcing of 𝐹 = 16 and varying
values of 𝜁 . The CW curve is again obtained by numerically solving Eq. (2.51)
and the single-soliton curve is obtained by computing the power of the single-
soliton states approximated by Eq. (2.59). For this, the field of the pumped
mode 𝑎0 (𝜁, 𝐹) is obtained by numerically solving Eq. (2.48). The remaining
expression on the r.h.s of Eq. (2.59) can computed for given parameters (𝜁, 𝐹),
with the soliton centered at 𝜏′0 = 𝜋.

In Fig. A.2(d), the single-soliton curve (dark gray) is very close to the lower
branch of the CW curve (light gray). The soliton curve reaches from the lower
turning point of the CW curve near 𝜁 ≈ 5 up to the maximum value that permits
a single soliton 𝜁max = 𝜋2𝐹/8 ≈ 19.7 [21]. The green inset shows a zoom to
the region near the maximum detuning. It can be seen that the normalized
power difference between the soliton curve and the CW curve amounts to less
than 1 and therefore these curves nearly overlap in Fig. A.2(d).
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The dotted curves show the mean IC power obtained from time integrations
of the LLE. First, a single-soliton state is generated from a weak, random
initial state by increasing the detuning from a negative value 𝜁 < 0 to positive
values for a constant forcing 𝐹 = 16, see blue-dotted curve. The IC power
follows the CW curve, until modulation instability significantly alters the IC
power around 𝜁 = 13. The IC field enters different comb states and remains
constant, once it has reached the single-soliton state. The final IC power of this
simulation is located closely to the theoretical obtained IC power of a single-
soliton, see green zoom-in in Fig. A.2(d). From here, the soliton breakdown
described in (b) and (c) is also visualized by a red-dotted curve in (d). For
a decreasing detuning, the IC field follows the theoretically expected single-
soliton IC power, as indicated by an overlap of the red-dotted curve and the
dark gray curve. Near the lower turning point of the CW curve, which marks
the end of the theoretical expected single-soliton curve, the time-integration IC
power begins to transition to the upper branch of the CW curve. This transition
is accompanied a strong increase of the comb, which is visible by an overshoot
of the red-dotted curve over the CW curve in Figure A.2(d) around 𝜁 = 3.

These simulations show that the nonlinearity of the system likely causes the
power-spike during a soliton-breakdown, when the detuning of the system is
decreased. Noteworthy, it is not necessary to include any other effects such as,
e.g., the influence of temperature changes or additional resonances to reproduce
power spikes numerically.
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B Bifurcation theory applied to the
Lugiato-Lefever equation and
properties of dissipative Kerr
soliton combs

The text in this chapter has been published as appendix of the publication [J1].
It was adapted to fit the layout, structure and notation of this dissertation. This
appendix assumes a negative time dependence of the optical signal of the form
exp(−j𝜔𝑡).

[Start of appendix of publication [J1]]

B.1 Identification of bifurcation branches

Here we derive the expression that allows us to identify bifurcation points on
the curve of trivial solutions to the stationary LLE with Neumann boundary
conditions:

−𝛽′ 𝑑2

𝑑𝜏′2
𝑎 − (j − 𝜁)𝑎 − |𝑎 |2𝑎 + j

√
𝐹 = 0, (B.1)

𝑑𝑎

𝑑𝜏′
(0) =

𝑑𝑎

𝑑𝜏′
(𝜋) = 0. (B.2)
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The structure of the solutions 𝑎 : [0, 𝜋] → C near a point
(
𝜁0, 𝑎0 (𝜁0)

)
on the

trivial curve depends on the properties of the linearized operator 𝐿̂

𝐿̂𝑎
𝜙

:= − 𝛽′
𝑑2

𝑑𝜏′2
𝑎
𝜙
− (j − 𝜁0)𝑎𝜙

− 2|𝑎0 |
2𝑎

𝜙
− 𝑎2

0𝑎𝜙
, (B.3a)

𝑑𝑎
𝜙

𝑑𝜏′
(0) =

𝑑𝑎
𝜙

𝑑𝜏′
(𝜋) = 0, (B.3b)

where we write 𝑎0 instead of 𝑎0 (𝜁0), but we keep the notation 𝑎0 (𝜁) whenever
we want to stress the 𝜁-dependence of the trivial solution. We denote the kernel
of the differential operator 𝐿̂ by

Ker𝐿̂ ={𝑎
𝜙

: 𝐿̂𝑎
𝜙
= 0,

𝑑𝑎
𝜙

𝑑𝜏′
(0) =

𝑑𝑎
𝜙

𝑑𝜏′
(𝜋) = 0}

and its range by

Rg𝐿̂ ={𝐿̂𝑎
𝜙

:
𝑑𝑎

𝜙

𝑑𝜏′
(0) =

𝑑𝑎
𝜙

𝑑𝜏′
(𝜋) = 0},

where the functions 𝑎
𝜙

: [0, 𝜋] → C are twice continuously differentiable.
For such a function 𝑎

𝜙
≠ 0, we denote by span{𝑎

𝜙
} = {𝑚𝑎

𝜙
: 𝑚 ∈ R} the

one-dimensional space of all real multiples of 𝑎
𝜙

and by span{𝑎
𝜙
}⊥ = {𝜓 :∫ 𝜋

0 𝑎
𝜙
(𝑥)𝜓(𝑥) 𝑑𝑥 = 0} its 𝐿2-orthogonal complement. Let us abbreviate the

nonlinearity in Eq. (B.1) by N(𝑎) = |𝑎 |2𝑎 − j
√
𝐹. The derivative 𝐷N(𝑎)𝑧 :=

𝑑
𝑑𝑚

N(𝑎 + 𝑚𝑧) |𝑚=0 = 2|𝑎 |2𝑧 + 𝑎2𝑧 for 𝑎, 𝑧 ∈ C appeared in Eq. (B.3) in the
definition of the linearized operator 𝐿̂. It can also be written in the form

𝐷N(𝑎)𝑧 =
(
3(ℜ{𝑎})2 + (ℑ{𝑎})2 2ℜ{𝑎}ℑ{𝑎}

2ℜ{𝑎}ℑ{𝑎} (ℜ{𝑎})2 + 3(ℑ{𝑎})2

) (
ℜ{𝑧}
ℑ{𝑧}

)
. (B.4)
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Besides the linearized operator 𝐿̂ given in Eq. (B.3), we also consider its adjoint
operator,

𝐿̂∗𝑎
𝜙
= − 𝛽′

𝑑2

𝑑𝜏′2
𝑎
𝜙
+ (j + 𝜁0)𝑎𝜙

− 𝐷N(𝑎0 (𝜁0))𝑎𝜙
, (B.5a)

𝑑𝑎
𝜙

𝑑𝜏′
(0) =

𝑑𝑎
𝜙

𝑑𝜏′
(𝜋) = 0, (B.5b)

which will be used below. Next we will compute the spaces Ker𝐿̂, Ker𝐿̂∗, which
have the same finite dimension since both 𝐿̂ and 𝐿̂∗ are Fredholm operators.
Owing to the Neumann boundary conditions, any element 𝑎

𝜙
∈ Ker𝐿̂ can be

expanded in the form 𝑎
𝜙
(𝜏′) = ∑∞

𝜅=0 𝛼𝜅
cos(𝜅𝜏′). Since {cos(𝜅𝜏′)}𝜅∈N0 is a

basis and 𝐿̂ is linear the condition that 𝑎
𝜙
∈ Ker𝐿̂ means that there is at least one

integer 𝜇 ∈ N0 such that 𝐿̂ (𝛼 cos(𝜇𝜏′)) = (𝛽′𝜇2−j+𝜁0−𝐷N(𝑎0))𝛼 cos(𝜇𝜏′) =
0 for some 𝛼 = (ℜ{𝛼},ℑ{𝛼}) ∈ C \ {0}. Using Eq. (B.4), it follows that 𝛽′𝜇2

must be an eigenvalue of the matrix

M𝛼 =

(
−𝜁0 + 3(ℜ{𝑎0})2 + (ℑ{𝑎0})2 2ℜ{𝑎0}ℑ{𝑎0} − 1

2ℜ{𝑎0}ℑ{𝑎0} + 1 −𝜁0 + (ℜ{𝑎0})2 + 3(ℑ{𝑎0})2

)
,

(B.6)

with eigenvector 𝛼. Nonzero elements in Ker𝐿̂ exist if det(−𝛽′𝜇2Id+M𝛼) = 0
and computing this determinant yields

(𝜁0 + 𝛽′𝜇2)2 − 4|𝑎0 (𝜁0) |2 (𝜁0 + 𝛽′𝜇2) + 1 + 3|𝑎0 (𝜁0) |4 = 0. (B.7)

Solving for 𝜇 leads to 𝜇1,2, given by the following equation:

𝜇1,2 :=

√√√
2|𝑎0 (𝜁0) |2 − 𝜁0 ±

√︃
|𝑎0 (𝜁0) |4 − 1

𝛽′
. (B.8)

Likewise, nonzero elements in Ker𝐿̂∗ exist if det(−𝛽′𝜇̃2Id+M𝑇
𝛼) = 0 for some

integer 𝜇̃ ∈ N0. Since det(−𝛽′𝜇̃2Id + M𝑇
𝛼) = det(−𝛽′𝜇̃2Id + M𝛼), this leads

to the same formula Eq. (B.8) for 𝜇̃1,2. In the remaining part of this section,
we write 𝜇 as a shorthand for one of the two values 𝜇1,2. Consequently, under
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the condition from Eq. (B.7) there is a vector 𝛼 and a vector 𝛼∗ such that
𝛼 cos(𝜇𝜏′) ∈ Ker𝐿̂ and 𝛼∗ cos(𝜇𝜏′) ∈ Ker𝐿̂∗.

Now we determine 𝛼 and 𝛼∗ under the condition from Eq. (B.7). In the matrix
M𝛼−𝛽′𝜇2Id, the first or the second line could be zero (but not both). Therefore,
the eigenvector 𝛼 of the matrix in Eq. (B.6) is given in the form

𝛼 =

(
2ℜ{𝑎0}ℑ{𝑎0} − 1

𝜁 + 𝛽′𝜇2 − 3(ℜ{𝑎0})2 − (ℑ{𝑎0})2

)
or

𝛼 =

(
𝜁 + 𝛽′𝜇2 − (ℜ{𝑎0})2 − 3(ℑ{𝑎0})2

2ℜ{𝑎0}ℑ{𝑎0} + 1

)
, (B.9)

such that (−𝛽′𝜇2Id + M𝛼)𝛼 = 0, and hence 𝛼 cos(𝜇𝜏′) belongs to Ker𝐿̂. The
first choice can be taken if 2ℜ{𝑎0}ℑ{𝑎0} − 1 ≠ 0 and the second choice if
2ℜ{𝑎0}ℑ{𝑎0} + 1 ≠ 0. Likewise,

𝛼∗ =

(
𝜁 + 𝛽′𝜇2 − (ℜ{𝑎0})2 − 3(ℑ{𝑎0})2

2ℜ{𝑎0}ℑ{𝑎0} − 1

)
or

𝛼∗ =

(
2ℜ{𝑎0}ℑ{𝑎0} + 1

𝜁 + 𝛽′𝜇2 − 3(ℜ{𝑎0})2 − (ℑ{𝑎0})2

)
, (B.10)

with 𝛼∗ = (ℜ{𝛼∗},ℑ{𝛼∗}) ∈ C satisfies (−𝛽′𝜇2Id + M𝑇
𝛼)𝛼∗ = 0 and leads to

an element 𝛼∗ cos(𝜇𝜏′) ∈ Ker𝐿̂∗. As before, the first choice can be taken if
2ℜ{𝑎0}ℑ{𝑎0} − 1 ≠ 0 and the second choice if 2ℜ{𝑎0}ℑ{𝑎0} + 1 ≠ 0.
We can exclude the case 𝜇1 = 0 or 𝜇2 = 0 in the bifurcation condition
from Eq. (B.7) since it would only lead to bifurcation of trivial solutions,
and we are interested in nontrivial solutions. The kernel of 𝐿̂ will be one-
dimensional provided that in Eq. (B.7) we have 𝜇1 ∈ N and 𝜇2 ∉ N or vice
versa, and two-dimensional if both 𝜇1, 𝜇2 ∈ N. If neither 𝜇1 or 𝜇2 are in N,
then Ker𝐿̂ = Ker𝐿̂∗ = {0}, and the implicit function theorem (cf. Ref. [131],
Theorem I.1.1]) implies that solutions nearby the point (𝜁0, 𝑎0) are unique,
and therefore trivial. Hence, (𝜁0, 𝑎0) cannot be a bifurcation point in this case,
and therefore the necessary bifurcation condition is that 𝜇1 ∈ N or 𝜇2 ∈ N.
The same condition, expressed in the form of Eq. (B.7), is given in Ref. [125],
Proposition 10.
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B.2 Transversality condition

According to the Crandall-Rabinowitz theorem (cf. Refs. [219], Theorem I.5.1
and [131]), two conditions are sufficient for bifurcation. The first is that Ker𝐿̂
is one-dimensional, i.e., with 𝜇1, 𝜇2 from Eq. (B.8), we need that 𝜇1 ∈ N,
𝜇2 ∉ N or vice versa, and we write 𝜇 for the one which is the integer. As we
will see, the second condition (the transversality condition) is given by

2|𝑎0 (𝜁0) |4 ( |𝑎0 (𝜁0) |2 − 𝜁0) ∓ (1 + 𝜁2
0 − |𝑎0 (𝜁0) |4)

√︃
|𝑎0 (𝜁0) |4 − 1 ≠ 0 (B.11)

with “−” if 𝜇1 ∈ N and “+” if 𝜇2 ∈ N. To verify that Eq. (B.11) together with
the one-dimensionality of the kernel is really sufficient for bifurcation, we need
to bring our problem into the form used in Ref. [219]. Nontrivial solutions of
Eqs. (B.1) and (B.2) may be written as

𝑎(𝜏′) =𝑎0 (𝜁) + 𝑏(𝜏′) with
𝑑𝑏

𝑑𝜏′
(0) =

𝑑𝑏

𝑑𝜏′
(𝜋) = 0.

From Eqs. (B.1) and (B.2), we derive the equation for the function 𝑏 in the
form

𝐹 (𝜁, 𝑏) := −𝛽′ 𝑑2

𝑑𝜏′2
𝑏 − (j − 𝜁) (𝑎0 (𝜁) + 𝑏) − N (𝑎0 (𝜁) + 𝑏) = 0, (B.12)

where 𝐹 (𝜁, 𝑏) is defined on R × 𝐻 with 𝐻 given as the real Hilbert space of
twice almost everywhere differentiable functions

𝑏 : [0, 𝜋] → C with
𝑑𝑏

𝑑𝜏′
(0) =

𝑑𝑏

𝑑𝜏′
(𝜋) = 0

and 𝑏, 𝑑2𝑏/𝑑𝜏′2 being square integrable. Notice that 𝐹 (𝜁, 0) = 0 for all 𝜁 , i.e.,
the curve of trivial solutions (𝜁, 𝑎0 (𝜁)) for Eqs. (B.1) and (B.2) has now become
the line of zero solutions (𝜁, 0) for Eq. (B.12). Let us write 𝐷2

𝑏,𝜁
𝐹 (𝜁0, 0) for

the mixed second derivative of 𝐹 (𝜁, 𝑏) with respect to 𝑏 and 𝜁 at the point
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(𝜁0, 0). In our case, where 𝐹 (𝜁, 𝑏) is defined by Eq. (B.12), we find for the
mixed second derivative

𝐷2
𝑏,𝜁 𝐹 (𝜁0, 0)𝑎𝜙

=𝑎
𝜙
− 𝐷2N(𝑎0) (𝑎𝜙

, ¤𝑎0)

=𝑎
𝜙
− 2𝑎0𝑎𝜙

¤𝑎0 − 2𝑎0𝑎𝜙
¤𝑎0 − 2𝑎0𝑎𝜙

¤𝑎0, (B.13)

where ¤𝑎0 = 𝑑
𝑑𝜁

𝑎0 (𝜁) |𝜁=𝜁0 is the tangent direction along the curve 𝜁 ↦→ 𝑎0 (𝜁) at
the point 𝜁0. According to Ref. [219], the transversality condition is expressed
by

𝐷2
𝑏,𝜁 𝐹 (𝜁0, 0)𝑎𝜙

∉ Rg(𝐷𝑏𝐹 (𝜁0, 0)),

with 𝑎
𝜙

such that Ker(𝐷𝑏𝐹 (𝜁0, 0)) = span{𝑎
𝜙
}. In our case, 𝐷𝑏𝐹 (𝜁0, 0) = 𝐿̂,

where 𝐿̂ is the linearized operator given in Eq. (B.3). By the Fredholm alternati-
ve, cf. Ref. [220], Rg𝐿̂ = (Ker𝐿̂∗)⊥ = span{𝑎∗

𝜙
}⊥, where 𝑎

𝜙
(𝜏′) = 𝛼 cos(𝜇𝜏′),

𝑎∗
𝜙
(𝜏′) = 𝛼∗ cos(𝜇𝜏′) with 𝛼 from Eqs. (B.9) and 𝛼∗ from Eqs. (B.10). Here

orthogonality 𝑢 ⊥ 𝑣 of two functions 𝑢, 𝑣 ∈ 𝐻 is understood as vanishing
of the inner product ⟨𝑢, 𝑣⟩ = ℜ{

∫ 𝜋

0 𝑢(𝜏′)𝑣(𝜏′) d𝜏′}. Hence, transversality is
expressed as

⟨𝐷2
𝑏,𝜁 𝐹 (𝜁0, 0)𝑎𝜙

, 𝑎∗
𝜙
⟩ = ℜ

{∫ 𝜋

0

(
𝐷2

𝑏,𝜁 𝐹 (𝜁0, 0)𝑎𝜙

)
𝑎∗
𝜙

d𝜏′
}
≠ 0, (B.14)

and we will show next that this amounts to

⟨𝐷2
𝑏,𝜁 𝐹 (𝜁0, 0)𝑎𝜙

, 𝑎∗
𝜙
⟩ =

−𝜋(2ℜ{𝑎0}ℑ{𝑎0} ∓ 1)
3|𝑎0 |4 − 4|𝑎0 |2𝜁0 + 𝜁2

0 + 1

×
(
(𝛽′𝜇2 − 𝜁0) |𝑎0 |

4 + (𝜁2
0 + 1) (2|𝑎0 |

2 − 𝛽′𝜇2 − 𝜁0

)
.

(B.15)

To evaluate 𝐷2
𝑏,𝜁

𝐹 (𝜁0, 0)𝑎𝜙
, we first need to determine the tangent ¤𝑎0 =

𝑑
𝑑𝜁

𝑎0 (𝜁) |𝜁=𝜁0 . Differentiating the equation (j − 𝜁)𝑎0 (𝜁) + N (𝑎0 (𝜁)) = 0 with
respect to 𝜁 and evaluating the derivative at 𝜁0, we get(

𝐷N(𝑎0) + j − 𝜁0
)
¤𝑎0 = 𝑎0.
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B.2 Transversality condition

Recalling that 𝐷N(𝑎0)𝑧 = 2|𝑎0 |2𝑧 + 𝑎2
0𝑧, we thus find

(2|𝑎0 |
2 + j − 𝜁0) ¤𝑎0 + 𝑎2

0 ¤𝑎0 = 𝑎0

and hence

¤𝑎0 = T 𝑎0 with T =
|𝑎0 |2 − 𝜁0 − j

3|𝑎0 |4 − 4|𝑎0 |2𝜁0 + 𝜁2
0 + 1

. (B.16)

Inserting ¤𝑎0 from Eq. (B.16) into Eq. (B.13), we deduce that the transversality
condition Eq. (B.14) becomes

⟨𝐷2
𝑏,𝜁 𝐹 (𝜁0, 0)𝑎𝜙

, 𝑎∗
𝜙
⟩ = 𝜋

2
ℜ

{
𝛼 𝛼∗ − 4ℜ{T }|𝑎0 |

2𝛼 𝛼∗ − 2T 𝑎2
0𝛼 𝛼∗} ≠ 0.

(B.17)

Depending on the alternatives in Eqs. (B.9) and (B.10) for the actual form of
𝛼, 𝛼∗, we obtain

ℜ
{
𝛼 𝛼∗} = (2ℜ{𝑎0}ℑ{𝑎0} ∓ 1) (2𝜁0 + 2𝛽′𝜇2 − 4|𝑎0 |

2).

Likewise,

𝛼 𝛼∗

=(2ℜ{𝑎0}ℑ{𝑎0} ∓ 1)
(
𝜁0 + 𝛽′𝜇2 − (ℜ{𝑎0})

2 − 3(ℑ{𝑎0})
2
)

− (2ℜ{𝑎0}ℑ{𝑎0} ∓ 1)
(
𝜁0 + 𝛽′𝜇2 − 3(ℜ{𝑎0})

2 − (ℑ{𝑎0})
2
)

− j
(
(2ℜ{𝑎0}ℑ{𝑎0} ∓ 1)2

+
(
𝜁0 + 𝛽′𝜇2 − 3(ℜ{𝑎0})

2 − (ℑ{𝑎0})
2
)

×
(
𝜁0 + 𝛽′𝜇2 − (ℜ{𝑎0})

2 − 3(ℑ{𝑎0})
2
)

︸                                                  ︷︷                                                  ︸
Eq. B.7
= 4(ℜ{𝑎0 })2 (ℑ{𝑎0 })2−1

)

=(2ℜ{𝑎0}ℑ{𝑎0} ∓ 1)2𝑎0
2,
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where we have used the necessary bifurcation condition from Eq. (B.7). Ta-
king the expressions for ℜ{𝛼 𝛼∗} and 𝛼 𝛼∗ the transversality condition from
Eq (B.17) finally leads to

⟨𝐷2
𝑏,𝜁 𝐹 (𝜁0, 0)𝑎𝜙

, 𝑎∗
𝜙
⟩ =𝜋

2
ℜ

{
𝛼 𝛼∗ − 4ℜ{T }|𝑎0 |

2𝛼 𝛼∗ − 2T 𝑎2
0𝛼 𝛼∗}

=
𝜋

2
(2ℜ{𝑎0}ℑ{𝑎0} ∓ 1)

(
(2𝜁0 + 2𝛽′𝜇2 − 4|𝑎0 |

2)

× (1 − 4ℜ{T }|𝑎0 |
2) − 4ℜ{T }|𝑎0 |

4
)
≠ 0.

Since the choices in Eqs. (B.9) and (B.10) were made such that the factor
(2ℜ{𝑎0} ℑ{𝑎0}∓1) is nonzero, the nonvanishing of the expression in brackets
amounts to (after inserting ℜ{T } = ( |𝑎0 |2 − 𝜁0)/(3|𝑎0 |4 − 4|𝑎0 |2𝜁0 + 𝜁2

0 + 1))

(𝛽′𝜇2 − 𝜁0) |𝑎0 |
4 + (𝜁2

0 + 1) (2|𝑎0 |
2 − 𝛽′𝜇2 − 𝜁0) ≠ 0.

We have therefore verified Eq. (B.15), and using the definition 𝜇1, 𝜇2 from
Eq. (B.8), we obtain the transversality condition in its final form Eq. (B.11),
where only 𝑎0 and 𝜁0 appear.

B.3 Approximations for the bright-soliton power
conversion efficiency and comb bandwidth

For BSOs, a closed form approximation [21, 136–139] of the intracavity field
is given by

𝑎(𝜏′) ≈ 𝑎0 + 𝑎BSO (𝜏
′) = 𝑎0 + 𝐵e j𝜑0,BSOsech

(
𝐵√︁
2𝛽′

𝜏′

)
. (B.18)

Here, 𝑎BSO (𝜏′) represents the field of a BSO on top of a constant background
field 𝑎0, 𝐵 ≈

√︁
2𝜁 defines the width and the amplitude of the soliton, and

𝜑0,BSO = arccos(
√︁

8𝜁/(𝜋
√
𝐹)) is the relative phase of the soliton with respect

to 𝑎0. For strong solitons, the intracavity field will be dominated by the soliton
itself, such that 𝑎(𝜏′) ≈ 𝑎BSO (𝜏′). For a given forcing, the maximum detuning
can be derived by the condition that the argument of the arccos function may not
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exceed 1, cf. supplementary information in Ref. [21]. With maximum detuning
𝜁max = 𝜋2𝐹/8, 𝜑0,BSO = 0, we find that the intracavity field reads

𝑎(𝜏′) ≈ 𝜋

2
√
𝐹sech

(
𝜋

2

√︄
𝐹

2𝛽′
𝜏′

)
. (B.19)

Given this expression, the power conversion efficiency at the maximum detu-
ning for BSOs can be computed by an integral in the spatial domain:

𝜂BSO,max =

1
2𝜋

∫ 𝜋

−𝜋

��� 𝜋2 √𝐹sech
(
𝜋
2

√︃
𝐹

2𝛽′ 𝜏
′
)���2 d𝜏′

𝐹

=

√︂
𝛽′

2𝐹
tanh

(
𝜋

2

√︄
𝐹

2𝛽′
𝜋

)
≈

√︂
𝛽′

2𝐹
. (B.20)

To determine the comb bandwidth, we calculate the Fourier coefficients as-
sociated with the various comb lines. The power spectrum is given by the
magnitude square of these coefficients:

���𝑎𝜇 ���2 =

����� 1
2𝜋

∫ 𝜋

−𝜋

𝜋

2
√
𝐹sech

(
𝜋

2

√︄
𝐹

2𝛽′
𝜏′

)
e−j𝜇𝜏′ d𝜏′

�����
2

≈
����� 1
2𝜋

∫ ∞

−∞

𝜋

2
√
𝐹sech

(
𝜋

2

√︄
𝐹

2𝛽′
𝜏′

)
e−j𝜇𝜏′ d𝜏′

�����
2

=
𝛽′

2
sech2

(√︂
2𝛽′
𝐹

𝜇

)
. (B.21)

The (FWHM𝑎) bandwidth 𝑥FWHM of the sech2 function is given by the condi-
tion

sech2
( 𝑥FWHM

2

)
=

1
2
, (B.22)
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which leads to 𝑥FWHM = 2 ln
(
1 +

√
2
)
. This leads to the FWHM bandwidth

2𝜇★BSO,max,

2𝜇★BSO,max =

√︄
𝐹

2𝛽′
𝑥FWHM =

√︄
2𝐹
𝛽′

ln
(
1 +

√
2
)
. (B.23)

For a representation of the Eqs. (B.20) and (B.23) in physical, i.e., non-
normalized units, see, e.g., Refs. [136, 137].

B.4 Physical power conversion efficiency
outside of the microresonator

In physical terms, the time-dependent LLE [77] is given by

𝑡R
𝜕E∗ (𝑡, 𝜏)

𝜕𝑡
=
√︁
𝜃C

√︁
𝑃in +

(
−𝛼 + 𝜃C

2
− j𝛿0

)
E∗ (𝑡, 𝜏)

+
(
−j

𝛽 (2)

2
𝐿MR

𝜕2

𝜕𝜏2 + j𝛾𝐿MR
��E∗ (𝑡, 𝜏)

��2) E∗ (𝑡, 𝜏). (B.24)

Here, 𝑡R is the round-trip time of light circulating in the resonator, E∗ the
electric field, 𝑡 the physical time, 𝜏 the round-trip position inside the resonator,
𝜃C the power-coupling coefficient of the bus waveguide and the microresonator,
𝑃in the power of the pump light, 𝛼 the power round-trip loss, 𝛽 (2) the second
order dispersion coefficient, 𝐿MR the circumference, and 𝛾 the nonlinearity
coefficient of the microresonator. The detuning 𝛿0 =

(
𝜔r,0 − 𝜔p

)
𝑡R is defined

by the difference between the angular frequency of the pump laser 𝜔p, the
angular resonance frequency 𝜔r,0 and the round-trip time.
The normalized field 𝑎(𝑡 ′, 𝜏′) for 𝜏′ ∈ [0, 2𝜋) and the normalized quantities 𝜁
and 𝛽′ satisfy the time-dependent normalized LLE,

𝜕𝑎(𝑡 ′, 𝜏′)
𝜕𝑡 ′

=
√
𝐹 +

(
−1 − j𝜁 + j𝛽′

𝜕2

𝜕𝜏′2
+ j|𝑎(𝑡 ′, 𝜏′) |2

)
𝑎(𝑡 ′, 𝜏′), (B.25)
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and are related to the physical parameters E∗ and 𝑃in, 𝛾, 𝛼, 𝜃C, 𝛿0, 𝑡R and 𝛽 (2)

via

𝑎(𝑡 ′, 𝜏′) =
√︂

2𝛾𝐿MR
𝛼 + 𝜃C

E∗ (𝑡, 𝜏) (B.26)

𝑡 ′ =
𝛼 + 𝜃C

2
𝑡

𝑡R
, (B.27)

𝜏′ =
2𝜋
𝑡R

𝜏, (B.28)

√
𝐹 =

√︂
2𝛾𝐿MR
𝛼 + 𝜃C

2
√
𝜃C

𝛼 + 𝜃C

√︁
𝑃in, (B.29)

𝜁 =
2𝛿0

𝛼 + 𝜃C
, (B.30)

𝛽′ =
−4𝜋2𝛽 (2)𝐿MR

(𝛼 + 𝜃C)𝑡2R
. (B.31)

For the field E∗ (𝑡, 𝜏) =
∑

𝜇∈Z E∗
𝜇
(𝑡)e j𝜇2𝜋𝜏/𝑡R , the intracavity power is given

by 1
𝑡R

∫ 𝑡R
0 |E∗ (𝑡, 𝜏) |2 d𝜏 =

∑
𝜇∈Z |E∗

𝜇
|2. The power of the frequency comb is

defined as the power of the intracavity-field excluding the pumped mode,
𝑃FC =

∑
𝜇∈Z\{0} |E∗

𝜇
|2. The pumped mode is excluded since it will have a

nonzero value even if no frequency comb is formed. The physical power
conversion efficiency 𝜂in inside the microresonator can then be expressed as

𝜂in =
𝑃FC
𝑃in

=

∑
𝜇∈Z\{0} |E∗

𝜇
|2

𝑃in
. (B.32)

When the comb is coupled out of the microresonator, the field amplitude is
decreased by the square root of the power-coupling coefficient 𝜃C. Therefore,
the physical conversion efficiency with respect to the comb power outside of
the resonator 𝜂out is given by

𝜂out :=
∑

𝜇∈Z\{0} |
√
𝜃CE∗

𝜇
|2

𝑃in
= 𝜃C𝜂in. (B.33)

Given the relations from Eqs. (B.26) and (B.29), the normalized power con-
version efficiency 𝜂 defined as the ratio between the power of the normalized
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frequency comb
∑

𝜇∈Z\{0} |𝑎̂𝜇 |2 and the normalized forcing power 𝐹 can be
expressed by physical quantities as follows:

𝜂 =

∑
𝜇∈Z\{0} |𝑎𝜇 |2

𝐹
=

∑
𝜇∈Z\{0}

����√︃ 2𝛾𝐿MR
𝛼+𝜃C

E∗
𝜇

����2(√︃
2𝛾𝐿MR
𝛼+𝜃C

2
√
𝜃C

𝛼+𝜃C

√
𝑃in

)2

=
(𝛼 + 𝜃C)2

4𝜃C
𝜂in =

(𝛼 + 𝜃C)2

4𝜃2
C

𝜂out. (B.34)

This is equivalent to Eq (3.11) of Chapter 3.

B.5 Bifurcation maps, stability and multi-peak
solutions

In this appendix, we explain and illustrate details on the global bifurcation
maps of Figs. 3.1(a) and 3.2(a). In particular, we comment on the topics of
connectedness of branches, secondary bifurcations, and transition between
soliton classes, the use of a different norm to display certain aspects of the
branches, and finally on the issue of stability.

Connectedness of branches, secondary bifurcations, and transition bet-
ween soliton classes At bifurcation points, branches of solutions intersect.
Those bifurcation points that lie on the curve of constant solutions are called
primary bifurcation points and they were described in Sec. 3.2. Bifurcation
points which are not lying on the curve of constant solutions are called secon-
dary bifurcation points and they occur whenever two curves of nonconstant
solutions join. In Figs. B.1(a) (anomalous dispersion 𝛽′ = 0.1, forcing

√
𝐹 = 2)

and B.2(a) (normal dispersion 𝛽′ = −0.1, forcing
√
𝐹 = 2), we show which of

the bifurcation curves are connected to each other by secondary bifurcations.
Curves connected to each other by secondary bifurcations are plotted with
the same color. Note that in a trivial sense all curves are connected to the
curve of constant solutions via primary bifurcations – but these connections
are not used for our coloring. All bifurcation points in Figs. B.1(a) and B.2(a)
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are marked as unfilled circles. The bifurcation points on the black curve of
constant solutions are primary bifurcation points. Most secondary bifurcation
points in Fig. B.1(a) occur at turning points with the exception of one seconda-
ry bifurcation point that occurs on the blue curve near 𝜁 = 0.8. In Fig. B.2(a),
three secondary bifurcation points occur at 𝜁 = 2.73 (cf. zoom), 𝜁 = 2.84, and
𝜁 = 3.36.
Near secondary bifurcation points one can observe the transition between so-
lutions of a different number of peaks, e.g., in the case of BSOs in Fig. B.1(b)
a secondary bifurcation occurs at the turning point C’. Taking the 1-solitons
at points A, C, B from Fig. 3.1(b) one can see their transition through U, V,
W in Fig. B.1(d) into equally spaced 2-solitons shown at Fig. B.1(c) on the
branch with A’, C’, B’. Following the branch A’, C’, B’ further up, one finds
another secondary bifurcation at a turning point where one meets the branch of
4-solitons. Similar observations can be made in the case of DSOs. Fig. B.2(a)
and B.2(b) show a secondary bifurcation near 𝜁 = 3.36. One can see how dark
1-solitons at points D, F, E known from Fig. B.1(e) transform through X, Y, Z
in Fig. B.2(d) into equally spaced 2-solitons shown at Fig. B.2(c) on the branch
with D’, F’, E’. The state Z approximates a two soliton somewhere between F’
and E’. We also show in the zoom of Fig. B.2(a) how the curve of 1-solitons
undergoes a secondary bifurcation with the curve of 3-solitons near 𝜁 = 2.73.
Right after this bifurcation, the curves split up again. Since this happens close
to the trivial curve, the visible effects on the solutions are marginal and are
therefore not displayed.
Secondary bifurcations coming with the phenomenon period-doubling, period-
tripling etc. were found earlier in Refs. [119], Fig. 7(b) or [128], Fig. 5 for
anomalous dispersion and in Ref. [124], Fig. 12 for normal dispersion. An
abstract result related to global secondary bifurcations with applications to
Eqs. (3.2) and (3.3) can be found in Ref. [133].

Branches displayed in a different norm In the case of anomalous disper-
sion, Fig. B.1(a) shows the branches in the conventional norm ∥𝑎∥2

2 which
represents the intracavity power of the states. This norm does not capture well
the fact that eight branches snake back and forth after having reached maximal
values of 𝜁 . In fact, comparing states on a fixed branch for the same value of
𝜁 , one finds that the state obtained on the way out toward the maximal value
of 𝜁 is different compared with the state obtained on the way back. This effect
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Figure B.1: Connected components of bifurcation graphs (top) and selected bright solitons (bottom)
in anomalous dispersion for

√
𝐹 = 2 and 𝛽′ = 0.1. Quantities on axes are dimensionless. (a) Same

graph as in Fig. 3.1(a) shows normalized intracavity power ∥𝑎 ∥2
2 vs normalized detuning 𝜁 .

Bifurcation points are marked as unfilled circles. Primary bifurcation points lie on the black curve
of constant solutions, secondary bifurcation points lie off the black curve. Branches connected
through secondary bifurcation points are plotted with the same color. (b) Detailed resolution of
red connected component from (a) using the norm ∥𝑎 − 𝑎av ∥2

2 vs 𝜁 . The black curve of constant
solutions is now on the 𝜁 -axis. Stable states lie on solid lines, unstable states on dashed lines. The
curve of 1-solitons runs through the states A, C, B whose spatial power distribution was shown
in Fig. 3.1(b). Following this branch further leads to states U, V, W marking the transition from
1-solitons to 2-solitons before meeting the branch of 2-solitons through A’, C’, B’ at the secondary
bifurcation point C’. Following the A’, C’, B’ curve further up leads to another secondary bifurcation
with the branch of 4-solitons that eventually meets the trivial curve again near 𝜁0 = 0.3325. (c)
shows the spatial power distribution of selected 2-solitons and (d) shows how on the branch of
1-solitons the transition towards 2-solitons occurs before the two branches join at point C’.
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Figure B.2: Connected components of bifurcation graphs (top) and selected dark solitons (bottom)
in normal dispersion for

√
𝐹 = 2 and 𝛽′ = −0.1. Quantities on axes are dimensionless. (a) Same

graph as in Fig. 3.2(a) showing normalized intracavity power ∥𝑎 ∥2
2 vs normalized detuning 𝜁

restricted to the relevant range. Bifurcation points are marked as unfilled circles. There are six
primary bifurcation points lying on the black curve of constant solutions, and three secondary
bifurcation points lying off the black curve. All branches are connected to each other and are
therefore shown in red. The zoom shows how the branch of 1-solitons starting on the trivial curve
near𝜁 = 4 almost meets the curve of constant solutions near 𝜁 = 2.73. Instead, it connects at a
secondary bifurcation point near 𝜁 = 2.73 with the curve of 3-solitons and immediately detaches
from it again and then finally connects to the 2-solitons at the secondary bifurcation point near
𝜁 = 3.36. (b) Detailed resolution of red connected component from (a) using the norm ∥𝑎−𝑎av ∥2

2
vs 𝜁 . The black curve of constant solutions is now on the 𝜁 -axis. Stable states lie on solid lines,
unstable states on dashed lines. The curve of 1-solitons runs through the states D, F, E whose
spatial power distribution was shown in Fig. 3.2(b). Following this branch further leads to states X,
Y, Z marking the transition from 1-solitons to 2-solitons before meeting the branch of 2-solitons
through D’, F’, E’ at a secondary bifurcation point near 𝜁 = 3.36. (c) shows the spatial power
distribution of selected 2-solitons and (d) shows how on the branch of 1-solitons the transition
toward 2-solitons occurs before the two branches meet near 𝜁 = 3.36.
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can be visualized much better in Fig. B.1(b), where instead of ∥𝑎∥2
2 we use the

norm

∥𝑎 − 𝑎av∥
2
2 with 𝑎av :=

1
2𝜋

∫ 2𝜋

0
𝑎(𝜏′) d𝜏′ (B.35)

with the average value 𝑎av being subtracted from a before the intracavity power
measure is taken. This has the effect of squeezing the black curve of trivial
solutions onto the 𝜁-axis. On the other hand, it visualizes more clearly that the
states before and after the turning points are different. One may even observe
the snaking behavior of the branches with respect to the detuning in the range
𝜁 > 2, which is quite similar to the “foliated snaking” with respect to the
forcing parameter discussed in Ref. [119], Section V.B. Notice that in both
cases secondary bifurcations occur at turning points of the curves, i.e., at local
extrema of the bifurcation parameter along the curve. For the case of normal
dispersion, the same comparison between∥𝑎∥2

2 and ∥𝑎−𝑎av∥2
2 has been done in

Figs. B.2(a) and B.2(b). Again, a snaking behavior can be seen on the branch of
1-solitons as well as on the 2-soliton branch, and a similar behavior (collapsed
defect-mediated snaking) is described in Ref. [124] in case of bifurcation with
respect to the forcing.

Stability In Figs. B.1(b) and Fig. B.2(b), stable states are depicted with so-
lid lines and unstable states are shown with dashed lines. Here, stability of a
stationary state 𝑎 means nonlinear stability, i.e., solutions of the evolution equa-
tion (3.1) starting in a small neighbourhood of 𝑎 stay inside this neighbourhood
for all times. A necessary (but not sufficient) condition for nonlinear stability
of 𝑎 is the spectral stability, by which we mean that the spectrum of −j𝐿̂ lies in
the left complex plane, where 𝐿̂ is the linearized operator defined in Eqs. (3.4)
with 𝑎0 replaced by 𝑎. Indeed, one of the main results of Ref. [129] is that for
the special case of the LLE, Eq. (3.1) spectral stability and nonlinear stability
are equivalent. Notice that the shift-invariance of solutions 𝑎 of Eq. (3.2) ge-
nerates the eigenvalue 0 of the linearized operator 𝐿̂ at any nontrivial solution.
This is the reason why in Ref. [129] only orbital stability of stationary states
can be deduced. In our case, we have imposed Neumann boundary conditions
at 𝜏′ = 0 and 𝜏′ = 𝜋 together with the even symmetry around 𝜏′ = 𝜋. This
eliminates the shift invariance so that 0 is an eigenvalue of 𝐿̂ only at bifurcation
points, and hence (with the exception of bifurcation points) proper nonlinear
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stability statements can be deduced. For the purpose of indicating nonlinear
stability or instability in our graphs, we computed the finite spectrum of the
finite-element discretization of the operator 𝐿̂ and checked whether it belongs
entirely to the lower complex plane or not.

[End of supplementary information of publication [J1]]
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C Modulation instability in silicon
microresonators at
telecommunication wavelengths

The text in this chapter is added as appendix to the publication [J2]. It was
adapted to fit the layout, structure and notation of this dissertation. This ap-
pendix assumes a negative time dependence of the optical signal of the form
exp(−j𝜔𝑡).

[Start of appendix of publication [J2]]

C.1 Lugiato-Lefever equation for modeling
modulation instability

When pumping a nonlinear system with a sinusoidal waveform of constant
amplitude, spectral sidebands can develop, and the pump amplitude appears
modulated. This so-called modulation instability (MI) is the starting point of
frequency comb formation in a pumped Kerr-nonlinear optical microresonator.
We determine the onset of MI in the presence of two-photon absorption (TPA)
and free-carrier absorption (FCA) analytically by a small-signal approximation
of the modified Lugiato-Lefever equation (LLE). In the following analysis, we
use normalized quantities, see Table 4.1 in Chapter 4.

The complex optical field amplitude E∗ (𝑡, 𝜏) (Eq. (4.1) in Chapter 4) is defined
with respect to the pump frequency 𝜔p. It depends on a “slow” time variable
𝑡 = 𝜅 𝑡R expressed in multiples 𝜅 of the fixed round-trip time 𝑡R = 𝐿MR/𝑣g
for a given resonator perimeter 𝐿MR and a group velocity 𝑣g at the pump
frequency 𝜔p, as well as on a “fast” time 𝜏 = 𝑡 − 𝑧/𝑣g, defined by a retarded
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time frame that depends on the local position 𝑧 inside the resonator. The
corresponding normalized optical field according to Table 4.1 is 𝑎 (𝑡 ′, 𝜏′),
where the slow normalized time 𝑡 ′ is assumed to be continuous and where the
short normalized time variable 𝜏′ defines the position within the cavity in the
retarded fast time frame, 𝜏′ ∈ [0, 2𝜋). The resonator is driven by a normalized
pump field amplitude

√
𝐹. Due to TPA, the optical field generates free carriers

(FCs) with a normalized density 𝑁 ′
car. The free carriers are stationary in the

microresonator, and we hence describe them as a function of a stationary
(non-retarded) fast time 𝜏S = −𝑧/𝑣g, that only depends on the position 𝑧

within the resonator. Both the optical field and the free-carrier density can
be transformed between the stationary and the retarded fast time frame via
𝑎 (𝑡 ′, 𝜏′) = 𝑎

(
𝑡 ′, 𝜏′S + 𝑡 ′𝑣′

)
and 𝑁 ′

car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′) = 𝑁 ′
car

(
𝑡 ′, 𝜏′S

)
, where 𝑣′ is

the normalized group velocity. Each rapidly varying time-harmonic component
ej𝜔𝜇 𝜏 (𝜔𝜇 = 𝜇 (2𝜋/𝑡R), 𝜇 = 0, ±1, ±2, ±3, ...) in Eq. (4.1) of Chapter 4 is
periodic in 𝜏 with the round-trip time, leading to periodic boundary conditions
𝑎 (𝑡 ′, 𝜏′) = 𝑎 (𝑡 ′, 𝜏′ + 2𝜋) for the dependence of the complex field amplitude
on the normalized fast time 𝜏′, which can hence be represented as a Fourier
series, 𝑎 (𝑡 ′, 𝜏′) = ∑

𝜇 𝑎𝜇 (𝑡 ′) e j𝜇𝜏′ . In the following, we describe the slow-time
evolution of the optical field 𝑎 (𝑡 ′, 𝜏′) in the retarded time frame 𝜏′ using the
normalized LLE, Eq. (4.5) in Chapter 4. Further, we describe the slow-time
evolution of the free carriers 𝑁 ′

car
(
𝑡 ′, 𝜏′S

)
in the stationary time frame 𝜏′S. The

normalized LLE and the differential equation describing the evolution of the
free-carrier density (“free-carrier equation”) are given in Eqs. (4.5) and (4.6)
in Chapter 4,

𝜕𝑎 (𝑡 ′, 𝜏′)
𝜕𝑡 ′

=
√
𝐹 +

[
−1 − j𝜁 + j𝛽′

𝜕2

𝜕𝜏′2
+ jΦ̂′

AMC + (j − 𝑟)
��𝑎 (𝑡 ′, 𝜏′)

��2
− 𝜎′

car (1 + j𝛽car) 𝑁 ′
car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′)

]
𝑎 (𝑡 ′, 𝜏′) ,

(C.1)
𝜕𝑁 ′

car
(
𝑡 ′, 𝜏′S

)
𝜕𝑡 ′

=𝑟
��𝑎 (

𝑡 ′, 𝜏′S + 𝑡 ′𝑣′
) ��4 − 𝑁 ′

car
(
𝑡 ′, 𝜏′S

)
𝑡 ′eff

, (C.2)

The normalized difference between the pump frequency 𝜔p and the closest
resonance frequency 𝜔r,0 of an unpumped resonator is 𝜁 . The second-order
dispersion of the microresonator is represented by the normalized dispersion
parameter 𝛽′. The quantity 𝑟 denotes the normalized TPA coefficient. For the
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TPA-generated FC, the quantities 𝜎′
car, 𝛽car, 𝑡

′
eff define the normalized absorp-

tion cross-section, the contribution to the refractive index, and the normalized
dwell-time inside the microresonator waveguide, respectively. The relationship
between normalized parameters and physical quantities are summarized in Ta-
ble 4.1 of Chapter 4. We further include an operator Φ̂′

AMC describing phase
shifts 𝜙𝜇 experienced by individual components 𝑎

𝜇
(𝑡 ′) of the optical field for

frequencies 𝜇. These phase shifts take into account local resonance frequency
shifts caused by mode coupling of different transverse modes, an effect known
as avoided mode crossing [166]. The operator can be written as

Φ̂′
AMC𝑎 (𝑡 ′, 𝜏′) =

∑̃︁
𝜇

𝜙𝜇̃

2𝜋

∫ 2𝜋

0
𝑎 (𝑡 ′, 𝜏1) e−j𝜇̃𝜏1 d𝜏1e j𝜇̃𝜏′ . (C.3)

In our simulations shown in Chapter 4, the strength of the mode coupling,
which defines the exact values 𝜙𝜇̃, was chosen to reflect typical experimental
results.

To investigate the condition for the onset of MI, we assume that the optical field
consists of a constant pumped mode 𝑎0 and two infinitesimally small sidebands
𝑎±𝑀 (𝑀 = 1, 2, 3, . . . ) [221], the temporal evolution of which is described
by complex gain parameter 𝑔 = 𝑔 + j𝑔j,

𝑎 (𝑡 ′, 𝜏′) = 𝑎0 + 𝑎+𝑀 + 𝑎−𝑀 ,
��𝑎̂±𝑀 �� ≪ ��𝑎0

�� , (C.4)

𝑎+𝑀 = 𝑎̂+𝑀e𝑔𝑡
′
e j𝑔j𝑡

′
e j𝑀𝜏′ ,

𝑎−𝑀 = 𝑎̂−𝑀e𝑔𝑡
′
e−j𝑔j𝑡

′
e−j𝑀𝜏′ .

In the stationary fast time frame, this optical field is then given by

𝑎
(
𝑡 ′, 𝜏′S + 𝑡 ′𝑣′

)
= 𝑎0 + 𝑎+𝑀,S + 𝑎−𝑀,S, (C.5)

𝑎+𝑀,S = 𝑎̂+𝑀e𝑔𝑡
′
e+j𝑔j𝑡

′
e+j𝑀𝜏′Se+j𝑀 𝑡′𝑣′ ,

𝑎−𝑀,S = 𝑎̂−𝑀e𝑔𝑡
′
e−j𝑔j𝑡

′
e−j𝑀𝜏′Se−j𝑀 𝑡′𝑣′ .

We further assume that right at the onset of MI at 𝑡 ′ = 0, the normalized
free-carrier density according to Eq. (C.2) has reached a stationary value of
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𝑁 ′
car

(
0, 𝜏′S

)
= 𝑟𝑡 ′eff

��𝑎0
��4 dictated by the strong pump 𝑎0. Solving Eq. (C.2) with

this initial condition leads to

𝑁 ′
car

(
𝑡 ′, 𝜏′S

)
= exp

(
− 𝑡 ′

𝑡 ′eff

) [
𝑟𝑡 ′eff

��𝑎0
��4

+ 𝑟

∫ 𝑡′

0

��𝑎 (
𝑡1, 𝜏

′
S + 𝑡1𝑣

′) ��4 exp
(
𝑡 ′

𝑡 ′eff

)
d𝑡1

]
. (C.6)

We then insert Eq. (C.5) into Eq. (C.6) and apply a small-signal approxima-
tion of the form

��𝑎 (
𝑡 ′, 𝜏′S + 𝑡 ′𝑣′

) ��4 ≈
��𝑎0

��4 + 2
��𝑎0

��2 (
𝑎∗0 𝑎+𝑀,S + 𝑎0 𝑎

∗
−𝑀,S

)
+

2
��𝑎0

��2 (
𝑎∗0 𝑎−𝑀,S + 𝑎0 𝑎

∗
+𝑀,S

)
, where the star (∗) denotes the complex conjuga-

te. Keeping only terms up to linear order in 𝑎̂±𝑀 or 𝑎̂∗±𝑀 , we solve the integral
in Eq. (C.6) and obtain

𝑁 ′
car

(
𝑡 ′, 𝜏′S

)
= 𝑟𝑡eff

��𝑎0
��2 [��𝑎0

��2
+ 2

(
𝑎∗0 𝑎̂+𝑀 + 𝑎0 𝑎̂

∗
−𝑀

)
e+j𝑀𝜏′S

e𝑔𝑡′e+j(𝑔j+𝑀𝑣′)𝑡′ − e−𝑡′/𝑡′eff

𝑡 ′eff𝑔 + 1 + j𝑡 ′eff
(
𝑔j + 𝑀𝑣′

)
+ 2

(
𝑎∗0 𝑎̂−𝑀 + 𝑎0 𝑎̂

∗
+𝑀

)
e−j𝑀𝜏′S

e𝑔𝑡′e−j(𝑔j+𝑀𝑣′)𝑡′ − e−𝑡′/𝑡′eff

𝑡 ′eff𝑔 + 1 − j𝑡 ′eff
(
𝑔j + 𝑀𝑣′

) ] .
(C.7)

Over time, exponentially decaying terms e−𝑡′/𝑡′eff can be neglected since norma-
lized free-carrier lifetimes are of the order of 𝑡 ′eff ≈ 0.1 . . . 1 (corresponding to
physical FC lifetimes of the order of 100 ps or less for our microresonator de-
sign) such that the decay of e−𝑡′/𝑡′eff occurs much faster than the increase of e𝑔𝑡′

with typical values of 𝑔 ≈ 0.1 for the gain parameter. Similarly, for short norma-
lized free-carrier lifetimes 𝑡 ′eff ≈ 0.1 . . . 1 and small gain parameters𝑔 ≈ 0.1,
we may approximate 𝑡 ′eff𝑔 +1 ≈ 1 in the denominators in Eq. (C.7). In the same
manner, we may approximate 𝑔j+𝑀𝑣′ ≈ 𝑀𝑣′ in the denominators of Eq. (C.7).
This is justified by the fact that 𝑔j represents the normalized frequency offset
of the MI sideband from the center of the corresponding resonance and is thus
much smaller than the offset from the pump, which corresponds to multiple
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FSRs and is represented by 𝑀𝑣′, i.e., 𝑔j ≪ 𝑀𝑣′. The remaining expression for
the free-carrier density reads

𝑁 ′
car

(
𝑡 ′, 𝜏′S

)
= 𝑟𝑡 ′eff

��𝑎0
��2 [ ��𝑎0

��2 + 2
1 − j𝑀𝑡 ′eff𝑣

′

1 +
(
𝑀𝑡 ′eff𝑣

′
)2

(
𝑎∗0 𝑎+𝑀,S + 𝑎0 𝑎

∗
−𝑀,S

)
+ 2

1 + j𝑀𝑡 ′eff𝑣
′

1 +
(
𝑀𝑡 ′eff𝑣

′
)2

(
𝑎∗0 𝑎−𝑀,S + 𝑎0 𝑎

∗
+𝑀,S

) ]
.

(C.8)

Via 𝑁 ′
car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′) = 𝑁 ′

car
(
𝑡 ′, 𝜏′S

)
, this result is now transformed into the

retarded time frame, which yields

𝑁 ′
car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′) = 𝑟𝑡 ′eff

��𝑎0
��2 [ ��𝑎0

��2 + 2
1 − j𝑀𝑡 ′eff𝑣

′

1 +
(
𝑀𝑡 ′eff𝑣

′
)2

(
𝑎∗0 𝑎+𝑀 + 𝑎0 𝑎

∗
−𝑀

)
+ 2

1 + j𝑀𝑡 ′eff𝑣
′

1 +
(
𝑀𝑡 ′eff𝑣

′
)2

(
𝑎∗0 𝑎−𝑀 + 𝑎0 𝑎

∗
+𝑀

) ]
.

(C.9)

The expression for the free-carrier density in the retarded fast time frame is
substituted in Eq. (C.1) along with the ansatz for 𝑎 (𝑡 ′, 𝜏′), Eq. (C.4). Again, we
keep only terms up to linear order in 𝑎̂±𝑀 or 𝑎̂∗±𝑀 . We separate non-oscillating
terms from terms oscillating with ej𝑀𝜏′ and e−j𝑀𝜏′ , and obtain

0 =
√
𝐹 +

[
−1 − j𝜁 + j𝜙0 + (j − 𝑟)

��𝑎0
��2 − 𝜎′

car (1 + j𝛽car) 𝑟𝑡 ′eff
��𝑎0

��4] 𝑎0,

(C.10)
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𝑔 𝑎+𝑀 =
[
−1 − j𝜁 − j𝛽′𝑀2 + j𝜙+𝑀

]
𝑎+𝑀

+ (j − 𝑟)
[
2
��𝑎0

��2 𝑎+𝑀 +
(
𝑎0

)2
𝑎∗−𝑀

]
− (1 + j𝛽car)

𝜎′
car𝑟𝑡

′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2

[ (
3 +

(
𝑀𝑡 ′eff𝑣

′)2
) ��𝑎0

��2 𝑎+𝑀
+ 2

(
𝑎0

)2
𝑎∗−𝑀 − j2𝑀𝑡 ′eff𝑣

′
(��𝑎0

��2 𝑎+𝑀 +
(
𝑎0

)2
𝑎∗−𝑀

) ]
, (C.11)

𝑔∗ 𝑎−𝑀 =
[
−1 − j𝜁 − j𝛽′𝑀2 + j𝜙−𝑀

]
𝑎−𝑀

+ (j − 𝑟)
[
2
��𝑎0

��2 𝑎−𝑀 +
(
𝑎0

)2
𝑎∗+𝑀

]
− (1 + j𝛽car)

𝜎′
car𝑟𝑡

′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2

[ (
3 + (𝑀𝑡eff𝑣

′)2
) ��𝑎0

��2 𝑎−𝑀
+ 2

(
𝑎0

)2
𝑎∗+𝑀 + j2𝑀𝑡 ′eff𝑣

′
(��𝑎0

��2 𝑎−𝑀 +
(
𝑎0

)2
𝑎∗+𝑀

) ]
.

(C.12)

We divide Eq. (C.11) by e𝑔𝑡′e j𝑔j𝑡
′e j𝑀𝜏′ and Eq. (C.12) by e𝑔𝑡′e−j𝑔j𝑡

′e−j𝑀𝜏′ and
we introduce 𝜙 = (𝜙+𝑀 + 𝜙−𝑀 ) /2 andΔ𝜙 = (𝜙+𝑀 − 𝜙−𝑀 ) /2. Both equations
are then expressed in terms of 𝑎̂±𝑀 instead of in terms of 𝑎±𝑀 ,

𝑔 𝑎̂+𝑀 =
[
−1 − j𝜁 − j𝛽′𝑀2 + j𝜙 + jΔ𝜙

]
𝑎̂+𝑀

+ (j − 𝑟)
[
2
��𝑎0

��2 𝑎̂+𝑀 +
(
𝑎0

)2
𝑎̂∗−𝑀

]
− (1 + j𝛽car)

𝜎′
car𝑟𝑡

′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2

[ (
3 +

(
𝑀𝑡 ′eff𝑣

′)2
) ��𝑎0

��2 𝑎̂+𝑀
+ 2

(
𝑎0

)2
𝑎̂∗−𝑀 − j2𝑀𝑡 ′eff𝑣

′
(��𝑎0

��2 𝑎̂+𝑀 +
(
𝑎0

)2
𝑎̂∗−𝑀

) ]
, (C.13)

220
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𝑔∗ 𝑎−𝑀 =
[
−1 − j𝜁 − j𝛽′𝑀2 + j𝜙 − jΔ𝜙

]
𝑎̂−𝑀

+ (j − 𝑟)
[
2
��𝑎0

��2 𝑎̂−𝑀 +
(
𝑎0

)2
𝑎̂∗+𝑀

]
− (1 + j𝛽car)

𝜎′
car𝑟𝑡

′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2

[ (
3 + (𝑀𝑡eff𝑣

′)2
) ��𝑎0

��2 𝑎̂−𝑀
+ 2

(
𝑎0

)2
𝑎̂∗+𝑀 + j2𝑀𝑡 ′eff𝑣

′
(��𝑎0

��2 𝑎̂−𝑀 +
(
𝑎0

)2
𝑎̂∗+𝑀

) ]
.

(C.14)

We subtract jΔ𝜙𝑎̂+𝑀 in Eq. (C.13), add jΔ𝜙𝑎̂−𝑀 in Eq. (C.14) and introduce
𝑔′ = 𝑔 + j𝑔′j = 𝑔 + j

(
𝑔j − Δ𝜙

)
. Then, we compute the complex conjugate of the

resulting Eq. (C.14). We obtain a matrix equation of the form

𝑔′

(
𝑎̂+𝑀
𝑎̂∗−𝑀

)
=

(
−1 − 2𝑟

��𝑎0
��2 −𝑟

(
𝑎0

)2

−𝑟
(
𝑎∗0

)2 −1 − 2𝑟
��𝑎0

��2
) (

𝑎̂+𝑀
𝑎̂∗−𝑀

)
+ j

(
−𝜁 − 𝛽′𝑀2 + 𝜙 + 2

��𝑎0
��2 (

𝑎0
)2

−
(
𝑎∗0

)2
𝜁 + 𝛽′𝑀2 − 𝜙 − 2

��𝑎0
��2

) (
𝑎̂+𝑀
𝑎̂∗−𝑀

)
−

𝜎′
car𝑟𝑡

′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2

©­«
(
3 +

(
𝑀𝑡 ′eff𝑣

′)2
) ��𝑎0

��2 2
(
𝑎0

)2

2
(
𝑎∗0

)2
(
3 +

(
𝑀𝑡 ′eff𝑣

′)2
) ��𝑎0

��2 ª®¬
+j𝛽car

©­«
(
3 +

(
𝑀𝑡 ′eff𝑣

′)2
) ��𝑎0

��2 2
(
𝑎0

)2

−2
(
𝑎∗0

)2 −
(
3 +

(
𝑀𝑡 ′eff𝑣

′)2
) ��𝑎0

��2 ª®¬

(
𝑎̂+𝑀
𝑎̂∗−𝑀

)

+ j
𝜎′

car𝑟𝑡
′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2 2𝑀𝑡 ′eff𝑣

′

×
(
(1 + j𝛽car)

��𝑎0
��2 (1 + j𝛽car)

(
𝑎0

)2

(1 − j𝛽car)
(
𝑎∗0

)2 (1 − j𝛽car)
��𝑎0

��2
) (

𝑎̂+𝑀
𝑎̂∗−𝑀

)
. (C.15)
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C Modulation instability in silicon microresonators at telecommunication wavelengths

This equation can be represented as

𝑔′

(
𝑎̂+𝑀
𝑎̂∗−𝑀

)
=

(
𝑚

𝐴,1 + j𝑚
𝐵,1 𝑚

𝐴,2 + j𝑚
𝐵,2

𝑚∗
𝐴,2 + j𝑚∗

𝐵,2 𝑚∗
𝐴,1 + j𝑚∗

𝐵,1

) (
𝑎̂+𝑀
𝑎̂∗−𝑀

)
(C.16)

= M

(
𝑎̂+𝑀
𝑎̂∗−𝑀

)
, where

𝑚
𝐴,1 = −1 − j𝜁 − j𝛽′𝑀2 + j𝜙 + (j − 𝑟) 2

��𝑎0
��2

−
𝜎′

car𝑟𝑡
′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2 (1 + j𝛽car)

(
3 +

(
𝑀𝑡 ′eff𝑣

′)2
) ��𝑎0

��2 ,
𝑚

𝐴,2 = (j − 𝑟)
(
𝑎0

)2 −
𝜎′

car𝑟𝑡
′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2 (1 + j𝛽car) 2

(
𝑎0

)2
,

𝑚
𝐵,1 =

𝜎′
car𝑟𝑡

′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2 2𝑀𝑡 ′eff𝑣

′ (1 + j𝛽car)
��𝑎0

��2 ,
𝑚

𝐵,2 =
𝜎′

car𝑟𝑡
′
eff

��𝑎0
��2

1 +
(
𝑀𝑡 ′eff𝑣

′
)2 2𝑀𝑡 ′eff𝑣

′ (1 + j𝛽car)
(
𝑎0

)2
.

Computing the eigenvalues of M results in

𝑔′
±
= ℜ{𝑚

𝐴,1} + jℜ{𝑚
𝐵,1} ±

√︁
Δ , (C.17)

Δ =

(
ℜ{𝑚

𝐴,2} + jℜ{𝑚
𝐵,2}

)2
+

(
ℑ{𝑚

𝐴,2} + jℑ{𝑚
𝐵,2}

)2

−
(
ℑ{𝑚

𝐴,1} + jℑ{𝑚
𝐵,1}

)2
.

We back-substitute 𝑚
𝐴,1, 𝑚𝐴,2, 𝑚𝐵,1, 𝑚𝐵,2, 𝑔

′
j , 𝜙 and Δ𝜙, and introduce the

power of the pumped mode 𝐴 =
��𝑎0

��2 to obtain expressions for the real part
and the imaginary part of the gain parameter, see Eq. (4.10) in Chapter 4. From
Eq. (C.10) we derive the relation between the pump power 𝐹 and the power of
the pumped mode 𝐴, see Eq. (4.11) in Chapter 4.
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C.2 Approximation of the gain parameter for
technically relevant values for TPA, FCA and
pump parameters

In Chapter 4, Section 4.4 we simplify the expression for the real part of the gain
parameter 𝑔 given in Eq. (4.10) of Chapter 4 by assuming technically relevant
values for the TPA, FCA, and pump parameters

(
𝑟 ≈ 1, 𝑡 ′eff ≈ 0.05 . . . 0.5 ,

𝜎′
car ≈ 5, 𝛽car ≈ 10, 𝑣′ ≈ 200, 𝐹 ≈ 10, 𝐴 ≈ 1

)
, as well as 𝑀 ≈ 10. Here we

specify the magnitude of specific terms occurring in Eq. (4.10) of Chapter 4
for the given parameter ranges. We consider two different cases 𝑡 ′eff ≈ 0.05
(left value below the respective term) and 𝑡 ′eff ≈ 0.5 (right value below the
respective term), and we neglect all terms that are either at least three orders
of magnitude smaller than competing terms or that are at least two orders of
magnitude smaller and that are approximately constant in 𝑡 ′eff. The remaining
terms are highlighted in blue. In the following relations, the symbol “≈” used
is to be understood as an order-of-magnitude quantification rather than as an
approximate equality.

𝑔 (𝑀) = − 1︸︷︷︸
≈ 1

− 2𝑟𝐴︸︷︷︸
≈ 2

− 𝑟𝑡 ′eff𝜎
′
car𝐴︸     ︷︷     ︸

≈ 3×10−1... 3×100

3 +
(
𝑀𝑡 ′eff𝑣

′)2

1 + (𝑀𝑡 ′eff𝑣
′)2︸            ︷︷            ︸

≈1

+ℜ{Δ}, (C.18)
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Δ =

[
𝐴2︸︷︷︸
≈ 1

(
𝑟︸︷︷︸
≈ 1

+
2𝑟𝑡 ′eff𝜎

′
car

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴︸              ︷︷              ︸

≈ 5×10−5... 5×10−6

−j
2𝑟𝑡 ′eff𝑀𝑡 ′eff𝑣

′𝜎′
car

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴︸                 ︷︷                 ︸

≈ 5×10−3... 5×10−3

)2

+ 𝐴2︸︷︷︸
≈ 1

(
1︸︷︷︸
= 1

−
2𝑟𝑡 ′eff𝜎

′
car𝛽car

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴︸              ︷︷              ︸

≈ 5×10−4 ... 5×10−5

+j
2𝑟𝑡 ′eff𝑀𝑡 ′eff𝑣

′𝜎′
car𝛽car

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴︸                       ︷︷                       ︸

≈ 5×10−2 ... 5×10−2

)2

−
(
𝜁 + 𝛽′𝑀2 − 𝜙+ + 𝜙−

2︸                    ︷︷                    ︸
Arbitrarily large

− 2𝐴︸︷︷︸
≈2

+ 𝑟𝑡 ′eff𝜎
′
car𝛽car𝐴

2︸            ︷︷            ︸
≈ 3×100 ... 3×101

3 +
(
𝑀𝑡 ′eff𝑣

′)2

1 + (𝑀𝑡 ′eff𝑣
′)2︸            ︷︷            ︸

≈ 1

− j
2𝑟𝑡 ′eff𝑀𝑡 ′eff𝑣

′𝜎′
car𝛽car

1 + (𝑀𝑡 ′eff𝑣
′)2 𝐴2︸                        ︷︷                        ︸

≈ 5×10−2 ... 5×10−2

)2]1/2

.

These approximations are equivalent to approximating the optical field 𝑎(𝑡 ′, 𝜏′)
generating free carriers by

��𝑎(𝑡 ′, 𝜏′S + 𝑡 ′𝑣′)
��4 ≈

��𝑎0
��4 in Eq. (C.6), such that only

the first term on the r.h.s. of Eq. (C.8) remains. This is consistent with the fact
that, at the onset of MI, the instantaneous free-carrier density is still dictated by
the unperturbed CW pump. The expression for the real part 𝑔 of the complex
gain parameter then reads

𝑔 (𝑀) ≈ − 1 − 2𝑟𝐴 − 𝑟𝑡 ′eff𝜎
′
car𝐴

2

+ ℜ
{(

𝐴2𝑟2 + 𝐴2

−
(
𝜁 + 𝛽′𝑀2 − 𝜙+ + 𝜙−

2
− 2𝐴 + 𝑟𝑡 ′eff𝜎

′
car𝛽car𝐴

2
)2 )1/2

}
.

(C.19)

In the absence of AMC, 𝜙+𝑀 = 𝜙−𝑀 = 0, this leads to Eq. (4.12) of Chapter 4.
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C.3 Threshold pump power for modulation instability: Approximate vs. numerical evaluation

C.3 Threshold pump power for modulation
instability: Approximate vs. numerical
evaluation

In Chapter 4, Figure 4.2, we analytically evaluate an approximation of the
threshold pump power 𝐹th needed to achieve modulation instability, based on
realistic values for 𝑡 ′eff, 𝐴, 𝑀, 𝑟, 𝜎′

car, 𝛽car, 𝑣
′, and for anomalous dispersion

𝛽′ > 0 with 𝛽′𝑀2 − 𝐴 = 0 at 𝑔 (𝑀max) = 0. We further assume that mode
coupling is absent or sufficiently weak such that avoided mode crossings do
not need to be considered (𝜙𝜇 = 0∀ 𝜇). In the following, we validate this
approximation by a numerical investigation. To this end, we find the associa-
ted threshold pump power 𝐹th,num by minimizing 𝐹 according to Eq. (4.11)
of Chapter 4 when varying 𝐴, 𝑀 and 𝜁 under the constraint 𝑔 (𝑀max) = 0,
Eq. (4.10). We choose 𝛽′ = 0.0025, 𝛽car = 7.5 and sweep the quantities 𝑟

and 𝑡 ′eff𝜎
′
car to cover the same parameter space as in Fig. 4.2. Figure C.1(a)

shows the result of the analytic approximation and corresponds to Fig. 4.2,
while Fig. C.1(b) displays the numerical result. No difference is visible from
the two graphs. The relative difference |Δ𝐹th | /𝐹th,num =

��𝐹th − 𝐹th,num
�� /𝐹th,num

is smaller than 10−2 in the whole region, see Figure C.1(c).

C.4 Waveguide field simulations for nonlinearity
parameter, group refractive index and
dispersion parameter

To determine realistic values for the waveguide nonlinearity, the group re-
fractive index, and the dispersion of a microresonator waveguide according to
Fig. 4.1 in Chapter 4, we perform finite-element simulations using commercial
tools (RSoft Photonics CAD suite, FemSIM). We assume a pump wavelength
of 1550 nm along with the waveguide dimensions specified in Fig. C.2. The
waveguide in these simulations is either straight or has a bend radius of 115 𝜇m,
corresponding to the resonator design shown in Chapter 4, Fig. 4.1. The refrac-
tive indices of silica 𝑛SiO2 and silicon 𝑛Si are included according to Sellmeier’s
equation [222,223]. The modulus squared of the electric field of the quasi-TE
mode field within the silicon waveguide is shown in Fig. C.2. The undoped
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C Modulation instability in silicon microresonators at telecommunication wavelengths

Figure C.1: Threshold pump power for modulation instability. (a) Approximate analytical evaluati-
on, see also Chapter 4, Fig. 4.2. (b) Corresponding numerical calculation. (c) Relative color-coded
difference in threshold pump powers when comparing the analytical and the numerical method.
The deviation is smaller than 1 % in the whole region.

silicon portion of the waveguide is marked with a white outline, and the mode
is essentially confined to this region such that the optical field will not be affec-
ted by doping associated with the p-i-n-junction or by the vertical interconnect
accesses (vias) shown in Chapter 4, Fig. 4.1. Since the bend radius 𝑅𝐵 ≫ 𝑤

is large relative to the waveguide width 𝑤 and because
√︃
𝑛2

Si − 𝑛2
SiO2

𝑅𝐵 ≫ 𝜆

holds, the field appears symmetrical in the horizontal direction. Given the field
distributions E (𝑥, 𝑦), H (𝑥, 𝑦) we compute the nonlinear waveguide parameter
𝛾 using [66]
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C.5 Integration of the Lugiato-Lefever equation and the free-carrier equation

Figure C.2: Normalized modulus squared of the total electric field of the quasi-TE mode at
1550 nm. We assume a waveguide bent to the left with bend radius of 115 𝜇m. The white outline
marks the undoped silicon part of the waveguide.

𝛾 =
𝜔p𝜖0𝑛

2
Si𝑛2,Si

𝑍0

∫ ∫
Si

��E (𝑥, 𝑦)
��4 d𝑥d𝑦���∫ ∫

total ℜ{E (𝑥, 𝑦) × H (𝑥, 𝑦)} · e𝑧d𝑥d𝑦
���2 . (C.20)

Here, 𝜔p is the angular frequency of the optical pump field, 𝑍0 is the free
space impedance, and e𝑧 the unit vector along a perimeter of the ring-shaped
waveguide. We assume that the third-order nonlinear susceptibility of silicon
is a scalar quantity and can be expressed by the corresponding Kerr coefficient
𝑛2,Si = 6.5 × 10−18 m2 W−1 [29]. The resulting nonlinearity parameter at a
wavelength of 1550 nm amounts to 𝛾 = 257 W−1m−1. In order to determine
the dispersion coefficient, mode field simulations are performed for varying
wavelengths in a spectral range of 60 nm (7.5 THz) around 1550 nm. From
these simulations, we obtain the effective refractive index, which is then used
to determine the group refractive index 𝑛g = 4.15 and the dispersion coefficient
𝛽 (2) = −0.587 ps2 m−1, both at a wavelength of 1550 nm.

C.5 Integration of the Lugiato-Lefever equation
and the free-carrier equation

In Chapter 4, Section 4.5, we numerically integrate the normalized Eqs. (4.5)
and (4.6) of Chapter 4 using the split-step Fourier method [65]. The normalized
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(slow) temporal time step is Δ𝑡 ′, the dispersion operator is denoted by 𝐷̂, and
the nonlinear operator is 𝑁̂:

𝑎 (𝑡 ′ + Δ𝑡 ′, 𝜏′) =
√
𝐹Δ𝑡 ′ + e𝐷̂Δ𝑡′/2e𝑁̂ (𝑡′,𝜏′)Δ𝑡′e𝐷̂Δ𝑡′/2𝑎 (𝑡 ′, 𝜏′) , (C.21)

𝐷̂ = − 1 − i𝜁 − j𝛽′
𝜕2

𝜕𝜏′2
,

𝑁̂ (𝑡 ′, 𝜏′) = (j − 𝑟)
��𝑎 (𝑡 ′, 𝜏′)

��2 − 𝜎′
car (1 + j𝛽car) 𝑁 ′

car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′) .

In this approach, the FCA is included in the nonlinear operator 𝑁̂ (𝑡 ′, 𝜏′),
where the free-carrier density 𝑁 ′

car
(
𝑡 ′, 𝜏′S

)
is computed for each time step via

Eq. (C.2). To this end, we use a discretization of Δ𝜏′ = Δ𝜏′S = 2𝜋/1024 for the
normalized fast time 𝜏′ by dividing the round-trip time into 1024 parts. We
further choose the slow-time increment Δ𝑡 ′ as an integer multiple of Δ𝜏′/𝑣′,
i.e., Δ𝑡 ′ = 𝑁Δ𝜏′/𝑣′Δ𝜏

′/𝑣′ with 𝑁Δ𝜏′/𝑣′ = 64 . Over one increment Δ𝑡 ′ of the
slow time, the optical field will thus propagate by 𝑁Δ𝜏′/𝑣′ = 64 positions along
the fast time scale, which are indexed by an integer 𝜅 = 0, 1, . . . 63 in the
following. The evolution of the free carriers during one slow-time increment
Δ𝑡 ′ can hence be obtained by integrating Eq. (4.6) in a recursive manner,

𝑁 ′
car

(
𝑡 ′ + (𝜅 + 1)

Δ𝜏′S
𝑣′

, 𝜏′S

)
= 𝑁 ′

car

(
𝑡 ′ + 𝜅

Δ𝜏′S
𝑣′

, 𝜏′S

) (
1 −

Δ𝜏′S
𝑣′𝑡 ′eff

)
+ 𝑟

Δ𝜏′S
𝑣′

��𝑎 (
𝑡 ′, 𝜏′S + 𝜅Δ𝜏′S + 𝑡 ′𝑣′

) ��4 , (C.22)

𝜅 = 0, 1, . . . 𝑁Δ𝜏′/𝑣′ − 1.

Note that, during each slow-time increment Δ𝑡 ′, we neglect the explicit de-
pendence of the optical field 𝑎 (𝑡 ′, 𝜏′) on the slow time 𝑡 ′ and only consider
the implicit dependence via 𝜏′ = 𝜏′S + 𝑡 ′𝑣′. The delays 𝑡 ′𝑣′ and 𝜅Δ𝜏′S of the
optical field are implemented as circular rotations of the array associated with
𝑎

(
𝑡 ′, 𝜏′S + 𝜅Δ𝜏′S + 𝑡 ′𝑣′

)
. Compared to simplified methods that only consider the

evolution of the mean free-carrier density [26, 77]〈
𝑁 ′

car
〉
𝜏′ (𝑡

′) = 1
2𝜋

∫ +𝜋/2

−𝜋/2
𝑁 ′

car (𝑡 ′, 𝜉) d𝜉 (C.23)

the procedure leads to an overall increase of the simulation time by about
10 %. To illustrate the capabilities of our model, we perform simulations of the
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C.5 Integration of the Lugiato-Lefever equation and the free-carrier equation

dynamics of an optically pumped Si microresonator and compare the results to
those obtained by the mean-value approximation of the intra-cavity free-carrier
distribution [26, 77].

In Figure C.3, we show the evolution of the intracavity field power and the
free-carrier density by integration of Eqs. (4.5) and (4.6) in a regime where
free-carrier oscillations occur, see [26] for a discussion of the associated para-
meter space. Column (a) of Fig. C.3 depicts the simulation results obtained by
the algorithm following Eqs. (C.21) and (C.22). The results shown in Column
(b) are obtained by approximating the free-carrier density by its mean value〈
𝑁 ′

car
〉
𝜏′ (𝑡

′) according to Eq. (C.22) and by inserting this value in Eq. (C.21).
Row R1 shows the simulation parameters, where we assume a significant-
ly increased forcing 𝐹 = 30 compared to the cases discussed in Chapter 4.
Further, we assume a significantly longer free-carrier lifetime 𝑡 ′eff = 0.406 cor-
responding to 122 ps for our assumed microresonator, see Section 4.5. Note
that the group velocity 𝑣′ is not necessary to compute the mean free-carrier
density

〈
𝑁 ′

car
〉
𝜏′ (𝑡

′) and is therefore not considered in Column (b). Rows R2
and R3 show the evolution of the intracavity (IC) field power

��𝑎 (𝑡 ′, 𝜏′)
��2 and

the free-carrier density (FCD) 𝑁 ′
car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′) as a function of slow time

𝑡 ′ and as a function of the retarded fast time 𝜏′. Both the field power and
the carrier density show oscillations with slow time. Modulation instability
is absent, and therefore the optical field remains constant along the fast time
𝜏′. As a consequence, the free carriers do not show any dependence on 𝜏′,
independent of the underlying algorithm. In Row R4 and R5, the evolution of
the mean values of the optical field power

〈 ��𝑎��2 〉
𝜏′ (𝑡

′) and the carrier den-
sity

〈
𝑁 ′

car
〉
𝜏′ (𝑡

′) are shown. The vertical grey lines in Row R4 and R5 mark
slow-time temporal maxima of the IC power. The maxima of the free-carrier
density are delayed relative to the temporal maxima of the optical power, since
the free-carrier generation rate 𝑟

��𝑎 (
𝑡 ′, 𝜏′S + 𝑡 ′𝑣′

) ��4 in Eq. (4.6) is larger than
the free-carrier decay rate 𝑁 ′

car
(
𝑡 ′, 𝜏′S

)
/𝑡 ′eff for a certain period, even when

the optical field is already declining due to increased FCA. These slow-time
dynamics are described in the same manner by both algorithms without any
significant difference between the simulation results shown Column (a) and
(b). We therefore conclude that our algorithm correctly describes the slow-
time dynamics of the free-carrier density. For another algorithm describing
the slow time dynamics for the fast-time resolved free-carrier density via the
boundary condition 𝑁car (𝑡,−𝑡R/2) = 𝑁car (𝑡 + Δ𝑡, +𝑡R/2) [25], expressed as
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C Modulation instability in silicon microresonators at telecommunication wavelengths

Figure C.3: Results of time integration of the LLE for different integration formalisms. Row R1:
Simulation parameters. Row R2: Color-coded intracavity (IC) power

��𝑎 (𝑡′, 𝜏′)
��2 as a function

of fast time 𝜏′, evolving over slow time 𝑡′. Row R3: Color-coded free-carrier density (FCD)
𝑁 ′

car (𝑡′, 𝜏′ − 𝑡′𝑣′) as a function of fast time 𝜏′, evolving over slow time 𝑡′. Row R4: Mean IC
power

〈 ��𝑎 (𝑡′, 𝜏′)
��2 〉

𝜏′ as a function of slow time 𝑡′. Vertical dashed lines indicate the temporal
positions of maximum IC power. Row R5: Mean FCD

〈
𝑁 ′

car (𝑡′, 𝜏′ − 𝑡′𝑣′)
〉
𝜏′ as a function of

slow time 𝑡′. Column (a): FC oscillations simulated using the full model for the description of FC
dynamics, Eqs. (C.21) and (C.22). Column (b): FC oscillations modeled using a mean FCD.
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𝑁 ′
car (𝑡 ′,−𝜋) = 𝑁 ′

car (𝑡 ′ + Δ𝑡, +𝜋) in normalized quantities, the correct accumu-
lation of free carriers is subject to discussion [77].

While the two algorithms give nearly identical results for the IC power and
the free-carrier dynamics in the absence of modulation instability, they yield
different results when a frequency comb forms. In particular, the dynamics
of single-soliton states on both slow and fast time differ significantly. In Fi-
gure C.4, we show the results of a time integration of the LLE and the FCE,
Eqs. (4.5) and (4.6) for another set of parameters allowing soliton comb for-
mation. Again, Column (a) depicts the simulation results obtained through our
algorithm, Eqs. (C.21) and (C.22), while Column (b) approximates the free-
carrier density through its mean value

〈
𝑁 ′

car
〉
𝜏′ (𝑡

′) according to Eq. (C.23).
Row R1 lists again the simulation parameters. The forcing is kept at 𝐹 = 30 and
the detuning swept until 𝜁 = 6.65. The FC lifetime is reduced to 𝑡 ′eff = 0.0406,
corresponding to 12.2 ps. The second Row R2 shows the slow-time evolution
of the IC power, where we use different initial random optical fields, see also
Section 4.5, for Column (a) and (b) respectively. Both algorithms generate a
single soliton pulse around 𝑡 ′ = 33. In Column (a) we observe a drift of the
single soliton along the fast time axis 𝜏′ when the fast-time free-carrier dyna-
mics are considered. Such a drift was predicted in another study [28]. In Row
R4, the evolution of the associated free-carrier density, depicted in the retarded
fast time frame 𝜏′, is shown. As long as the IC power is high and multiple
pulses circulate in the cavity, the FC density is high and nearly constant along
𝜏′. However, once only two pulses or only one pulse circulate in the cavity,
the free-carrier density drops significantly and is not constant anymore. The
fast-time distribution of the free carriers shows the same temporal drift as the
optical field. We attribute this drift to the fact that the sharp rise of the free-
carrier density during the pulse leads to an attenuation of the trailing edge and
hence to an effectively increased propagation velocity. This effect can only be
modelled when including the fast-time free-carrier dynamics. The last Row R5
shows the final FC density 𝑁 ′

car (𝑡 ′ = 100, 𝜏′ − 100𝑣′). In Column (a), the soli-
ton pulse, see Row R3, causes a sharp increase of the FC density near 𝜏′ ≈ 1.8𝜋
at 𝑡 ′ = 100, such that variations of up to 46 % relative to the mean value of
the free carriers are observed during one round-trip. These strong variations
and the drift of the soliton pulse highlight the importance of the consideration
of the fast time dynamics of the FC density for a more precise description of
Kerr comb formation in the presence of TPA and FCA. These effects cannot
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C Modulation instability in silicon microresonators at telecommunication wavelengths

Figure C.4: Results of time integration of the LLE for different integration formalisms. Row R1:
Simulation parameters. Row R2: Color-coded intracavity (IC) power

��𝑎 (𝑡′, 𝜏′)
��2 as a function

of fast time 𝜏′, evolving over slow time 𝑡′. Row R3: IC power at the end of the simulation��𝑎 (𝑡′ = 100, 𝜏′)
��2. Row R4: Color-coded free-carrier density (FCD) 𝑁 ′

car (𝑡′, 𝜏′ − 𝑡′𝑣′) as a func-
tion of 𝜏′, evolving over 𝑡′. Row R5: FCD at the end of the simulation 𝑁 ′

car (𝑡′ = 100, 𝜏′ − 100𝑣′) .
Column (a): Free-carrier (FC) oscillations simulated using the full model for the description of
FC dynamics, Eqs. (C.21) and (C.22). Column (b): FC oscillations modeled using a mean FCD.
Correct representation of the fast-time FC dynamics results in a drift of the soliton pulse along the
fast-time axis 𝜏′, which cannot be described by the mean-value approximation of the FCD.
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be described by the mean-value approximation of the intra-cavity free-carrier
distribution, see Column (b) of Fig. C.4.

Still, despite these inaccuracies, the mean-value approximation of the intra-
cavity free-carrier distribution can give reasonably accurate results for certain
device parameters. This is, e.g., the case if slow-time dynamics of the op-
tical field in the presence of free-carrier absorption such as the drift along
the fast time axis 𝜏′ are not of interest and if a certain imprecision in the
description of the FC density along the microresonator circumference can be
tolerated. An upper limit of the fast-time FC density fluctuations, normalized
to the mean value of the FC density, can be estimated by assuming that the
optical field is represented by a sharp single pulse without a CW-background.
In this case, the square of the optical power density in the microresonator
may be denoted as a single, constant delta-pulse,

��𝑎 (𝑡 ′, 𝜏′)
��4 = 𝐴2

𝛿
𝛿 (𝜏′),

where 𝛿 (𝜏′) is the Dirac delta distribution. For simplicity, we assume the
pulse to be located at 𝜏′ = 0. In the stationary fast-time frame, the opti-
cal field then reads

��𝑎 (
𝑡 ′, 𝜏′S + 𝑡 ′𝑣′

) ��4 = 𝐴2
𝛿
𝛿
(
𝜏′S + 𝑡 ′𝑣′

)
. Further assuming

that initial FCs do not play a role, 𝑁 ′
car

(
0, 𝜏′S

)
≈ 0, and using Eq. (C.6),

the FC density in the retarded fast-time frame reads 𝑁 ′
car (0, 𝜏′ − 𝑡 ′𝑣′) =

𝑁 ′
car,0exp

[
−𝜏′/

(
𝑣′𝑡 ′eff

) ]
, where 𝑁 ′

car,0 = 𝑟𝐴2
𝛿

(
1 − exp

[
−2𝜋/

(
𝑣′𝑡 ′eff

) ] )−1. The
maximum value of the FC density along the microresonator circumference is
𝑁 ′

car,0, the minimum is given as 𝑁 ′
car,0exp

[
−2𝜋/

(
𝑣′𝑡 ′eff

) ]
, and the mean value

amounts to
〈
𝑁 ′

car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′)
〉
𝜏′ = 𝑁 ′

car,0/(2𝜋) 𝑣
′𝑡 ′eff

(
1 − exp

[
−2𝜋/

(
𝑣′𝑡 ′eff

) ] )
.

Thus the local increase of the FC density caused by the optical pulse, norma-
lized to the mean value

〈
𝑁 ′

car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′)
〉
𝜏′ at 𝜏′ = 0 reads

𝑁 ′
car,0 − 𝑁 ′

car,0exp
[
−2𝜋/

(
𝑣′𝑡 ′eff

) ]
⟨𝑁 ′

car (𝑡 ′, 𝜏′ − 𝑡 ′𝑣′)⟩𝜏′
=

2𝜋
𝑣′𝑡 ′eff

=
𝑡R
𝑡eff

. (C.24)

For an FC lifetime equal to the round-trip time, 𝑡eff = 𝑡R, this difference amounts
to 100 %, i.e., the FC density increase is equal to the mean value along the
microresonator circumference. In this case, the mean-value approximation of
the intra-cavity free-carrier distribution may not give reliable results. When
the lifetime is increased to, e.g., 𝑡eff = 10𝑡R, the relative FC density increase
caused by the optical pulse decreases to 10 % and a mean-FCD approximation
becomes increasingly valid. We note that Eq. (C.24) is only an approximation
that neglects the CW-background of the optical field that is usually present –
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C Modulation instability in silicon microresonators at telecommunication wavelengths

in practice, this aspect will further reduce the fast-time fluctuations of the FC
density normalized to its mean value. Thus Eq. (C.24) can thus be used as an
upper limit for the normalized fast-time FC density fluctuations.

C.6 Dispersion profile of coupled mode families

In this section we describe the derivation of the dispersion profile used in
Chapter 4, Section 4.5 to simulate comb formation in a normal-dispersive mi-
croresonator under the influence of an avoided mode crossing, see Fig. 4.6.
In a first step, we consider two unperturbed mode families M1 and M2. The
comb is generated in the resonances of mode family M1, while mode family
M2 may induce a local shift of resonance positions of M1. The mode families
are described by the frequency of the central modes 𝜔0,M1, 𝜔0,M2 and by the
corresponding free spectral ranges𝜔r,FSR,M1,𝜔r,FSR,M2, such that the respective
resonance frequencies read

𝜔r,𝜇,M1 =𝜔r,0,M1 + 𝜇 𝜔r,FSR,M1 − 𝛽 (2)𝐿MR/(2𝑡R)
(
𝜇 𝜔r,FSR,M1

)2
, (C.25)

𝜔r,𝜇,M2 =𝜔r,0,M2 + 𝜇 𝜔r,FSR,M2. (C.26)

Here, we have omitted dispersive terms of the second mode family for simpli-
city. The dispersion profiles of the modes describe the deviation of the various
resonance frequencies from an equidistant grid defined by the center free
spectral range 𝜔r,FSR,M1 of mode family M1. Using Eq. (C.25), the dispersion
profiles can be stated for the two mode families M1 and M2,

𝜔r,𝜇,M1 − 𝜔r,0,M1 − 𝜇 𝜔r,FSR,M1 =

−𝛽 (2)𝐿MR/(2𝑡R)
(
𝜇 𝜔r,FSR,M1

)2
, (C.27)

𝜔r,𝜇,M2 − 𝜔r,0,M1 − 𝜇 𝜔r,FSR,M1 =

𝜔r,0,M2 − 𝜔r,0,M1 − 𝜇
(
𝜔r,FSR,M2 − 𝜔r,FSR,M1

)
(C.28)

The dispersion profile of M1 is a set of discrete points located on a parabola,
which is defined by the second order dispersion coefficient of mode family M1.
It allows to compute the phase deviation 𝜑(𝜇) accumulated by comb modes
𝜇, see Eq. (4.16) in Chapter 4. In contrast to the parabolic dispersion profile of
mode family M1, the points given by the dispersion profile of M2 are located
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on a strongly inclined line, which is indicated in red in Chapter 4, Fig. 4.6(a).
Unavoidable deviations from the ideal resonator geometry lead to coupling of
the mode families and hence to a hybridization, which is accompanied by a
local shift of the resonance frequencies from 𝜔r,𝜇,M1/M2 to two hybrid mode
resonances 𝜔r,𝜇,± for each mode index 𝜇 [166]. This shift depends on the
coupling strength 𝜃C,M between the respective modes, such that the hybrid
mode resonance frequencies are given by [166]

𝜔r,𝜇,± =
𝜔r,𝜇,M1 + 𝜔r,𝜇,M2

2
±

√︄
𝜃2

C,M +
(
𝜔r,𝜇,M1 − 𝜔r,𝜇,M2

)2

4
. (C.29)

For these hybrid modes, the dispersion profile is given in the same manner
as for 𝜔r,𝜇,M1/M2 by 𝜔r,𝜇,± − 𝜔r,0,M1 − 𝜇 𝜔r,FSR,M1. Mode family M1 is the
relevant mode family for comb formation in our system. For the gain parameter
computation and the simulation of comb formation, we need to choose a certain
set of resonances that are close to those of mode family M1 and that contain
either the up-shifted frequencies 𝜔r,𝜇,+ or the down-shifted frequencies 𝜔r,𝜇,−
for every mode index 𝜇. For large differences 𝜔r,𝜇,M1 − 𝜔r,𝜇,M2 of resonance
frequencies of the native modes M1 and M2, the native resonance 𝜔r,𝜇,M1
corresponds to the hybrid resonance 𝜔r,𝜇,+ in the case 𝜔r,𝜇,M1 − 𝜔r,𝜇,M2 > 0
and to the hybrid resonance 𝜔r,𝜇,− if 𝜔r,𝜇,M1 − 𝜔r,𝜇,M2 < 0. Near the mode
coupling, we choose either 𝜔r,𝜇,+ or 𝜔r,𝜇,− such that the obtained dispersion
profile resembles a typical avoided mode crossing that exhibits approximately
symmetric deviations from the native dispersion profile of mode family M1, as
observed in experiments, see, e.g., [166]. From the selected hybrid resonances,
we determine the resonance shifts by computing 𝛿𝜔𝜇,+ = 𝜔r,𝜇,M1 − 𝜔r,𝜇,+
and 𝛿𝜔𝜇,− = 𝜔r,𝜇,M1 − 𝜔r,𝜇,− respectively. These shifts are used for numeric
simulations, the computation of the gain parameter according to Eq. (4.10)
in Chapter 4 and the determination of phase deviations 𝜑′(𝜇) according to
Eq. (4.16). Generally, the crucial parameter for modulation instability is the
maximum resonance frequency shift 𝜔r,𝜇,M1 −𝜔r,𝜇,± which amounts to −2𝜋×
875 MHz or ≈ 1 % of the FSR of the microresonator under investigation. This
is in accordance with experimentally observed resonance shifts [166].
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C.7 List of physical quantities and parameters for
the simulation of frequency comb dynamics

Table C.1 summarizes both the physical and the normalized quantities used
for describing the dynamics of the optical field in the Kerr-nonlinear micro-
resonators. In Table C.2, we specify physical and normalized microresonator
parameters along with their numerical values and the associated source refe-
rences.

Table C.1: Physical and normalized quantities.

Physical quantity Symbol Value Source Symbol of
equivalent
normalized
quantity

Angular pump
frequency

𝜔p 2𝜋 × 193.41 THz Assumption –

Pump power 𝑃in 12 . . . 50 mW Assumption 𝐹

Detuning (𝜔r,0 −𝜔p)𝑡R (1.2 . . . 2) GHz
×2𝜋𝑡R

Assumption 𝜁

Slow time
(natural time)

𝑡 – – 𝑡′

Fast time (retarded
time frame)

𝜏 – – 𝜏′

Fast time (stationary
time frame)

𝜏S – – 𝜏′S

Normalized group
velocity

– – – 𝑣′

Optical field E∗ – – 𝑎

Free-carrier density 𝑁car – – 𝑁 ′
car

Sideband
frequencies

𝜔𝜇 – – 𝜇

Gain rate – – – 𝑔

Phase deviations 𝜑 (𝜇) – – 𝜑′ (𝜇)
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Table C.2: Microresonator parameters and normalized quantities.

Physical quantity Symbol Value Source Symbol of
equivalent
normalized
quantity

Further
occurrence
in
normalized
quantities

Power loss
per length

𝛼𝑖 46 m−1 (2 dB m−1) [29] – 𝛽′, 𝐹, 𝜁 , 𝑡′,
𝑡′eff, 𝑣

′, 𝑎,
𝑁 ′

car, 𝜙𝜇 , 𝜑
′

Group refractive
index

𝑛g 4.15 Simulation – 𝐹, 𝜁 , 𝜎′
car,

𝑡′, 𝑡′eff, 𝑣
′,

𝑁 ′
car, 𝜙𝜇 , 𝜑

′

Second-order
dispersion coef.

𝛽 (2) −0.587 ps2 m−1 Simulation 𝛽′ –

Nonlinearity
parameter

𝛾 257 W−1 m−1 Simulation – 𝐹, 𝑎

Kerr coefficient 𝑛2 6.5×10−18 m2 W−1 [29] – 𝑟 , 𝜎′
car,

𝑁 ′
car

TPA parameter 𝛽TPA 0.7 × 10−11 m W−1 [29] 𝑟 –
FC dwell time 𝑡eff 12 . . . 100 ps [29] 𝑡′eff –
FC cross-section 𝜎car 1.45 × 10−21 m2 [29] 𝜎′

car –
FC dispersion
parameter

𝛽car 7.5 [25] – –

Confinement factor ΓC 1 Assumption – –
Round-trip time 𝑡R 10 ps Assumption – 𝛽′, 𝐹, 𝜁 ,

𝜏′, 𝜏′S, 𝑣
′,

𝜑′

Free spectral range 𝜔r,FSR
= 2𝜋𝑡−1

R

100 GHz Assumption – See round-
trip time

Local resonance
shift

𝛿𝜔𝜇 Max.
2𝜋 × 875 MHz

Assumption 𝜙𝜇 –

[End of appendix of publication [J2]]

237





D Dual-comb ranging with
multi-heterodyne reception

The text in this chapter has been published as supplementary information
of the publication [J3]. It was adapted to fit the layout, structure, notation,
and conventions of this dissertation. In Section D.9, Eq. (D.28) as well as
in the text before this equation, a mistake was corrected, that occurred in
the publication [J3] at this position in the supplementary information. This
appendix assumes a positive time dependence of the optical signal of the form
exp(+j𝜔𝑡).

[Start of supplementary information of publication [J3]]

D.1 Mathematical description of the distance
metrology scheme

The LiDAR method applied in our experiments is based on a multi-heterodyne
phase measurement of the lines of an optical frequency comb that travels to
a target and back. In this section, we give a mathematical description of the
measurement scheme, see Fig. D.1 for a graphical illustration of an equivalent
setup using free-space optical components. Complex analytical signals 𝐸 (𝑡)
are used to describe the time-domain electric fields, with the real part of the
analytical signal representing the physically relevant field, 𝐸 (𝑡) = ℜ

{
𝐸 (𝑡)

}
.

A signal comb (index SI, orange) with frequencies 𝜔SI,𝜇 = 𝜔SI,0 + 𝜇 𝜔SI,FSR
is split in two parts at a beam splitter (BS). Here 𝜔SI,0 designates the pump
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angular frequency positioned in the center of the comb, 𝜇 = ±1,±2, . . . is the
mode index relative to the pump and 𝜔SI,FSR is the free spectral range (FSR)
of the frequency comb, in publications on soliton Kerr combs often referred to
as 𝐷1. The first part of the comb leaves the setup and is reflected by the target,
coupled back into the system after traversing a total free-space distance1 2𝑛air𝑑,
and finally routed towards the measurement photoreceiver (PR). The second
part of the signal comb is directly guided towards the reference photoreceiver.
Both parts of the signal comb are superimposed with two parts of another comb,
acting as a multi-wavelength local oscillator (index LO, blue) with frequencies
𝜔LO,𝜇′ = 𝜔LO,0 + 𝜇′𝜔LO,FSR defined in the same manner as those of the signal
comb. At a certain optical distance 𝐿SI and 𝐿LO along the path of the respective
comb, the complex electric fields of the signal and the LO comb are given by

𝐸SI (𝐿SI, 𝑡) =
∑︁

𝜇
𝐸SI,𝜇 (𝐿SI, 𝑡)

=
∑︁

𝜇
𝐸SI,𝜇,0e j(𝜔SI,𝜇𝑡−(𝜔SI,𝜇/𝑐0)𝐿SI) , (D.1)

𝐸LO (𝐿LO, 𝑡) =
∑︁

𝜇′ 𝐸LO,𝜇′ (𝐿LO, 𝑡)

=
∑︁

𝜇′ 𝐸LO,𝜇′,0e j(𝜔LO,𝜇′ 𝑡−(𝜔LO,𝜇′/𝑐0)𝐿LO) . (D.2)

In these definitions, 𝐸SI,𝜇,0, 𝐸LO,𝜇′,0 denote the complex initial amplitudes at
the output of the respective comb source, and 𝑐0 is the vacuum speed of light.
Upon reaching the measurement photoreceiver, the optical distance traveled by
the signal comb from its source amounts to 𝐿SI = 𝐿SI,meas +2𝑛air𝑑, comprising
the free-space distance 𝑛air𝑑, and a total setup-internal optical distance 𝐿SI,meas,
see Fig. D.1. The distance towards the reference photoreceiver is given in the
same manner by 𝐿SI = 𝐿SI,ref. Equivalently, the optical path lengths from the
LO comb source to the respective photoreceiver are defined as 𝐿LO = 𝐿LO,meas
and 𝐿LO = 𝐿LO,ref. Note that our experiments relied on a fiber-optic setup rather
than the free-space optical arrangement shown in Fig. D.1. In Eqs. (D.1) and
(D.2), this is taken into account by using the optical distances to represent 𝐿SI
and 𝐿LO that take into account the physical length of the respective fiber section

1 Note that in [J3], the variable 𝑑 defines the optical distance, whereat in this dissertation, the
variable 𝑑 is related to the geometric distance. Therefore, the refractive index 𝑛air of air has
been added to the formalism presented in this appendix where applicable.
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Figure D.1: Multi-heterodyne interferometry based on frequency combs. Measurement principle:
The signal comb (orange) and the LO comb (blue) consist of discrete tones at frequencies 𝜔SI,𝜇
and 𝜔LO,𝜇 . Both combs are split at beam splitters (BS). A first part of the signal comb is sent to the
target located at a distance 𝑑 from the setup input/output. The target scatters a part of the incident
light back into the setup, where the signal comb is superimposed with a first part of the LO comb
on a balanced photoreceiver (Measurement PR), indicated by violet beams and fields for a specific
pair of lines with comb line index 𝜈. The other parts of both combs are guided towards another
balanced photoreceiver (Reference PR). For the first part of the signal comb, the optical distance to
measurement photoreceiver amounts to 𝐿SI = 𝐿SI,meas+2𝑛air𝑑, comprising the free-space distance
𝑛air𝑑 and a total setup-internal optical distance 𝐿SI,meas, see Eqs. (D.1) and (D.2). Similarly,
𝐿SI = 𝐿SI,ref denotes the optical distance that the second portion of the signal comb travels from
the source to the reference photoreceiver. The quantities 𝐿LO = 𝐿LO,meas and 𝐿LO = 𝐿LO,ref are
defined accordingly, but not shown in the figure for better readability. The superposition of the
combs on the measurement PR and the reference PR leads to a multitude of beat notes in the RF
spectrum of the respective photocurrent (green) at frequenciesΔ𝜔𝜈 =

��𝜔LO,𝜈 − 𝜔SI,𝜈
��, which can

be separated by a Fourier transform of a recorded time domain signal of the photodetector currents.
The phase difference 𝛿Φ𝜈 between the 𝜈-th frequency component of both currents depends on
the distance to the target. The distance is obtained by estimating the slope of the phase differences
as a function of the frequency index. Phase differences that would exceed 2𝜋 are unwrapped, as
indicated by the gray arrows.

as well as its frequency-dependent effective refractive index, see Section D.4
“Analysis and modelling of fiber dispersion”.

In our experiment, we use two balanced receivers with two photodiodes (PD)
each. Because a PD is basically a photon counter, it reacts to the incident
optical power 𝑃 impinging on its photosensitive area 𝐴PD with a current 𝑖,
which is in proportion to the PD responsivity R and the power 𝑃. The intensity
is expressed by the square of the real part ℜ{·} of the complex electric field,
averaged over a few optical periods ⟨·⟩ and divided by the free-space wave
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impedance 𝑍0. The power results from multiplying the intensity with the PD
area 𝐴PD. This leads to

𝑖(𝑡) = R𝑃(𝑡), 𝑃(𝑡) = 𝐴PD
𝑍0

〈(
ℜ

{
𝐸 (𝑡)

})2
〉
. (D.3)

The balanced detector comprises two PD with individual currents 𝑖1 and 𝑖2,

𝑖1 (𝐿SI, 𝐿LO, 𝑡) =R
𝐴PD
𝑍0

〈(
ℜ

{
1
√

2
𝐸SI (𝐿SI, 𝑡) − j

1
√

2
𝐸LO (𝐿LO, 𝑡)

})2
〉
,

(D.4)

𝑖2 (𝐿SI, 𝐿LO, 𝑡) =R
𝐴PD
𝑍0

〈(
ℜ

{
−j

1
√

2
𝐸SI (𝐿SI, 𝑡) +

1
√

2
𝐸LO (𝐿LO, 𝑡)

})2
〉
.

(D.5)

The output current 𝑖 of the balanced receiver is given by the difference of these
photocurrents,

𝑖 (𝐿SI, 𝐿LO, 𝑡) = 𝑖1 (𝐿SI, 𝐿LO, 𝑡) − 𝑖2 (𝐿SI, 𝐿LO, 𝑡)

= R 𝐴PD
𝑍0

1
2

〈
j𝐸SI (𝐿SI, 𝑡) 𝐸∗

LO (𝐿LO, 𝑡)

− j𝐸∗
SI (𝐿SI, 𝑡) 𝐸LO (𝐿LO, 𝑡)

〉
= R 𝐴PD

𝑍0
ℑ

{
𝐸∗

SI (𝐿SI, 𝑡) 𝐸LO (𝐿LO, 𝑡)
}

= R 𝐴PD
𝑍0

ℑ
{∑︁

𝜇,𝜇′ 𝐸
∗
SI,𝜇,0𝐸LO,𝜇′,0

× e j(𝜔LO,0−𝜔SI,0+(𝜇′−𝜇)𝜔SI,FSR+𝜇′(𝜔LO,FSR−𝜔SI,FSR))𝑡

× e j(𝜔SI,𝜇𝐿SI/𝑐0−𝜔LO,𝜇′𝐿LO/𝑐0)
}
, (D.6)

where ℑ {·} denotes the imaginary part. For an ideal balanced detector, the
current difference 𝑖 (𝐿SI, 𝐿LO, 𝑡) is mean-free, as DC terms of the individual PD
currents cancel. The quantity 𝑖 (𝐿SI, 𝐿LO, 𝑡) comprises discrete sinusoidals, one
of which is indicated in green in Fig. D.1. Substituting the optical path lengths

242



D.1 Mathematical description of the distance metrology scheme

traversed by the signal and the LO comb up to the balanced measurement
receiver into Eq. (D.6) yields the photocurrent

𝑖meas (2𝑛air𝑑, 𝑡) = 𝑖meas
(
𝐿SI,meas + 2𝑛air𝑑, 𝐿LO,meas, 𝑡

)
. (D.7)

The distance 𝑑 of interest can be extracted from the phase of the various beat
notes in the photocurrent. However, as can be seen from Eq. (D.6), these pha-
ses also depend on the phase of the product of the complex field amplitudes
𝐸∗

SI,𝜇,0𝐸LO,𝜇′,0. Therefore a reference measurement is required, which is ob-
tained by superimposing separate parts of the same frequency combs on a
separate reference photoreceiver, see also [20]. The photocurrent 𝑖ref of the
balanced reference receiver is derived in an analogous way as 𝑖meas,

𝑖ref (𝑡) = 𝑖ref
(
𝐿SI,ref, 𝐿LO,ref, 𝑡

)
. (D.8)

In contrast to Eq. (D.7), the external measurement distance 2𝑛air𝑑 does not
appear in the reference path length.

The repetition rate detuning Δ𝜔FSR =
��𝜔LO,FSR − 𝜔SI,FSR

�� between the two
frequency combs amounts to Δ𝜔FSR = 2𝜋 × 100 MHz and is small compared
to the line spacing of 𝜔SI,FSR = 2𝜋 × 100 GHz. In theory, the photocurrent
spectrum shows beat signals at distinct intermediate frequencies

Δ𝜔𝜇,𝜇′ =
��𝜔LO,0 − 𝜔SI,0 + (𝜇′ − 𝜇) 𝜔SI,FSR + 𝜇′Δ𝜔FSR

�� . (D.9)

However, only a subset of these lines can actually be acquired by the photo-
detector and the subsequent analog-to-digital converter (ADC). For the fre-
quency combs deployed in our experiments, the line spacing 𝜔SI,FSR/(2𝜋)
amounts to 100 GHz and is larger than the bandwidth 𝑓ADC = 33 GHz of the
ADC used to record the signals. Moreover, the number of comb lines in the
radio frequency domain satisfies 𝜇′Δ𝜔FSR < 𝜔SI,FSR/2 ≈ 𝜔LO,FSR/2 for all
comb line indices 𝜇′, which avoids comb line ambiguity in the intermediate
frequency beat notes. As a consequence, for a given LO comb line 𝜇′, only
the beat note with the corresponding signal comb line having the same index
𝜇′ = 𝜇 shows up in the photocurrent. These beat notes are found at frequencies
Δ𝜔𝜇 = |Δ𝜔0 + 𝜇Δ𝜔FSR | with Δ𝜔0 =

��𝜔LO,0 − 𝜔SI,0
�� being the difference of

the center frequencies of the two combs. The beat notes, shown in the upper
right of Fig. D.1 as a function of frequency index 𝜇, can be identified and
extracted by a discrete Fourier transform (DFT) applied to the time-domain
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photocurrents recorded by the oscilloscope. The complex Fourier coefficients
comprise the amplitude and the phase information of the associated beat notes.

The global phases Φ𝜇,meas and Φ𝜇,ref of these beat notes in the photocurrents
𝑖meas and 𝑖ref depend on the various distances 𝐿SI,meas, 2𝑛air𝑑, 𝐿LO,meas, 𝐿SI,ref,
and 𝐿LO,ref that the signal comb and the reference comb have traveled from
the respective source to the respective detector. Expressions for these global
phases of each individual beat note can be derived from Eq. (D.6) – (D.8) by
setting 𝜇′ = 𝜇,

Φ𝜇,meas (𝑑) =arg
{
𝐸∗

SI,𝜇,0𝐸LO,𝜇,0e j(𝜔SI,𝜇 (𝐿SI,meas+2𝑛air𝑑)/𝑐0−𝜔LO,𝜇𝐿LO,meas/𝑐0)
}

=
𝜔SI,0 + 𝜇𝜔SI,FSR

𝑐0

(
𝐿SI,meas − 𝐿LO,meas + 2𝑛air𝑑

)
− Δ𝜔0 + 𝜇Δ𝜔FSR

𝑐0
𝐿LO,meas + arg

{
𝐸∗

SI,𝜇,0𝐸LO,𝜇,0

}
=2𝜋

(
𝐿SI,meas − 𝐿LO,meas + 2𝑛air𝑑

)
Λ−1

S,𝜇

+ 2𝜋
(
𝐿SI,meas − 𝐿LO,meas + 2𝑛air𝑑

)
Λ−1

S,0

− Δ𝜔SI,0 + 𝜇Δ𝜔SI,FSR

𝑐0
𝐿LO,meas + arg

{
𝐸∗

SI,𝜇,0𝐸LO,𝜇,0

}
,

(D.10)

Φ𝜇,ref =arg
{
𝐸∗

SI,𝜇,0𝐸LO,𝜇,0e j(𝜔SI,𝜇𝐿SI,ref/𝑐0−𝜔LO,𝜇𝐿LO,ref/𝑐0)
}

=
𝜔SI,0 + 𝜇𝜔SI,FSR

𝑐0

(
𝐿SI,ref − 𝐿LO,ref

)
− Δ𝜔0 + 𝜇Δ𝜔FSR

𝑐0
𝐿LO,ref + arg

{
𝐸∗

SI,𝜇,0𝐸LO,𝜇,0

}
=2𝜋

(
𝐿SI,ref − 𝐿LO,ref

)
Λ−1

S,𝜇

+ 2𝜋
(
𝐿SI,ref − 𝐿LO,ref

)
Λ−1

S,0

− Δ𝜔SI,0 + 𝜇Δ𝜔SI,FSR

𝑐0
𝐿LO,ref + arg

{
𝐸∗

SI,𝜇,0𝐸LO,𝜇,0

}
. (D.11)

In these relations, the function arg
{
𝑧
}

denotes the phase angle of a complex
number 𝑧. The last lines of Eq. (D.10) and (D.11) contain the so-called synthetic
wavelength

��ΛS,𝜇
�� = ��𝑐0/

(
𝜇 𝜔SI,FSR/(2𝜋)

) �� and reveal the relation to classical

244



D.1 Mathematical description of the distance metrology scheme

interferometry with a single optical wavelength 𝜆, where the phase shift 𝜑
experienced by an optical signal after propagation over the optical path length
𝐿path is determined by 𝜑 = 2𝜋𝐿path𝜆

−1. For an increasing mode index 𝜇, the
synthetic wavelength progressively reduces.

The global phases of the beat notes in the reference and the measurement
photocurrent depend also on the initial global phases arg

{
𝐸∗

SI,𝜇,0𝐸LO,𝜇,0

}
of the associated optical comb tones. These unknown global phases can be
eliminated by calculating the phase differences observed after the reference
and the measurement detector,

𝛿Φ𝜇 (𝑑) =Φ𝜇,meas (𝑑) −Φ𝜇,ref

=
𝜔SI,0 + 𝜇𝜔SI,FSR

𝑐0

(
𝐿SI,meas + 2𝑛air𝑑 − 𝐿LO,meas − 𝐿SI,ref + 𝐿LO,ref

)
− Δ𝜔0 + 𝜇Δ𝜔FSR

𝑐0

(
𝐿LO,meas − 𝐿LO,ref

)
. (D.12)

We can further eliminate all expressions that depend on the internal optical
path lengths 𝐿SI,meas, 𝐿LO,meas, 𝐿SI,ref, and 𝐿LO,ref by directly subtracting the
phase values 𝛿Φ𝜇 (𝑑0) obtained from a calibration measurement for a specific
distance 𝑑0 from the phases 𝛿Φ𝜇 (𝑑) obtained for the target distance 𝑑,

ΔΦ𝜇 (𝑑, 𝑑0) = 𝛿Φ𝜇 (𝑑) − 𝛿Φ𝜇 (𝑑0)

= 𝜇
𝜔SI,FSR

𝑐0
2𝑛air (𝑑 − 𝑑0) +

𝜔SI,0

𝑐0
2𝑛air (𝑑 − 𝑑0)

= 𝐷 (𝑑, 𝑑0) 𝜇 + ΔΦ0 (𝑑, 𝑑0) . (D.13)

Note that this subtraction also eliminates contributions of fiber dispersion, see
Section D.4 “Analysis and modelling of fiber dispersion”.
Equation (D.13) exhibits a linear relation between the phase difference ΔΦ𝜇

and the mode index 𝜇 and is used to determine the distance by extracting the
slope of ΔΦ𝜇 as a function of 𝜇. We unwrap ΔΦ𝜇 and fit a straight line to the
measurement by a least-squares fit

min
𝐷,ΔΦ0

∑︁𝑁FC/2

𝜇=−𝑁FC/2+1

(
ΔΦ𝜇,meas − ΔΦ𝜇,fit

)2
,

ΔΦ𝜇,fit = 𝐷 (𝑑, 𝑑0) 𝜇 + ΔΦ0 (𝑑, 𝑑0) . (D.14)
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From the fit coefficient 𝐷 (𝑑, 𝑑0) = 𝜔SI,FSR
𝑐0

2𝑛air (𝑑 − 𝑑0) we extract 𝑑 − 𝑑0. To
this end, the FSR 𝜔SI,FSR is assumed to be accurately known, while the phase
offset ΔΦ0 (𝑑, 𝑑0) in Eq. (D.13) is a fit parameter.

In some cases, it is not practical to directly subtract the phases 𝛿Φ𝜇 (𝑑0)
obtained from the calibration measurement from the phases 𝛿Φ𝜇 (𝑑) obtained
from the measurement to the target. This is, e.g., the case when the calibration
measurement is repeated multiple times, followed by averaging to reduce the
uncertainty of the distance 𝑑0. In this case, it is necessary to first extract the
distance 𝑑0 from the slope of the phase values 𝛿Φ𝜇 (𝑑0) with respect to 𝜇

and then to use this result for averaging and for calibration of all subsequent
measurements to the actual target. It must then be taken into account that both
the phases 𝛿Φ𝜇 (𝑑0) and 𝛿Φ𝜇 (𝑑) do not any more depend strictly linearly on
the mode index 𝜇 due to fiber dispersion. In Eq. (D.12), fiber dispersion enters
through a frequency-dependence of the optical path lengths 𝐿SI,meas, 𝐿LO,meas,
𝐿SI,ref, and 𝐿LO,ref, which leads to a dependence of 𝛿Φ𝜇 on higher powers
of the mode index 𝜇 in addition to the linear dependence which contains the
distances of interest 𝑑0 and 𝑑. The dependence on higher powers of 𝜇 must
also be taken into account when unwrapping the phases 𝛿Φ𝜇 as a function
of 𝜇, e.g., by choosing the 2𝜋-complements of the measured phases such
that the unwrapped phase sequence describes a parabola or a higher-order
polynomial rather than a straight line. Details on the impact of fiber dispersion
and its modelling are described in Section D.4 “Analysis and modelling of fiber
dispersion”.

It is important to note that the calibration measurement for a specific distance
𝑑0 is only valid as long as the internal optical path lengths 𝐿SI,meas, 𝐿LO,meas,
𝐿SI,ref, and 𝐿LO,ref do not change. In practical systems, however, fibers are
subject to environmental influences such as varying temperature or vibration,
leading to a change of the optical path lengths of the order of micrometers
per second per meter [20], see Fig. D.3(e) and the corresponding explanation.
For measurements at highest accuracy over an extended time period, it is
hence important to perform the calibration measurements either simultaneously
with the actual measurement or to continuously repeat them in a sufficiently
quick sequence. This minimizes the associated errors and allows to separate
systematic measurement errors from any drift in the optical setup and the
fibers. In a technical implementation of a measurement system, the impact of
fiber drift can be mitigated by minimizing the fiber lengths, or by introducing
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a calibration mirror into the system. The advantage of a calibration mirror is
exemplified in Fig. D.3(e).

D.2 Tracking of free spectral ranges of frequency
combs

The distance 𝑑 − 𝑑0 as extracted from a linear fit of the phases according to
Eq. (D.14) depends on the line spacing 𝜔SI,FSR of the signal comb, which may
be subject to drift. For a high measurement accuracy, this line spacing must be
continuously tracked. To this end, we first determine the line spacing 𝜔LO,FSR
of the LO comb and then derive 𝜔SI,FSR = 𝜔LO,FSR + Δ𝜔FSR from the known
spacing Δ𝜔FSR of the baseband beat notes. To measure the LO line spacing
𝜔LO,FSR, a part of the LO pump laser light is modulated using a Mach-Zehnder
modulator (MZM) at a fixed frequency 𝑓mod = 30.85 GHz, such that strong
third-order sidebands are generated at 𝜔LO,0 ± 3 × 2𝜋 𝑓mod. The modulated LO
pump signal and the LO comb are superimposed, and the line spacing 𝜔LO,FSR
is derived by measuring the frequency

��𝜔LO,FSR − 3 × 2𝜋 𝑓mod
�� of the RF beat

note, which results from the difference frequency of 𝜔LO,0 ± 3 × 2𝜋 𝑓mod and
the nearest comb lines 𝜔LO,0 ± 𝜔LO,FSR. The accuracy of this measurement is
dictated by the accuracy of the RF frequency references used to generate the
modulation signal and to determine the RF beat note. These references typically
feature relative accuracies of better than 10−7, which can be improved to better
than 10−12 by using commercially available GPS-disciplined oscillators.

D.3 Digital signal processing

For each distance evaluation in our experiment, two time traces (measure-
ment and reference) are recorded using a high-speed real-time oscilloscope
(Keysight DSO-X 93204A) as for analogue-to-digital conversion at a sam-
ple rate of 80 GSa/s and an effective number of bits ENOB ≈ 5. Depending
on the target, the length of the recording varies between 100 𝜇s and 12 ms.
These recordings are then resampled and subdivided into segments, each cor-
responding to a single distance measurement. The minimum length of these
segments for separating the beat notes at Δ𝜔𝜇 = |Δ𝜔0 + 𝜇Δ𝜔FSR | is given by
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Figure D.2: Scheme of digital signal processing for obtaining distance information for a single
distance measurement. First, an FFT of the measurement and the reference time trace is performed.
To avoid aliasing, we choose the observation time 𝑇O to be a multiple of the inverse difference of
the free spectral ranges of the two combs, 𝑇O = 𝜅 (Δ𝜔FSR)−1 , 𝜅 ∈ {1, 2, . . . , 10}. Afterwards,
the phase values of the beat notes Φ𝜇,meas and Φ𝜇,ref are extracted from each spectrum. Then,
their pair-wise difference 𝛿Φ𝜇 is computed according to Eq. (D.12). The slope of the unwrapped
phase differences is extracted via a least-squares fit, from which the distance can be determined.

(2𝜋/Δ𝜔FSR) × 80 GSa/s ≈ 10.4 ns × 80 GSa/s ≈ 800 Sa. Further processing
of these segments follows the theory described in the previous Section D.1
“Mathematical description of distance metrology scheme”, and is illustrated in
Fig. D.2. In a first step, we calculate the Fourier transform of each segment and
read out the phases at the various beat notes. We then subtract the phases of the
reference beat notes from those of the measurement beat notes, see Eq. (D.12),
and unwrap the resulting phase differences, considering a potentially nonlinear
relationship of 𝛿Φ𝜇 (𝑑) on 𝜇 see Section D.4 “Analysis and modelling of fiber
dispersion”. The distance is then evaluated by determining the slope of the
phase differences as a function of the comb line index 𝜇, see Eq. (D.14). The
overall scheme is repeated, until the full time trace has been analyzed.

Note that our measurement technique does not only provide distance values but
also a parameter that indicates the validity of the respective measurement: For
determining the phase slope, a linear function is fitted to the measured phase
differences and the residuals ΔΦ𝜇,meas − ΔΦ𝜇,fit computed. We then calculate
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Table D.1: Percentage of reliable data points of distance measurements.

Measurement
target

Figure showing
measurement

Section of distance
measurement

Percentage of
reliable data
points

Static mirror Fig. D.6(a) Overall 99.97 %
Mirror on
moveable stage

Fig. D.3(b)
(for one position
of target mirror)

100 𝜇s segments
highlighted in Fig. D.3(b)

68 % . . . 99 %

Rotating disk Fig. 5.3(b)

Fig. 5.3(b),
Inset 1

Overall

Bottom of groove

49 % (blue)
43 % (green)
61 % (blue)
80 % (green)

Air gun projectile Fig. 5.3(d) Thickest section:
𝑧 = 1.99 mm . . . 2.40 mm
After waist:
𝑧 = 3.45 mm . . . end
Inclined surface normal:
𝑧 = 0.34 mm . . . 1.99 mm
𝑧 = 2.40 mm . . . 3.32 mm

89 %

67 %

8 %

the Euclidean norm of this phase residual vector and normalize it to the number
of comb lines 𝑁FC,

𝜀 =
1

𝑁FC

√︂∑︁𝑁FC/2

𝜇=−𝑁FC/2+1

(
ΔΦ𝜇,meas − ΔΦ𝜇,fit

)2
. (D.15)

Large values of 𝜀 indicate phase difference values that do not follow a perfect
linear trend, e.g., as a consequence of improper unwrapping of the phase
differences, which may be caused by a weak back-scattered signal that leads to
large phase uncertainties. By defining a threshold value for 𝜀, reliable distance
data 𝐷 ∝ 𝑑 − 𝑑0 according to Eq. (D.14) can be distinguished from their
unreliable counterparts. The percentage of reliable data points depends on the
back-coupled intensity of the respective sample, and is listed in Table D.1 for
the various experiments. As expected, the percentage of reliable data points is
high for plane surfaces with high levels of back-scattered power, but decreases
for weak back-scattering levels that may result from surface tilted with respect
to the axis of the illuminating beam.
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D.4 Analysis and modelling of fiber dispersion

In Eq. (D.12), the optical path lengths 𝐿SI,meas, 𝐿LO,meas, 𝐿SI,ref, and 𝐿LO,ref

depend on the geometric lengths 𝐿 (g)
SI,meas, 𝐿

(g)
LO,meas, 𝐿

(g)
SI,ref, and 𝐿

(g)
LO,ref and the

frequency-dependent effective refractive index 𝑛e (𝜔) of the fibers involved,
which leads to a frequency-dependent propagation constant 𝛽 (𝜔) in the pro-
pagator exp

(
−j (𝜔/𝑐0) 𝑛e (𝜔) 𝐿 (g)

)
= exp

(
−j𝛽 (𝜔) 𝐿 (g)

)
. For analysis and

modelling of fiber dispersion, the frequency-dependent propagation constant
of the optical fibers 𝛽 (𝜔) is expanded into a Taylor series around a reference
frequency 𝜔0,

𝛽 (𝜔) =𝛽 (0)
0 + 𝛽

(1)
0 (𝜔 − 𝜔0) +

1
2
𝛽
(2)
0 (𝜔 − 𝜔0)2 + . . . , (D.16)

𝜔0 =
𝜔LO,0 + 𝜔SI,0

2
, 𝛽

(𝑛)
0 =

d𝑛

d𝜔𝑛
𝛽 (𝜔)

����
𝜔=𝜔0

.

For propagation of the combs in air, we neglect dispersion and assume refractive
index 𝑛air to be constant, leading to a propagation constant of

(
𝜔SI,𝜇/𝑐0

)
𝑛air.

Terminating the Taylor expansion of 𝛽 (𝜔) after the second order, we can derive
the relation between the phase differences 𝛿Φ (𝑑) and the mode index 𝜇 by
using Eqs. (D.10) and (D.11),

𝛿Φ (𝑑) =Φ𝜇,meas −Φ𝜇,ref

=𝛽
(
𝜔SI,𝜇

) (
𝐿
(g)
SI,meas − 𝐿

(g)
SI,ref

)
− 𝛽

(
𝜔LO,𝜇

) (
𝐿
(g)
LO,meas − 𝐿

(g)
LO,ref

)
+

(
𝜔SI,𝜇/𝑐0

)
𝑛air2𝑑

=𝐶0 + 𝜇𝐶1 + 𝜇2𝐶2 + 𝜇
(
𝜔SI,FSR/𝑐0

)
𝑛air2𝑑, (D.17)
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where

𝐶0 =

(
𝛽
(0)
0 + 𝛽

(1)
0

(
𝜔SI,0 − 𝜔0

) ) (
𝐿
(g)
SI,meas − 𝐿

(g)
SI,ref

)
−

(
𝛽
(0)
0 + 𝛽

(1)
0

(
𝜔LO,0 − 𝜔0

) ) (
𝐿
(g)
LO,meas − 𝐿

(g)
LO,ref

)
+ 1

2
𝛽
(2)
0

(
𝜔SI,0 − 𝜔0

)2
(
𝐿
(g)
SI,meas − 𝐿

(g)
SI,ref

)
− 1

2
𝛽
(2)
0

(
𝜔LO,0 − 𝜔0

)2
(
𝐿
(g)
LO,meas − 𝐿

(g)
LO,ref

)
+

(
𝜔SI,0/𝑐0

)
𝑛air2𝑑, (D.18)

𝐶1 = 𝛽
(1)
0 𝜔SI,FSR

(
𝐿
(g)
SI,meas − 𝐿

(g)
SI,ref

)
+ 𝛽

(2)
0

(
𝜔SI,0 − 𝜔0

)
𝜔SI,FSR

(
𝐿
(g)
SI,meas − 𝐿

(g)
SI,ref

)
− 𝛽

(1)
0 𝜔LO,FSR

(
𝐿
(g)
LO,meas − 𝐿

(g)
LO,ref

)
− 𝛽

(2)
0

(
𝜔LO,0 − 𝜔0

)
𝜔LO,FSR

(
𝐿
(g)
LO,meas − 𝐿

(g)
LO,ref

)
, (D.19)

𝐶2 =
1
2
𝛽
(2)
0

(
𝜔2

SI,FSR

(
𝐿
(g)
SI,meas − 𝐿

(g)
SI,ref

)
− 𝜔2

LO,FSR

(
𝐿
(g)
LO,meas − 𝐿

(g)
LO,ref

))
.

(D.20)

According to these equations, the phases 𝛿Φ𝜇 (𝑑) do not only depend line-
arly on the mode index 𝜇, but also include higher orders such as 𝜇2. Note
that considering the Taylor expansion beyond the second order in Eq. (D.16)
would lead to a dependence on 𝜇3, 𝜇4 or higher orders in Eq. (D.17). These
higher-order contributions must also be taken into account when unwrapping
the phases 𝛿Φ𝜇 as a function of 𝜇, e.g., by choosing the 2𝜋-complements
of the measured phases such that the unwrapped phase sequence describes a
parabola or a higher-order polynomial rather than a straight line. Importantly,
the coefficients 𝐶1, 𝐶2,. . . depend only on the fixed setup-internal geometrical
fiber lengths 𝐿 (g)

SI,meas, 𝐿
(g)
LO,meas, 𝐿

(g)
SI,ref, and 𝐿

(g)
LO,ref. The dependence of 𝛿Φ𝜇 (𝑑)

on 𝜇2 and higher orders of 𝜇 can hence be eliminated by performing a calibra-
tion measurement over a specific distance 𝑑0, see Section D.1 “Mathematical
description of the distance metrology scheme”. The constant phase offset 𝐶0
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is currently not taken into account. In future implementations, 𝐶0 could be
used to improve the distance measurement accuracy by complementing the
multi-heterodyne synthetic wavelength interferometry described here by in-
terferometric measurements at the various optical frequencies 𝜔SI,𝜇, provided
that these frequencies are known to sufficient accuracy.

D.5 Distance sweep with pointwise calibration
measurement

To demonstrate the ability of our system to accurately measure distances over
extended ranges without any cyclic error, we measure the distance to a mova-
ble mirror mounted on a high-accuracy feedback-stabilized positioning stage
(Physik Instrumente, M511.HD), which has an accuracy of better than 50 nm.
Signal acquisition for each position takes 45 s so that fiber drift [20] during the
measurement must be taken into account, see the last paragraph of Section D.1
“Mathematical description of the distance metrology scheme” and Fig. D.3(e)
as well as the associated explanations in Chapter 5 on the target position sweep
beyond the unambiguity distance. To separate intrinsic measurement errors of
our technique from any drift of the optical setup, the return signal is switched
by a rotating chopper wheel (RCW) from a movable target mirror (TM) to
a static calibration mirror (CM) and vice versa in intervals of approximately
300 𝜇s, Fig. D.3(a). This is fast enough to eliminate the drift of the 5 m to 10 m
long fiber paths in our setup. Figure D.3(b) shows an exemplary measurement:
Two distinct levels are visible, indicated by orange (densely spaced) points.
The transitions between the levels lead to an unreliable distance information
and are discarded from further analysis. In our measurements, the distance
close to zero refers to the calibration mirror. The difference between the two
levels is computed by evaluating the data at the highest possible acquisition
rate of 96 MHz, by performing an average over the shaded 100 𝜇s wide sec-
tions, and by subtracting both averaged distances. In a first measurement, we
determine the distance difference between target and calibration mirror for the
first arbitrary position of the target mirror and use it as a zero-reference for all
subsequent measurements. The target mirror is then stepped in increments of
50 𝜇m, and the differences between target and calibration mirror distances are
measured. The results are shown in Fig. D.3(c), where the set and measured
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Figure D.3: Distance sweep reaching beyond the unambiguity distance of the system. (a) Experi-
mental setup: The measurement beam leaves the setup via a fiber collimator (COL), is split by a
beam splitter (BS) and sent to two mirrors, one fixed and serving as a calibration mirror (CM),
and the other one mounted to a feedback-stabilized positioning stage, thus acting as a movable
target mirror (TM). A rotating chopper wheel (RCW) ensures that only one signal from either of
these mirrors is coupled back into the system at a certain instant in time. This allows indepen-
dent measurements of the distance to the TM and to the fixed CM. (b) Measurement showing
the distance profile as a function of time. The measured distances to CM and TM are indicated
in orange, separated by noisy transitions (blue) during which signals were received from both
mirrors. These transitions lead to an unreliable distance information and are discarded from fur-
ther analysis. Gray shaded areas show sections over which the respective distance and standard
deviation is evaluated. (c) Distance sweep of the target mirror beyond the unambiguity distance.
Blue crosses denote distances measured by our system, whereas orange diamonds indicate the
distance set by the stage. The unambiguity distance is marked by the gray dashed horizontal line
at 𝑑 ≈ 1500 𝜇m; distance values beyond that line have been unwrapped manually. (d) Residual
deviations (“residuals”) between the measured distance to TM and the set distance. The residuals
are of the same order of magnitude as the 50 nm positioning accuracy of the positioning stage.
Error bars indicate the standard deviation of the residuals. (e) Drift of the distance to the CM as a
function of time. With geometrical fiber lengths between 5 m and 10 m, a typical drift the optical
path length in the order of 𝜇m/(s m) is observed [20].
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positions are compared. The unambiguity distance amounts to about 1.5 mm
and is marked by the gray dashed line.

Fig. D.3(d) shows the residual differences (“residuals”) between the actually
measured position and the distance set by the stage. Note that these residuals
are of the same order of magnitude as the 50 nm positioning accuracy of the
positioning stage, and that no cyclic error can be observed. The error bars in
Fig. D.3(d) represent the standard deviation 𝜎𝑑,diff of the measured distance
difference between the measurement mirror and the calibration mirror. They
are derived from the standard deviation of the measured distances to the target
mirror 𝜎𝑑,TM and the calibration mirror 𝜎𝑑,CM within the gray sections,

𝜎𝑑,diff =

√︃
𝜎2
𝑑,TM + 𝜎2

𝑑,CM. (D.21)

Fig. D.3(e) shows the drift of the distance to calibration mirror position during
the measurement, which is of the order of 15 𝜇m and which we attribute to
thermal drift of he optical path lengths of the fibers [20]. Neighboring data
points were taken at intervals of approximately 45 s, dictated by the settling
time of the stage and by the data acquisition speed.

D.6 Recording data for projectile measurements

To record a time trace of the signal scattered back from the projectiles,
Fig. 5.3(c)-(e) in Chapter 5, the high-speed oscilloscope is configured to conti-
nuously acquire data and to record a sequence of defined length upon a trigger
event. The stored sequence is defined to start 50 𝜇s before the trigger event
and to end 50 𝜇s after the event. The oscilloscope trigger is then set to a level
slightly above the signal retrieved from a reference mirror that is positioned
behind the flight path of the projectiles. Triggering occurs as soon as the pro-
jectile enters the laser beam. Moving at a speed of 150 m/s, it takes around
50 𝜇s for the 7.5 mm-long projectile to pass the beam. We can hence be sure
that the entire profile is captured by the 100 𝜇s recording.
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D.7 Kerr soliton frequency comb generation in
silicon nitride microresonators

Our work relies on integrated silicon-nitride (Si3N4) microresonators for the
generation of dissipative Kerr soliton (DKS) frequency combs, see [21]. The
Si3N4 platform is chosen because of its low optical losses and its compatibili-
ty with large-scale silicon-based processing [24]. The microresonators have a
waveguide height of 800 nm to achieve anomalous group velocity dispersion,
and are fabricated using the photonic Damascene process [85]. Neighboring
resonances are spaced by approximately 95.8 GHz and have intrinsic quality
(Q) factors exceeding 106. Dissipative Kerr soliton combs are established by
linearly sweeping [21] the external-cavity pump laser through its nearest ring
resonance from a blue-detuned wavelength to a predefined red-detuned wave-
length [21]. This leads initially to the generation of a modulation-instability
Kerr comb followed by DKS states once the resonance is crossed. Importantly,
as soon as a multiple-soliton comb state is generated, the transition to a single-
soliton state can be accomplished in a reliable and deterministic manner [120]
by adjusting the laser frequency using the “backward tuning technique”, which
enables to selectively extinguish solitons, one by one until the single soliton
state has been reached. Figure D.4 shows the experimental setup used for DKS
generation. The soliton comb states are remarkably stable for many hours in
a laboratory environment – even without employing any active stabilization
techniques, such as locking of the laser Kerr shifted cavity detuning [J5]. This
property is key to our distance measurements.

D.8 Measurement precision

The measurement precision2 of our technique depends on the number of comb
lines, the optical bandwidth that is covered by these combs, and on the power in
the comb lines. In the following, we derive a relationship between the standard
deviation 𝜎𝑑 of the measured distance 𝑑, the number 𝑁FC of comb lines, the

2 In the supplementary information of [J3], the text refers to the measurement “accuracy”, however
in the terminology of this thesis, the underlying physical quantity is the measurement “precision”
and therefore the text changed where applicable, see also Chapter 5.
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Figure D.4: Principle of soliton frequency comb generation in a high-Q silicon nitride (Si3N4)
microresonator. The integrated photonic microresonator is pumped by a tunable continuous-wave
(CW) laser, which is amplified by an erbium-doped fiber amplifier (Optical amplifier). A fiber
polarization controller (PC) is used to optimize the power in the bus waveguide. Lensed fibers
(LF) are used to couple light to the chip. After the microresonator, a notch filter suppresses
remaining pump light, and an isolator prevents back-propagation of backscattered pump light.
The insets show scanning electron microscope images of a Si3N4 microresonator with a radius
of 240 𝜇m. The checkerboard pattern around the bus and the ring waveguide results from the
photonic Damascene fabrication process [85]. The left-hand side insets display cross-sections of
the resonator waveguide at positions as indicated by the red arrows. The waveguide dimensions
are 0.8 𝜇m × 1.65 𝜇m at the coupling point (top), while the tapered section with a cross-section
of 0.8 𝜇m × 0.6 𝜇m acts as a local mode filter and suppresses higher-order modes [224] while
preserving a high optical quality factor (𝑄 ≈ 106). (Figure adapted from [J5]).

optical bandwidth ΩSI,tot = 𝑁FC𝜔SI,FSR of the signal comb, and the standard
deviation 𝜎𝜙 associated with measuring the optical phases of the various comb
lines. According to Eq. (D.13), the relation between the ideal phase valuesΔΦ𝜇

and the distance (𝑑 − 𝑑0) is given by

ΔΦ𝜇 =ΔΦ0 (𝑑, 𝑑0) + 𝜇𝐷 (𝑑, 𝑑0) , 𝐷 (𝑑, 𝑑0) =
𝜔SI,FSR

𝑐0
2𝑛air (𝑑 − 𝑑0) .

(D.22)
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In the experiment, the estimation of 𝐷 relies on actually measured phase
values ΔΦ

(meas)
𝜇 that contain phase noise 𝜙n,𝜇 representing the difference of

the random phases of signal and LO line 𝜇, so Eq. (D.22) becomes

ΔΦ
(meas)
𝜇 = ΔΦ0 + 𝜇𝐷 + 𝜙n,𝜇 . (D.23)

The phase noise 𝜙n,𝜇 will lead to stochastic errors of the extracted slope
𝐷. In the following, we assume that the phase noise contributions 𝜙n,𝜇 are
dominated by the uncertainty of the phases 𝛿Φ𝜇 (𝑑), which are obtained from
the measurement of the distance 𝑑 to the target, and not by the uncertainty of
the phases 𝛿Φ𝜇 (𝑑0) that are related to the calibration measurement to a target
at distance 𝑑0. This is justified by the fact that the calibration measurement
to a static target can be performed at a much smaller acquisition rate and
hence much bigger averaging times than the distance measurement to a rapidly
moving target. We further assume that all noise contributions 𝜙n,𝜇 of the comb
lines feature the same stochastic distribution and that they are statistically
independent as well as mean-free. The standard deviation is denoted by 𝜎𝜙,𝜇 =

𝜎𝜙∀𝜇 . The confidence interval of a slope 𝐷 estimated from a linear regression
of noisy ordinate data is proportional to the variance 𝜎2

𝐷
of the slope, which,

according to [225] can be expressed as

𝜎2
𝐷 =

𝜎2
𝜙∑𝑁FC

𝜇=1 (𝜇 − 𝜇)2 . (D.24)

In this relation, 𝜇 denotes the mean of all abscissa values used for the regression.
In the denominator of Eq. (D.24), the frequency index 𝜇 has been chosen to
vary between 1 and 𝑁FC to simplify the subsequent derivation. This differs from
the convention used in the context of Eqs. (D.1) and (D.2), where 𝜇 could also
assume negative values. Note that, by substituting the index, any other range
of integers can be chosen, e.g., between − (𝑁FC − 1) /2 and + (𝑁FC − 1) /2
for odd integers 𝑁FC, without changing the validity of the final results of this
analysis. For the range chosen here, the mean value 𝜇 is given by

𝜇 =
𝑁FC + 1

2
. (D.25)
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The denominator of Eq. (D.24) can thus be simplified to∑︁𝑁FC

𝜇=1
(𝜇 − 𝜇)2

=
𝑁FC

(
𝑁2

FC − 1
)

12
≈

𝑁3
FC

12
for 𝑁FC ≫ 1. (D.26)

With that, we can estimate the standard deviation 𝜎𝑑 of the measured distance
𝑑 using Eq. (D.22),

𝜎𝑑 =
𝑐0

2𝜔SI,FSR𝑛air
𝜎𝐷 =

√︄
12
𝑁3

FC

𝑐0
2𝜔SI,FSR𝑛air

𝜎𝜙 =

√︂
3

𝑁FC

𝑐0
ΩSI,tot𝑛air

𝜎𝜙 .

(D.27)

For high-speed sampling, the number 𝑁FC of optical lines is limited since a
minimum observation time 𝑇O,min = 2𝜋/Δ𝜔FSR ≥ 𝑁FC/ 𝑓ADC is required to
spectrally resolve the various baseband beat notes by a Fourier transformation,
where 𝑓ADC is the maximum analog bandwidth that the analogue-to-digital
converter (ADC) of our oscilloscope can acquire. For a fixed total number
𝑁FC of optical lines and a given standard deviation 𝜎𝜙 of measured phase
differences, the only option that remains for improving the measurement pre-
cision is thus to increase the overall optical bandwidth ΩSI,tot = 𝑁FC𝜔SI,FSR
of the comb, which requires a comb source that provides a large free spectral
range 𝜔SI,FSR. DKS combs generated in microresonators stand out due to a
unique combination of large optical bandwidth and large FSR, and are ther-
efore perfectly suited for simultaneously achieving high acquisition rates and
high measurement precision. Note that a large FSR is unavoidably linked to
a small unambiguity distance 𝑑ua = (𝑐0/2𝑛air) 2𝜋/𝜔SI,FSR. For covering large
measurement ranges, DKS-based distance metrology schemes hence need to
be combined with simple, less accurate measurement techniques that allow
selecting the correct unambiguity interval.

D.9 Fundamental limits of distance measurement
precision

As described in the previous section, the standard deviation 𝜎𝑑 of the measured
distance is proportional to the standard deviation 𝜎𝜙 associated with the phase
measurements of the individual beat notes. In the following, we estimate the
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fundamental limit of the standard deviation of the distance measurement.
For an ideal comb generator without intensity noise or excess phase noise
and for an ideal photodetector without thermal noise, this standard deviation is
ultimately determined by quantum noise (shot noise). As before, we assume that
the noise contributions from different comb lines feature the same stochastic
(Poisson) distribution and that they are statistically independent. We further
assume that the noise contributions of the recorded phases on the measurement
photodetector are statistically independent from the noise contributions of
the recorded phases on the reference photodetector, such that the associated
variances 𝜎2

𝜙,meas and 𝜎2
𝜙,ref can be added to obtain the standard deviation

associated with the phase difference, 𝜎2
𝜙
= 𝜎2

𝜙,meas +𝜎2
𝜙,ref. For simplicity, we

further assume that the noise of the phase measurements is the same on both
photodetectors, 𝜎2

𝜙,meas = 𝜎2
𝜙,ref that the optical power within each comb is

distributed equally among all lines, 𝑃SI,𝜇 = 𝑃SI/𝑁FC, 𝑃LO,𝜇 = 𝑃LO/𝑁FC, and
that the total optical power of the two combs is equal, 𝑃SI = 𝑃LO = 𝑃FC. As
described in [226], the variance of the phase is related to the signal-to-noise
ratio (SNR) of the signal according to

𝜎2
𝜙,meas/ref =

1
2 SNR

, 𝜎2
𝜙 = 𝜎2

𝜙,meas + 𝜎2
𝜙,ref =

1
SNR

. (D.28)

For the SNR, we find the expression

SNR = 2
R2 (𝑃FC/𝑁FC)2

𝜎2
n,shot

, 𝜎2
n,shot = 2𝑞eR (2𝑃FC) 𝐵eval. (D.29)

Note that the shot noise contribution 𝜎2
n,shot is dictated by the total power

2𝑃FC that is incident on the detector from both combs, and by the evaluation
bandwidth 𝐵eval (reciprocal observation time). For the variance of the phase
difference we obtain

𝜎2
𝜙 = 2𝑞e

𝑁2
FC

R𝑃FC
𝐵eval. (D.30)
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Substituting Eq. (D.30) into Eq. (D.27), the variance of the measured distance
can be estimated,

𝜎2
𝑑,shot =

3
𝑁3

FC

𝑐2
0

𝜔2
SI,FSR𝑛

2
air

2𝑞e
𝑁2

FC
R𝑃FC

𝐵eval = 6
𝑞e𝑐

2
0

𝑁FC𝜔
2
SI,FSR𝑛

2
air

𝐵eval
R𝑃FC

. (D.31)

According to Eq. (D.31), the variance increases in proportion to the evaluation
bandwidth 𝐵eval, and it decreases with the total power 𝑃FC of each comb, with
the line spacing 𝜔SI,FSR, and with the number 𝑁FC of comb lines. Assuming
a responsivity of R = 0.5 A/W, an FFT bin width of 𝐵eval = 100 MHz, a
number of 𝑁FC = 100 evaluated comb lines as well as a frequency comb mode
spacing of 𝜔SI,FSR = 2𝜋 × 100 GHz (Rounded experimental parameters for the
measurement towards a static mirror), Fig. D.5 shows the corresponding shot-
noise limited distance uncertainty for comb powers from 1 mW to 100 mW
at each photodetector. For a total comb power of each comb of 9 mW, i.e. of
4.5 mW at each of the two detectors, we find a measurement uncertainty of
𝜎𝑑,shot = 9.9 nm. Relating this value to an unambiguity distance of 1.5 mm,
the relative standard deviation amounts to 6.6 × 10−6. In practice, an optical
amplifier is required for achieving a total comb power of 200 mW, and this
will contribute additional noise. The red line in Fig. D.5 shows the distance
uncertainties, if the noise factor 2 (3 dB) of an ideal optical amplifier is taken
into consideration. Its noise reduces the SNR by a factor of 2, and therefore
the distance uncertainties increase by a factor of

√
2.

D.10 Experimentally obtained standard deviation
of measured distance

In practice, the standard deviation of the measured distance and therefore the
measurement precision is impacted by slow thermal drift and by acoustic vi-
brations of the fiber-optic setup. These influences become relevant for large
averaging times only. This is expressed by the Allan deviation depicted in
Fig. 5.2(d) in Chapter 5. For a detailed analysis of the precision of the system,
we need to eliminate the influence of thermal drift and acoustic vibrations
from the noise-related inaccuracy of the optical ranging system itself. This is
done by measuring the distance to a static target over an extended period of
time, and by applying a high-pass filter to the acquired sequence of computed

260



D.10 Experimentally obtained standard deviation of measured distance

Figure D.5: Standard deviation 𝜎𝑑,shot of the distance measurements for shot-noise-limited re-
ception as a function of the individual comb power 𝑃FC that reaches each of the reference and
the measurement detector pair. Noise recorded in the photocurrents of both detectors leads to an
uncertainty of extracted phase values and therefore to uncertainties of the associated distance.
For our calculations, we assumed signal and LO combs, each consisting of 100 lines with iden-
tical power. The free spectral range of the signal comb amounts to 100 GHz, the responsivity
of the photodetector is 0.5 A/W, and the sampling rate for the distance acquisition amounts to
Δ 𝑓 = 100 MHz. The blue line corresponds to the ideal case, where measurement is only impaired
by the shot noise (quantum noise) of the photocurrent. For the orange line, we assumed an ideal
optical amplifier with a noise figure of 3 dB that decreases the SNR by a factor of 2 and hence
causes an increase of the distance uncertainly by a factor of

√
2.

distances. Figure D.6(a) shows the originally measured distance (top) and its
high-pass-filtered counterpart (bottom). The Allan deviation of the original
measurement data exhibits a decrease for small averaging times and a drift-
and vibration-induced increase for large averaging times, see blue trace in
Fig. D.6(b). When applying the high-pass filter, the impact of drift and vibra-
tions can be eliminated, leading to a steady decrease of the Allan deviation
with increasing averaging time, see orange trace in Fig. D.6(b). In this case, the
Allan deviation behaves similarly as the standard deviation, Fig. D.6(c), assum-
ing values of 284 nm for the highest measurement rate of 96.4 MHz (averaging
time of 10.4 ns) and decreasing to 5 nm for an averaging time of 100 𝜇s. This is
clearly better than the precision value obtained in the actual experiment for the
same averaging time, see Section D.5 “Distance sweep with pointwise calibra-
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Figure D.6: Standard deviation and Allan deviation as a function of the averaging time for distance
measurements towards a static target. (a) Originally measured distance (top) and its high-pass-
filtered counterpart (bottom). (b) Allan deviation as a function of averaging time. The Allan
deviation of the original measurement decreases going from small to intermediate averaging
times, before drift and vibrations induce an increase when the averaging times increase, see blue
curve. By applying the high-pass filter, the impact of drift and vibrations is eliminated, leading
to a continuous decrease of the Allan deviation for larger averaging times, see orange curve. (c)
Standard deviation as a function of averaging time. The standard deviation of the high-pass filtered
distance measurement behaves similarly as the respective Allan deviation, assuming a value of
284 nm for the highest measurement rate of 96.4 MHz (averaging time 10.4 ns), and decreasing to
5 nm for an averaging time of 100 𝜇s. In contrast, the standard deviation of the original, unfiltered
distance measurement never falls below 300 nm due to drift and vibrations.

tion measurement”. We may hence conclude that the experimentally observed
precision is limited by fiber drift and vibrations rather than by noise in the de-
tected signal. For the experimental parameters listed above and comb powers
of 11 mW at each balanced detector, a minimum measurement uncertainty of
0.09 nm could be obtained, including the consideration of an ideal EDFA. This
is significantly better than the 5 nm obtained in the experiment, indicating that
there is further room for improving the precision.

[End of supplementary information of publication [J3]]
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E Dual-comb ranging under the
influence of high optical
round-trip losses

The Sections E.1 to E.7 in this chapter have been published as supplementary
information of the publication [J4]. They are adapted to fit the layout, structure
and notation of this dissertation. Sections E.8 and E.9 contain an additional
analysis investigating the trade-off of a dual-comb LiDAR system between
its sampling rate, precision, free-space loss tolerance, and maximum target
distance.

[Start of supplementary information of manuscript [J4]]

E.1 Free-space optical setup for compensation
of fiber drift

For the ranging experiments described in Section 6.4 of Chapter 6, we compen-
sate thermally and mechanically induced drift of the fiber lengths by periodi-
cally measuring the length of a fixed reference path and by comparing it to the
measured path length to the target mirror. The corresponding setup is shown
in Fig. E.1. Light from the transmitter is guided to an optical output collimator
(COLO) and emitted as a free-space beam. Neutral-density filters (ATT) are
used to adjust the power of the free-space beam. The beam is split into two
parts at a beam splitter (BS), and both parts are guided towards the optical input
collimator (COLI) and from there to the receiver (Rx). The gray path serves as
a fixed reference, whereas the red beam is guided towards the target mirror, re-
flected, and sent to the input collimator. A chopper wheel (CPW) alternatingly
blocks the red and the gray beam with a frequency of 2 kHz. Comparing the
path length 𝑑tar to the fixed reference length 𝑑fix on a timescale of less than a
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Figure E.1: Free-space optical setup used for compensating thermally and mechanically induced
drift of the fiber lengths during the ranging experiments. Light is emitted from the transmitter (Tx,
left) and guided to an output collimator (COLO) by optical fibers. The emitted light is guided to the
receiver (Rx, right) via two different paths. One path serves as static reference with a fixed length
2𝑑fix (gray), while the beam following the other path (red) is guided towards the target, traveling a
distance of 2𝑑tar before reaching the input collimator COLI. A combination of beam splitters (BS)
and a rotating chopper wheel (CPW) allows to alternate between the two paths with a frequency
of 2 kHz. Comparing the distance 𝑑tar to the fixed reference distance 𝑑fix on a timescale of less
than a millisecond allows to greatly reduce the drift of the fiber lengths. Optical power levels can
be adjusted via variable neutral density filters (ATT). Details on the components that were used in
the setup can be found in Section E.7.

millisecond allows to eliminate drift of the fiber lengths, which can amount to
several micrometers on a time-scale of minutes [J3]. Note that we introduced
a factor of 2 into the definition of the beam path lengths to account for the
back- and forth-propagation to the target mirror. As a consequence, the overall
length of the red beam path is denoted as 2𝑑tar, whereas the overall length of
the gray path is 2𝑑fix. A movement of the target mirror by a small increment Δ𝑧
hence leads to an equivalent change of the difference 𝑑tar − 𝑑fix. Further details
regarding the components used in our experiments can be found in Section E.7.

E.2 Selection of reliable distance data by fit error

As described in Section 6.3 of Chapter 6, every distance data point 𝑑 is the
result of a linear fit to a set of unwrapped phases 𝛿Φ𝜇 of 𝜇 beat signals. The
quality of the fit is given by the fit error 𝜀 defined in Eq. (6.5) of Chapter 6.
For low received optical powers, the associated beat signals are weak and the
extracted phases are distorted by shot noise of the LO comb, by thermal noise
of the receiver electronics, and by noise of the analog-to-digital-converters,
see Sections E.3 and E.4 for details. As a result, the unwrapped phase values
cannot be fitted by a straight line and therefore the error 𝜀 of the linear fit will
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be high. To identify unreliable data points in a sequence of measured distances
𝑑𝑖 , 𝑖 = 1, 2, 3 . . . , we introduce an adaptive local threshold 𝜀th,loc (𝑑𝑖) that
distinguishes between reliable (𝜀(𝑑𝑖) < 𝜀th,loc (𝑑𝑖)) and unreliable (𝜀(𝑑𝑖) >

𝜀th,loc (𝑑𝑖)) data points. The adaptive threshold 𝜀th,loc (𝑑𝑖) is defined by a moving
average of the fit error over an interval of 𝑁𝑑 measurements that is centered at
the data point of interest 𝑑𝑖 and by a constant offset 𝜀th,o,

𝜀th,loc (𝑑𝑖) = 𝜀(𝑑𝑖) + 𝜀th,o, 𝜀(𝑑𝑖) =
1
𝑁𝑑

𝑖+⌊𝑁𝑑/2⌋∑︁
𝑚=𝑖+⌊−𝑁𝑑/2⌋+1

𝜀(𝑑𝑚), (E.1)

where the floor operator ⌊•⌋ denotes the nearest smaller integer. The threshold
offset accounts for the fact that the fit errors 𝜀(𝑑𝑖) are approximately sym-
metrically distributed above and below the local moving average 𝜀(𝑑𝑖), and
that data points with an error slightly above the local moving average can still
be regarded reliable. Note that, when used in real-time systems, this procedu-
re leads to a latency of 𝑁𝑑/2 data points. This can be avoided by averaging
over 𝑁𝑑 values of the fit errors 𝜀(𝑑𝑖) that precede the actual data point of
interest instead of averaging around this data point, as described in Eq. (E.1).
In addition to the adaptive local threshold 𝜀th,loc (𝑑𝑖), we introduce a global
upper threshold 𝜀th,up that is used in case the fit errors become too large. The
upper threshold accounts for the fact that, in case of very noisy data, the local
moving average 𝜀(𝑑𝑖) may become too large and cannot be used as a base for
determining the threshold for the acceptable fit error. Conversely, in case of
high received power levels, the mean error can become very small, and there is
no reason to reject any data points. This is taken into account by global lower
threshold 𝜀th,lo. The overall threshold 𝜀th for the fit error of a data point 𝑑𝑖 can
hence be defined by

𝜀th (𝑑𝑖) =


𝜀th,up for 𝜀th,loc (𝑑𝑖) ≥ 𝜀th,up

𝜀th,lo for 𝜀th,loc (𝑑𝑖) ≤ 𝜀th,lo

𝜀th,loc (𝑑𝑖) else
. (E.2)

According to Eq. (6.5) in Chapter 6, all measurements with an error 𝜀(𝑑𝑖) ≥ 𝜀th
are discarded. In our evaluation, we chose 𝑁𝑑 = 101, 𝜀th,o = 0.01 × 2𝜋,
𝜀th,up = 0.16 × 2𝜋 and 𝜀th,lo = 0.02 × 2𝜋, which were found to lead to a good
trade-off between rejection of reliable and acceptance of unreliable data points
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Figure E.2: Distance data points and fit error for cross-sectional characterization of flying projectile,
see Section 6.5 in Chapter 6. (a) Distance data points as a function of measurement time. Red dots
indicate accepted distance values and blue dots represent discarded data points. (b) Fit error
associated with the various distance data points. Red points below the fit-error threshold 𝜀th (𝑑𝑖)
according to Eq. (E.2) (green curve) are considered accepted, whereas blue dots above the green
line are discarded. The horizontal dashed lines indicate the global upper and lower thresholds
𝜀th,up = 0.16 × 2𝜋 and 𝜀th,lo = 0.02 × 2𝜋 for the fit error.

over a large range of received power levels. The values for the global limits
𝜀th,up and 𝜀th,lo as well as the offset 𝛾 and the number 𝑁𝑑 of samples in the
moving average are fixed parameters of our measurement system, which may
be adapted to the respective application, finding a favorable trade-off between
the number of accepted data points, the ability of the system to quickly adapt
to new overall levels of the fit error, and the quality of the obtained distance
data points.

In Fig. E.2 we show how this selection of distance data points affects the
final result. Figure E.2(a) shows the distance profile obtained from a flying
projectile moving at a speed of 150 m s−1 as a function of measurement time,
see Section 6.5 in Chapter 6 for more details. The red dots indicate accepted
distance values where 𝜀(𝑑𝑖) < 𝜀th (𝑑𝑖), and the blue dots represent discarded
data points where 𝜀(𝑑𝑖) ≥ 𝜀th (𝑑𝑖). The most unreliable distance data points
𝑑𝑖 are found at the beginning of the measurement, i. e., at the tip of the
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projectile, where the scattering surface is strongly inclined with respect to the
measurement beam axis and thus only a small fraction of the incident power
re-enters the system. Figure E.2(b) depicts the associated fit errors – the green
curve indicates the fit-error thresholds 𝜀th (𝑑𝑖), whereas blue dots correspond
to discarded and red dots to accepted distance data points.

E.3 Noise impairments of recorded signals

In the following we investigate the impact of noise on our recorded signals and
on the extracted distance values described in Sections 6.4 and 6.5 of Chapter 6
and we identify the most relevant noise sources. To this end, we assume that the
receiver of each optical signal consists of a balanced photodetector (BD), an
electrical amplifier (EA) as well as an analogue-to-digital converter (ADC), see
Fig. E.3. We assume that the gain of the electrical amplifier is automatically
controlled such that the full voltage range of the ADC is used during the
recording of the signals. The photodetector is characterized by its responsivity
R, and the electrical amplifier by its gain 𝐺 and its noise figure 𝐹n.

In our distance measurements, we determine the phase of beat notes in RF
signals generated by the measurement and reference photodetectors. For sim-
plicity, we assume that the power of the signal and the LO optical comb 𝑃SI and
𝑃LO is evenly distributed across all 𝑁FC comb lines, such that the power per
line amounts to 𝑃SI/𝑁FC and 𝑃LO/𝑁FC, respectively. For a given photodetector
responsivity R and a system impedance of 𝑍 = 50Ω, the RF power 𝑃RF of the
beat signals on the reference (subscript “ref”) and the measurement (subscript
“meas”) photodetector can be written as [J3]

𝑃RF,meas =
𝑍

2
2R𝑃SI,meas

𝑁FC

2R𝑃LO,meas

𝑁FC
, (E.3)

𝑃RF,ref =
𝑍

2
2R𝑃SI,ref

𝑁FC

2R𝑃LO,ref

𝑁FC
. (E.4)

Clearly, the power of the RF beat signals strongly depends on the power of
the signal and the LO comb lines received at the respective detector. In the
following, we estimate the ranging accuracy that can be achieved for low
levels of received optical power on the measurement detector. In this case,
the associated beat signal on the measurement detector is weak and heavily
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Figure E.3: Model of the receiver system. The optical signal powers of the signal (SI) and the
local oscillator (LO) comb on the balanced measurement and reference photodetectors BDM and
BDR are denoted as 𝑃SI,meas, 𝑃LO,meas, 𝑃SI,ref and 𝑃LO,ref, respectively. The photodetector output
signals are fed to electrical amplifiers (EA) and recorded by a pair of analogue-to-digital converters
(ADC). Noise may arise from the inherent shot noise of the photodetection process, from thermal
noise of the electric amplifier, and from quantization noise of the ADC.

impaired by noise. We may hence restrict our analysis to the measurement
detector, while assuming a ’perfect’ beat signal on the reference detector. We
further assume that the recorded RF signals are only impaired by shot noise with
RF power 𝑃n,shot and thermal noise with power 𝑃n,ther. The associated signal-
to-noise ratio (SNR) of the photocurrent from the measurement detector then
reads

SNR = SNRRF,meas =
𝑃RF,meas

𝑃n,shot + 𝑃n,ther
. (E.5)

The shot noise is dominated by the contribution of the LO comb, which has
usually contributes a much higher optical power on the photodetector than the
SI comb, 𝑃SI ≪ 𝑃LO. Given a 𝑍 = 50Ω termination and a noise bandwidthΔ 𝑓n
which is approximately equal to the evaluation bandwidth 𝐵eval, Δ 𝑓n ≈ 𝐵eval,
the shot-noise power after amplification can be written as

𝑃n,shot = 𝑍 2𝑞eR𝑃LOΔ 𝑓n 𝐺. (E.6)

where 𝑞e is the elementary charge. Thermal noise is generated in the internal
50Ω impedance of the photodetector circuit and in the subsequent electrical
amplifier. For a given system temperature 𝑇 and an amplifier noise figure 𝐹n,
the total thermal noise power at the amplifier output can be written as

𝑃n,ther = 𝑘B𝑇 Δ 𝑓n 𝐺 𝐹n. (E.7)

where 𝑘B denotes the Boltzmann constant.
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Comparing Eqs. (E.6) and (E.7) shows that the system can always be operated
in its shot-noise limited regime, 𝑃n,shot > 𝑃n,ther, provided that the LO power is
sufficiently high. Specifically, for a photodiode responsivity of R = 0.5 A W−1,
an amplifier noise figure of 𝐹n = 3 (5 dB), and a system operated at room
temperature (𝑘B𝑇 = 25 meV), we find that shot-noise limited reception is
already achieved for comparatively low LO comb powers of 𝑃LO > 1.5 mW.
This holds independently of the amplifier gain 𝐺 and the noise bandwidth Δ 𝑓n.
For shot-noise limited reception, the SNR of the RF signal at the output of the
electrical amplifier amounts to

SNR =
𝑃RF
𝑃n,shot

≈ R𝑃SI

𝑁2
FC𝑞eΔ 𝑓n

. (E.8)

For low received optical signal power 𝑃SI, the SNR according to Eq. (E.8)
can be directly translated into the precision of the distance measurement,
see Section E.4, provided that quantization noise and other impairments of
the ADC can be neglected. In most cases of practical interest, this is a valid
assumption: State-of-the-art ADC with bandwidths of a few GHz offer effective
numbers of bits (ENOB) of approximately 10. This translates into an SNR
of (6.02 ENOB + 1.76) dB = 62 dB that can ultimately be achieved for the
digitized signal, provided that the received signal power is high enough and
that the only relevant signal impairments are those coming from the ADC.
However, this case is not of too much practical interest. Assuming am ENOB
of 10, a responsivity of R = 0.5 A W−1, a comb line number of 𝑁FC = 25 and
a measurement rate1 of Δ 𝑓n = 5 MHz, ADC impairments would only become
visible for relatively high received signal comb powers of more than 1 mW.
For typically received power levels in the microwatt or nanowatt regime, the
ranging performance of properly designed system will thus be limited by shot
noise.

We also analyze the different noise contributions found in our measurements.
To this end, we extract the power spectral density of the spectrally white
background noise that is found in the recorded RF beat signals for different re-
ceived signal comb powers 𝑃SI,meas, see orange dots in Fig. E.4(a). To quantify
the background noise level, we calculate the mean power spectral density in a
frequency range of 24 to 26 GHz, where no beat signals are found, see orange

1 In [J4], the measurement rate is equivalent to the noise bandwidth.
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Figure E.4: Analysis of the different noise contributions found in our measurements. (a) Power
spectral density levels of the measured noise (orange dots), ADC noise (red dots), thermal noise
(grey line), shot noise (light grey dots) and the sum of thermal noise and shot noise (dark grey dots)
for different received signal powers incident on the measurement detector. The labels (b) and (c)
refer to the measurements depicted in the respective subfigure. (b) Power spectral density (PSD)
of an electric signal obtained from the measurement photodetector BDM as shown in Fig. 6.4(a)
in Chapter 6. The orange line indicates the mean noise level extracted in the frequency range
24 − 26 GHz (orange box), and the red dashed lines represents the expected ADC noise floor. For
the incident signal comb power of −5 dBm, the noise floor is clearly limited by ADC noise. (c) RF
beat notes of both MLLDs (blue), shown in Fig. 6.4(b) in Chapter 6. The mean noise floor (orange
line) and the expected ADC noise floor (red dashed line) are again indicated by an orange and a
red dashed line, respectively. The measured spectrum was corrected by a constant offset which
compensates the decay of the frequency response of the oscilloscope towards higher frequencies.
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box in Fig. E.4(b). For comparison, we also extract the expected ADC noise
level (red dots) as well as the expected shot noise level (light grey dots). The
ADC noise level is extracted from the ENOB of 5.0 that is specified by the ma-
nufacturer of the high-speed oscilloscopes (Keysight UXR0804A). The ADC
acquisition range is adapted to the amplitude of the RF beat signals, and the
ADC noise level thus decreases for lower signal comb powers until the smallest
acquisition range is reached at a signal power of approximately −35 dBm. The
shot noise is dominated by the contribution of the LO comb 𝑃LO,meas of 7 dBm
and does hence not vary significantly with the signal comb power. Note that
in this set of measurements, no optical amplifier is used. The estimated shot-
noise levels consider an effective gain figure 𝐺eff of the RF amplifier, which
also contains signal losses occurring in our electronic receiver components
and which was obtained by comparing the expected beat signal power levels
on the measurement detector, see Eq. (E.3), with the recorded signals in our
oscilloscopes. In addition, we consider an additional increase of the measured
shot-noise level by approximately 3 dB due to fact that the high-speed oscillo-
scopes were operated at a sampling rate of only 128 GSa/s with an analogue
antialiasing filter having a bandwidth of approximately 100 GHz. We find that
for high received signal powers of −10 dBm or more, the observed noise in
our experiments can be fully explained with the expected ADC noise, see
Fig. E.4(a). For signal comb powers below −10 dBm, the measured noise rea-
ches a plateau at a power spectral density of approximately −166.5 dBV2Hz−1.
We attribute this noise floor to a combination of shot noise and thermal noise
of our RF amplifier. To confirm this notion, we also extract the power spectral
density of approximately −173 dBV2Hz−1 that is to be expected for the thermal
noise of the RF amplifier (SHF 807), see grey line in Fig. E.4(a), and we add
it to the shot-noise level (grey dots) to obtain the overall noise floor of ap-
proximately −167.5 dBV2Hz−1 (dark grey dots). The thermal noise level was
estimated from the noise figure of the amplifier (𝐹n = 6 dB)2, using again the
effective gain 𝐺eff of our electronic signal chain and taking again into account
an additional increase of the measured noise by approximately 3 dB due to
fact that the anti-aliasing filter was too broadband for the given sampling rate.
We find that the noise level extracted from our measurements approaches the
overall expected noise limit comprising both thermal and shot noise (dark grey

2 For more details, see datasheet of the linear broadband amplifier SHF 807-C, https://www.shf-
communication.com/wpcontent/uploads/datasheets/datasheet_shf_s807_c.pdf (17.10.2021).
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dots) for low received power signal power levels, and we thus conclude that a
combination of shot noise and thermal noise of the RF amplifier represents the
main limitation of our system for low received signal power levels. Based on
our analysis, we believe that the performance presented in our main manuscript
can be further improved by using ADC with higher ENOB and RF amplifiers
with lower noise figure, rendering thermal noise fully negligible compared to
shot noise. In the following section, we estimate the achievable measurement
precision for this scenario.

E.4 Impact of shot noise on the measurement
precision

In [J3], we derived in detail how shot noise is related to the precision of a
dual-comb ranging system, and we only summarize the main findings here. To
extract a distance value 𝑑𝑖 from the measured signals, a straight line fitted is to a
set of 𝜇 = 1, 2, . . . , 𝑁b unwrapped phase differences 𝛿Φ𝜇 (𝑑𝑖) = Φ𝜇,meas (𝑑𝑖)−
Φ𝜇,ref,𝑖 . These phase differences are impaired by random fluctuations, which
we assume to be uncorrelated and to have the same distribution with zero mean
and with a standard deviation 𝜎𝜙 . The standard deviation 𝜎𝑑 of the extracted
distance, as obtained from a linear regression of 𝑁b phase difference values, is
then given by

𝜎𝑑 =

√︄
12
𝑁3

b

𝑐0
2𝜔SI,FSR𝑛air

𝜎𝜙 , (E.9)

see Eq. (S26) in [J3]. Note that it may be advantageous to use only a subset
of 𝑁b comb lines of the overall 𝑁FC available lines for extracting the distance
information and to discard some lines that are strongly impaired by noise. The
standard deviation 𝜎𝜙 of the phase differences is estimated from the standard
deviation 𝜎𝜙,meas of the phases obtained from the signal of the measurement
photodetector and from the standard deviation 𝜎𝜙,ref of the phases obtained
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from the reference photodetector. The quantities 𝜎𝜙,meas and 𝜎𝜙,ref depend on
the respective signal-to-noise ratio (SNR) [226],

𝜎2
𝜙 = 𝜎2

𝜙,meas + 𝜎2
𝜙,ref =

1
2SNRmeas

+ 1
2SNRref

. (E.10)

Note that the relation between the phase variance and the SNR on the respec-
tive detector is only valid for high SNR > 10 and needs to be replaced with a
more precise expression for lower SNR, see Eq. (17) in [226]. Note also that
Eq. (E.10) accounts for the finite SNR of both the reference and the measure-
ment detector. For low received optical power, the standard deviation 𝜎𝜙 of
the phase differences will be dominated by the shot noise on the measurement
detector, see Section E.3 for details.

To estimate SNRmeas, we rely on Eqs. (E.5) and (E.6), and equivalent relations
can be used for estimating SNRref. In both cases, we assume that the LO
power is high enough such that thermal noise of the respective receiver circuit,
Eq. (E.7) can be neglected. If, in addition, an optical amplifier is used to boost
the SI comb power, additional amplified spontaneous emission (ASE) noise
will further degrade the SNR performance. This can be taken into account by
replacing the relation for the shot-noise power at the measurement detector,
Eq. (E.5), by an equivalent relation that accounts for the noise figure 𝐹EDFA of
the EDFA,

SNRmeas =
𝑃RF

𝑃n,shot 𝐹EDFA
. (E.11)

For the EDFA used in our experiments, a noise figure of 5.4 dB (𝐹EDFA = 3.5)
is specified by the manufacturer.

Inserting the SNR for the measurement and the reference detector in Eq. (E.10),
we can use Eq. (E.9) to determine the achievable precision for given comb para-
meters 𝑃SI,meas, 𝑃LO,meas, 𝑃SI,ref, 𝑃LO,ref, 𝜔SI,FSR, 𝑁b, 𝑁FC, a given responsivity
R of the photodetectors, and a given electrical bandwidth Δ 𝑓n. The results are
summarized in Table E.1, specifying the achievable shot-noise limited precis-
ion 𝜎𝑑 for the different setup configurations that are described in Figs. 6.5 and
6.6 of Chapter 6. Note that, for the sake of simplicity, we have rounded some of
the parameters listed in Table E.1 such as the optical powers 𝑃SI,meas, 𝑃LO,meas,
𝑃SI,ref, 𝑃LO,ref, and the FSR 𝜔SI,FSR – the precise values can be found in Chap-
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Table E.1: Achievable measurement precision limited by shot noise.
Experimental parameters are rounded for simplicity.

Measurement No. 1 2 3 4 5 6

EDFA included No No No Yes Yes Yes
𝑃LO,meas [dBm] 7
𝑃LO,ref [dBm] 7
𝑃SI,meas [dBm] 7 −20 −40 5 −20 −40
𝑃SI,ref [dBm] 0

𝑁FC 40
𝑁b 25

Δ 𝑓n = 𝐵eval [MHz] 500 500 50 500 500 50
𝜔SI,FSR/(2𝜋) [GHz] 50

R [A W−1 ] 0.5

𝜎𝑑 [𝜇m] 0.19 1.51 4.74 0.26 2.80 8.82

𝜎exp [𝜇m] 1.85 4.03 16.2 3.52 4.22 14.5

ter 6. For data evaluation, we choose 𝑁b = 26 comb lines which proved to work
best at low optical return powers of the signal comb, whereas the entire comb
consisted of approximately 𝑁FC = 40 lines, see also Fig. 6.2 in Chapter 6. The
electrical bandwidth Δ 𝑓n was equal to the evaluation bandwidth 𝐵eval.

In addition to the theoretically achievable precision 𝜎𝑑 , Table E.1 also specifies
the experimentally demonstrated counterpart 𝜎𝑑,exp. For high optical return
powers, we observe a difference between the achievable and the experimentally
observed standard deviation of about one order of magnitude, which reduces
to a factor of 1.5 – 3.5 at low powers. At high signal powers, we attribute
this to our ADC, which have a rather small ENOB ≈ 5.0 in the frequency
range between 10 GHz and 20 GHz, see Section E.3. As a consequence, the
signal impairments are dominated by ADC noise rather than by shot noise, as
assumed for the theoretical analysis of Table E.1. The observed degradation
of the measurement accuracy of approximately a factor of 10 is consistent
with the fact that, for a received signal power level of 7 dBm, the ADC noise
is approximately 20 dB stronger than the shot noise, see Fig. E.4(a). At lower
received signal powers, this effect becomes less pronounced and thus the
difference between the observed and the estimated distance precision decreases.

274



E.5 Evaluation of unambiguity-distance sweep with fiber drift compensation

E.5 Evaluation of unambiguity-distance sweep
with fiber drift compensation

The unambiguity-distance sweep considered in Section 6.4 of Chapter 6 conta-
ins 16 distances that were consecutively measured over several minutes, where
the time needed for each position was dictated by the data transfer from the tem-
poral memory of our oscilloscope (ADC) to a storage network drive. During
this time, the fiber lengths within our setup drift due to temperature fluctua-
tions and mechanical vibrations, which leads to altered path lengths towards
the target mirror extracted from each data set. To eliminate the effects of fiber
drift, we rely on the referencing scheme described in Fig. E.1, where a chop-
per wheel (CPW) is used to continuously switch between measuring the path
length to the target mirror (red beam path) and the length of static reference
beam path (gray). We set the CPW to a chopping frequency of 2 kHz, which
allows to retrieve the distance to the target and the length of the reference beam
path with a temporal separation of approximately 250 𝜇s. A subtraction of the
two distance values eliminates the impact of slow fiber drifts, which typically
become relevant only over a time scale of several milliseconds.

In Figures E.5 and E.6, we show two distance profiles obtained for two positions
𝑚 = 15 and 𝑚 = 16 of the target mirror, which are separated by 200 𝜇m.
Figure E.5(a) shows the distance profile of the first measurement (𝑚 = 15) for
an evaluation period of 𝐵eval = 1/(10𝑇r). Accepted data points are indicated
in red, whereas discarded data points are shown in blue, for details of the
selection procedure see Section E.2 as well as Chapter 6, Eq. (6.5) and the
text following Eq. (6.5). Two alternating levels are visible, with short transition
times during which the chopper wheel partially blocks both beams such that the
measurement becomes unreliable. The level at 𝑑fix = 2.1536 mm corresponds
to the static reference beam path, whereas the level at 𝑑tar,15 = 1.1229 mm
represents the beam path to the target mirror. Figure E.5(b) shows the fit error
𝜀(𝑑𝑖) as well as the fit-error threshold 𝜀th (𝑑𝑖) for the various measurements,
which exhibit a peak during the transition periods between the levels. Note that
the evaluation of the fit errors allows for selection of reliable measurements
even for partially blocked beams, emphasizing once more the robustness of the
technique.

For further evaluation, we consider an equal number 𝑁accept of accepted di-
stance data points on each level in a temporal range of approximately 100 𝜇s,
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Figure E.5: Evaluation of distance sweep with fiber drift compensation for the position 𝑧stage,15 −
𝑧0 = 3.0 mm (𝑚 = 15) of the target mirror. Fiber drift is eliminated by periodically comparing the
variable distance 𝑑tar to the target with the length 𝑑fix of a fixed free-space reference beam, see
Figure E.1 for details of the setup. The measurement rate amounts to 49.7 MHz. Data points are
accepted (•, red) or discarded (•, blue) based on the respective fit error, see Section E.2 as well
as Chapter 6, Eq. (6.5) and the text following Eq. (6.5). (a) Measured distances for target mirror in
position 𝑧stage,15−𝑧0 = 3.0 mm. Gray boxes mark the data points from which the average distances
𝑑tar,15 and 𝑑fix are calculated. (b) Fit error 𝜀 (𝑑𝑖) (red and blue) and fit error threshold 𝜀th (𝑑𝑖)
(green) of measurement shown in Fig. E.5(a). Fit errors are calculated according to Eq. (6.5) of
Chapter 6 and fit-error thresholds are calculated according to Eqs. (E.1) and (E.2) of this chapter.
The fit error increases in the transition regions where the chopper wheel partially blocks both
beams.

indicated by gray boxes. We compute the point-wise difference of these data
points the upper and the lower level. The mean value of these differences then
gives the path-length difference between the gray and the red beam, reduced by
an integer multiple of the unambiguity distance. For the unambiguity-distance
sweep, we move the target mirror by increments of 200 𝜇m away from the
beam splitter BS2 in Fig. E.1 and thereby increase the length of the associa-
ted free-space beam path. The resulting distance profile for mirror position
𝑚 = 16 is shown in Fig. E.6(a). In this measurement, the measured beam path
length to the target mirror has increased to 𝑑tar,16 = 1.3251 mm, whereas the
measured length of the static beam path has changed only slightly by approxi-
mately 0.8 𝜇m due to fiber drift. Computing and averaging again the point-wise
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Figure E.6: Evaluation of distance sweep with fiber drift compensation for the position 𝑧stage,16 −
𝑧0 = 3.2 mm (𝑚 = 16) of the target mirror. Fiber drift is eliminated by periodically comparing the
variable distance 𝑑tar to the target with the length 𝑑fix of a fixed free-space reference beam, see
Figure E.1 for details of the setup. The measurement rate amounts to 49.7 MHz. Data points are
accepted (•, red) or discarded (•, blue) based on the respective fit error, see Section E.2 as well
as Chapter 6, Eq. (6.5) and the text following Eq. (6.5). (a) Measured distances for target mirror in
position 𝑧stage,16−𝑧0 = 3.2 mm. Gray boxes mark the data points from which the average distances
𝑑tar,16 and 𝑑fix are calculated. (b) Fit error 𝜀 (𝑑𝑖) (red and blue) and fit error threshold 𝜀th (𝑑𝑖)
(green) of measurement shown in Fig. E.6(a). Fit errors are calculated according to Eq. (6.5) of
Chapter 6 and fit-error thresholds are calculated according to Eqs. (E.1) and (E.2) of this chapter.
The fit error increases in the transition regions where the chopper wheel partially blocks both
beams. Between the two measurements for the target positions 𝑚 = 15, see Fig. E.5, and 𝑚 = 16
shown here, the target mirror is moved by 200 𝜇m. This is well reproduced by the measured
increment of 201.4 𝜇m, obtained after accounting for a fiber drift of approximately 0.8 𝜇m.

differences between the measured distances shown in Fig. E.6(a) leads to an
increase of the path-length difference of 201.4 𝜇m, which is in good agreement
with the set increment of the mirror position.
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E.6 One-port ranging system and triggering data
acquisition of projectile measurements

For the high-speed ranging experiments described in Section 6.5 of Chapter 6,
we relied on the system depicted in Fig. E.7. In this system, the optical in-
and output are combined in a single output/input collimator (COL), and a
fiber-optic circulator (CIRC) is used to separate the incoming receive signal
from the outgoing transmit signal. Note that scheme is only useful if spurious
back-reflections of the transmit signal along the path from the circulator to the
target can be neglected – otherwise cyclic errors will occur and a two-port
systems as shown in Fig. 6.3 of Chapter 6 should be used. The SI comb is
split at a 90/10 coupler, and the major part is fed to the circulator and is then
guided to the collimator. After scattering at the target, a small portion of the SI
comb enters the system through the collimator and is then guided towards the
balanced photodetector by the circulator. All other components in this system
are the same as for the two-port ranging system, see Fig. 6.3 in Chapter 6
and Section E.7 for details. The collimator (Thorlabs F280APC-1550, focal
length 𝑓 = 18.75 mm) is coated with an anti-reflective layer designed for the
wavelength range of the SI comb such that the spurious back-coupling into the
attached single-mode fiber can be neglected with respect to the signal returning
from the target.

We use the one-port ranging system to measure surface profiles of flying air-
gun projectiles, see Section 6.5 in Chapter 6. In this experiment, we set our
oscilloscope to continuously record data and to temporarily store the acquired
waveforms in the internal memory. When a projectile passes the measurement
beam, a part of the light is reflected and re-enters the ranging system. This is
visible in the recorded data as a sharp increase of the amplitude of the recorded
signal, which we use as a trigger event. Once triggered, the oscilloscope will
keep the last 50 𝜇s of data in its memory and acquire an additional 50 𝜇s of
data after the trigger event. Given the length of the projectile of approximately
7 mm and its speed of 150 m/s, the projectile will be sampled over a period
of 50 𝜇s. We can hence be sure that the whole projectile has been captured,
independent of the temporal position of the trigger event within the acquired
back-reflection signal of the projectile.
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Figure E.7: One-port ranging system for low-loss measurements. CIRC: Circulator; COL: out-
put/input collimator. All other components are the same as the ones used in the two-port ranging
system shown in Fig. 6.3 in Chapter 6.

E.7 Detailed description of experimental setups

In the following, we provide a full representation of our experimental setups,
see Fig. E.8. Commercial model numbers of specific components are given in
the caption of Fig. E.8.
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Figure E.8: Full representation of the experimental setups used in our work. Optical fibers, in-
dicated as thick red and blue lines, are standard single-mode fibers, unless specified otherwi-
se. Components used in multiple instances with the same model number are mentioned once.
Transmitter (Tx): DC Power supply (DC S): ILX Lightwave LDC-3742, Newport Laser Diode
Controller 6000. Quantum-dash mode-locked laser diode (MLLD): Custom device provided by
Centre de Nanosciences et de Nanotechnologies, Centre national de la recherche scientifique, Uni-
versité Paris-Saclay, Palaiseau, France. Temperature controller (TEC): Newport ILX Lightwave
LTD-5910 / LTD-5910B. Lensed fiber (LF): OZ Optics TSMJ-3A-1550-9/125-1-7-2-12-0.9-AR.
XYZ stage (XYZ): Thorlabs MAX313D. Fiber-optic circulator (CIRC): Thorlabs 6015-3-APC.
Fiber-optic 90/10 coupler (90/10): Thorlabs TN1550R2A2. Optical spectrum analyzer (OSA):
Ando AQ6317B. Erbium-doped fiber amplifier (EDFA): Manlight ML-YEDFA-B-FG-33C33.Two-
port ranging system: Collimator (COL): Thorlabs F280APC-1550. Variable attenuator wheels
(ATT): Thorlabs NDC-50C-2, NDC-50C-2M, partially in combination with neutral density fil-
ters. Beam splitters (BS): E.g., Thorlabs BS018. Silver mirror (M): E.g., Thorlabs PF10-03-P01.
Chopper wheel (CPW): SRS SR540. Nano-precision heavy-duty stage (Stage): Physik Instrumente
M511.HD. One-port ranging system: High-NA lens with focal length of 20 mm (Lens): E.g.,
Thorlabs LB4854-C. Receiver (Rx): Polarization controller (PC): E.g., Thorlabs FPC032. Va-
riable optical attenuator (VOA): E.g., Thorlabs VOA50-APC. 50/50: Fiber-optic 50/50 coupler
(50/50): Thorlabs TN1550R5A2. Balanced photodetector (BD): Finisar BPDV2150R. Electrical
amplifier (EA): SHF 807. Oscilloscope (OSC): Keysight UXR0804A.
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[End of supplementary information of manuscript [J4]]

E.8 Optical scattering losses for target with
Lambertian surface and atmospheric
attenuation

This section discusses the free-space scattering loss occurring for a Lambertian
target [227]. The target is illuminated by a collimated laser beam with beam
area 𝐴beam and power 𝑃beam. The beam reaches the target under an angle 𝜃

with respect to the target normal, and the illuminated area 𝐴illum is given by
𝐴illum = 𝐴beam / cos 𝜃. At the target surface, a fraction of the light is absorbed
and the other fraction reflected. The total reflected power 𝑃beam,R is determined
by the reflectivity 𝜌 ≤ 1, such that 𝑃beam,R = 𝜌𝑃beam. Assuming a spatially
constant intensity of the incoming light across the beam area, and a spatially
constant reflectivity of the illuminated surface, the intensity of the reflected
light 𝐼R at the target surface is constant over the illuminated area and given by

𝐼R =
𝑃beam,R

𝐴illum
=

𝜌𝑃beam
𝐴beam/cos 𝜃

. (E.12)

In the following we assume that the target surface is diffusely reflecting, i.e., it
is a Lambertian surface [227]. The observer views the reflecting target under
the same angle 𝜃 under which the illuminating beam hits the target. For a
Lambertian surface, the radiance 𝐿 of the reflected light, given as reflected
differential power d2𝑃R per apparent differential area d𝐴illum cos 𝜃 and per
differential solid angle dΩ, is a constant,

𝐿 =
d2𝑃R

d𝐴illum cos 𝜃dΩ
=

𝜌𝑃

𝐴beam/cos 𝜃
. (E.13)
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The (near-field) intensity (unit W/m2) of the reflected light at the target is
equal to the radiance integrated over the solid angle Ω of the half space,

𝐼R = 𝐿

∫
Ω

cos 𝜃 dΩ = 𝐿

∫ 2𝜋

𝜑=0

∫ 𝜋/2

𝜃=0
cos 𝜃 sin 𝜃 d𝜃 d𝜑 = 𝐿𝜋. (E.14)

As a consequence, the radiance of the reflected light can be expressed as
𝐿 = 𝐼R/𝜋 = 𝑃beam,R/(𝐴illum𝜋). With this result, we can compute the far-field
intensity 𝑃F (unit W/ sr) of the reflected light by integrating the radiance over
the illuminated target area,

𝑃F = cos 𝜃
∫
𝐴illum

𝐿 d𝐴illum = 𝐴illum 𝑃beam,R/(𝐴illum𝜋) cos 𝜃. (E.15)

In Figure E.9, the cosine dependence of the far-field intensity is depicted as
a function of 𝜃. Only a small part of the totally reflected light re-enters the
ranging system through its input aperture, which we assume as circular with
a radius 𝑟A. The (small) solid angle seen by the aperture is then given by
ΩA = 𝜋𝑟2

A/𝑑
2. The received part 𝑃R,𝑟 of the reflected power is

𝑃R,𝑟 = 𝑃FΩ𝑟 =
𝑃beam,R

𝜋
cos 𝜃

𝜋𝑟2
A

𝑑2 = 𝜌𝑃
𝑟2

A
𝑑2 cos 𝜃. (E.16)

The ratio of the received reflected power and the transmitted power is the
optical round-trip “gain”, 𝛼RT < 1,

𝛼RT =
𝑃R,𝑟

𝑃
= 𝜌

𝑟2
A
𝑑2 cos 𝜃. (E.17)

This expression serves as a lower boundary of the losses to be expected.
Specular reflection [228] can be neglected because of the small receiving
numerical aperture of the ranging system.

Using Eq. (E.17), we can estimate the maximum operating range of a LiDAR
system depending on its power budget, aperture size and target reflectivity. As-
suming a target reflectivity of 𝜌 = 0.1, an aperture radius of 𝑟A = (2.54 cm)/2,
and a target surface normal oriented perpendicularly to the ranging system
input aperture, i.e., 𝜃 = 0, diffuse scattering losses amount to 48 dB for a
target distance of 𝑑 = 1 m. We therefore estimate the working range of our
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Figure E.9: Light scattered from a Lambertian surface. The ranging system aperture radius and
the illuminated area are small compared to the distance 𝑑. Only a part of the scattered light enters
the LiDAR system through its input aperture.

QD-MLLD-based LiDAR system without any optical amplifiers to 1 m for a
sample rate of 50 MHz. In automotive applications, target distances in the order
of 𝑑 = 200 m are of interest [229]. For the same reflectivity as before, a LiDAR
system would need to operate at 94 dB free-space losses. This can be achieved
by, e.g., reducing the sample rate, or by accepting a decreased precision, see
Section E.9 for a more detailed discussion.

E.9 Estimation of lower limit of optical return
power required for distance determination

In a practical scenario, a certain measurement precision of, e.g., at least 1 %
relative to the unambiguity distance should be achieved. In the following we
derive how this is related to a certain optical power that needs to be received
from the target. We define the relative precision 𝜎r as a ratio of the standard
deviation 𝜎𝑑,shot of for distance measurements caused by fundamental shot
noise, and the unambiguity range 𝑑ua,

𝜎𝑑,shot

𝑑ua
= 𝜎r =

√︃
12/𝑁3

b𝑐0/
(
2𝑛air𝜔SI,FSR

)
𝜎𝜙

2𝜋𝑐0/
(
2𝑛air𝜔SI,FSR

)
=

√︃
12/𝑁3

b 𝜎𝜙/(2𝜋) . (E.18)
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For a derivation of Eq. (E.18), see Section D.8. In the following it is assumed
that phase noise 𝜎𝜙 is dominated by noise on the measurement detector, since
the reference phases can be measured over an extended period of time at high
SNR, which results in high phase certainty, see also Appendix D, Section D.8.
As described in Eq. (D.28), the phase uncertainty 𝜎𝜙 is then related to the SNR
on the measurement detector. At high SNR > 10, the phase uncertainty and
the SNR are related via 𝜎𝜙 = 1/(2 SNR) [226]. At low SNR ≤ 10 however,
an explicit formula between the SNR and the phase variance is not given
anymore [226]. For a given required precision 𝜎r and a given number of comb
lines 𝑁b for phase evaluation, we determine the required phase variance𝜎𝜙 and
then implicitly the required SNR (𝜎r) based on Eq. (17) in [226]. At low optical
return powers, shot noise on the measurement detector will be dominated by
the LO comb power, such that the expression for the SNR reads:

𝜎2
n,shot ≈2𝑞eR𝑃LOΔ 𝑓 ,

SNR (𝜎r)
!
=

1
2 (2R𝑃SI/𝑁c) (2R𝑃LO/𝑁c)

2𝑞eR𝑃LOΔ 𝑓
=

R𝑃SI

𝑁2
c 𝑞eΔ 𝑓

. (E.19)

The last equation allows to determine the required optical power 𝑃SI (𝜎r) to
achieve the SNR (𝜎r):

𝑃SI (𝜎r) = SNR (𝜎r) 𝑒𝑁2
cΔ 𝑓 /R . (E.20)

For a relative precision of 𝜎r = 1 %, 𝑁b = 25 evaluation comb lines and
an assumed total comb line count 𝑁c = 𝑁b = 25, the required phase variance
amounts to 𝜎𝜙 = 2𝜋×0.24. This is achieved for an SNR (1 %) = 0.1 (−10 dB).
At a sampling rate of Δ 𝑓 = 500 MHz, this translates into a minimum required
optical return power of the signal comb of 𝑃SI (1 %) = 10 nW (−50 dBm). For
Δ 𝑓 = 50 MHz, the 1 % precision return power decreases to 1 nW (−60 dBm)
and at Δ 𝑓 = 1 MHz to 20 pW (−77 dBm). This indicates that very low optical
return powers can be tolerated with reasonable remaining precision as long as
the sample rate is decreased. If a QD-MLLD is operated at high pump currents
to achieve an optical output power of 50 mW (17 dBm), an overall loss tolerance
of 94 dB may be possible for a QD-MLLD-based ranging system and allow for
the detection of targets at a distance of 200 m or more, see Section E.8.
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