
Indoor Mapping and Reconstruction with
Mobile Augmented Reality Sensor Systems

Zur Erlangung des akademischen Grades eines

DOKTOR-INGENIEURS

von der KIT-Fakultät für
Bauingenieur-, Geo- und Umweltwissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte

DISSERTATION

von MSc.

Patrick Hübner

aus Karlsruhe

Tag der mündlichen Prüfung: 29.10.2021

Referent: Prof. Dr.-Ing. habil. Stefan Hinz
Institut für Photogrammetrie und Fernerkundung (IPF)

Karlsruher Institut für Technologie (KIT)

Korreferent: Prof. Dr. Ir. George Vosselman
Faculty of Geo-Information Science and Earth Observation (ITC)

Department of Earth Observation Science (EOS)
University of Twente

Karlsruhe 2021



Acknowledgment

My sincere gratitude and appreciation

To For

Stefan Hinz Providing the possibility to freely pursue my research interests
Valuable supervision & advice

George Vosselman Being second reviewer of this work
Martin Weinmann
Sven Wursthorn

Invaluable guidance & fruitful discussions
Our shared success, good times & lots of fun

The whole IPF Making this institute what it is
Dennis Haitz
Kristoffer Schneider Persistent proofreading

My parents,
Jürgen & Christiane

Selflessly providing me with a foundation in life,
without which my achievements would not have
been possible in the first place

LisMi Supporting me in the daily struggle
Making life worthwhile

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 4.0 International” license.

i

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en


Abstract
Augmented reality (AR) is generally well-suited for the interactive visualization

of all kinds of virtual, three-dimensional data directly within the physical envi-
ronment surrounding the user. Beyond that, AR holds the potential of not only
visualizing arbitrary virtual objects anywhere but to visualize geospatial data directly
in-situ in the location that the data refer to. Thus it can be used to enrich a part
of the real world surrounding the user with information about this environment and
the physical objects within it. In the scope of this work, this usage mode is defined
and discussed under the term of ’fused reality’.

An appropriate scenario to demonstrate and elaborate on the potential of fused
reality is its application in the context of digital building models, where building
specific information, e.g. about the course of pipelines and cables within the walls,
can be visualized directly in the respective location. In order to realize the envisioned
concept of indoor fused reality, some principal requirements must be fulfilled. Among
these is the need for an appropriate digital model of a building environment at hand
which is to be enriched with virtual content. While building projects are nowadays
oftentimes designed and executed with the help of building information modeling
techniques, appropriate digital representations of older stock buildings are usually
hard to come by. If a corresponding model of a given building environment is
available, the respective AR device needs to be able to determine its current position
and orientation with respect to the model in order to realize a correct registration
of the physical building environment and the virtual content from the model. In
this work, different aspects about how to fulfill these requirements are investigated
and discussed.

First, different ways to map indoor building environments are discussed in order
to acquire raw data for constructing building models. In this context, an investigation
is presented about whether a state-of-the-art AR device can be deployed to this task
as well. In order to generate building models based on this indoor mapping data, a
novel, fully-automated, voxel-based indoor reconstruction method is presented and
evaluated on four datasets with corresponding ground truth data that were acquired
to this aim. Furthermore, different possibilities to localize mobile AR devices within
indoor environments are discussed and the evaluation of a straight-forward, marker-
based approach is presented. Finally, a novel method for aligning indoor mapping
data with the coordinate axes is presented and evaluated.
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Zusammenfassung
Augmented Reality (AR) ermöglicht es, virtuelle, dreidimensionale Inhalte di-

rekt innerhalb der realen Umgebung darzustellen. Anstatt jedoch beliebige virtuelle
Objekte an einem willkürlichen Ort anzuzeigen, kann AR Technologie auch genutzt
werden, um Geodaten in situ an jenem Ort darzustellen, auf den sich die Daten
beziehen. Damit eröffnet AR die Möglichkeit, die reale Welt durch virtuelle, ortbe-
zogene Informationen anzureichern. Im Rahmen der vorliegenen Arbeit wird diese
Spielart von AR als "Fused Reality" definiert und eingehend diskutiert.

Der praktische Mehrwert, den dieses Konzept der Fused Reality bietet, lässt sich
gut am Beispiel seiner Anwendung im Zusammenhang mit digitalen Gebäudemod-
ellen demonstrieren, wo sich gebäudespezifische Informationen - beispielsweise der
Verlauf von Leitungen und Kabeln innerhalb der Wände - lagegerecht am realen
Objekt darstellen lassen. Um das skizzierte Konzept einer Indoor Fused Reality
Anwendung realisieren zu können, müssen einige grundlegende Bedingungen erfüllt
sein. So kann ein bestimmtes Gebäude nur dann mit ortsbezogenen Informationen
augmentiert werden, wenn von diesem Gebäude ein digitales Modell verfügbar ist.
Zwar werden größere Bauprojekt heutzutage oft unter Zuhilfename von Building
Information Modelling (BIM) geplant und durchgeführt, sodass ein digitales Modell
direkt zusammen mit dem realen Gebäude ensteht, jedoch sind im Falle älterer
Bestandsgebäude digitale Modelle meist nicht verfügbar. Ein digitales Modell eines
bestehenden Gebäudes manuell zu erstellen, ist zwar möglich, jedoch mit großem
Aufwand verbunden. Ist ein passendes Gebäudemodell vorhanden, muss ein AR
Gerät außerdem in der Lage sein, die eigene Position und Orientierung im Gebäude
relativ zu diesem Modell bestimmen zu können, um Augmentierungen lagegerecht
anzeigen zu können.

Im Rahmen dieser Arbeit werden diverse Aspekte der angesprochenen Prob-
lematik untersucht und diskutiert. Dabei werden zunächst verschiedene Möglichkeiten
diskutiert, Indoor-Gebäudegeometrie mittels Sensorsystemen zu erfassen. An-
schließend wird eine Untersuchung präsentiert, inwiefern moderne AR Geräte, die
in der Regel ebenfalls über eine Vielzahl an Sensoren verfügen, ebenfalls geeignet
sind, als Indoor-Mapping-Systeme eingesetzt zu werden. Die resultierenden In-
door Mapping Datensätze können daraufhin genutzt werden, um automatisiert
Gebäudemodelle zu rekonstruieren. Zu diesem Zweck wird ein automatisiertes,
voxel-basiertes Indoor-Rekonstruktionsverfahren vorgestellt. Dieses wird außer-
dem auf der Grundlage vierer zu diesem Zweck erfasster Datensätze mit zuge-
hörigen Referenzdaten quantitativ evaluiert. Desweiteren werden verschiedene
Möglichkeiten diskutiert, mobile AR Geräte innerhalb eines Gebäudes und des zuge-
hörigen Gebäudemodells zu lokalisieren. In diesem Kontext wird außerdem auch
die Evaluierung einer Marker-basierten Indoor-Lokalisierungsmethode präsentiert.
Abschließend wird zudem ein neuer Ansatz, Indoor-Mapping Datensätze an den
Achsen des Koordinatensystems auszurichten, vorgestellt.
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Chapter 1

Introduction

1.1 Motivation

Currently, augmented reality (AR) and digital building models are both considerably active fields of
research. Both promise an abundance of innovation and exciting perspectives for future applications.
The topic of this work - the fusion of both these technologies - offers tremendous potential for both
fields. On the one hand, the application within the context of digital building models provides the
possibility to unfold the true potential of augmented reality by demonstrating its capabilities as
an in-situ interface for the visualization of and interaction with geospatial data - directly in the
location the respective geodata refer to. On the other hand, application domains concerned with
digital building models such as architecture, construction, facility management, civil engineering and
navigation can benefit significantly from what augmented reality technology has to offer them.

In this context, we can exemplarily envisage a mechanic, being guided by a navigation system via
audio-visual hints on the way through a large facility complex to the place of commitment. There, a
damage case needs repair work as automatically reported by the intelligent building management
system. Navigation hints can be given by synthetic speech commands but also by the visualization
of arrows and highlighting of relevant parts of the building environment directly within the field
of view of the fictive repair person wearing AR glasses. Arriving at the destination, the faulty
pipelines needing repair work are visualized within the walls, as if by x-ray vision. After executing
the necessary repair work, the mechanic can update the properties of the replaced part of the pipeline
in the digital building model directly in-place by way of gesture and voice commands.

Investigating the technological requirements necessary for realizing this illustrative example for
the potential of applying augmented reality to digital models of building environments is the central
topic of this work. To this aim, various relevant aspects to this theme are examined in the following
chapters. Prior to this, Sec. 1.2 illustrates the fundamental concepts relied upon in this work: digital
building models, augmented reality and the application of the latter in the context of the former.
Subsequently, Sec. 1.3 gives an overview about the following chapters and the structure of this work.

1.2 Fundamental Concepts

This section introduces the fundamental concepts this work relies upon. First, Sec. 1.2.1 gives an
overview of the different ways available to digitally represent building environments and possible
applications thereof. Then, Sec. 1.2.2 presents a discussion on the peculiarities and characteristics of
indoor environments. Afterwards, Sec. 1.2.3 defines the concept of augmented reality and presents
the different technologies available for its realization. Subsequently, in Sec. 1.2.4, the concept of
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fused reality as a theoretical contribution of this work is defined and discussed. Lastly, Sec. 1.2.5
exemplifies the vision of indoor fused reality by illustrating its numerous fields of application and its
potential value therein.

1.2.1 Digital Building Models

In general, a multitude of possibilities exists to digitally represent building environments [102, 327].
One rather straight-forward way is to simply represent buildings directly by the raw data acquired
in-situ when mapping a physically existing building - i.e. by point clouds, triangle meshes or depth
images (see Chap. 2 on indoor mapping). However, this holds some disadvantages as indoor mapping
data - especially point clouds - can quickly amount to large quantities, impeding their storage and
processing. Furthermore, these large amounts of acquired raw data only represent the bare building
geometry as captured by the respective sensors. Thus, they can be subject to a large amount of
measurement noise and incompleteness due to fragmentary acquisition while lacking any immediately
accessible semantic information.

Nonetheless, on some occasions, semantically enriched point clouds have been proposed as an
adequate means of representing buildings or urban environments [465, 460, 463, 149]. This requires
a process of semantic point cloud segmentation [620, 312, 464] which can be applied to structure the
raw point cloud data in a way to make it accessible for semantic queries as e.g. in the case of the
’smart point cloud’ infrastructure proposed by Poux and Billen [463]. As discussed by Döllner [149],
this approach has the advantage that geometric modeling including simplification and abstraction is
avoided. Thus, a large degree of detail and genericity is preserved.

Applying an analogous approach to depth images or RGBD images is in theory also conceivable.
However, while images have been frequently applied to the task of reconstructing building models
[246, 455, 335] (see Chap. 3), so far, pre-structured image data has rarely been used as queriable
representation of building environments. In this context, urban models constituted of georeferenced
depth images were proposed in the context of smart city applications [410].

Still today, 2D floor plans are a commonly used representation of building environments. Tradi-
tionally, they are used in analog, printed form. Due to their printable nature, semantic information is
typically encoded in a way that makes it visually retrievable, i.e. by style conventions or text labels.
Thus, automatically interpreting floor plans is not a straight-forward endeavor [9, 148, 344]. While
analog floor plans are being more and more replaced by digital, three-dimensional representations of
buildings, they are still an important means of architectural analysis of building layouts [9, 493].

Initially, three-dimensional, digital representations of buildings were mainly based on computer-
aided design (CAD) techniques [625, 377, 134]. CAD models, like floor plans however, mainly focus
on representing geometry while semantic information, again, has to be encoded by visualization styles
or relying on the layer principle [234].

Later, CAD-based representations were increasingly superseded by building information modeling
(BIM) [72] in the domain of architecture, engineering and construction (AEC). The importance of
BIM-based building representations has since steadily increased [192, 497]. In the context of BIM,
physical (such as walls, doors or building components like piping systems or ventilation ducts) as
well as non-physical (like spaces partitioning the building interior into semantically defined sections)
building components are modeled as parametrized objects and typically represented by voluminous
constructive solid geometry (CSG) [488]. While in practice, proprietary data formats such as Autodesk
Revit1 or Graphisoft Archicad2 are frequently used, from a scientific perspective, open BIM standards

1https://www.autodesk.de/products/revit (Last visited on 28/05/2021)
2https://graphisoft.com/de/archicad (Last visited on 28/05/2021)
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[254, 431] such as Industry Foundation Classes (IFC)3 [307] are certainly more interesting.
BIM models can be gainfully applied to the benefit of all stages of the building life cycle

[549, 55, 385], i.e. in design and planning [374, 128], construction [167, 252], in the operational phase
in the context of facility management [414, 390, 56, 184], in the case of modifications and renovation
[146, 528] and eventually for dismantling and deconstruction [13, 11, 589]. More specifically, BIM
models can e.g. be applied for clash detection among planned building elements [14, 90], for ensuring
conformity with construction norms and regulations [191, 565] as well as for building performance
analysis in the context of energy efficiency [202, 26, 169, 255]. Furthermore, BIM is frequently applied
in the cultural heritage domain as historical BIM (HBIM) [352, 28, 531].

While BIM is widely used in the AEC domain, in the context of geoinformation Sciences (GIS),
another way to represent buildings is more prevalent. Here, CityGML4 [295, 204] is a standard for
the representation of digital city models for applications in the domain of urban planning [61, 543].
While the standard is originally based on Extensible Markup Language (XML)5, a more compact,
JSON6-based variant called CityJSON is currently gaining in favor [316]. Contrary to BIM, were
CSG-based geometry is typically used, CityGML is based on a boundary representation describing the
geometry of objects by their surface instead of a voluminous representation. While originally focused
more on the exterior of buildings, the latest version of CityGML [304] increases the capabilities for
modeling indoor spaces over all levels of detail.

Another standard dealing with the representation of building environments is IndoorGML
[264, 326, 139]. Contrary to BIM and CityGML, IndoorGML sets the focus less on representing
building geometry itself but is more concerned with describing indoor spaces and their connecting
topology in the context of indoor navigation applications [165, 301, 628, 629]. While indoor spaces
may have associated geometries, this is not mandatory.

Currently, a topic of ongoing research is the interoperability between these different standards for
representing building environments. Particularly, the conversion between the worlds of BIM and GIS
(i.e. CityGML and IndoorGML) is still a challenging task [8, 225, 562].

Lastly, building environments can also be described by a voxel representation [691, 646] which
is also used in this work for the indoor reconstruction approach presented in Chap. 3. Voxel grids
may not be a particularly compact way to model buildings in terms of storage needs. However, they
provide a straight-forward means for explicitly representing empty space and thus make it easily
accessible in the context of building analysis applications aiming at the building interior. This makes
them attractive for applications like visibility analysis [142, 16], navigation [537, 201, 200, 605] and
all kinds of building performance simulation [197] like structural analysis [87] or fire simulation [534].

Nowadays building facilities are often-times planned and constructed relying on BIM techniques.
In this case, detailed digital models of the respective buildings are available as they arise together with
the buildings themselves. In the case of existing stock buildings however, corresponding digital models
are often not available [595, 262]. While manually reconstructing digital models for existing buildings
(as-built BIM) is indeed possible and frequently applied, it can be a tedious and time-consuming
endeavor when relying on individual manual distance measurements taken in the building [444, 56].
In this context, indoor mapping technology as discussed in Chap. 2 can be a valuable means for
the quick and efficient acquisition of building structures. The resulting indoor mapping data can
subsequently be subjected to a process of indoor reconstruction as discussed in Chap. 3 in order to
automatically generate digital building models for existing buildings.

3https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/
(Last visited on 28/05/2021)

4http://www.citygml.org/ (Last visited on 28/05/2021)
5https://www.w3.org/XML/ (Last visited on 06/06/2021)
6https://www.json.org/ (Last visited on 28/05/2021)
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1.2.2 Indoor Environments

Indoor environments are characterized by some peculiar properties that distinguish them from
outdoor spaces. This, along with the fact that humans today typically spent the majority of their
time within buildings [77, 278], has brought them to the focus of a range of theoretical studies.
Within the context of indoor cartography, Chen and Clarke [103] provide an elaborate overview of
different definitions of ’indoors’. Recently, an extensive survey of different concepts of space, explicitly
including indoor spaces, in a multitude of different application domains was presented by Zlatanova
et al. [693]. Sithole and Zlatanova [529] characterize concepts such as ’position’, ’location’ and ’place’
in the context of indoor environments. Furthermore, the transition between indoor and outdoor
environments is an active topic of research as well [297, 649].

Winter et al. [628, 629] discuss the particularities and challenges of indoor environments in the
context of navigation and localization. They point out, that indoor spaces are highly structured
environments decomposed in sub-spaces (i.e. rooms) and typically also structured vertically, encom-
passing different height levels (i.e. storeys). Despite typically having a complex structure, indoor
spaces can also be characterized by a high degree of symmetry and structural repetitions on the level
of different wings, floors or rooms. Besides this spatially complex situation, indoor environments
can also be subject to temporal complexity as they are highly dynamic environments w.r.t. the
placement of furniture, usage and access restrictions. Furthermore, global reference systems like
global navigation satellite systems (GNSS) are typically not available within indoor environments.

Lehtola et al. [319, 320] point out, that indoor environments can have relevant spatial structures
on a wide range of scales, depending on the respective focus of interest. These can encompass the
course of cables with diameters of some millimeters as well as the course of large hallways potentially
extending over tens or hundreds of meters. This, as well as the fact that indoor environments are often
characterized by a high amount of clutter objects like furniture, makes them a particularly challenging
environment w.r.t. the task of indoor mapping (see Chap. 2). In this context, Zlatanova et al. [692]
also present an analysis of problems in indoor mapping and modeling. This is however more focused
on the current state of technological development (at that time) and less on the particularities of
indoor environments themselves. Some of the identified problems like a lack of mobility among the
available indoor mapping systems are meanwhile solved to a large extent (see Chap. 2).

1.2.3 Augmented Reality

Augmented reality (AR) is a visualization technique that allows to display three-dimensional, virtual
objects directly within a real, physical environment [287, 111, 338]. While the term ’augmented
reality’ was first introduced by Caudell and Mizell [88], Azuma [37] provided a definition that is
today widely accepted. According to it, AR is characterized 1) by spatially combining virtual and
real objects in a real environment, 2) by working in real-time and 3) by being interactive. AR is
closely related to the concept of virtual reality (VR), which also provides interactivity and real-time
capability but is limited to a purely virtual environment without any spatial relation to the real
world [686, 663].

Due to recent marketing campaigns of AR and VR hardware vendors7, the term ’mixed reality
(MR)’ is currently in the focus of public attention. MR was originally introduced by Milgram and
Kishino [386] in the context of a mixed reality continuum encompassing different intermediate stages
between a purely virtual reality and the real world with AR being situated somewhere in-between.
Due to the recent developments however, there is currently a considerable ambiguity in the usage of

7e.g. https://docs.microsoft.com/en-us/windows/mixed-reality/discover/mixed-reality
(Last visited on 29/05/2021)
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the term ’mixed reality’. While some consider it to still refer to the concept of the MR continuum,
others meanwhile regard it as a synonym to AR, as some kind of combination of AR and VR or
as a somehow ’evolved’ version of AR providing a higher degree of immersion [536]. Furthermore,
Hönig et al. [230] provide an extended definition of MR by involving not just one but multiple virtual
environments which can be useful in the context of human-robot and multi-robot interaction.

Generally, AR is frequently applied in the field of human-robot interaction [210, 271, 627]. Other
applications of AR include tourism [135, 667, 125], game design [483, 310], medicine [209, 153, 303, 398]
and education [12, 29, 156]. Furthermore, AR is also popular in museums and cultural heritage
[570, 440, 89] as well as in the context of navigation applications [189, 259, 664, 558]. Besides,
it can be benefiting to industry applications [17, 188, 302, 681], e.g. for assembly guidance tasks
[611, 389, 99].

A range of different hardware platforms can be deployed to realize AR applications. Some AR
systems are designed as stationary installations. In this context, half-transparent mirrors [62, 286] or
projector systems [277, 321] are often used for visualization. While suchlike stationary systems are
suited e.g. for application in museum exhibitions, mobile AR systems [97] are generally more flexible
in their deployment. Among these, projector-based visualization is also feasible [513, 662]. However,
hand-held systems like tablets or smartphones [220, 475] and head-worn systems [40] are by far more
common.

The advantages of smartphones and tablets as AR devices are their prevalence in the general
public, low cost and them being off-the-shelf equipped with a broad range of sensors such as GNSS
receivers, inertial measurement units (IMU) and cameras. For these devices, video-based visualization
on the screen is used to display augmentations. This requires the operator to point the device towards
the scene where augmentations are to be displayed - a usage mode known as ’magic lens’ [351].
Head-worn AR glasses on the other hand, can be used more intuitively as they directly augment the
current field of view of the operator wearing the device. In this context, visualizations can also be
provided via video screens [539, 451] or by transparent optical see-through displays [552, 162]. The
Microsoft HoloLens8 for instance, a current state-of-the-art AR glasses that is also used in the scope
of this work, uses the latter visualization technique [298].

In order to provide augmentations that are perceived as geometrically stable and convincing
independently from the movement of the user, AR devices need to be able to determine their pose
(i.e. position and orientation) with respect to the surrounding environment in real-time. This task is
commonly referred to as ’tracking’ [36, 368, 657].

To this aim, a range of different tracking methods can be deployed. Among these, marker-based
tracking methods use planar, artificial markers as reference [272, 186, 70]. This is a simple and
efficient approach, however it requires the placement of artificial markers within the environment to
be augmented. Similarly, three-dimensional, rigid objects with known geometry can also be used as
reference for tracking [86, 638, 2, 217].

The requirement of placing artificial references in an environment that is to be augmented can
be alleviated by relying on natural features as reference for tracking [435]. In this context, visual
odometry (VO) [459, 221] or simultaneous localization and mapping (SLAM) [180, 538, 608, 268]
algorithms can be used. As in many fields of research, deep learning techniques are currently also
frequently applied to the task of marker-less tracking [640, 648, 438].

Besides depending on a single tracking system, hybrid tracking systems rely on a fusion of multiple
independent tracking systems using different sensors with complementary properties [164, 323, 613].
Furthermore, a tracking system without visualization capabilities can be complemented to a full AR
system by coupling it with an independent visualization system by means of relative tracking [240].

8https://www.microsoft.com/en-us/hololens (Last visited on 29/05/2021)
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(a) Augmented Reality (b) Fused Reality

Figure 1.1: Example for the conceptual difference between (a) augmented reality and (b) fused reality.
While AR simply encompasses the placement of arbitrary virtual objects like the stature depicted in
(a) within the real world, FR implies the augmentation of a physically existing object with additional,
virtual information. In (b) for instance, a physical statue is augmented with colors representing the
difference between two scans of the statue. Source of (b): [277].

1.2.4 Augmented Reality vs. Fused Reality

The definition of AR as discussed in Sec. 1.2.3 leaves room to a broad range of applications that can
be categorized as AR. These can however differ significantly from each other on a conceptual level.
This section points out that there actually is a conceptual difference between two usage modes that
are currently both subsumed under the term of augmented reality.

The Microsoft HoloLens for instance is frequently refered to as an ’indoor AR device’. This
designation however only aims at the fact that the device is intended to be used within indoor
environments. The concept of many HoloLens applications comprises placing virtual objects within
the indoor environment around the user wearing the device. In this context, the placement can
be realized by letting the user select the position where a virtual object should be visualized.
Alternatively, the HoloLens is also able to analyze the surrounding environment by means of its depth
sensor (see Chap. 2) and autonomously decide on a suitable location for placement. For example, a
virtual statue can be placed on a real physical table surface as depicted in Fig. 1.1(a). This allows
the user to get a good impression of the respective rendered object by walking around the table and
observing it from different perspectives. Meanwhile, the virtual object itself stays in its apparent
position, independent from the movement of the user.

This kind of three-dimensional data visualization certainly holds great potential, e.g. for the
better comprehension of complex three-dimensional objects [229, 676] or for getting an impression
of how a particular piece of furniture would look in a given place [436]. However, this usage mode
is nonetheless qualitatively different from the indoor AR scenarios presented in Sec. 1.1 and in the
following Sec. 1.2.5 where the indoor environment itself is to be augmented with spatially related
information referring to said indoor environment itself. This concept is demonstrated in Fig. 1.1(b)
by an example from [277]. Here, a physical statue is augmented by a projector-based AR system
with virtual, color-coded information presenting the difference between scans of said statue acquired
with two different scanning systems.

This section intends to highlight, that there is a distinct, qualitative difference between AR
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applications that visualize arbitrary virtual objects and AR applications where geospatial data is
to be visualized directly in-situ on the location the geodata refer to. While both mentioned usage
scenarios fall within the definition of AR by Azuma [36], this section argues that the latter scenario
should be clearly distinguished within the more general conception of AR. To this aim, the term
’fused reality (FR)’ is proposed which emphasizes that in a suchlike AR scenario, a virtual, geospatial
object is fused with its physical corresponding counterpart in-situ in the location that the respective
geodata-object is referring to. By doing so, the user is informed about the surrounding environment
or a part thereof. Furthermore, the physical environment can thus be made to be interactively
accessible via its underlying digital counterpart.

The concept of fused reality as defined in this work has strong relations to the concept of digital
twins [541, 542, 497, 597]. The concept of a digital twin emerged in the context of product design
and manufacturing to denote a virtual, digital equivalent of a product [203]. Kritzinger et al. [300]
renders this definition more precisely by distinguishing a digital twin from a mere digital model of a
physical object by requiring it to be dynamically linked with its physical counterpart by bidirectional
data flow. I.e. changes in the state of the physical object cause updates in the state of its digital
twin and vice-versa.

The role of AR as a link between a digital twin and its physical counterpart has already been
pointed out by Saracco [505]. In this context, Saracco [505] also emphasizes the importance of the
digital model being interactively operable in the sense of Kritzinger et al. [300]. Moya et al. [395] for
instance, demonstrate a suchlike AR application based on a digital twin in the form of a comparably
simple scenario of a single hyperelastic beam under dynamic loads while Qiu et al. [477] explore
the fusion of AR and digital twins in the context of complex product assembling. To use a digital
twin which is bidirectionally linked with its physical counterpart in the sense of Kritzinger et al.
[300] in the context of fused reality as it is discussed here, would comprise the most elaborate form
of FR, enabling it to unleash its full potential. However it has to be noted that the definition of
FR as provided here does only require a corresponding digital model for a given physical object or
environment without insisting on a automatic, dynamic data-exchange between the digital model
and its physical counterpart.

The term ’fused reality’ was already used by Bachelder [41] for a patented system for helicopter
aircrew training of this name. This system combines visual renderings of flight situations with the
physical hardware of a real helicopter cockpit that the trainee has to learn to handle. In this context,
a helmet-based video display visualizes the cockpit environment while dynamically exchanging the
view through the cockpit windows with simulated renderings. In a sense, the physical helicopter
is augmented with data relating to its digital counterpart performing flight operations in a virtual
environment. This system could thus be considered as falling within the more general definition of
FR provided here.

Furthermore, Strauss and Fleischmann [548] also mention ’fusing space with data’. This, however,
relates to augmenting a stage environment in the art context of hypermedia storytelling. As the
relation of the virtual content and the physical stage environment is purely of a creative or imaginative
nature, this scenario rather falls within the context of traditional AR. Finally, the value of AR for
presenting geodata has also been pointed out by Dalla Mura et al. [131]. In this context, the authors
also discuss the potential of AR devices for acquiring new geodata in the field. This aspect is also
explored in this work in the context of indoor mapping in Chap. 2.
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Indoor Fused Reality

Mobile
Augmented Reality
Sensor Systems

Digital
Building Models

Figure 1.2: Schematic overview of the concept of indoor fused reality. By means of mobile augmented
reality devices and digital building models, indoor environments can be augmented with location-
dependent information improving the efficiency of in-situ work tasks and allowing direct, interactive
access to the underlying building model via gestures and voice commands.

1.2.5 Indoor Fused Reality

As already indicated in Sec. 1.1, applying augmented reality techniques (see Sec. 1.2.3) in the
context of digital building models (see Sec. 1.2.1) holds an enormous potential for all kinds of
building-related applications. Thus, this combination of technologies has become the focus of intense
research efforts [318, 486, 554, 19, 114, 525, 635]. Some proposed applications can be considered to
be within the bounds of ’ordinary’ AR (i.e. AR visualization of digital building models with arbitrary
placement, e.g. in a kind of ’tabletop’ mode) [121, 603, 84, 676]. Others rely on pure virtual reality
[257, 592, 190, 526] instead of AR. However, many applications in this context aim at overlaying
physical building structures with informative content from corresponding digital building models.
These can be considered to fall within the definition of fused reality as presented in Sec. 1.2.4.

The concept of indoor fused reality is schematically depicted in Fig. 1.2. Mobile AR devices
like the Microsoft HoloLens can be used to augment indoor environments with information from a
corresponding digital building model. This not only provides the possibility for persons conducting
on-site work tasks to instantly retrieve relevant information directly in-situ in the place of conduct.
It furthermore also enables the possibility to directly interact with the building environment via its
underlying model, e.g. by means of gestures or voice commands.

While some works in this context focus on conceptual frameworks for integrating BIM and AR
technology [152, 610, 362], others aim at analyzing the potential benefits of AR techniques within
the AEC domain [382, 428, 158] or investigate the challenges of deploying AR applications within
the underground construction industry [170]. Other works focus on analyzing the requirements that
potential users within the AEC domain put at AR-BIM systems [305, 194, 119].

The value of FR applications has been demonstrated for many tasks that relate to digital building
models like e.g. design evaluation and communication [81, 92, 256]. During the construction phase,
some works put the focus on dynamical aspects [216, 381] while others aim at visualization aspects
[632, 662, 263], on-site process controlling [612, 669, 482, 171], progress monitoring [198, 342, 481]
or at the detection of construction defects [442, 306] and discrepancies between planned and built
structures [45, 93]. Furthermore, the potential of FR for construction safety [333, 524], on-site risk
assessment [609, 133] and collaboration [515, 154] has been investigated.

Another important application domain for indoor FR is the domain of facility management
[193, 633, 376, 385, 507, 279]. As the operation and maintenance phase of buildings is known to cause
about 60 to 80 % of the total life-cycle costs of a building [35], improving efficiency by means of FR
technology can be of significant benefit in this domain. In this context, special emphasis has also been
put on on-site building asset management [409], plumbing facilities [140] and healthcare facilities
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[248]. Furthermore, the value of FR for on-site inspection tasks has been investigated [689, 470, 112].
Finally, the deployment of sensors for on-site building monitoring holds potential in this context
as well [445, 408, 101]. Besides, Indoor FR can also be applied in the domain of cultural heritage
[115, 44, 177, 79].

1.3 Scope of this Work

The central topic of this work is that of indoor fused reality as proposed in Sec. 1.2.4 and elaborated
on in Sec. 1.2.5, i.e. to use AR techniques (see Sec. 1.2.3) to visualize information from digital
building models (see Sec. 1.2.1) directly in-situ within the indoor environment (see Sec. 1.2.2) of
the corresponding real building. For the realization of this scenario, several components are needed
that are successively presented in the following chapters. Fig. 1.3 gives a schematic overview of
the structure of this work. Each chapter first presents an general overview of its respective topic.
Afterwards, an own contribution is discussed respectively.

The own contributions to the topic of each presented chapter have already been published.
In the following, paragraphs designated by vertical lines along the side margins are demarcated as
originating from such a publication. They are adopted in the same form as originally published
with the exception of small editorial changes to correct errors and improve the readability.
As a digital building model may not exist for a particular building where an indoor FR application

is to be deployed, indoor mapping can be used to efficiently acquire geometric representations
of existing building structures. Chap. 2 provides a comprehensive overview of the characteristic
challenges of this task, the different systems that can be deployed to this aim along with their
respective properties and the existing approaches to evaluate the performance of indoor mapping
systems. As a contribution to the topic of indoor mapping, Chap. 2 furthermore presents a thorough
quantitative evaluation of the mobile AR device Microsoft HoloLens assessing its adequacy for the
task of indoor mapping. The results show, that state-of-the-art AR devices can indeed be used for
indoor mapping, providing the basis for digital building models that can later be used in the context
of indoor FR scenarios.

To generate actual, semantic and geometric building models from unstructured indoor mapping
data, automatic indoor reconstruction methods can be used. After providing an extensive overview
of existing approaches to this aim, Chap. 3 present a novel, fully-automatic, voxel-based indoor
reconstruction and room partitioning procedure. Furthermore, adequate evaluation methodology is
presented which is used to quantitatively assess the quality of the proposed indoor reconstruction
approach. One of the advantages of the presented method is its genericity with respect to complex
building structures which allows for non-planar room surfaces and complex vertical room layouts
encompassing stair wells.

In order to use a digital building model in the context of an indoor FR application, the AR
device used to this aim has to be localized within the respective building structure. Chap. 4 present
an in-depth overview of the topic of indoor localization. Furthermore, a marker-based localization
approach is presented, evaluated and discussed.

Finally, Chap. 5 presents a novel, automated method for pose normalization of indoor mapping
data. Indoor mapping data is often-times acquired in arbitrary orientation with respect to the
coordinate system. Often, the initial pose of an indoor mapping device determines the coordinate
system. Automatically aligning indoor mapping data with the coordinate axes is a preprocessing step
that can not only be used to facilitate automated indoor reconstruction tasks, but can potentially
also be used for drift-reduction in indoor mapping systems and in the context of indoor localization.

These topics are discussed individually in their respective chapter. Afterwards, Chap. 6 presents
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an overall discussion encompassing all the topics covered in this work, putting them in a common
context while also discussing potentials for future research. Besides, Chap. 6 summarizes the work
and closes with concluding remarks.

Mobile
Augmented Reality
Sensor Systems

Digital
Building Models

Indoor Mapping

[Chapter 2]

Indoor Reconstruction

[Chapter 3]

Pose Normalization

[Chapter 5]

Indoor Localization

[Chapter 4]

Figure 1.3: Schematic overview of the structure of this work: mobile AR sensor systems like the
Microsoft HoloLens can be used to acquire point clouds or triangle meshes of indoor environments
(Chap. 2, indoor mapping). The resulting indoor mapping data in turn, can be used to extract digital,
geometric and semantic models of the mapped indoor environments (Chap. 3, indoor reconstruction).
The resulting digital building models can again be applied in the context of indoor fused reality
applications by means of mobile augmented reality devices. This requires a localization of the mobile
AR device with respect to the building model (Chap. 4, indoor localization). In addition, an optional
preprocessing step to automatically align indoor mapping data with the coordinate axes is presented
(Chap. 5, pose normalization). This can facilitate the task of indoor reconstruction. Furthermore,
the methodology presented for pose normalization can potentially also be of benefit for the tasks of
indoor mapping and indoor localization (dashed lines, not realized within the scope of this work).

10



Chapter 2

Indoor Mapping

The topic of this chapter is indoor mapping, i.e. the acquisition of the visible geometry of indoor
building structures by means of suitable sensor systems. Indoor mapping is one of the central
concepts in the scope of this work as it provides input data for automatic indoor reconstruction
tasks as detailed in Chap. 3. From raw indoor building geometries provided by indoor mapping
systems, geometrically refined and semantically enriched indoor building models (see Sec. 1.2.1) can
be generated which can serve as a data basis for indoor fused reality applications as presented in
Sec. 1.2.5. To this aim, the task of indoor localization, i.e. determining the pose of a mobile AR
device within the respective building environment has to be solved. In this context, the respective
mobile AR device needs to have the capability of sensing its immediate building environment in
order to localize itself within it. Thus, indoor mapping is also of importance in the context of indoor
localization as detailed in Chap. 4.

The aim of this chapter is to evaluate, whether the sensor equipment of state-of-the-art mobile
indoor AR devices is sufficient to the task of indoor mapping on building-scale level. In this case,
a respective AR device could be deployed to the raw data acquisition of digital building models
as well as to the realization of indoor fused reality scenarios making use of said building models.
Thus, a comprehensive, quantitative evaluation study of a suchlike mobile AR device (the Microsoft
HoloLens) is presented in this chapter, showing that its indoor mapping capabilities are indeed
sufficient to this aim. In this context, the evaluation is approached by postulating that the quality
of an indoor mapping system is mainly determined by the respective quality of its two essential
sub-components, i.e. the tracking system and the range sensor. While the range sensor is used to
acquire indoor building geometries from each respective pose of the indoor mapping system along its
trajectory through the building, the poses provided by the tracking system are used to transform the
locally measured geometry into a global coordinate system in which the whole building structure is
mapped. In the course of the presented evaluation, both components (i.e. range sensors and tracking
system) of the Microsoft HoloLens are evaluated individually against respective ground truth data.
Additionally, an overall evaluation of the end result of the indoor mapping process against ground
truth data is presented as well. This evaluation concept is depicted schematically in Fig. 2.1.

In the following, first, Sec. 2.1 provides a comprehensive overview on the topic of indoor mapping,
the different types of sensor systems available to this aim and established evaluation methodology
used to assess their quality. Afterwards, Sec. 2.2 presents the evaluation procedure deployed in the
scope of this work. The respective results are presented in Sec. 2.3 and further discussed in Sec. 2.4.
Finally, Sec. 2.5 concludes the chapter with a summary and suggestions for future work.

Within this chapter, material published in [239] and [238] is used.
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Figure 2.1: Schematic overview of the evaluation of the Microsoft HoloLens as indoor mapping system
with range sensor and tracking system as the relevant subsystems constituting it. Source: [238].

2.1 Fundamentals of Indoor Mapping

This section provides an overview on the topic of indoor mapping. The geometric acquisition
of indoor building structures by means of mobile sensor systems is an active field of research
[692, 53, 63, 457, 424, 320, 434]. While the term ’indoor mapping’ is widely used for the acquisition of
geometric representations of indoor environments, e.g. in the form of point clouds or triangles meshes,
Chen and Clarke [103] point out, that these are actually not maps but raw data for generating actual
3D indoor maps via cartographical techniques. In the same sense, Han et al. [218] designate point
clouds of indoor environments as ’spatial maps’ in contrast to semantic maps.

In consideration of the complexity and further peculiarities of indoor environments as already
discussed in Sec. 1.2.2, the task of indoor mapping is a rather challenging one [320]. Indoor
environments are characterized by complex arrangements of rooms typically containing lots of clutter
objects occluding each other and room surfaces. Thus, to adequately map indoor environments,
numerous different sensor poses have to be used during the acquisition process. Furthermore, indoor
environments are particularly challenging for the tracking of mobile mapping systems. As GNSS
signals cannot penetrate into building interiors, tracking systems need to rely on IMU, image-based
methods and active range sensors. Image-based tracking is further impeded by the presence of texture-
poor wall surfaces in some indoor environments such as hallways and by the spatial bottlenecks of
doors between rooms. These characteristics distinguish indoor mapping from the more general task
of mobile mapping in outdoor environments, where GNSS can be relied upon and the environment
itself is often less challenging in terms of tracking [472, 530, 614, 65, 222].

Besides its already mentioned relevance to the tasks of indoor reconstruction (see Chap. 3)
and indoor localization (see Chap. 4), indoor mapping also holds importance for application areas
such as the documentation of cultural heritage buildings [83, 138] or as a source of realistic, digital
environments for gaming applications [173, 25, 593]. In this context, the importance of TLS data from
archaeological documentation and digital reconstructions originally intended for a gaming scenario
for the reconstruction and digital preservation of the damaged Notre Dame cathedral in Paris is
worth mentioning [275, 219].

In the following, Sec. 2.1.1 presents an overview of the different sensor systems and approaches
available for the task of indoor mapping. Subsequently, Sec. 2.1.2 provides an overview of how the
evaluation of indoor mapping systems has been approached in the literature.
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2.1.1 Indoor Mapping Systems

Generally, a number of different sensor systems can be deployed to the task of indoor mapping.
Traditional methods for the generation of floor plans such as the manual measurement with measuring
tape or electronic range meter as well as tachymeter surveys are rather laborious, especially when
applied to acquire building geometries in 3D [291].

For this reason, from early on, there was a large interest in deploying more efficient methods to
the acquisition of indoor building structures. For instance, terrestrial laser scanning [619, 322] has
been frequently used to this aim [387, 51, 495, 504]. This however poses the problem, that complex
indoor environments necessitate a large number of TLS positions that need to be registered which is
again quite labor intensive.

Alternatively, photogrammetric techniques have been used to three-dimensionally reconstruct
building geometries from images [580, 373, 147, 449]. This method is more flexible with regard to
complex indoor spaces than the TLS-based method. However, the 3D acquisition is comparably
sparse and can fail in poorly-textured areas. Furthermore, selecting suitable image poses requires a
trained operator.

With SLAM [290, 160, 399, 584], image-based mapping evolved from using unordered batches of
images with well-planned acquisition strategy to video-sequences of cameras moving freely through
the environment. This provides further flexibility for the acquisition of indoor environments. However,
the sparseness of the resulting point clouds and the liability to poorly-textured environments persist.

These problems can be countered by using range cameras, e.g. operating via the structured
light (SL) [282, 671] or the time of flight (ToF) principle [672]. Special variants of SLAM have been
developed for the use of the RGBD images provided be these sensors [223, 606, 690, 679] that allow
their application for the task of indoor mapping [594, 208, 655]. Furthermore, for the task of indoor
mapping, multiple RGBD cameras have been combined for increased field of view [100, 144, 656], e.g
in the case of the Matterport system9.

As range cameras are subject to a rather high level of noise in the range measurement, points from
surfaces captured from different poses during the acquisition process can vary significantly. Thus, a
process that aggregates and refines captured surfaces over multiple frames is frequently applied when
using RGBD cameras for indoor mapping [251, 413, 415, 624, 117]. The resulting refined surfaces
are typically represented in the form of triangle meshes. This form of describing the measured indoor
geometry is significantly more compact in relation to point clouds while still allowing for comparable
results in segmentation and classification tasks [50, 621].

Besides directly using the mapping results of SLAM algorithms for indoor mapping, SLAM can
also be used as tracking method in combination with other kinds of range sensors for this task,
e.g. in combination with low-cost 2D laser scanners [60]. Indoor mapping systems based on this
principle often incorporate an IMU for further improvement of the tracking. Suchlike systems have
been proposed in different configurations, i.e. wheeled, trolley-mounted systems [98, 348, 658] (like
e.g. the NavVis M610 or the Applanix TIMMS11), backpack-carried systems [315, 64, 309, 270, 250]
(like e.g. the Leica Pegasus12 or the Gexcel HERON AC-213) or even hand-carried [58, 236, 582] or
head-mounted systems (like e.g. the GeoSLAM ZEB Revo RT14 or the Kaarta Stencil15).

9https://matterport.com/de/kameras/pro2 (Last visited on 05/06/2021)
10https://www.navvis.com/m6 (Last visited on 05/06/2021)
11https://www.applanix.com/products/timms-indoor-mapping.htm (Last visited on 05/06/2021)
12https://leica-geosystems.com/de-de/products/mobile-sensor-platforms (Last visited on 05/06/2021)
13https://gexcel.it/en/solutions/heron-mobile-mapping/heron-ac (Last visited on 05/06/2021)
14https://geoslam.com/solutions/zeb-revo-rt/ (Last visited on 05/06/2021)
15https://www.kaarta.com/products/stencil-2-for-rapid-long-range-mobile-mapping/

(Last visited on 05/06/2021)
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Finally, some works focus on mounting suchlike mapping systems on autonomously moving robots
[346, 5]. In this context, active SLAM methods that do not only map the environment but also decide
on appropriate steering commands in order to autonomously explore an unknown environment are of
interest [74, 458, 677]. While mapping systems have also been mounted on unmanned aerial vehicles
(UAV) [228, 276], they are rarely deployed in indoor environments as closed doors pose a serious
problem for them. Ground-based robots that are able to open doors have already been proposed [66].
However, for flying platforms, this does not seem to be the case yet.

2.1.2 Evaluation of Indoor Mapping Systems

The quality of an indoor mapping system is mainly determined by the respective quality of its range
sensor and its tracking system. Thus, the evaluation of an indoor mapping system can either be
approached by directly focusing on the resulting indoor mapping geometries (i.e. point clouds or
triangle meshes) or by analyzing those two fundamental components separately.

Concerning the evaluation of range sensors, the accuracy of terrestrial laser scanners as well
as the effect of different influencing factors like scanning geometry and scene properties have been
investigated [535, 82, 519]. Similarly, a broad range of studies has been presented that aims at
evaluating different RGBD cameras. Some of them only evaluate the precision and accuracy of
the respective sensors in relation to geometric scene parameters such as distance and inclination
of surfaces w.r.t the sensor [622, 85]. Others, in addition, also investigate aspects such as sensor
calibration [282, 308], heating behaviour [199, 308, 181, 617] or the influence of material properties
and colors [308, 617]. Some works also provide detailed discussion on potential error sources in range
sensing with RGBD cameras [506, 181].

Concerning the tracking system, Azuma [36] provides an analysis of tracking accuracy requirements
regarding the application within the context of augmented reality. Many works that aim to evaluate
tracking systems use ground truth trajectories as reference. These can be independently acquired by
means of an external motion capture system [159, 299, 315, 325, 679] or estimated by comparing
the resulting maps with reference floor plans [166]. For quantifying tracking accuracy based on
ground truth trajectories, the absolute trajectory error (ATE) and the relative pose error (RPE)
are frequently used metrics [550]. Recently, a new theoretical approach for trajectory evaluation
based on a probabilistic, time-continuous formulation has been proposed [683]. Furthermore, some
works use manually measured reference points [64] or completely rely on simulated environments for
evaluation [369]. Besides evaluating tracking based on accuracy, other quality measures can be used
as well, e.g. robustness against tracking loss in AR scenarios [325].

Regarding studies that aim at evaluating the tracking system of the Microsoft HoloLens, some
works focus on the spatial stability of the displayed virtual objects as a measure for tracking quality
[590, 511]. Others rely on user studies where tracking quality is assessed by interviewing test
persons about their impression of the quality of different indoor AR devices [489]. Finally, motion
capture systems have been deployed for providing reference trajectories in the context of quantitative
evaluation of the tracking quality of the HoloLens, e.g. with a focus on head tracking in seated
position [349] or in the context of human-robot interaction [289].

An often-applied methodology for quantitatively evaluating the accuracy indoor mapping point
clouds is to use reference data, e.g. acquired by TLS [106]. The respective indoor mapping point cloud
is registered onto the reference point cloud, e.g. via the ICP algorithm [59, 682]. The indoor mapping
accuracy can be determined by applying error metrics based on point-to-point distances between
both datasets. For instance, this evaluation procedure is often applied for comparing handheld and
backpack-based or trolley-mounted indoor mapping systems [568, 361, 309, 577, 499]. In the cited
works, all indoor mapping point clouds are evaluated against a common TLS ground truth point cloud
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as reference. A similar procedure is also applied to the evaluation of triangle meshes acquired with
the Microsoft HoloLens [283] as well as with the Matterport system [247, 454] or via KinectFusion
[378]. In the latter case, not only point-wise distance deviations to the reference are evaluated, but
angular deviations in the normal directions as well. Furthermore, evaluation against TLS ground
truth via point-wise distance measures has been applied for the evaluation of photogrammetric
indoor mapping approaches [130, 373] and in an extensive evaluation study considering a multitude
of different indoor mapping systems based on laser scanning [319]. Besides evaluating point-wise
distances for whole indoor mapping point clouds, manually selected reference points have also been
used for evaluation against TLS ground truth data [110, 454].

In the absence of ground truth data, indoor mapping results can be evaluated by fitting geometric
primitives such as planes for walls or cylinders for columns to the data and determining the deviations
from these ideal geometries [580, 423]. Another evaluation study focuses more on evaluating an indoor
mapping system via its trajectory, while the resulting point cloud itself is only assessed qualitatively
[315]. Furthermore, an approach for the evaluation of indoor mapping point clouds in the absence of
reference data has been proposed [269]. Here, assumptions about typical indoor building geometries
such as planarity, parallelity and orthogonallity are exploited. In addition, evaluation against weaker
ground truth data in comparison to TLS point clouds is discussed, i.e. two-dimensional, possibly
outdated floor plans.

2.2 Methodology
This section describes the experiments conducted for assessing the capabilities of the Microsoft
HoloLens in regard to its aptitude for the task of indoor mapping. Sec. 2.2.1 gives an overview
of the different camera sensors the device is equipped with and their respective characteristics.
Afterwards, Sec. 2.2.2 comprehensively elaborates on the evaluation procedures of the different
experiments conducted in the course of this study.

2.2.1 Sensor Description
The Microsoft HoloLens device is equipped with a range of various imaging sensors providing
data necessary to accomplish the different tasks constituting its mobile indoor augmented reality
system such as tracking, re-localization in known environments and capturing the geometric
structure of its surroundings by means of depth sensing. Tab. 2.1 gives an overview of these
camera sensors and their respective characteristics, while Fig. 2.2 shows an overlay of images
recorded by those sensors to give an impression about their arrangement on the device.

All camera sensors of the HoloLens can be queried via the Microsoft Windows 10 SDK16.
However, for all cameras except for the color camera, a so-called ’research mode’ has to be
activated. This mode is only meant for research. Applications making use of it cannot be used
in apps published on the Microsoft Store for applications.

The color camera can be queried in different resolutions. It is not used for tracking, but only
for allowing the user to record screenshot videos and pictures. Virtual renderings augmenting
the physical environment of the user wearing the device can optionally be rendered into the
images captured with this camera. The center of the color image in Fig. 2.2 roughly aligns with
the line-of-sight of the user wearing the device.

Besides this color camera, the device also includes four grayscale tracking cameras, two of

16https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk (Last visited on 12/05/2021)
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Table 2.1: HoloLens camera sensors and their characteristics as indicated by the Microsoft Windows
10 SDK for the device. Source: [238].

Camera Type Field of View Image Size Effective Frame rate Data type
[°] [pixels] pixels [%] [fps]

Photo Video Color 40×25

1408×792
1344×756
1280×720
896×504

100 30 BGRA8a

Long Throw Depth 60×54 448×450 24b 1c Gray16

Long Throw Intensity 60×54 448×450 24b 1c Gray8

Short Throw Depth 78×77 448×450 71b 15 Gray16

Short Throw Intensity 78×77 448×450 71b 15 Gray8

4 × Tracking Grayscaled 60×50 160×480d 400d 30 BGRA8d

aThe alpha channel contains a constant value of 1.0.
bOnly a fraction of the image actually contains values (see Fig. 2.3).
cThe SDK reports a frame rate of 3 fps, but an actual frame rate of 1 fps was observed.
dThe system returns a 160×480 4-channel image, which actually represents a 640×480 grayscale image spread line-wise over all four channels.

Figure 2.2: Overlay of images recorded by the different camera sensors of the Microsoft HoloLens as
specified in Tab. 2.1. Source: [238].
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(a) Short throw. (b) Long throw.

Figure 2.3: Pixels of the HoloLens range camera that actually contain values are shown in white for
short throw and long throw mode. Source: [238].

which are oriented to the front in a stereo configuration with large overlap, while the other
two are oriented to the right and left respectively with nearly no overlap to the center pair as
depicted in Fig. 2.2. The images of these tracking cameras are provided by the SDK rotated
by 90°, but their attached poses correct for this rotation. It is worth mentioning that the SDK
returns 160×480 4-channel 8-bit images when querying the grayscale tracking cameras. These
images actually represent 640×480 1-channel grayscale images where the intensity values are
spread line-wise over all 4 channels. So the first pixel of the first line of the 160×480 image
contains the first 4 pixels of the first line of the 640×480 image in its 4 channels.

The HoloLens device is furthermore equipped with a time-of-flight (ToF) range sensing
camera, providing images with pixel-wise range measurements. These range images can be
queried by the SDK in two different modes, termed ’long throw’ and ’short throw’. Short throw
data contain distance values in the range of 0 m to 0.8 m, while long throw data contain distance
values from 0.8 m to about 3.5 m. For both modes, depth sensing data is delivered by the SDK in
the form of 16-bit range images where the pixels contain integer values representing distance in
millimeters. Furthermore, 8-bit grayscale images representing infrared reflectivity can be queried
for both modes.

All images acquired by the ToF sensor have a size of 448×450 pixels; however different parts
of the images actually contain values as depicted in Fig. 2.3. The part of the image actually
containing values is circular for both modes. In the case of the long throw mode, this circular
area containing range measurements is bigger and slightly clipped on the lower side.

The range sensing camera is oriented slightly downwards relative to the line-of-sight of
the user as can be seen in Fig. 2.2. In typical usage scenarios, the short throw mode mainly
observes the hands of the user for gesture recognition, while long throw range data are used for
environment mapping. The field of view of the ToF camera overlaps with the one of the color
camera; however the color image covers only a fraction of the range images.

The inner orientations of all camera sensors can be queried from the SDK in the form of a
matrix, mapping from pixel coordinates (x y) to metric 2D coordinates (U V ) on a plane in 1 m
distance from the respective camera. An inverse mapping is also provided.

The range images delivered by the ToF sensor contain distance values along rays through the
respective point (U V ) on the unit plane for each pixel (x y) . To transform these range values R
to depth values D along an axis parallel to the image plane, the following equation can be used:

D =
R√

U2 + V 2 + 1
(2.1)
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(a) Range image. (b) Depth image.

1.4 m 3.5 m

Figure 2.4: Range image and depth image corresponding to the long throw reflectivity image shown
in Fig. 2.2. Source: [238].

Thus the Cartesian coordinates of a 3D point (X Y Z) can be derived:XY
Z

 = D

UV
1

 (2.2)

Fig. 2.4 shows the range and depth image respectively corresponding to the reflectivity image
for the long throw mode of the ToF camera shown in Fig. 2.2.

For all images, the corresponding camera pose in a coordinate frame defined by the initial
pose when starting the respective HoloLens application can be obtained from the SDK. However,
the camera pose is provided as split in two relative poses. One of these poses (TOrigin

Device) consists
only of a translational component and describes the position of the HoloLens device with constant
orientation. The other pose is the inverse of the pose TDevice

Camera of the respective camera relative
to this first pose. The current orientation of the device is encompassed in this second pose that
furthermore contains a translational component for the offset of the respective camera from the
point of reference of the device pose. The absolute pose of the respective camera then results to

TOrigin
Camera = TOrigin

DeviceT
Device
Camera (2.3)

Besides raw range images captured by the ToF sensor, the HoloLens SDK also provides
preprocessed triangle meshes derived from the range data. Usage of these triangle meshes is not
restricted to the research mode.

2.2.2 Evaluation Method
To assess the adequacy of the Microsoft HoloLens for the usage as a mobile indoor mapping device,
a range of experiments were conducted which are detailed in this section. First, Sec. 2.2.2.1
describes the evaluation of the depth sensor of the HoloLens device. This is followed by the
evaluation of its tracking system in Sec. 2.2.2.2. Finally, Sec. 2.2.2.3 describes the evaluation of
the combined system for the use-case of indoor mapping.

2.2.2.1 Depth Sensing
The presented evaluation of the HoloLens depth sensing capability focuses on the long throw
mode mentioned in Sec. 2.2.1. The short throw mode is only used for gesture recognition and
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Figure 2.5: Ground truth data captured for a three-dimensional scene using a terrestrial laser scanner
(Leica HDS6000). Source: [238].

thus not of relevance regarding the use-case of indoor mapping. For the conducted experiments,
a plain, white, planar wall was used as reference object. The HoloLens device was fixed on a
stand, facing the wall and recording long throw range images.

First, the influence of the heating process on range measurements was investigated by
capturing a static scene and analyzing the temporal variation of the resulting range data. The
device was positioned in a distance of ca. 1 m, approximately perpendicular to the wall surface
with the wall filling the whole field of view of the long throw range images. The recording of the
data was started with a completely cooled-down device, several hours after its last usage. Range
images were recorded for a duration of 100 minutes with a frame rate of 1 fps in four consecutive
recordings with 25 minutes length each and pauses of only a few seconds in between. The reason
for splitting the measurement is that the device switches to sleep mode after 30 minutes without
movement. Subsequently, the change in the mean depth value resulting from the respective
range images was analyzed to characterize the influence of the warm-up process of the device
over time.

Furthermore, to assess the influence of the measured distance on sensor noise, the distance
of the sensor to the wall was varied while keeping it approximately perpendicular to the wall
surface. In this manner, recordings of several minutes length each were made at varying distances
over the whole working range of the sensor (0.8 m to about 3.5 m).

In the subsequent analysis, the standard deviation of the measured distance values per pixel
was determined for each probed sensor position. Mean standard deviations over all pixels were
then determined per sensor position, once for all pixels considered for evaluation and once only
for those pixels that have recorded range values in at least 75 % of the images of the respective
recording.

In doing so, only pixels representing wall surface were considered for evaluation. In some
cases, parts of floor, ceiling, lateral margins of the wall surface, etc. are visible. This happens
with growing distance of the sensor from the wall. For these, binary masks were created manually
based on the reflectivity images for excluding those pixels not belonging to the wall surface from
the evaluation.

Furthermore, the influence of the inclination of the wall surface on sensor noise was also
investigated for inclinations between 0° and 80°. Here, the same analysis as in the above-mentioned
evaluation of the influence of distance was conducted.

19



Figure 2.6: Rigid body of reflective sphere markers affixed to the HoloLens device. Source: [238].

Besides those experiments where a flat wall surface was used as reference object, sensor noise
was also investigated on a three-dimensional scene comprising simple, geometric bodies (boxes,
cylinders and spheres) as depicted in Fig. 2.5. This scene was captured by the HoloLens from
three different distances.

Furthermore, the three-dimensional scene was also used for an evaluation of the accuracy of
the captured distances using ground truth data acquired by a terrestrial laser scanner (Leica HDS
6000). To this aim, the point clouds derived from the range images were manually registered on
the ground truth point cloud with a subsequent refinement of the registration via the Iterative
Closest Point (ICP) algorithm [59, 682]. Then, Euclidean distances to the nearest ground
truth point were determined for each HoloLens point. Afterwards, the HoloLens points were
transformed back to the pixel grid of the original range images for better visual interpretation.
For this analysis, the software Cloud Compare [195] was used. Furthermore, the software
HoloLensForCV Microsoft [384] providing access to the device sensors was applied for accessing
range images with accompanying poses from the ToF sensor.

2.2.2.2 Tracking
For assessing the tracking capacity of the HoloLens, the optical motion capture system OptiTrack
Prime 17W17with eight tracking cameras in a laboratory room with a size of approximately
8 m×5 m×3 m was used for the acquisition of ground truth data. For this purpose, the HoloLens
device was equipped with a rigid body consisting of five reflecting sphere markers trackable by
the motion capture system as depicted in Fig. 2.6.
Generally, in this work, the pose (i.e. the position and orientation) of an object A with respect

to a coordinate system B is denoted by a 4× 4 matrix

TB
A =

(
RB
A tBA

0> 1

)
∈ R4×4 (2.4)

consisting of an orthogonal rotation matrix RB
A ∈ R3×3 with three degrees of freedom and a three-

dimensional translation vector tBA ∈ R3. Furthermore, TB
A can be understood as a three-dimensional

Euclidean transformation from the local coordinate system of the respective object A to the given
coordinate system B.

The spatial offset TDevice
RigidBody between the local coordinate system constituted by those rigid

body markers and the local HoloLens device coordinate system, whose poses are recorded by

17https://www.optitrack.com/products/prime-17w/ (Last visited on 12/05/2021)
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the HoloLens tracking, had to be determined by a calibration procedure. For this purpose,
a checkerboard pattern was observed by the HoloLens color camera in a static setting, while
the device was equipped with the rigid body. The pose TCheckerboard

Camera of the camera relative to
the local coordinate system of the checkerboard was determined via the Perspective-n-Point
(PnP) algorithm [185], while the relative pose TDevice

Camera of the camera with respect to the local
coordinate system of the HoloLens itself was acquired from the Windows 10 SDK.

By manually measuring the positions of the sphere markers of the rigid body and the corners
of the checkerboard pattern with a tachymeter (Leica TS06), the poses of the checkerboard
(TTachymeter

Checkerboard) and the rigid body (TTachymeter
RigidBody ) in the local coordinate system of the tachymeter

were determined. The pose TDevice
RigidBody of the rigid body in the local coordinate system of the

HoloLens device could thus be determined as:

TDevice
RigidBody = TDevice

CameraT
Camera
CheckerboardT

Checkerboard
Tachymeter TTachymeter

RigidBody

= TDevice
CameraT

Checkerboard−1

Camera TTachymeter−1

Checkerboard TTachymeter
RigidBody

(2.5)

Device trajectories of poses THoloLensOrigin
Device acquired via the HoloLens tracking system could

now be transformed to trajectories of posesTHoloLensOrigin
RigidBody of the rigid body attached to the device

which could thus be compared to the ground truth trajectories of poses TMotionCaptureSystem
RigidBody

observed by the motion capture system:

THoloLensOrigin
RigidBody = THoloLensOrigin

Device TDevice
RigidBody (2.6)

A prevalent metric for the evaluation of estimated trajectories against ground truth trajectories
is represented by the absolute trajectory error (ATE) and the relative pose error (RPE) [550].

For determining the ATE, it is essential to spatially align the trajectory with its corresponding
ground truth trajectory when they are given in distinct coordinate systems as it is the case
here. Furthermore, a temporal alignment by timestamps ti between corresponding poses of
both trajectories is required, that allows to assign each pose Pi of the trajectory its temporarily
closest ground truth pose PGT

i .
As the poses acquired by the motion capture system only have timestamps relative to the

start time of the measurement, a temporal alignment between the HoloLens trajectory and the
trajectory of the motion capture system had to be conducted. This was achieved by manually
extracting timestamps at trajectory positions on the apex of distinct peaks in the trajectories.

The thus temporarily assigned pose pairs Pi and PGT
i could then be used to spatially align

both trajectories by the method of Horn [232] as proposed by Sturm et al. [550] while keeping
the scale fixed. With the trajectories registered in a common coordinate frame, the ATE could
be calculated by the root mean square error

ATE =

√√√√√ N∑
i=0
||trans(Di)||2

N
(2.7)

of the translational components of the pose differences Di between corresponding HoloLens and
ground truth poses:

Di = PGT−1

i Pi (2.8)
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The ATE is only meaningful as an aggregated value like the root mean square error over a
complete trajectory as the quantity of translational differences of particular pose pairs results
from the alignment process between both trajectories and not from the tracking quality in the
respective poses themselves. Thus, the ATE can only be regarded as a measure for tracking
quality over the whole trajectory. To eliminate the subjective influence of manually selecting a
pose pair for temporal alignment between both trajectories, an optimization procedure is applied
that determines the temporal alignment in millisecond-resolution by minimizing the ATE.

The RPE on the other hand is a metric for relative drift between an estimated trajectory
and its ground truth trajectory. Like the ATE, it is calculated as root mean square error of the
translational (or rotational) components of pose differences (see Eq. 2.7). Here, however, the
pose differences Di are relative differences based on an offset ∆ in the pose index:

Di = (PGT−1

i PGT
i+∆)−1(P−1

i Pi+∆) (2.9)

As offset ∆, the number of poses corresponding to the time difference of one second was applied
in order to get the RPE as a value for drift per second.

The ATE and RPE metrics were evaluated for trajectories recorded while walking around in
the laboratory space covered by the cameras of the motion capture system. In doing so, the same
pattern of movement was followed for each trajectory. The conditions were varied by masking
the depth camera for some of the recorded trajectories.

Furthermore, to assess the influence of drift on large-scale trajectories through long corridors
in large building complexes, a trajectory with accompanying triangle meshes was recorded along
a long closed loop of a total length of 287 m on two floors of a building. The trajectory ended in
the same room it started in, while the room was re-entered through a different door than it was
left through. The course of the trajectory was planned and executed in a way that ensures that
the relocalization system of the HoloLens is only able to detect the drift-induced failure in its
position and correct for it, when the device has already re-entered the room.

2.2.2.3 Indoor Mapping

After the evaluation of the individual components relevant for indoor mapping (depth sensor and
tracking system), the performance of the overall HoloLens system in regard to the task of indoor
mapping was evaluated as well. For this purpose, the indoor space of an office environment
comprised of six rooms with furniture was mapped which resulted in triangle meshes provided by
the spatial mapping system of the HoloLens. For a subset of four of these rooms, range images
in the long throw mode were also recorded. While the acquisition of the triangle meshes was
conducted by walking through the rooms leisurely in typical walking speed, the acquisition of
the range images was done by walking deliberately slow, as range images can currently only be
acquired with a rate of one frame per second.

The range images were subsequently transformed to a global point cloud making use of their
poses as provided by the tracking system. The resulting point cloud as well as the triangle meshes
were manually registered on a ground truth point cloud of the mapped indoor environment
acquired by a terrestrial laser scanner (Leica HDS 6000) with subsequent ICP-based refinement
[59, 682]. As the ground truth point cloud was acquired in a furniture-less state with completely
empty rooms, all objects that are not represented in the ground truth data were manually
removed from the point cloud and the triangle meshes acquired with the HoloLens. The floor
was also removed, as it was hard to manually separate it from furniture objects. The evaluation
against the TLS ground truth data was then conducted by assigning each point (respectively
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Figure 2.7: Change in distance measurement of the HoloLens range sensor relative to the start value
over time during the warm-up process of the device. Vertical green lines indicate when the recording
of range measurements had to be stopped and immediately restarted to prevent the device from
switching to sleep mode. Source: [238].

vertex in a triangle mesh) the Euclidean distance value to the nearest point of the ground truth
data. Again, the software Cloud Compare [195] was used for this analysis.

2.3 Results
This section presents the results of the different experiments detailed in Sec. 2.2. First, Sec. 2.3.1
presents the results of the evaluation of the HoloLens depth sensing capabilities. Afterwards, the
results of the tracking evaluation are presented in Sec. 2.3.2, while Sec. 2.3.3 concludes with the
results of the evaluation of the overall system for the use-case of indoor mapping.

2.3.1 Depth Sensing
This section presents the results of the evaluation of the HoloLens ToF range sensor as described
in Sec. 2.2.2.1. Fig. 2.7 shows the variation of the measured range values over time during the
warm-up process of a completely cooled-down device relative to the first range measurement.
In the first 40 minutes after the beginning of the measurements, the range value is subject to
strong fluctuations in the range of few millimeters. Afterwards, from about 40 to 60 minutes, the
range value remains more or less constant at a value of 6 mm above the initial value. Then, at a
measurement time of about one hour, the measured value rises again by two to three millimeters
accompanied by strong fluctuations. Afterwards, it remains stable with a slightly increasing
trend for the rest of the measurement.

Tab. 2.2 on the other hand, shows the results of the investigation of sensor noise against
distance and inclination of a captured plane. The given values for noise are calculated as mean
standard deviations of the measured distance values over all pixels. The sensor noise is calculated
once for all pixels on the captured wall surface and once only for those pixels that contain range
values in at least 75 % of images of a respective recording. The results are further visualized in
Fig. 2.8.

As Fig. 2.8(a) shows, the sensor noise stays below 5 mm for measured distances smaller than
about 2.5 m. From 2.5 m upwards, a rapid increase in noise is observable. This increase is mainly
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Table 2.2: Noise of the distance measurements of the HoloLens ToF sensor against distance and
inclination of a captured plane. Stable pixels are pixels that have range measurements in at least
75 % of images. Part a): variation of distance; part b): variation of inclination. Source: [238]

Horizontal Vertical Depth Noise Noise in Stable Fraction of Stable
Angle [°] Angle [°] [m] [m] Pixels [m] Pixels [%]

a) 0.5 0.6 0.82 0.0018 0.0018 100
0.2 5.9 0.93 0.0025 0.0025 100
-1.9 4.3 1.08 0.0023 0.0023 100
-3.1 4.7 1.24 0.0028 0.0028 100
2.5 3.8 1.41 0.0030 0.0030 100
1.8 3.9 1.52 0.0032 0.0032 100
0.1 4.8 1.72 0.0036 0.0036 100
-2.4 5.3 1.88 0.0038 0.0038 100
-0.9 4.7 2.07 0.0039 0.0039 100
1.8 5.0 2.28 0.0042 0.0041 100
3.9 5.0 2.56 0.0054 0.0044 95
3.8 4.6 2.82 0.0070 0.0047 84
3.8 4.5 3.05 0.0096 0.0054 74
0.4 4.5 3.17 0.0113 0.0059 69
5.6 5.2 3.33 0.0162 0.0072 51
5.5 5.1 3.45 0.0201 0.0076 18

b) 0.1 4.8 1.72 0.0036 0.0036 100
13.1 5.8 1.84 0.0040 0.0040 100
19.5 8.6 1.94 0.0049 0.0044 98
37.8 -2.0 1.89 0.0065 0.0053 96
48.6 -2.0 1.84 0.0067 0.0061 97
58.6 1.1 1.69 0.0081 0.0076 97
73.8 -8.4 1.55 0.0103 0.0100 98
80.8 -29.6 1.38 0.0124 0.0121 99

Table 2.3: Evaluation of a three-dimensional scene as depicted in Fig. 2.5 captured by the HoloLens
ToF sensor from three different distances regarding noise and accuracy against TLS ground truth.
Additionally, a HoloLens triangle mesh of the scene is also evaluated against TLS ground truth. For
visual representation of the results, see Figures 2.9, 2.10, 2.11 and 2.12. Source: [238].

Recording Mean Mean Mean Noise in Mean Distance to
Depth [m] Noise [m] Stable Pixels [m] Ground Truth [m]

Near 1.30 0.0043 0.0042 0.0188
Midrange 2.02 0.0062 0.0060 0.0138
Far 2.64 0.0190 0.0104 0.0939
Mesh — — — 0.0458
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Figure 2.8: Noise of the distance measurements of the HoloLens ToF sensor against distance and
inclination of a captured plane. Stable pixels are pixels that have range measurements in at least
75 % of images. Source: [238]

caused by pixels, that only sporadically return range measurements. When only considering
stable pixels having range measurements in at least 75 % of the recorded images, the increase in
noise with distance proves less steep and stays below 1 cm for the whole measurable distance
range.

In the case of the influence of surface inclination as visualized in Fig. 2.8(b) however, sensor
noise increases by approximately the same rate for only the stable pixels as in the case of
considering all pixels. In both cases, noise remains below 5 mm for inclinations below 20°.

Tab. 2.3 presents the results of the evaluation of the three-dimensional scene depicted in
Fig. 2.5. The results are also visualized in Fig. 2.9 as depth images, while Fig. 2.10 visualizes the
noise and Fig. 2.11 the accuracy of the range measurements evaluated against TLS ground truth
data for all three distances the scene was captured from by the HoloLens range sensor (near,
midrange and far). Furthermore, Fig. 2.12 visualizes the accuracy of the HoloLens triangle mesh
of the same scene evaluated against the TLS ground truth data.

2.3.2 Tracking
In this section, results of the evaluation of the HoloLens tracking system as detailed in Sec. 2.2.2.2
are presented.

The evaluation of eight trajectories against ground truth data determined by the motion
capture system results in a mean ATE value of 1.9± 0.4 cm and a mean RPE value quantifying
drift per second of 1.6± 0.2 cm and 2.2± 0.3 °. Seven similar trajectories recorded with covered
range sensor resulted in a mean ATE of 1.3± 0.1 cm and a mean RPE of 1.6± 0.1 cm and
1.5± 0.3 °.

One of the evaluated trajectories of the rigid body on the device as tracked by the HoloLens
tracking system is depicted in Fig. 2.13. This trajectory was recorded with non-covered range
sensor. Fig. 2.14 shows the associated velocity and RPE values over the course of the trajectory.
The color range in both figures symbolizes time, going from blue to red.
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(a) Near. (b) Midrange. (c) Far.

0.8 m 3.4 m

Figure 2.9: Depth images derived from the HoloLens ToF sensor for the three-dimensional scene
depicted in Fig. 2.5 captured from three different distances. Source: [238].

(a) Near. (b) Midrange. (c) Far.

0 m 0.1 m
Figure 2.10: Noise of the range measurements of the HoloLens ToF sensor for the three-dimensional
scene depicted in Fig. 2.5 captured from three different distances. Source: [238].

(a) Near. (b) Midrange. (c) Far.

0 m ≥ 0.1 m
Figure 2.11: Accuracy of HoloLens range measurements evaluated against TLS ground truth data
for the three-dimensional scene depicted in Fig. 2.5 captured from three different distances. Source:
[238].

26



≥ 0.1 m

0 m

Figure 2.12: Accuracy of the HoloLens triangle mesh of the three-dimensional scene depicted in
Fig. 2.5 evaluated against TLS ground truth data. Source: [238]

Figure 2.13: HoloLens trajectory in a room equipped with a motion capture system. The color
represents time. The trajectory starts at blue and ends at red. The evaluation results in Fig. 2.14
also refer to this trajectory. They are visualized in the same color range representing time. Source:
[238].
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Figure 2.14: Velocity and RPE values over the course of the trajectory depicted in Fig. 2.13. The
color range is the same as the one from Fig. 2.13, symbolizing the time going from blue to red. Source:
[238].
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Figure 2.15: Closed trajectory of a total length of 287 m. The color represents time. The trajectory
starts at blue and ends at red. The positional error caused by drift amounted to 2.39 m upon
reentering the room. Source: [238].

Finally, Fig. 2.15 shows the result of the experiment to assess drift on large-scale trajectories
described in Sec. 2.2.2.2. The traveled distance of the depicted trajectory totals to 287 m
(including drift). The offset caused by drift upon re-entering the room amounts to 2.39 m.

2.3.3 Indoor Mapping
In this section, the results of the evaluation of the overall HoloLens system for the use-case of
indoor mapping as described in Sec. 2.2.2.3 are presented.

Fig. 2.16 depicts the captured triangle mesh of an indoor office environment consisting of five
rooms and a small hallway. In Fig. 2.17, the accuracy of the triangle mesh evaluated against TLS
ground truth data is visualized. In this case, the mesh was registered on the ground truth data
while keeping the scale fixed. The average accuracy of the complete mesh evaluated amounts
to 2.3 cm. Fig. 2.18 on the other hand depicts the accuracy evaluated against the same ground
truth data resulting from a registration which also adapts the scale of the mesh. In this way, a
scale factor of 0.9938 was determined, while the mean accuracy amounts to 1.7 cm.

The same indoor environment was also mapped with the HoloLens in the empty, furniture-less state
the TLS ground truth was acquired in. In this case, five independently-acquired triangle meshes were
recorded. These were registered at fixed scale with each other to determine the precision of repeated
acquisitions of the same environment with the results being depicted in Fig. 2.19. Furthermore, the
same triangle meshes were evaluated against the TLS ground truth data. The resulting accuracy
averaged over all five triangle meshes is visualized in Fig. 2.20. Finally, all five triangle meshes were
manually split in the individual rooms. The resulting meshes for each room were then individually
registered with fixed scale onto the respective room of the ground truth data. Fig. 2.21 shows the
resulting averaged accuracy evaluated against the TLS ground truth.
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Figure 2.16: Triangle mesh of an indoor office environment captured by the HoloLens. The ceiling is
removed for better visibility. Source: [238].

0 m ≥ 0.1 m

Figure 2.17: Accuracy of the HoloLens triangle mesh evaluated against the TLS ground truth. The
registration was done with fixed scale. The mean distance to the ground truth amounts to 2.3 cm.
Source: [238].

0 m ≥ 0.1 m

Figure 2.18: Accuracy of the HoloLens triangle mesh evaluated against the TLS ground truth. The
scale factor was determined to 0.9938 by registration. The mean distance to the ground truth
amounts to 1.7 cm. Source: [238].
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Figure 2.19: Precision of five triangle meshes of the same, furniture-less indoor environment, acquired
independently with the Microsoft HoloLens. The registration was done with fixed scale. Source:
[239], modified.

Figure 2.20: Averaged accuracy of five triangle meshes of the same, furniture-less indoor environment,
acquired independently with the Microsoft HoloLens and evaluated against TLS ground truth. The
registration was done with fixed scale. Source: [239], modified.

Figure 2.21: Averaged accuracy of five triangle meshes of the same, furniture-less indoor environment,
acquired independently with the Microsoft HoloLens and evaluated against TLS ground truth. The
registration was done with fixed scale. In this case, each triangle mesh was manually split in different
rooms. The rooms were individually registered on the corresponding room from the TLS ground
truth dataset. Source: [239], modified.
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3.3 m

0 m

Figure 2.22: Point cloud of an indoor office environment captured by the HoloLens range sensor. The
colors visualize point height with blue for the lowest and red for the highest points. The ceiling is
removed for better visibility. Source: [238].

0 m ≥ 0.1 m

Figure 2.23: Accuracy of the HoloLens point cloud evaluated against the TLS ground truth. The
registration was done with fixed scale. The mean distance to the ground truth amounts to 4.0 cm.
Source: [238].

0 m ≥ 0.1 m

Figure 2.24: Accuracy of the HoloLens point cloud evaluated against the TLS ground truth. The scale
factor was determined to 0.9887 by registration. The mean distance to the ground truth amounts to
2.4 cm. Source: [238].
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Fig. 2.22 shows a point cloud of a subset of three of the rooms and the hallway that was
derived from range images captured by the HoloLens range camera and registered via the camera
poses provided by the tracking system. The evaluation results for this point cloud are depicted
in Fig. 2.23 for fixed scale with a resulting mean accuracy of 4.0 cm and in Fig. 2.24 for a scale
factor of 0.9887 determined by registration on the TLS ground truth point cloud and a resulting
mean accuracy of 2.4 cm.

2.4 Discussion
In the following sections, the results of the experiments presented in Sec. 2.3 are discussed. Again,
the section starts with the evaluation of depth sensing in Sec. 2.4.1, continues with discussing
the results of the evaluation of the HoloLens tracking system in Sec. 2.4.2 and concludes with
Sec. 2.4.3, where the results of the experiments dedicated to indoor mapping are discussed.

2.4.1 Depth Sensing
Regarding the influence of the warm-up process of the device on the accuracy of range measure-
ments as presented in Fig. 2.7, it can generally be recommended to let the device warm-up for
at least one and a half hours before starting measurements with the HoloLens range camera,
when precision is of importance. When using the device for indoor mapping tasks, this warm-up-
induced drift in range measurements can potentially further increase drift effects caused by drift
in tracking as reported in Sec. 2.3.2.

In the findings presented in Fig. 2.8, noise in range measurements of up to 2 cm under
unfavorable conditions (long distances, high inclination) was ascertained. However, in the
context of indoor mapping, the influence of such effects cannot be easily assessed, as indoor
mapping is generally a dynamic process affected by the movement of the user wearing the device
through the environment to be mapped. In contrast, the findings presented in Sec. 2.3.1 apply to
static situations, where a scene is captured from one fixed sensor position over a certain range of
time. In the context of indoor mapping, it will rarely happen that a part of the scene is observed
from only one position.

A user mapping his environment should take care to observe all surfaces of interest from a
distance of at most about 2.2 m and from a not too steep angle. However, even if all relevant
parts of the scene are captured by favorable sensor positions, there will always also arise range
measurements beset by high noise caused by large distances or oblique angles. Raw indoor point
clouds derived from HoloLens range images will thus always contain a high amount of noise as is
apparent in Fig. 2.22. This is further contributed to by errors in the sensor poses obtained from
the tracking system.

Thus, HoloLens range measurements have to be further processed e.g. by removing single
points affected by high noise or whole range images affected by tracking errors to yield reasonable
results. The triangle meshes provided by the HoloLens system, although produced in a black-box
manner, can be regarded as the result of such a processing. As shown in Tab. 2.3, the accuracy of
the triangle mesh falls in the range between the range images captured under favorable conditions
and the one suffering from a too large distance of the sensor to the scene. The mesh represents
the accumulated knowledge the HoloLens system has of its environment after capturing range
images from the three positions detailed in the table. However, the accuracy of the mesh as
specified in Tab. 2.3 is lower than the accuracy of the range images captured from shorter
distances. It can be suspected, that this is caused by the reduction of spatial resolution due to
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Figure 2.25: Cross section from Fig. 2.11(a) corresponding to the red line on white background
shown in the small range image in this figure. The large deviation from the ground truth (visualized
in gray-scale) of the range measurements on the left side of the right box are possibly caused by
multi-path effects. Source: [238].

the triangulation process.
Besides inaccuracy caused by sensor noise, there are also systematic effects degrading the

accuracy of HoloLens depth sensing in some parts of the data. In Fig. 2.11(a), e.g., the left side
of the box on the right is indicated by turquoise to yellow coloring to deviate quite strongly
from the ground truth data. A horizontal cross section of this part is shown in Fig. 2.25. This
deviation could possibly be caused by multi-path effects. Other deviations possibly caused by
multi-path effects include the upward bulging of triangle meshes occurring in corner situations on
ceilings as indicated by red color in the top view visualizations on the left-hand side of Fig. 2.17
and 2.18.

2.4.2 Tracking
The evaluation results presented in Sec. 2.3.2 show that the HoloLens tracking system is capable
of marker-less inside-out tracking in indoor environments with an accuracy of two centimeters or
better. This is also supported by the apparent spatial stability of virtual objects as perceived by
the user wearing the device. Fig. 2.14 seems to imply a correlation of positional RPE values
with velocity and rotational RPE with angular velocity over the course of the trajectory.

It is noteworthy, however, that the presented results seem to indicate a higher tracking
accuracy when covering the range sensor. It can be assumed, that this is caused by the ToF
range sensor of the HoloLens interfering with the motion capture system. In this case, both
conducted experiments would not adequately assess the true HoloLens tracking accuracy as i) in
the case of the uncovered range sensor, the ground truth values would be distorted and ii) in
the case of the covered range camera, the system would not be evaluated in its usual working
mode. In any case, the presented results can be regarded as a lower bound for the quality of
the HoloLens tracking system, as it is not to be assumed that using the range sensor degrades
tracking quality.

Anyhow, even quite small drift effects as those observed in room-scale trajectories accumulate
with traveled distance as shown in Fig. 2.15. In situations as the one depicted, loop closure
is detected by the HoloLens system after re-entering the room and the position of the device
is corrected accordingly. The triangle meshes however are only corrected locally in the direct
surrounding of the place of the detected loop closure by removing falsely positioned meshes that
do not correspond to physical structures when they get in the field-of-view of the range sensor.
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(a) Empty rooms. (b) Rooms with furniture.

Figure 2.26: HoloLens triangle meshes of the same indoor environment acquired a) in an empty state
without furniture b) with furniture.

2.4.3 Indoor Mapping

The precision of the HoloLens triangle meshes is overall quite high as indicated by Fig. 2.19. However,
the accuracy evaluated against TLS ground truth data of the triangle meshes acquired in an empty,
furniture-free indoor environment (see Fig. 2.20) is significantly lower as the accuracy of triangle
meshes of the same indoor environment when furniture is included (see Fig. 2.17). As Fig. 2.26
suggests, the difference between the acquisition of an empty indoor environment to the acquisition of
the same rooms including furniture is given by the fact that some of the walls in the indoor mapping
results with empty rooms seem to have a significantly underestimated thickness. While the geometry
and dimensions of the individual rooms seem to be quite consistent in both datasets, the rooms in
the dataset without furniture seem to be somewhat displaced to one another in comparison to the
dataset including furniture.

A schematic overview of intensity and direction of the deviations of a HoloLens triangle mesh in
relation to the TLS ground truth data is presented in Fig. 2.27. The detail view on the right-hand
side of this figure indicates, that the accuracy is actually worse than Fig. 2.20 suggests. The distance
to the nearest point of the TLS reference point cloud is used to quantify the accuracy. Thus, mesh
vertices of walls that are deviated to a degree so that they are nearer to the reference wall surface of
an adjacent room than to the actual wall surface can can show a misleadingly low distance to the
ground truth data.

Furthermore, it is apparent that the major deviations occur on walls in which doors have been
crossed during the indoor mapping process. In most cases, the direction of the respective deviation
is the opposite of the direction into which the rooms have been entered coming from the central
floor. This gives the impression that the rooms themselves are captured quite successfully taken
individually but that the individual rooms are shifted towards one another along the directions of
the doors connecting them. This impression is confirmed by Fig. 2.21, showing that the accuracy
significantly improves when the rooms are registered onto the ground truth point cloud on a per-room
basis.
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Figure 2.27: Deviations of a triangle mesh of a furniture-less indoor environment acquired with the
Microsft HoloLens compared to TLS ground truth data. On the left, low deviations are demarcated
in green, medium deviations in yellow and large deviations in red. The arrows indicate the direction
into which the HoloLens triangle mesh deviates from the ground truth data. In the detail few on the
right of the section demarcated by the blue frame, the HoloLens triangle mesh is colored according to
distance to the TLS ground truth with the color scale being depicted above. Source: [239], modified.

Contrary to the large displacements of adjacent rooms in the case of the furniture-free
environment, no displacements of such a magnitude were noticed in the indoor triangle mesh
presented in Sec. 2.3.3. Only the wall between the upper and middle room on the left-hand
side in Fig. 2.16 shows a slight narrowing towards the room corners. This could be caused by
multi-path effects as it is probably also the case with the outward bulging of ceilings in room
corners visible as red spots in some room corners in the top view visualizations in Figures 2.17
and 2.18.

It can be suspected that the large deviations between the individual rooms in Fig. 2.20 were
maybe caused by this furniture-less state, the white texture-less walls causing a deterioration in
tracking performance. As, in this case, the ground truth data set also did not contain furniture,
all parts of the triangle mesh representing objects not present in the ground truth data had to
be removed manually.

Although the evaluation still establishes a significant scale factor, its impact on the accuracy
of the triangle mesh is by no means as strong as in the case of the furniture-free environment.
With a mean accuracy of 1.7 cm for corrected scale and 2.3 cm for the original scale of the
triangle mesh, these results demonstrate the high potential of the HoloLens for the use-case of
indoor mapping.

Large-scale drifts in tracking as discussed in Sec. 2.4.2 however still prove an obstacle. In
these cases, it would be necessary to distribute a detected offset over the whole trajectory and
its attached meshes in the event of loop closure detection. Corrections like this are not taken
into consideration for the HoloLens as it is not needed for its actual use-case as an augmented
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reality device where only the correctness of the triangle mesh in the direct vicinity of the user is
of importance.

The evaluation of the point cloud of a subset of four rooms of the same indoor environment
derived from range images of the HoloLens ToF camera resulted in an accuracy of 2.4 cm for
corrected scale and 4.0 cm for the original scale. This accuracy is lower than the resulting
accuracy of the triangle meshes of the same environment whereas the evaluation of the scene
presented in Sec. 2.3.1 resulted in the triangle meshes showing a lower accuracy than range
measurements captured under suitable conditions. In this case, however, the sensor was capturing
the scene in a static setting for a certain duration whereas, here, it was constantly moving
through the environment with the user. Thus, as already discussed in Sec. 2.4.1, every part of
the mapped indoor environment can be expected to not only have been captured in favorable
constellations, but also from high distances or steep angles. Furthermore, inaccuracies in the
tracking of the device pose propagate to the global position of points resulting from range
images. The resulting point clouds are thus characterized by a huge amount of noise, as can
be seen in Fig. 2.22. Besides, some parts of the indoor environment were only ever captured
under unfavorable conditions by the range sensor. For example, in the case of the lower left
room depicted in the top view visualization in Figure 2.23 and 2.24, the operator mapping the
environment did not look upwards to the ceiling. The ceiling surface in this room was thus only
captured partially and only under oblique angles, which results in low accuracy in the respective
part of the point cloud.

2.5 Conclusion and Outlook
In this chapter, a thorough evaluation of the Microsoft HoloLens regarding its adequacy for the
use-case of indoor-mapping was presented. After a brief survey of the different camera sensors
the device is equipped with, the performance of its depth sensing and tracking system were
investigated independently from each other. Subsequently, the complete system w.r.t. the task
of mapping indoor environments was evaluated.

While the potential of the HoloLens as an off-the-shelf tool for indoor mapping could thus be
demonstrated, its shortcomings also need to be highlighted. It however has to be remembered
that the HoloLens was not primarily designed as an indoor mapping device. It rather is a mobile
augmented reality headset. Thus, its capabilities in capturing the geometry of its surrounding
are geared towards the needs of an AR device, where typically only the direct vicinity of the
user that is to be augmented with virtual content needs to be consistently known. Large-scale
drift in tracking and the deviations in the captured meshes caused by it are not a problem from
the viewpoint of augmented reality, as the user only ever perceives his current vicinity which
is captured sufficiently consistent to allow for virtual content to realistically interact with the
physical environment.

Nevertheless, the HoloLens as an off-the-shelf, rather low-cost device that is easy to use still
holds great promise for effortlessly capturing the geometric structure of large indoor environments.

Regarding potential future work on the evaluation of the HoloLens or similar sensor systems,
the investigations presented in this chapter can certainly be further extended and deepened. The
evaluation of the range sensor should particularly be extended by a wider variety of test objects
and scenarios. For instance, examining further test geometries and constellations could enable
further insight on the behaviour of multi-path effects. In addition, investigating the influence of
different surface materials holds potential for further research. Furthermore, the second version
of the HoloLens should also be comparatively examined regarding its potential for the use-case
of indoor mapping.
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Chapter 3

Indoor Reconstruction

Indoor mapping systems as discussed in the previous Chap. 2 can be used as a basis for realizing indoor
fused reality scenarios as envisioned in Sec. 1.2.5. In this regard, primary indoor mapping data like
point clouds, triangle meshes or image data are not really usable in the context of suchlike applications
as they are typically characterized by a large quantity of data with a rather low level of semantic
information. In order to be efficiently usable in the context of indoor fused reality applications,
indoor mapping data thus needs to be processed to a more accessible form of representation, i.e.
building models as described in Sec. 1.2.1.

While building models can be derived from indoor mapping data via a process of manual modeling,
this is a rather laborious, time-consuming endeavor. Thus, methods that can be applied towards
the automated reconstruction of semantically enriched and geometrically completed and generalized
building models hold a significant importance for the realization of indoor fused reality scenarios.
This task, often termed as automated indoor reconstruction, is the topic of this chapter. First,
Sec. 3.1 presents an overview of the topic of indoor reconstruction and the approaches typically
applied to this aim. Afterwards, Sec. 3.2 presents, as an own contribution to this field of research, a
voxel-based indoor reconstruction approach that can be used to derive semantically enriched and
geometrically refined voxel models of indoor environments from triangle meshes acquired for instance
with the Microsoft HoloLens whose indoor mapping capacities were evaluated in the preceding Chap. 2.
Furthermore, appropriate methodology for the quantitative evaluation of indoor reconstruction results
in voxel representation is presented as well. Subsequently, Sec. 3.3 presents six datasets acquired with
the Microsoft HoloLens and the respective quantitative evaluation results of the proposed indoor
reconstruction approach. Lastly, Sec. 3.4 provides further discussions before Sec. 3.5 closes this
chapter with a conclusion and an outlook on future work.

Within this chapter, material published in [243] is used. An early version of the proposed approach
was also published in [242].

3.1 Fundamentals of Indoor Reconstruction

Automatically reconstructing building models from indoor mapping data is a broad and active field
of research with a large number of different approaches proposed over the last decade [24, 444, 359,
353, 267, 320, 456]. While indoor mapping approaches are sometimes denoted as ’reconstruction’ or
’modelling’ of indoor environments [117, 145, 675, 690], this chapter focuses on approaches that do not
merely aim to geometrically acquire indoor building environments by means of sensor systems. Rather,
the discussed indoor reconstruction approaches aim to automatically derive compact, abstracted
building models in the sense of Sec. 1.2.1 from the given indoor mapping geometries.
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This implies the necessity to exceed a mere semantic segmentation task, where the represented
indoor mapping geometries are labeled as belonging to different semantic classes [113, 466, 684, 108].
Indoor reconstruction rather comprises the geometric abstraction of the given input data to refined
geometries. For instance, planar walls should be represented e.g. by planes or voluminous geometries
and not just by noisy points labeled as ’wall’. Furthermore, also the parts of wall surfaces that are
occluded by furniture or incompletely acquired by the respective indoor mapping system need to be
geometrically reconstructed. In this regard, the task of automated indoor reconstruction is related
to the fields of three-dimensional, geometric inpainting [498, 587] and semantic scene completion
[129, 347, 124].

Besides, indoor reconstruction is also related to the task of automatically reconstructing building
models from outdoor mapping data such as point clouds acquired by terrestrial or airborne laser
scanning systems [618, 471, 213, 323, 601, 233, 645]. Here however, the typical characteristics
of indoor building environments as discussed in Sec. 1.2.2 pose specific additional challenges in
comparison to outdoor building reconstruction. In this context, a potentially interesting object of
research is the fusion of indoor and outdoor building reconstruction. For instance, a reconstruction
approach applicable to interior as well as exterior building structures has been proposed [469].
Other approaches focus on registering indoor and outdoor building representations by detecting and
registering window openings in both datasets [120, 293]. In addition, the field of indoor reconstruction
is also related to automatic reconstruction approaches targeting all kinds of other man-made objects
with clearly defined geometry characterized by a high degree of regularities and symmetries. In
this context, approaches for automatically reconstructing structures such as pipes [265, 598, 521],
columns [532, 360, 491], briges [15, 317, 476] and power pylons [678, 602] or other steel structures
[654] from point clouds have been proposed.

Indoor reconstruction approaches have been utilized in a range of different application scenarios
such as change detection in building structures [557, 419, 294, 573], facility management [541] and
progress tracking in construction projects [91, 52, 360]. Furthermore, indoor reconstruction has been
applied in the context of cultural heritage [27, 490, 623], the simulation of 5G signal distribution in
indoor environments [126, 540], building energy analysis [116, 187, 433, 249] and indoor navigation
[174, 537, 407, 141, 176, 418].

While the reconstruction of building models from data such as point clouds is frequently approached
manually or semi-automatically [665, 43, 448, 651], automating this modeling process has been in the
focus of research efforts for a long time [559, 533, 355, 597]. In this context, a range of studies have
been conducted analyzing the challenges an specific requirements posed on the task of automated
indoor reconstruction [406, 215, 478, 604].

While this work focuses on deriving three-dimensional building models from three-dimensional
input data such as point clouds or triangle meshes, there are also approaches that aim at deriving
building models (2D and 3D) from scanned floor plans [148, 344, 253, 564, 636]. Furthermore, a range
of approaches have been proposed that aim at deriving floor plans from three-dimensional input data
such as point clouds [430, 579, 343, 105, 182, 168]. As the resulting floor plans can be converted to
three-dimensional building models by vertical extrusion, these approaches can be considered indoor
reconstruction methods. Worth of mention is furthermore a range of approaches aiming to derive
floor plans from trajectories [21, 452, 404]. Lastly, two-dimensional, possibly outdated floor plans
have been used as an additional source of information in the context of indoor reconstruction from
point clouds [46].

Besides indoor reconstruction approaches relying on three-dimensional input data such as point
clouds or triangle meshes, some approaches also aim at reconstructing 3D room layouts from single
(panorama) images [235, 659, 553, 694]. A similar approach is followed in [501], where TLS point
cloud data is represented as a panorama image from which room models are reconstructed.
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Two fundamental components in the context of indoor reconstruction applications are the
reconstruction of wall structures from potentially cluttered and occluded indoor mapping data
[4, 401, 427, 467, 340] and the segmentation of indoor building structures in individual subspaces, i.e.
room partitioning [71]. Wile room partitioning has also been applied to floor plans [366, 10, 132] or
building models [642, 439], it is frequently used in the context of indoor reconstruction from indoor
mapping data as well [31, 405, 607, 572, 653].

Room partitioning is however not necessarily used in all indoor reconstruction approaches. Some
methods are applicable only to single room scenarios [80, 643, 631, 123, 501, 335]. These approaches
are only applicable to indoor mapping data representing a single room. Thus, indoor mapping data
of more complex indoor environments need to be segmented into rooms beforehand, either manually
or by means of a separate room segmentation approach. Furthermore, some indoor reconstruction
approaches are applicable to more complex indoor environments comprised of multiple rooms but do
not partition the resulting building model into subspaces such as rooms [578, 427, 641, 340]. In these
cases, space is only partitioned into indoor space and outside space.

In general, a range of different strategies have been put forward when approaching the task of
indoor reconstruction. A commonly applied approach is to detect planes representing walls and to
assemble them into rooms which solves the mentioned problems of wall reconstruction and room
segmentation. In doing so, two principal strategies can be followed. Some approaches rely on
detecting local plane patches (e.g. by region growing approaches) [596, 341, 466] and aim to assemble
these plane patches into room surfaces [416, 422, 641, 518, 429]. In contrast to this bottom-up
strategy, the problem of indoor reconstruction can be approached in a more top-down manner as
well. This encompasses firstly the detection of major global planes (e.g. by RANSAC [175, 512] or
Hough Transform [73]). Then, the detected planes are intersected with one another to create a cell
complex whose cells are subsequently assigned to the interior space and the outside or partitioned
into rooms. In most cases, a two-dimensional cell complex is created from detected wall surfaces
projected to the horizontal plane as lines [402, 427, 607, 328, 574]. In multi-storey scenarios, one
such 2D cell complex is created per storey. In some cases however, planes resulting from floors and
ceilings are taken into account as well to create a 3D cell complex [400, 123]. Furthermore, a 2D cell
complex created by intersecting lines has been used for the reconstruction of occluded walls with
openings from orthoprojected raster representations of planar walls [383]. Lastly, some approaches
combine elements of both, top-down and bottom-up strategy [22, 403, 425].

Other indoor reconstruction approaches rely on trajectories of the respective indoor mapping
system [420, 157, 468, 687, 339]. Trajectory information can for instance be utilized for facilitating
room partitioning and door detection. However, it limits the applicability of an indoor reconstruction
application to indoor mapping datasets containing trajectory information.

Furthermore, some indoor reconstruction approaches rely on representing the input data in discrete
rasters, i.e. voxel grids [67, 174, 421, 176, 178]. Besides three-dimensional voxel grids, some approaches
also use horizontal 2D raster representations for room partitioning [246, 363, 261, 105] or vertical 2D
rasters resulting from orthoprojection of wall surfaces for wall reconstruction [4, 151, 143, 599, 588].
The latter approaches achieve good result in the reconstruction of occluded wall surfaces and the
detection of wall openings like doors and windows. However, they assume wall surfaces to be planar.
Furthermore, raster representations are well-suited for deep learning approaches which are recently
gaining in prevalence in the context of indoor reconstruction [104, 124, 288, 183, 653].

Besides ceilings, floors and wall surfaces, some approaches also aim at reconstructing other
building elements such as furniture [588, 647, 492], elements affixed to room surfaces such as fire
alarms or power plugs [6, 556] or door openings [143, 38, 176, 653]. The detection of door openings
as transition spaces between rooms is also of importance in the context of applications aiming to
reconstruct the room topology of indoor environments [575, 492, 653]. Besides the topology of rooms,
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some approaches also focus on extracting the topology of wall structures [49, 673].
In order to tackle the challenging problem of indoor reconstruction, facilitating assumptions about

the structure of indoor environments to be reconstructed are often applied. One such assumption
concerns the already discussed indoor reconstruction approaches that assume that the given input
data represents exactly one room. Another commonly applied assumption is the Manhattan world
assumption, i.e. that all surfaces of a building are perpendicular to one of the three coordinate axes
[80, 502, 372, 288, 496]. Other indoor reconstruction approaches weaken this assumption about the
structure of indoor environments by allowing for horizontally diagonal [402, 426, 607, 520, 574] or
even curved walls [427, 328, 652, 340, 634] or non-horizontal, slanted ceilings [67, 123, 421, 339].
Another important aspect regarding the flexibility of indoor reconstruction approaches is the handling
of multi-storey building structures. In this context, some approaches are able to deal with complex
vertical building structures such as stairwells [502, 174, 328, 421, 339].

While many indoor reconstruction approaches only output surface models of reconstructed indoor
environments [502, 401, 427, 57, 340, 634], e.g. in the form of triangle meshes, some approaches aim
at reconstruction walls as actual, volumetric objects instead of just their surfaces [569, 260, 425,
418, 574]. Some approaches even aim at directly generating actual BIM data formats such as IFC
[23, 364, 47, 354].
Concerning the evaluation of indoor reconstruction approaches, quantitative metrics such as
precision, recall or Intersection-over-Union (IoU) are frequently used [328, 48, 574, 418]. Besides,
there are also several approaches which evaluate the quality of reconstruction by quantifying
the metric distances of points of the input data to the reconstructed room surfaces [126, 641]
or measure the distances between certain corresponding walls in the ground truth model and
achieved reconstruction results or room areas, respectively [335]. For some other approaches,
results are only visually presented and qualitatively discussed [176, 425]. Results for room
partitioning are mostly evaluated on the basis of comparing the number of rooms (and doors
where applicable) to the respective ground truth value [328, 126, 652, 418].

Besides the respective evaluations of proposed indoor reconstruction approaches, there are
also some studies explicitly targeting evaluation methodology for indoor reconstruction tasks.
For instance, a framework for the unsupervised evaluation of indoor reconstruction results has
lately been proposed which checks the internal consistency of the derived indoor model against a
formal grammar containing semantic, geometric and topological consistency rules [417]. Others,
in turn, deal with methodology for the geometric validation of indoor reconstruction results
against point clouds as a kind of unlabeled, solely geometric ground truth [69]. The proposed
procedure is however based on manual interaction of the user. Another framework for evaluating
the quality of indoor reconstruction results and also relying on manual user interaction targets
reference indoor models provided by expert manual modelers [285]. Other works dealing with
evaluation methodology concern themselves not with indoor reconstruction results, but with
the indoor mapping point clouds that are the input data for indoor reconstruction procedures
[106, 34]. In this context, evaluation methodology is presented to assess accuracy and consistency
of these data as a prerequisite for a successful indoor reconstruction.

41



Table 3.1: Color scheme for voxel classes. Source: [243].

" Ceiling " Wall " Wall Opening
" Floor " Interior Object " Empty Interior
" Not Classified " Wall & Ceiling " Wall & Floor

3.2 Methodology
A novel method for the reconstruction of voxel models of indoor environments from unstructured
3D data with oriented normals is presented in the following. Fig. 3.1 visually summarizes the
proposed approach, while the colors used for semantic voxel classes are detailed in Tab. 3.1.
The given input data representing indoor environments are voxelized to a three-dimensional
voxel grid. In this voxel representation, a model of the indoor environment is reconstructed by
assigning voxels to rooms and semantic classes.

The proposed method is generally applicable for unstructured 3D data with oriented normals.
It could thus also be applied to point clouds given that the normals of the points can be
consistently oriented to differentiate between inside and outside of the indoor environment.
However, this chapter focuses on triangle meshes as captured with the Microsoft HoloLens or
the Matterport system. Especially in the case of the Microsoft HoloLens, the input triangle
meshes can be expected to be affected by noise and incomplete scene acquisition (see Chap. 2).
Furthermore, it is taken into consideration, that the represented indoor environments can contain
a large amount of clutter like furniture objects that can occlude room surfaces.

With respect to the represented building structure, the presented approach is intended
to be as generic as possible regarding the actual shape of room surface geometries in indoor
environments. In this context, room surfaces such as ceilings, floors and walls are not necessarily
assumed to be planar or to adhere to the Manhattan World assumption. Only floor and ceiling
surfaces are presupposed to be approximately horizontal within a range of ±60° for ceilings and
±45° for floors. Walls are expected to vertically connect the borders of ceiling and floor surfaces.
They can however have protrusions and recesses in their vertical course. Furthermore, the upward
direction is assumed to be known and the input data to be vertically aligned accordingly. The
proposed approach is predominantly based on assumptions about the size and proportions of
indoor spaces, derived from the typical dimensions of their human inhabitants. These assumed
parameters are formulated in terms of metric values to be independent of the applied voxel
resolution.

The general aim of the proposed approach is to automatically generate basic semantic and
geometric models of challenging indoor environments with arbitrary building structures from
noisy, cluttered and incomplete indoor mapping data as attainable with easy-to-use, off-the-shelf
devices like the Microsoft HoloLens. The resulting voxel models are partitioned into rooms and
connecting transition spaces. Furthermore, they provide a semantic distinction between the
building structure itself (i.e. ceilings, floors and walls) and furniture objects and other clutter
contained in the building within the geometric bounds of the respectively selected voxel resolution.
The resulting voxel models can serve as a basis for a multitude of potential application scenarios,
i.e. automated BIM model reconstruction, indoor navigation or indoor simulation/analysis
scenarios e.g. with regard to temperature, noise or substance dispersion, air quality or emergency
scenarios.

In the following, the chapter proceeds with outlining necessary steps of data preprocessing in
Sec. 3.2.1. Subsequently, the various steps of the proposed reconstruction algorithm are detailed
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Figure 3.1: Overview of the processing workflow of the proposed reconstruction method: the input
data are represented by a triangle mesh, while the output is given by the reconstructed voxel model.
The individual sections are given in the vertical text. Source: [243].
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Segment Ceilings as 3D-26-
Connected Components ≥ 

0.5 m2

Normal Classification Trace Wall through Ceilings 
⇒

(a) (b) (c)

Figure 3.2: Overview of the ceiling detection process. In (a) and (b), voxels are colored in red for
’Normal Down’, green for ’Normal Up’ and white for ’Normal Horizontal’. In (c), the detected ceiling
segments are visualized in red (only the upper floor is shown for better visibility). Source: [243].

in Sec. 3.2.2 to 3.2.6. In doing so, the workflow of the semantic classification and geometric
reconstruction in voxel space is summarily detailed in Sec. 3.2.1 to 3.2.5. Furthermore, Sec. 3.2.6
presents a novel indoor space partitioning approach based on the resulting voxel model. Finally,
Sec. 3.2.7 describes the methodology applied for performance evaluation.

3.2.1 Data Preparation
As a preliminary processing step, the input triangle mesh is voxelized into a regular voxel grid of
fix but arbitrarily choosable resolution. In doing so, all voxels that do not intersect any triangles
are assigned the value ’Empty’. The non-empty voxels that do intersect triangles get assigned
the values ’Normal Up’, ’Normal Down’ or ’Normal Horizontal’ based on the normal vector
directions of the contained triangles. If the majority of the normal vectors of the contained
geometries is pointing downwards within the range of ±60°, a respective voxel is classified as
’Normal Down’. If the majority of the contained normal vectors is pointing upwards within the
range of ±45°, it is classified as ’NormalUp’. Else, it is classified as ’Normal Horizontal’.

The resulting voxel grid serves as input for the reconstruction algorithm specified in the
following sections. The main aim of the proposed reconstruction algorithm consists of a segmen-
tation of this voxel grid into single rooms and a classification of the voxels belonging to a room
as ’Ceiling’, ’Floor’, ’Wall’, ’Wall Opening’, ’Empty Interior’ or ’Interior Object’.

3.2.2 Ceiling and Floor Reconstruction
The reconstruction process starts with the initial detection of ceiling segments in the voxel grid
derived from the input data. These ceiling segments are subsequently refined and corresponding
floor surfaces are detected underneath. The following sections describe this process in detail.
Furthermore, the workflow is visualized in Figures 3.2 and 3.3.

3.2.2.1 Ceiling Detection

In a first step visualized in Fig. 3.2(b), the grid of voxels classified by normal direction is traversed
from bottom to top. In doing so, every ’Normal Down’ voxel, that has a ’Normal Horizontal’
voxel directly underneath is turned to ’Normal Horizontal’ itself. This traces the walls through
the ceiling surfaces and causes ceiling surfaces of neighboring rooms to be seperated by the walls.
Subsequently, in Fig. 3.2(c), ceiling segments are segmented as 26-connected 3D components
among the ’Normal Down’ voxels. Ceiling segments with a horizontal extent of less than 0.5 m2

are discarded at this step. The corresponding parts of the building are however incorporated
later on in Sec. 3.2.4.
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Figure 3.3: Overview of the ceiling and floor reconstruction process. All subfigures except (e) are
colored according to Tab. 3.1. Furthermore, holes detected within the ceiling segments are depicted in
blue. In (d) and (f), floor candidate segments that are not identified as the actual floor are depicted
in yellow. Source: [243].
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3.2.2.2 Ceiling Refinement
The detected ceiling segments are used as a starting point for reconstructing the rooms belonging
to the respective ceilings. This is done by vertically traversing the voxel grid downwards from
the ceiling voxels until the floor is encountered. This process described in Sec. 3.2.3 on the one
hand presupposes that for each ceiling voxel, a corresponding floor voxel exists underneath to
vertically terminate the voxel classification process. On the other hand, the ceiling segments
detected so far can have holes distorting their actual geometry and accordingly the geometry of
the rooms to be reconstructed underneath. These holes can be caused by incomplete acquisition
during the indoor mapping process as well as due to occlusion by objects like lamps attached to
the ceiling.

These holes have to be detected and eventually closed in order to allow for a correct
reconstruction of the respective room. However, ceiling surfaces can also have openings like the
interior of columns, inner yards or corners of walls pointing convexly inside the room. These need
to be differentiated from the aforementioned holes in order to achieve a correct reconstruction of
ceiling geometries. To this end, a refinement process as visualized in Fig. 3.3 is conducted for
each detected ceiling segment.

The process commences in Fig. 3.3(b) with orthogonally projecting the individual ceiling
segments in respective 2D pixel grids. In these 2D grids, the detection of potential holes is
conducted by searching for empty pixels in-between ceiling pixels along the four directions of a
2D-8-neighborhood. The detected hole pixels are subsequently segmented as 4-connected 2D
components.

Next, in Fig. 3.3(c), the height of all height pixels is interpolated based on the height of the
ceiling pixels bordering the respective hole segment. Finally, a smoothing of the height values
across the whole ceiling segment and its holes is conducted.

3.2.2.3 Floor Detection
For each resulting voxel position, the voxel grid is vertically traversed downwards until a ’Normal
Up’ voxel or a ’Normal Down’ voxel belonging to another ceiling segment is encountered. The
resulting floor candidate voxels as depicted in Fig. 3.3(d) are segmented to floor candidate
segments as 8-connected 2.5D components with a threshold of 18 cm between neighboring floor
voxels. This is a common value for the height of stair steps and enables floor segments to extend
over stairs and ramps while mostly avoiding to spread over to surfaces on top of furniture like
tables or chairs.

In the algorithm as originally published in [242], the respectively largest floor candidate
segment was chosen to initialize the respective floor corresponding to each ceiling segment. This
however can lead to large table surfaces being erroneously identified as floor in rooms where large
parts of the actual floor surface are occluded. Thus, floor candidate segment voxels are weighted
with the total amount of ’Normal Up’ voxels at the height of each respective voxel as visualized
in Fig. 3.3(e). For each room, the floor candidate segment with the largest summarized weight is
selected as floor as depicted in Fig. 3.3(f).

3.2.2.4 Ceiling and Floor Finalization

The missing parts of the floor are subsequently filled as depicted in Fig. 3.3(g). Again, the height
is interpolated based on the height of the borders of the existing floor segment. In the end, each
ceiling or hole voxel has a corresponding floor voxel beneath it.
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Figure 3.4: Overview of the voxel classification process. All subfigures are colored according to
Tab. 3.1. Source: [243].

On this basis, ceiling holes are either closed by incorporating them into the ceiling surface
or discarded along with the corresponding floor voxels as depicted in Fig. 3.3(h). To make this
decision, the border and interior of each hole is checked along the whole height range between
ceiling and floor. If intersections with other rooms in the interior or substantial evidence for
the presence of walls along the border of a hole are found, it is discarded. Else, it is closed by
incorporating it into the respective room. This approach might lead to unwanted results in case
of inner yards delimited by large panorama windows. In this situation, a ceiling hole above
an inner yard would be closed and incorporated into the surrounding room. Finally, walls are
initialized along the borders of ceilings and floors.

3.2.3 Voxel Classification
At this point, ceilings and corresponding floors are identified. Classifying the voxels between
ceiling and floor is now quite straightforward as visualized in Fig. 3.4. The classification is
conducted just by checking if the respective voxels between a ceiling voxel and the corresponding
floor voxel are empty or not. Empty voxels are assigned the class label ’Empty Interior’. Non-
empty voxels on the other hand are classified as ’Interior Object’. Along the borders where wall
voxels have been initialized, the class labels ’Wall’ and ’Wall Opening’ are assigned based on the
same condition.

Note, that all non-empty voxels within the room interior are labeled as ’Interior Object’
to demarcate them as not belonging to the building structure itself but to some object inside
the respective room. Currently however, the proposed approach does not distinguish between
different types of furniture objects. Nor does it segment ’Interior Object’ voxels to actual object
instances. Rather, it provides the basis for doing so in the context of applications making use
of the created voxel models. In this context, it is also conceivable to go back to the actual
indoor mapping geometries intersecting the respective voxels for segmentation or fine-grained
classification tasks.

3.2.4 Voxel Model Completion
So far, only rooms covering a horizontal area of at least 0.5 m2 with a continuously connected
ceiling surface have been reconstructed. However, indoor environments typically also contain
smaller sections with own smaller ceiling surfaces that are distinct from the main ceiling surface
of larger rooms like alcoves, window recesses or the spaces inside door frames between rooms
that should also be considered as part of the indoor space to be reconstructed.

These missing sections are detected and reconstructed in a manner similar to the algorithm
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described so far. In doing so, however, no threshold on the ceiling area is applied this time.
Larger areas of ’Normal Up’ voxels that so far do not belong to any room are also considered. If
no traces of suitable, corresponding ceiling surfaces can be found, a virtual, hypothetical ceiling
surface on a fixed height of 3 m above the respective floor voxels is assumed.

This allows for the consideration of areas without a visible ceiling within the scope of the
voxel-based indoor reconstruction framework. This can be the case for areas without any ceiling
like inner courtyards that are nonetheless included in indoor mapping datasets or areas whose
actual ceiling is not represented in the dataset. This can be the case for e.g. glass surfaces that
cannot be captured with the ToF sensor of the HoloLens device or because the ceiling is too
high to be captured given a respective sensor working range.

After detecting these additional indoor spaces, the aforementioned classification process for
the voxels between ceiling and floor is applied for these spaces as well to complete the indoor
voxel model. This is depicted in Fig. 3.4(c).

3.2.5 Voxel Model Refinement
With the previously described voxel sweep algorithm, voxels are assigned both class labels and
room affiliations. Based on the resulting indoor voxel grid, subsequent refinement sweeps are
applied to further improve the indoor voxel model. The respective refinement steps are visualized
in Fig. 3.5.

3.2.5.1 Wall Geometry Refinement
Up to now, the reconstructed wall surfaces have a width of only one voxel owing to their
initialization along the edges of ceiling segments that were propagated downwards during the
voxel classification sweep described in Sec. 3.2.3. These were subsequently extruded vertically
downwards as wall surface until encountering the floor. This causes protrusions and recesses on
walls to either be classified as ’Interior Object’ when protruding towards the room interior like
window sills for instance or to be neglected when protruding towards the outside like window
frames. However, these elements should rather be considered as belonging to the wall surface
if they do not exceed a certain size. To resolve this, a wall geometry refinement is applied as
depicted in Fig. 3.5(a).

In a first step of wall geometry refinement, non-empty voxels are added to room surfaces from
the outside up to a distance threshold of 15 cm. Similarly, non-empty voxels are also added to
the wall surface from the room interior. This again is applied to ’Interior Object’ voxels within a
distance of 15 cm from the wall surface. If a continuous succession of ’Interior Object’ voxels
beginning from the wall surface continues beyond this distance into the room, it is assumed
that it belongs to a piece of furniture standing in front of the wall. Only smaller objects that
protrude less than 15 cm are made part of the wall surface. However, note that pieces of furniture
covering the complete vertical space of a room w.r.t. the respective voxel resolution cannot be
distinguished from wall surfaces, i.e. a cupboard would be reconstructed as a protrusion of the
wall if the spacing to the ceiling is negligible.
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Figure 5: Wall geometry refinement towards the inside of the respective room. The
depicted voxels are colorized according to Table 1.
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search distance of 15 cm. This procedure is illustrated in Figure 5.
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along the normal directions. In doing so, each ’Wall Opening’ voxel that
is situated behind or in from of a ’Wall’ voxel along its normal direction is
converted to a ’Wall’ voxel.

Subsequently, voxels of type ’Wall Opening’ are further analyzed to deter-
mine if it is an actual wall opening or if it is caused by occlusion and should675

be converted to a closed ’Wall’ surface. To this aim, a distance of 70 cm along
the normal direction towards the room interior is checked for the presence of
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’Interior Object’ voxels as potentially occluding furniture. If such an occluder
is detected, the respective ’Wall Opening’ voxel is converted to the ’Wall’
class. This procedure is illustrated in Figure 6.680

Furthermore, wall openings are also closed, if an adjacent room (with an
assumed maximum wall thickness of 0.5 m) does not also have a wall opening
at the respective corresponding position. Thus, wall openings need to be open
in both adjacent rooms. This procedure is illustrated in Figure 7.
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The resulting room segmentation from the algorithm described so far is
far from ideal. As this initial room segmentation is derived from continuous
segments of non-empty voxels with normal direction pointing downwards,
over-segmentation frequently occurs in case of height discontinuities in ceiling
surfaces or structures like pipelines or cable ducts along ceiling surfaces that690
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Figure 3.5: Overview of the wall surface refinement process. All images are colored according to
Tab. 3.1. Source: [243].

3.2.5.2 Wall Opening Refinement

In a second wall surface refinement step visualized in Fig. 3.5(b), the occurrence of the class
label ’Wall Opening’ is adjusted. Currently, all voxels belonging to a reconstructed wall surface
that are empty are labeled as ’Wall Opening’. Besides actual wall openings such as windows or
doors, this however also encompasses false wall openings e.g. caused be occlusion. These parts
of the wall surface are detected and eventually reconstructed by switching the respective voxel
class labels to ’Wall’.

To this aim, each ’Wall Opening’ voxel is checked, if it is caused by an occluding furniture
object within a search distance of 70 cm towards the room interior. Furthermore, wall openings
are checked if they are also open on the side of adjacent rooms (with an assumed maximum wall
thickness of 0.5 m). If the adjacent room has a closed wall surface at the corresponding position,
wall openings are closed as well.
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Figure 3.6: Overview of the room segmentation process. In (e), the floor surface is depicted in green
while the detected ramp space is depicted in yellow. In (b), (c) and (f), different rooms are visualized
in different colors while the connecting transition spaces are visualized in black. Source: [243].

3.2.6 Room Segmentation
The room segmentation resulting from the algorithm described so far is far from being ideal.
On the one hand, over-segmentation of rooms occurs in case of height discontinuities in ceiling
surfaces. Furthermore, structures like pipelines or cable ducts mounted on ceiling surfaces can
also lead to the presence of ’Normal Horizontal’ voxels within actual ceiling surfaces which, again,
causes over-segmentation. On the other hand, under-segmentation can also occur in cases where
multiple rooms that should still be considered as distinct are connected by a continuous ceiling
surface. This can e.g. be caused by little pronounced door frames above the door openings
connecting the rooms (with respect to the voxel resolution).

To resolve these problems, this section presents an algorithm for completely repartitioning
the voxel-based interior space (classes ’Empty Interior’, ’Interior Object’ and ’Wall Opening’)
resulting from the presented reconstruction algorithm. Thus, the initial room segmentation used
in the course of previous sections is discarded and the voxel model is repartitioned into rooms.
An overview of the proposed procedure is presented in Fig. 3.6.

In the following, this section starts with elaborating on the theoretical concept of indoor
spaces underlying the proposed room partitioning approach in Sec. 3.2.6.1. As stairwells are
particularly challenging parts of indoor environments for room partitioning, these ramp spaces
are detected beforehand to deal with them separately as described in Sec. 3.2.6.2. Finally, the
proposed algorithm for voxel-based room partitioning of indoor environments is presented in
Sec. 3.2.6.3.
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3.2.6.1 Indoor Spaces
While many works in indoor reconstruction concern themselves with partitioning the indoor
environment into rooms [246, 328, 421, 126], frequently, little is written about the concrete
criteria by which this partitioning is conducted – e.g. the theoretical basis on the grounds of
which two parts of an indoor space are considered as two distinct rooms or as one room.

In the scope of the indoor space partitioning approach presented here, rooms are considered
as disjunctly subdividing interior space, so that every part of the interior of an indoor model
belongs to exactly one room. Generally, rooms are assumed to have a certain minimum size as
can be expected in consideration of the fact that indoor environments are normally tailored to
be used and inhabited by human beings with their own typical scale. Thus, rooms are expected
to have a minimum horizontal extent of 0.5 m2 and at least partially a vertical extent of at least
1.5 m.

Here, the partitioning of rooms is defined on the basis of geometric characteristics, as only
these are available in indoor mapping datasets without further semantic knowledge about the
represented indoor environment (like the intended usage function of parts of the indoor space
that often underlies the definition of rooms in architecture). Concretely, the interior spaces of
two distinct rooms are expected to be either completely disjoint or to be connected at most by
transitional zones of interior space. These are geometrically distinct from both connected rooms
by being considerably smaller in height and/or width.

These transition spaces – typically door frames – can thus be considered as a special kind of
room, that can be smaller than the specified minimum dimensions for general rooms. They are
connecting two large rooms via a continuous passage of interior space. The interior openings of
transition spaces connecting the adjacent rooms are expected to be within a certain size range.
So, transition spaces should have a certain minimum width to allow for the passage of human
beings while still being of considerably smaller width than the adjacent rooms. On the other
hand, in relation to a human observer, transition spaces of a certain large maximum width are
not perceived as dividing two distinct rooms, even if their width is considerably smaller than
the widths of both adjacent rooms. In consideration of these arguments and with respect to
established standards for door frame widths, transition spaces between rooms are expected to
have a width between 0.5 m and 2 m and like rooms to have a minimal height of 1.5 m. Transition
spaces of smaller dimensions are considered as not passable by human subjects. They are thus
discarded leaving the adjacent rooms disjoint. Transition spaces of a large width (e.g. exceeding
2 m) on the other hand, would not be perceived as dividing two distinct rooms and are thus
merged together with the adjacent rooms to constitute one large room.

Besides transition spaces, there is an additional special kind of room considered in this
work: the ramp space. As mentioned previously, stairwells represent particularly challenging
environments for the proposed room partitioning algorithm and thus necessitate a special
treatment. These critical parts of the indoor space thus need to be detected before applying the
room partitioning. In this context, parts of the indoor space that have a considerable continuous
inclination of its floor surface and a certain minimal vertical and horizontal extent are considered
as ramp spaces. Here, the inclination of the floor surface is based on a horizontal distance (0.5 m)
large enough to cause typical stair flights to appear as having a continuous inclination and thus
be regarded as ramps. The indoor spaces above ramps as well as above stair flights are thus both
treated as ramp spaces because stair flights might not be distinguishable from ramp surfaces
anyway, depending on the voxel resolution. The detection of ramp spaces in the voxel model is
described in the following Sec. 3.2.6.2.

Here, ramp spaces are always considered as distinct rooms. Depending on their size, adjacent

51



rooms can be merged with the ramp space or remain as distinct rooms. It can be argued for it
being appropriate to count small horizontal platforms connecting the stair flights in stairwells
as being part of the ramp space – i.e. the stairwell being itself one room of type ramp space.
On the other hand, in the case of two rooms being vertically connected by a stair flight passing
through the horizontal slab between the rooms, it seems inappropriate to merge both rooms
together with the stair flight connecting them. In this case, the stair flight is regarded as an
own room (of type ramp space), distinct from the two independent rooms that it connects. The
stair flight is then delimited from the adjacent rooms by transition spaces consisting of the
contact surface voxels to the respective rooms neighboring the ramp space. In this case, suchlike
transition spaces are composed of the complete contact surface regardless of their spatial extents
disregarding the size criteria for transition spaces formulated above. Currently, a size threshold
of a horizontal extent of 3 m2 is used as criterion for whether rooms adjacent to a ramp space
should be merged to the ramp space or remain independent.

3.2.6.2 Ramp Space Detection
For the detection of ramp spaces defined in the previous Sec. 3.2.6.1, ramps and stair flights are
assumed to have an inclination in the range of 20° to 50° in accordance with established building
standards. For all floor voxels of the reconstructed indoor model, a local floor slope value is
determined. This is done by determining the difference in height of the respective floor voxel to
floor voxels in 0.5 m distance in all eight horizontal main directions. In those eight positions,
a search is conducted in the vertical range corresponding to inclinations of −50° to 50° for the
occurrence of floor voxels while disregarding directions where a vertical wall surface is crossed
above the floor level. Thus, only inclination values for neighboring floor voxels in 0.5 m distance
are considered, if they are part of the same room without the occurrence of a wall in-between.
From the up to eight resulting inclination values, the largest absolute value is considered as local
slope value for the respective floor voxel. Results of this local slope determination procedure are
visualized in Fig. 3.6(d).

Ramp segments with slope values in the range of 20° to 50° are segmented based on a 2.5D
neighborhood as already used in Sec. 3.2.2.3. The resulting ramp segments are then filtered by
discarding segments with a horizontal extent below 0.5 m2 or a vertical extent below 1.2 m. The
remaining ramp segments are geometrically refined by closing holes. The interior space (classes
’Empty Interior’, ’Interior Object’ and ’Wall Opening’) above the detected ramp surface then
composes the detected ramp space as defined in Sec. 3.2.6.1 and visualized in Fig. 3.6(e).

3.2.6.3 Indoor Space Partitioning
As already stated in the introduction to Sec. 3.2.6, the initial room segmentation resulting from
the reconstruction process as described up to Sec. 3.2.5 is discarded. Instead, the interior space
composed of the voxel classes ’Empty Interior’, ’Interior Object’ and ’Wall Opening’ is completely
repartitioned from scratch. To this aim, transition spaces like door openings in-between rooms
are detected in a binary voxel grid, where voxels of the aforementioned interior classes are
distinguished from the rest of the voxel grid. The proposed approach first performs an initial
room partitioning independently in horizontal 2D slices throughout the whole height range of
the binary voxel grid as depicted in Fig. 3.6(b). The slice-wise results are aggregated over the
height of the voxel grid in a 3D refinement step as depicted in Fig. 3.6(c).

Initially, transition spaces are assumed to have widths in the range of 0.5 m to 1.1 m. The
detection of rooms and their connecting transition spaces is approached by applying morphological
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erosion with a circular structuring element of 1.1 m diameter to the respective horizontal binary
2D slice of the interior space. This can lead to narrow corridors or small rooms being completely
eroded. These narrow spaces are detected by dilating the erosion result with the same structuring
element and subtracting the result from the initial binary image. The result contains the narrow
rooms that have been completely eroded. They can now be eroded by using a smaller structuring
element (e.g. 0.2 m diameter) with the result being added to the result of the first erosion
step. The binary image resulting from this erosion process is then segmented with the segments
initializing the rooms resulting from the 2D partitioning step visualized in Fig. 3.7.

Next, the transition spaces connecting these rooms are detected. To this aim, the initial
room segments are grown layer-wise while stopping the growing process locally when a pixel
belonging to one room neighbors a pixel of another room, until all pixels either belong to one of
the initial room segments or these newly grown room domains around the initial room segments.
For each contact zone, where pixels of different room domains are in direct neighborhood to one
another, the presence of a transition space connecting the respective rooms can be assumed. The
procedure described so far is illustrated in Fig. 3.7(a).

However, the location and shape of the transition spaces do not necessarily coincide with the
detected contact zones between room domains and thus need to be refined. First, the direction
of transit through the transition space from one adjacent room to the other is determined as
illustrated in Fig. 3.7(b). This is done by determining the nearest pixel to the contact zone of
the respective core room segments of both adjacent rooms. The direction between these pixels
among the eight main directions of the pixel grid is determined. Next, the interior space between
the two pixels is split layer-wise into sections perpendicular to this direction of transit and the
sequence of the widths of these sections is analyzed to localize the actual transition space area
as visualized in Fig. 3.7(c).

In this way, all pixels in the sections between both rooms are assigned to either one of the two
rooms, to the transition space connecting them or are removed from the interior space because
the transition space is found to be too narrow in respect to the assumed dimensions of transition
spaces as formulated in Sec. 3.2.6.1. The resulting rooms can subsequently be checked for the
presence of transition spaces of a larger width (e.g. in the range of 1.1 m to 2 m).

In a second step of the partitioning algorithm, the results of this 2D room partitioning
approach applied independently to the respective horizontal slices of the voxel grid are then
further refined by aggregating them along the vertical dimension of the voxel grid. In doing
so, transition spaces must be present with sufficient frequency of occurrence of a sufficiently
large vertical extent to be accepted as a 3D transition space. Here, transition spaces that are
situated within the ramp spaces detected beforehand in Sec. 3.2.6.2 are discarded, as stairwells
often suffer from frequent false positive transition spaces. They are expected to be uninterrupted
indoor spaces in accordance with the considerations presented in Sec. 3.2.6.1.

As false positive transition spaces do also occur in corridors and other narrow room structures,
the 3D transition spaces are subjected to another refinement step. Here, they are checked if they
satisfy the criterion for transition spaces to be geometrically distinct from the adjacent rooms as
formulated in Sec. 3.2.6.1 by either having a sufficiently lower height or width. Transition spaces
that are not sufficiently geometrically distinguishable from the adjacent rooms are discarded and
the respective rooms are merged. Finally, the resulting room partitioning of the interior space of
the reconstructed voxel model is propagated to the surface voxels of classes ’Floor’, ’Ceiling’ and
’Wall’. The 3D room partitioning results are visualized in Fig. 3.6(f).
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Figure 3.7: Overview of the 2D room segmentation procedure. (a) Detection of room segments and
their respective domains by means of morphological operations. (b) Determination of the direction
of transit between two rooms via the angle ofthe room segment pixels (blue) nearest to the contact
zone of the two respective roomdomains (red). (c) The interior space (grey) between both blue pixels
is split into sections (shades of red) perpendicular to the direction of transit between both rooms.
The transition space (cyan) is detected by analyzing the width of the interior sections. Source: [243].
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3.2.7 Evaluation
For evaluation purposes, this section proposes to manually generate ground truth data by
labeling triangle meshes regarding class and room affiliation and geometrically completing them
where necessary. In this context, room surfaces occluded by furniture objects or missing due to
incomplete acquisition need to be manually modeled. Furthermore, the manual construction of
geometries is also necessary in the case of the class ’Wall Opening’.

The resulting ground truth triangle meshes can be voxelized to generate ground truth data
in voxel space that are directly comparable to the results of the presented voxel-based indoor
reconstruction approach. This procedure allows to create ground truth voxel grids in arbitrary
resolution and rotation around the vertical axis for given ground truth triangle meshes.

While voxelizing ground truth triangle meshes, all class labels and room affiliations of
intersecting triangles are transferred to the voxels. An exception is made for the class label ’Wall
Opening’. It is only passed to an intersecting voxel in the absence of other class labels. The
class labels of the test data are then evaluated by checking if a corresponding ground truth voxel
contains the required class label (it can however contain other class labels besides).

Manually constructing ground truth geometries for the class ’Empty Interior’ is not feasible.
Therefore, this class label is automatically assigned to all empty voxels between ceiling and floor
of the same room. Transition spaces connecting ramp spaces to adjacent rooms are derived
automatically as well in the ground truth voxel grid. To this end, ramp space interior voxels
neighboring interior voxels of other rooms are detected.

The results of the room segmentation as presented in Sec. 3.2.6 and the voxel classification,
i.e. the semantic classes assigned to voxels are evaluated independently. Furthermore, the effect
of different rotation angles of the input data around the up-axis is investigated to demonstrate
that the approach is not limited to the Manhattan World assumption as well as the effect of
different resolutions of the voxel grid.

For evaluating the room segmentation results, first, a mapping between the detected rooms
of the test dataset and the manually partitioned rooms of the ground truth dataset needs to
be determined. To this end, a one-to-many mapping between rooms from both datasets is
derived by comparing the room affiliations of voxels between ground truth and test voxel grid.
Finally, a bijective one-to-one room mapping is derived by assigning a room of one dataset the
corresponding room of the same type (transition space or general room) of the other dataset
with the largest overlap. The resulting room mappings are discarded if they do not proof to be
bijective (i.e. if room X in the ground truth data maps to room Y in the test dataset, room Y in
the testdata set must also map to room X in the ground truth data). The amount of rooms in
ground truth and test data for which a suchlike bijective mapping cannot be derived is part of
the evaluation results and gets reported as the number of affected rooms in ground truth and
test data as well as the corresponding fraction of affected voxels.

For the remaining rooms for which a bijective room mapping could be derived, an evaluation
of the quality of the room segmentation is conducted. In doing so,the well-known metrics of
precision and recall [480] are used where the precision

PrecisionRoomi =
True PositivesRoomi

Test VoxelsRoomi

(3.1)

of Roomi denotes the fraction of voxels of the test data labeled as belonging to Roomi that are
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correctly labeled. The recall

RecallRoomi =
True PositivesRoomi

Ground Truth VoxelsRoomi

(3.2)

of Roomi on the other hand denotes the fraction of voxels of the ground truth data belonging to
Roomi that are correctly detected in the test data. Furthermore, an accuracy measure like the
F1-score

F1-scoreRoomi =
2 · PrecisionRoomi · RecallRoomi

PrecisionRoomi + RecallRoomi

(3.3)

can be derived from the recall and precision metrics.
Besides this evaluation of the room partitioning, the quality of the assigned voxel class labels

’Ceiling’, ’Floor’, ’Wall’, ’Wall Opening’, ’Interior Object’ and ’Empty Interior’ is evaluated as
well. For this, again, the metrics of precision, recall and F1-score are used. However, in addition,
an adjusted version of the precision/recall metrics is introduced. Here, a voxel labeling in the
test data is considered as a true positive not only if the corresponding ground truth voxel has
the respective class label, but also if the respective class label does occur in ground truth voxels
within a certain neighborhood around the corresponding ground truth voxel. In the context of
this work, a 3D-6-neighborhood is used for these ’neighborhood precision/recall’ metrics. Note,
that in this case, the recall should not be calculated by Eq. 3.2 but by applying Eq. 3.1 for
precision with ground truth and test data interchanged respectively. This is due to the fact that
when using Eq. 3.2 for calculating the neighborhood recall, the resulting value for recall could
amount to values larger than 100 % depending on the spatial distribution of the data.

3.3 Results
This section presents quantitative evaluation results for four datasets of triangle meshes of

indoor environments acquired via the Microsoft HoloLens (version 1) depicted in Fig. 3.8. The
dataset ’Office’ as depicted in Fig. 3.8(a) represents a two-storey office environment comprised
of 24 rooms including a stairwell that connects the two levels vertically. The dataset ’Attic’ is
depicted in Fig. 3.8(b). It represents an attic environment with slanted ceilings comprised of five
rooms. Fig. 3.8(c) shows the dataset ’Basement’ which represents a basement area including
laboratories, offices and storage rooms connected by a long hallways with barrel-vaulted ceilings.
It consists of 11 rooms and has with 48 m × 22 m × 6 m the largest spatial extent of the four
presented datasets. The last dataset ’Residential House’ as depicted in Fig. 3.8(d) represents
a part of the indoor space of a residential house extending over three storeys connected by a
stairwell which is connected openly towards the living space. It consists of 12 rooms. Further
information about the datasets and their respective class distributions is given in Tab. 3.2.

The four presented datasets along with the manually modeled ground truth are made
available to the public18. Furthermore, the code of the implementation of the voxel-based
indoor reconstruction procedure presented in this chapter as well as the code for the automated
evaluation against the ground truth data is released as well.

For each of these four datasets, ground truth triangle meshes were generated manually
using the software Blender v2.9119and subsequently voxelized according to the general procedure
outlined in Sec. 3.2.7. The voxel-based indoor reconstruction approach presented in Sec. 3.2 was
then applied to the datasets and the results were evaluated against the respective ground truth

18https://github.com/huepat/voxir (Last visited on 15/07/2021)
19https://www.blender.org/ (Last visited on 13/07/2021)
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(a) The dataset ’Office’.

(b) The dataset ’Attic’.

(c) The dataset ’Basement’.

(d) The dataset ’Residential House’.

Figure 3.8: The Microsoft HoloLens triangle meshes used for quantitative evaluation. Source: [243].
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Table 3.2: Size and class distribution of the four provided benchmark datasets. Source: [243].

Office Attic Basement Residential
House

Spatial Extent (m) 13×21×8 8×9×3 48×22×6 11×11×8
Mesh Faces 958,820 147,146 695,041 450,260

Number of Rooms (acc. to Ground Truth) 24 5 11 12

Fraction of
Voxels (%)
(for 5 cm
Voxel

Resolution)

Test
Data

Ceiling 2.29 4.31 2.39 2.74
Floor 2.10 3.46 1.95 2.44
Wall 7.35 9.33 6.96 6.97
Interior Object 2.32 3.11 1.76 4.26
Empty Interior 85.71 79.62 86.63 83.1
Wall Opening 0.22 0.17 0.31 0.49

Ground
Truth
Data

Ceiling 2.24 4.39 2.47 2.78
Floor 2.07 3.28 1.98 2.39
Wall 6.1 7.27 5.53 5.64
Interior Object 2.78 3.78 1.84 5.09
Empty Interior 86.63 81.25 88.13 84.02
Wall Opening 0.18 0.03 0.06 0.08

voxel grid by determining the evaluation metrics presented in Sec. 3.2.7.
The quantitative evaluation also aims to investigate the impact of two parameters on the

results: horizontal alignment of the input data with the coordinate axes and voxel resolution.
Tab. 3.3 to 3.6 show the quantitative results for each respective dataset at varying angles of
rotation around the up-axis at a fixed voxel grid resolution of 5 cm. Furthermore, Fig. 3.9
exemplarily visualizes the results achieved for the dataset ’Residential House’ for one horizontal
slice of the voxel grid generated by our approach and the corresponding slice derived from the
ground truth data. Similarly, another experiment was conducted to examine the effect of varying
voxel grid resolutions at a fixed rotation angle representing optimal horizontal alignment of
the input data along the coordinate axes. The quantitative results of this investigation are
presented in Tab. 3.7 to 3.10 and an exemplary visualization for one horizontal slice of the dataset
’Residential House’ is presented in Fig. 3.10.

To give an impression about the performance of the implementation of the proposed procedure
in terms of processing time and memory consumption, these values are provided for varying
voxel grid resolutions for the ’Office’ dataset in Fig. 3.11. The values refer to a system with a
i7-8550U CPU with 24 GB RAM and covers the whole procedure including voxelization of the
triangle mesh but excluding data import and export. Large parts of the implementation are
CPU-parallelized.

Besides this quantitative evaluation, qualitative results of the voxel-based indoor recon-
struction approach were also assessed for two particularly challenging indoor environments that
are part of the Matterport3D dataset [94]. The datasets as provided by Chang et al. [94] were
captured with the Matterport system, a semi-mobile indoor mapping device comprised of three
RGBD cameras mounted on a rotatable rig on a tripod. The resulting RGBD panoramas from
multiple viewpoints are further processed to generate textured triangle meshes of the complete
indoor environment covered from the viewpoints.

Fig. 3.12 shows triangle meshes and the corresponding results derived by the procedure
presented in this work for a half-sphere-shaped building with two storeys. Triangle meshes and
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Table 3.3: Evaluation results for the dataset ’Office’ for a fixed voxel resolution of 5 cm and varying
rotation angles around the up-axis (with 0° being aligned on the coordinate axes). Source: [243].

bad good
Rotation angle around up-axis

0° 10° 20° 30° 40° 45°
Room mapping error (%)
(fraction of affected voxels) 1.03 0.09 8.78 0.16 2.47 0.09

Room segmentation precision (%) 98.01 97.98 90.04 95.73 98.13 97.92
Room segmentation recall (%) 97.06 97.77 95.98 95.29 95.34 97.73
Room segmentation F1-score (%) 97.53 97.80 92.86 95.45 96.68 97.82

Precision (%)

Ceiling 85.14 85.57 85.69 85.59 85.27 84.37
Floor 82.51 82.30 82.37 83.09 82.34 81.95
Wall 68.58 67.64 67.74 68.38 69.84 70.19
Interior Object 91.51 91.11 88.94 92.27 92.07 91.87
Empty Interior 99.05 99.10 99.03 99.14 99.07 99.02
Wall Opening 6.37 8.67 8.65 9.05 7.94 7.86

Recall (%)

Ceiling 86.92 86.68 86.28 85.50 85.06 85.04
Floor 83.64 82.69 82.50 82.69 81.80 81.75
Wall 82.47 84.06 83.77 85.63 85.65 85.26
Interior Object 76.37 75.25 74.19 73.69 73.88 74.62
Empty Interior 97.88 97.44 97.18 97.01 97.18 97.52
Wall Opening 8.10 10.13 8.80 8.65 6.96 6.08

F1-score (%)

Ceiling 86.02 86.05 85.90 85.50 85.10 84.65
Floor 83.07 82.45 82.40 82.80 82.05 81.80
Wall 74.89 74.94 74.88 76.03 76.92 76.97
Interior Object 83.26 82.39 80.84 81.88 81.93 82.34
Empty Interior 98.46 98.24 98.06 98.06 98.08 98.25
Wall Opening 7.09 9.33 8.72 8.85 7.42 6.78

Neighborhood
Precision (%)
(based on
3D-6-
neighborhood)

Ceiling 96.52 96.53 96.49 96.42 96.39 95.95
Floor 96.55 96.87 96.73 96.88 96.85 96.21
Wall 92.40 91.64 90.43 90.15 90.26 90.38
Interior Object 92.70 92.25 90.03 93.30 93.07 92.96
Empty Interior 99.62 99.63 99.54 99.61 99.57 99.52
Wall Opening 14.38 14.37 13.76 12.65 10.31 9.81

Neighborhood
Recall (%)
(based on
3D-6-
neighborhood)

Ceiling 94.82 94.65 94.18 93.87 93.66 93.50
Floor 96.20 96.36 96.01 95.93 95.86 95.41
Wall 94.35 95.38 94.75 95.77 95.47 95.12
Interior Object 81.64 81.01 80.46 79.99 79.92 80.24
Empty Interior 99.44 99.37 99.23 99.11 99.07 99.11
Wall Opening 25.59 24.94 22.59 21.38 17.53 15.61
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Table 3.4: Evaluation results for the dataset ’Attic’ for a fixed voxel resolution of 5 cm and varying
rotation angles around the up-axis (with 0° being aligned on the coordinate axes). Source: [243].

bad good
Rotation angle around up-axis

0° 10° 20° 30° 40° 45°
Room mapping error (%)
(fraction of affected voxels) 0.00 0.00 17.36 0.00 0.00 0.48

Room segmentation precision (%) 97.46 97.17 88.67 97.51 97.02 97.24
Room segmentation recall (%) 95.49 94.38 92.29 94.87 94.31 95.34
Room segmentation F1-score (%) 96.46 95.75 90.44 96.17 95.65 96.28

Precision (%)

Ceiling 86.95 87.04 86.89 87.21 87.29 87.13
Floor 68.28 63.47 65.13 66.05 65.17 65.95
Wall 59.01 59.41 60.71 63.65 61.16 61.11
Interior Object 84.58 84.44 85.73 84.07 83.30 85.32
Empty Interior 98.64 98.75 98.87 98.85 98.73 98.80
Wall Opening 0.00 2.41 2.37 6.26 6.35 1.58

Recall (%)

Ceiling 83.23 82.17 81.95 81.81 80.79 81.28
Floor 70.39 66.03 66.97 67.08 66.04 66.41
Wall 73.81 75.48 76.93 76.99 76.74 76.64
Interior Object 67.83 62.48 61.60 63.14 62.68 65.67
Empty Interior 94.25 93.30 93.09 93.99 93.32 93.59
Wall Opening 0.00 10.67 18.75 20.76 18.09 4.88

F1-score (%)

Ceiling 85.05 84.53 84.35 84.42 83.91 84.10
Floor 69.32 64.72 66.04 66.56 65.60 66.18
Wall 65.59 66.49 67.86 69.69 68.07 68.00
Interior Object 75.28 71.82 71.69 72.12 71.53 74.22
Empty Interior 96.40 95.95 95.89 96.36 95.95 96.12
Wall Opening 0.00 3.93 4.21 9.62 9.40 2.39

Neighborhood
Precision (%)
(based on
3D-6-
neighborhood)

Ceiling 96.40 96.26 95.98 96.29 96.01 96.31
Floor 86.67 82.10 83.35 85.11 83.59 84.60
Wall 80.98 81.06 80.73 82.45 79.14 78.76
Interior Object 86.53 86.18 87.43 86.17 85.18 87.48
Empty Interior 99.64 99.64 99.71 99.72 99.61 99.67
Wall Opening 0.00 2.41 2.37 6.26 6.35 1.58

Neighborhood
Recall (%)
(based on
3D-6-
neighborhood)

Ceiling 91.78 91.21 91.25 91.15 90.20 90.68
Floor 87.21 84.11 84.76 85.79 84.23 84.75
Wall 87.83 87.88 88.69 87.54 87.21 86.91
Interior Object 75.28 70.89 70.49 71.85 71.40 73.61
Empty Interior 96.43 95.86 95.85 96.22 95.63 95.85
Wall Opening 81.44 62.06 69.10 70.24 58.88 40.85
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Table 3.5: Evaluation results for the dataset ’Basement’ for a fixed voxel resolution of 5 cm and
varying rotation angles around the up-axis (with 0° being aligned on the coordinate axes). Source:
[243].

bad good
Rotation angle around up-axis

0° 10° 20° 30° 40° 45°
Room mapping error (%)
(fraction of affected voxels) 1.74 1.63 0.52 0.53 0.60 0.53

Room segmentation precision (%) 96.04 96.58 95.57 95.79 95.90 97.13
Room segmentation recall (%) 96.22 96.02 96.03 96.30 96.33 97.17
Room segmentation F1-score (%) 96.12 96.25 95.75 96.00 96.10 97.10

Precision (%)

Ceiling 84.06 85.06 84.74 85.39 85.42 85.71
Floor 85.15 85.78 85.61 86.07 85.21 85.75
Wall 62.51 64.94 66.28 67.21 66.75 67.12
Interior Object 81.08 83.66 83.26 82.75 82.96 85.25
Empty Interior 98.45 98.44 98.62 98.63 98.56 99.04
Wall Opening 1.98 1.89 1.83 2.00 2.16 1.88

Recall (%)

Ceiling 81.98 81.46 80.72 80.36 80.50 80.07
Floor 84.43 85.42 84.14 83.49 84.22 83.83
Wall 79.17 81.41 81.21 81.98 82.82 81.41
Interior Object 78.22 78.47 76.60 76.12 76.69 76.78
Empty Interior 97.43 97.47 96.77 96.91 97.18 96.87
Wall Opening 10.86 8.79 8.56 7.64 6.94 5.36

F1-score (%)

Ceiling 82.98 83.22 82.68 82.80 82.89 82.79
Floor 84.79 85.60 84.87 84.76 84.71 84.78
Wall 69.86 72.25 72.99 73.86 73.92 73.58
Interior Object 79.62 80.98 79.79 79.30 79.70 80.79
Empty Interior 97.94 97.95 97.69 97.76 97.87 97.94
Wall Opening 3.35 3.11 3.02 3.17 3.29 2.78

Neighborhood
Precision (%)
(based on
3D-6-
neighborhood)

Ceiling 95.14 95.65 95.58 96.50 95.97 96.54
Floor 93.78 94.18 94.04 94.34 93.64 94.83
Wall 87.43 87.46 87.38 87.09 85.79 86.22
Interior Object 82.84 85.30 84.78 84.28 84.54 86.74
Empty Interior 98.86 98.84 98.98 98.99 98.91 99.41
Wall Opening 2.58 2.58 2.63 3.07 2.85 2.57

Neighborhood
Recall (%)
(based on
3D-6-
neighborhood)

Ceiling 90.38 89.76 89.34 89.02 89.02 88.48
Floor 92.64 93.76 92.79 92.01 93.16 92.58
Wall 90.14 91.95 91.34 91.89 92.57 90.81
Interior Object 83.92 84.94 82.91 82.29 83.02 82.57
Empty Interior 98.89 99.13 98.47 98.53 98.74 98.25
Wall Opening 25.47 21.33 23.96 23.27 21.61 17.61
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Table 3.6: Evaluation results for the dataset ’Residential House’ for a fixed voxel resolution of 5 cm
and varying rotation angles around the up-axis (with 0° being aligned on the coordinate axes). Source:
[243].

bad good
Rotation angle around up-axis

0° 10° 20° 30° 40° 45°
Room mapping error (%)
(fraction of affected voxels) 0.11 12.09 6.90 7.39 6.81 7.15

Room segmentation precision (%) 96.31 84.92 89.26 89.51 89.63 89.43
Room segmentation recall (%) 96.79 96.99 96.02 96.23 96.26 95.86
Room segmentation F1-score (%) 96.55 90.55 92.52 92.75 92.83 92.53

Precision (%)

Ceiling 90.89 90.13 91.00 90.97 90.76 89.74
Floor 77.51 75.90 75.80 77.41 76.80 74.82
Wall 60.90 61.06 61.75 64.01 64.15 65.86
Interior Object 92.84 91.47 91.98 91.69 91.55 90.91
Empty Interior 97.43 96.94 97.11 97.09 97.06 96.85
Wall Opening 0.57 1.02 1.27 1.45 1.53 0.85

Recall (%)

Ceiling 90.33 90.07 89.48 89.26 88.82 88.84
Floor 79.75 78.77 78.36 79.02 78.33 78.01
Wall 75.81 75.67 77.28 78.30 77.76 77.93
Interior Object 78.44 77.59 75.95 75.92 76.70 76.59
Empty Interior 97.16 96.95 96.66 96.90 96.80 96.87
Wall Opening 3.78 6.80 7.80 7.75 7.70 4.48

F1-score (%)

Ceiling 90.61 90.10 90.23 90.11 89.78 89.29
Floor 78.61 77.31 77.06 78.21 77.56 76.38
Wall 67.54 67.58 68.65 70.44 70.30 71.39
Interior Object 85.03 83.96 83.20 83.06 83.47 83.14
Empty Interior 97.29 96.94 96.88 96.99 96.93 96.86
Wall Opening 0.99 1.77 2.18 2.44 2.55 1.43

Neighborhood
Precision (%)
(based on
3D-6-
neighborhood)

Ceiling 96.74 96.09 96.42 96.66 96.15 95.56
Floor 93.71 92.39 92.42 93.25 92.32 90.12
Wall 83.70 84.12 83.30 84.78 83.67 84.31
Interior Object 94.46 92.94 93.43 93.06 92.94 92.37
Empty Interior 98.29 97.77 97.89 97.88 97.84 97.65
Wall Opening 1.33 1.46 1.65 1.64 1.88 1.28

Neighborhood
Recall (%)
(based on
3D-6-
neighborhood)

Ceiling 95.14 95.16 94.74 94.72 94.33 94.28
Floor 94.81 93.92 93.97 94.34 93.66 92.55
Wall 91.72 90.45 91.61 92.09 90.96 90.71
Interior Object 85.26 85.54 84.39 84.21 84.29 84.15
Empty Interior 98.96 99.07 98.89 98.99 98.88 98.76
Wall Opening 17.49 20.06 22.69 21.02 20.98 15.75
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Figure 3.9: Exemplary results for one horizontal slice of the dataset ’Residential House’ (cf. Figure
3.8(d), for numerical results see Tab. 3.6) for different rotations around the up-axis at 5 cm voxel
resolution. Left: room partitioning; different colors indicate different rooms; black indicates transition
spaces. Right: voxel classification, colored according to Tab. 3.1. Source: [243].
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Table 3.7: Evaluation results for the dataset ’Office’ for varying voxel resolutions. Source: [243].

bad good
Voxel resolution

3cm 5cm 7cm 9cm 11cm 13cm 15cm
Room mapping error (%)
(fraction of affected voxels) 1.73 1.03 0.01 2.56 0.00 3.46 4.12

Room segmentation precision (%) 97.24 98.01 97.68 97.16 97.52 97.58 97.30
Room segmentation recall (%) 97.35 97.06 97.83 95.66 97.25 93.99 92.96
Room segmentation F1-score (%) 97.25 97.50 97.70 96.34 97.38 95.75 95.08

Precision (%)

Ceiling 80.00 85.14 85.44 87.88 88.78 89.26 88.24
Floor 76.08 82.51 82.98 84.43 84.32 86.35 79.80
Wall 57.71 68.58 72.30 76.51 79.85 81.10 79.84
Interior Object 90.64 91.51 93.44 91.83 77.48 81.11 80.59
Empty Interior 98.92 99.05 98.78 98.34 98.61 98.90 98.85
Wall Opening 5.69 6.37 8.72 11.92 13.39 19.36 16.82

Recall (%)

Ceiling 85.62 86.92 86.31 85.98 86.54 85.71 84.58
Floor 80.10 83.64 83.96 83.36 82.36 86.36 81.01
Wall 79.28 82.47 84.11 85.83 78.86 82.06 82.98
Interior Object 77.16 76.37 73.83 69.54 71.13 66.38 60.18
Empty Interior 97.83 97.88 97.64 97.90 97.71 97.42 96.75
Wall Opening 7.36 8.10 11.30 15.82 19.37 24.79 22.39

F1-score (%)

Ceiling 82.71 85.99 85.85 86.84 87.65 87.45 86.31
Floor 78.00 83.05 83.40 83.85 83.33 86.35 80.40
Wall 66.77 74.86 77.75 80.89 79.35 81.58 81.32
Interior Object 83.32 83.22 82.47 79.12 74.17 73.01 68.82
Empty Interior 98.36 98.42 98.19 98.12 98.16 98.15 97.74
Wall Opening 6.42 7.13 9.84 13.58 15.83 21.74 19.16

Neighborhood
Precision (%)
(based on
3D-6-
neighborhood)

Ceiling 95.08 96.52 97.22 97.53 97.25 97.34 93.34
Floor 93.92 96.55 96.93 97.56 96.03 94.45 87.48
Wall 85.57 92.40 94.06 94.72 95.48 95.82 92.60
Interior Object 91.45 92.70 94.92 93.10 79.99 83.40 83.23
Empty Interior 99.43 99.62 99.49 99.13 99.44 99.59 99.56
Wall Opening 11.03 14.38 13.29 21.80 22.76 33.83 22.81

Neighborhood
Recall (%)
(based on
3D-6-
neighborhood)

Ceiling 92.94 94.82 95.43 95.78 95.97 96.05 96.91
Floor 94.93 96.20 96.91 97.70 96.76 96.45 93.71
Wall 91.01 94.35 95.99 96.69 97.62 98.21 98.07
Interior Object 81.47 81.64 80.44 77.54 81.49 78.61 75.98
Empty Interior 99.29 99.44 99.39 99.62 99.49 99.43 98.82
Wall Opening 20.67 25.59 25.74 33.23 43.93 56.75 47.03
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Table 3.8: Evaluation results for the dataset ’Attic’ for varying voxel resolutions. Source: [243].

bad good
Voxel resolution

3cm 5cm 7cm 9cm 11cm 13cm 15cm
Room mapping error (%)
(fraction of affected voxels) 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Room segmentation precision (%) 97.53 97.46 96.79 96.10 96.63 96.91 96.40
Room segmentation recall (%) 95.05 95.49 94.87 94.78 95.04 94.41 92.19
Room segmentation F1-score (%) 96.27 96.46 95.82 95.44 95.83 95.64 94.25

Precision (%)

Ceiling 81.50 86.95 86.68 90.81 90.34 90.85 84.77
Floor 58.22 68.28 68.78 75.13 75.30 82.35 70.89
Wall 51.95 59.01 65.56 67.93 70.07 71.62 65.39
Interior Object 83.41 84.58 85.75 86.57 74.47 81.99 76.15
Empty Interior 98.63 98.64 98.86 98.82 98.55 99.11 98.69
Wall Opening 0.00 0.00 0.00 4.37 0.00 21.25 44.44

Recall (%)

Ceiling 82.28 83.23 84.10 82.60 80.10 81.78 77.14
Floor 66.46 70.39 71.58 75.30 72.92 80.79 67.49
Wall 70.48 73.81 77.57 80.54 72.69 78.88 77.33
Interior Object 64.31 67.83 58.19 57.64 65.79 59.39 48.68
Empty Interior 93.92 94.25 94.04 94.79 94.92 94.03 93.32
Wall Opening 0.00 0.00 0.00 15.69 0.00 100.00 80.00

F1-score (%)

Ceiling 81.89 85.05 85.37 86.51 84.91 86.08 80.78
Floor 62.07 69.32 70.15 75.21 74.09 81.56 69.15
Wall 59.81 65.59 71.06 73.70 71.36 75.07 70.86
Interior Object 72.63 75.28 69.33 69.20 69.86 68.88 59.39
Empty Interior 96.22 96.40 96.39 96.76 96.70 96.50 95.93
Wall Opening 0.00 0.00 0.00 6.84 0.00 35.05 57.14

Neighborhood
Precision (%)
(based on
3D-6-
neighborhood)

Ceiling 93.29 96.40 96.77 98.73 98.27 98.36 92.54
Floor 78.97 86.67 85.82 90.97 91.59 92.70 85.61
Wall 76.01 80.98 83.06 83.77 88.09 85.90 83.04
Interior Object 84.80 86.53 87.59 88.18 76.73 84.38 80.23
Empty Interior 99.44 99.64 99.80 99.80 99.75 99.85 99.76
Wall Opening 0.00 0.00 0.00 4.37 0.00 21.25 44.44

Neighborhood
Recall (%)
(based on
3D-6-
neighborhood)

Ceiling 89.63 91.78 93.42 93.07 93.49 94.32 94.79
Floor 82.56 87.21 88.80 92.16 92.79 93.76 91.40
Wall 82.02 87.83 89.07 91.15 90.73 93.16 92.92
Interior Object 70.39 75.28 68.19 69.53 82.24 78.45 69.29
Empty Interior 95.72 96.43 96.01 97.02 97.45 96.38 96.44
Wall Opening 2.14 81.44 65.31 88.24 87.10 100.00 100.00
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Table 3.9: Evaluation results for the dataset ’Basement’ for varying voxel resolutions. Source: [243].

bad good
Voxel resolution

3cm 5cm 7cm 9cm 11cm 13cm 15cm
Room mapping error (%)
(fraction of affected voxels) 0.65 1.74 3.71 4.37 18.61 24.14 5.07

Room segmentation precision (%) 95.72 96.04 95.34 94.15 95.13 94.82 94.93
Room segmentation recall (%) 96.94 96.22 96.27 96.19 78.97 75.13 92.48
Room segmentation F1-score (%) 96.33 96.13 95.80 95.16 86.30 83.83 93.69

Precision (%)

Ceiling 77.37 84.06 86.28 89.06 88.82 88.01 87.97
Floor 79.35 85.15 85.19 86.45 88.09 85.04 87.27
Wall 56.51 62.51 65.04 69.07 69.72 71.04 73.22
Interior Object 76.48 81.08 84.72 87.97 74.02 69.16 73.67
Empty Interior 98.31 98.45 98.19 98.47 98.51 98.56 98.64
Wall Opening 1.25 1.98 2.10 2.13 1.12 1.85 2.95

Recall (%)

Ceiling 78.89 81.98 83.67 83.86 82.34 81.43 80.80
Floor 82.81 84.43 85.52 86.29 87.59 86.22 86.17
Wall 75.76 79.17 80.45 83.32 77.79 76.48 81.18
Interior Object 78.77 78.22 76.81 72.04 71.36 64.81 63.51
Empty Interior 97.69 97.43 97.32 97.04 96.32 96.14 96.28
Wall Opening 6.17 10.86 12.05 11.49 7.74 10.03 16.67

F1-score (%)

Ceiling 78.12 83.01 84.95 86.38 85.46 84.59 84.23
Floor 81.04 84.79 85.35 86.37 87.84 85.63 86.72
Wall 64.73 69.86 71.93 75.53 73.53 73.66 76.99
Interior Object 77.61 79.62 80.57 79.21 72.67 66.91 68.21
Empty Interior 98.00 97.94 97.75 97.75 97.40 97.33 97.45
Wall Opening 2.08 3.35 3.58 3.59 1.96 3.12 5.01

Neighborhood
Precision (%)
(based on
3D-6-
neighborhood)

Ceiling 92.34 95.14 96.05 96.14 94.46 93.80 93.06
Floor 92.83 93.78 93.78 93.94 94.03 90.81 92.55
Wall 84.00 87.43 89.25 90.56 90.06 90.67 90.90
Interior Object 77.52 82.84 87.08 89.89 77.21 72.95 77.14
Empty Interior 98.72 98.86 98.74 98.98 99.07 99.12 99.09
Wall Opening 1.57 2.58 2.48 2.26 1.31 2.67 2.95

Neighborhood
Recall (%)
(based on
3D-6-
neighborhood)

Ceiling 85.97 90.38 91.68 92.74 92.69 91.96 92.47
Floor 91.66 92.64 94.23 94.98 95.80 95.49 94.84
Wall 85.90 90.14 92.93 94.46 95.21 94.50 95.92
Interior Object 83.34 83.92 83.94 81.02 83.08 79.41 78.67
Empty Interior 98.92 98.89 99.14 99.15 99.14 98.97 99.29
Wall Opening 16.39 25.47 24.21 21.10 13.05 25.63 35.09
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Table 3.10: Evaluation results for the dataset ’Residential House’ for varying voxel resolutions. Source:
[243].

bad good
Voxel resolution

3cm 5cm 7cm 9cm 11cm 13cm 15cm
Room mapping error (%)
(fraction of affected voxels) 3.93 0.11 0.08 3.13 13.70 8.59 17.10

Room segmentation precision (%) 92.17 96.31 96.23 93.25 91.03 92.41 88.35
Room segmentation recall (%) 96.84 96.79 96.17 95.95 90.60 90.55 84.84
Room segmentation F1-score (%) 94.45 96.55 96.2 94.58 90.81 91.47 86.56

Precision (%)

Ceiling 86.43 90.89 90.81 91.22 90.48 90.12 81.64
Floor 68.80 77.51 78.61 79.94 81.29 80.63 68.35
Wall 52.45 60.90 63.51 63.12 67.76 69.76 64.17
Interior Object 92.58 92.84 94.00 92.53 89.65 91.04 89.65
Empty Interior 97.01 97.43 97.57 97.36 97.77 98.42 99.08
Wall Opening 1.07 0.57 0.61 0.22 0.31 0.51 0.57

Recall (%)

Ceiling 89.17 90.33 90.53 88.93 84.89 84.92 81.60
Floor 74.68 79.75 80.32 81.64 81.33 83.18 68.32
Wall 71.38 75.81 77.82 79.86 78.43 80.78 81.43
Interior Object 78.43 78.44 74.74 66.78 69.86 64.92 54.45
Empty Interior 97.27 97.16 96.62 95.79 94.75 94.81 91.03
Wall Opening 7.29 3.78 3.94 1.55 2.82 4.23 1.94

F1-score (%)

Ceiling 87.78 90.61 90.67 90.06 87.60 87.44 81.62
Floor 71.62 78.61 79.46 80.78 81.31 81.89 68.33
Wall 60.47 67.54 69.94 70.51 72.71 74.87 71.78
Interior Object 84.92 85.03 83.27 77.57 78.53 75.79 67.75
Empty Interior 97.14 97.29 97.09 96.57 96.24 96.58 94.88
Wall Opening 1.87 0.99 1.06 0.39 0.56 0.91 0.88

Neighborhood
Precision (%)
(based on
3D-6-
neighborhood)

Ceiling 96.15 96.74 96.67 96.65 96.32 95.89 86.98
Floor 89.76 93.71 92.22 94.00 93.71 90.78 77.86
Wall 80.25 83.70 84.86 84.24 83.73 85.64 80.64
Interior Object 93.64 94.46 95.81 94.08 92.06 93.42 92.71
Empty Interior 97.81 98.29 98.53 98.27 98.51 99.01 99.83
Wall Opening 1.74 1.33 1.07 0.22 0.55 0.58 2.56

Neighborhood
Recall (%)
(based on
3D-6-
neighborhood)

Ceiling 93.47 95.14 95.85 95.74 94.78 94.86 94.08
Floor 92.17 94.81 94.59 95.49 95.31 94.15 88.74
Wall 88.47 91.72 93.23 93.00 93.12 95.19 95.39
Interior Object 84.03 85.26 83.23 76.93 84.50 81.92 75.38
Empty Interior 98.93 98.96 98.84 98.45 98.10 98.23 95.69
Wall Opening 20.19 17.49 14.56 5.23 10.56 14.81 16.50
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Ground Truth Reconstruction Ground Truth Reconstruction

3 cm
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11 cm

13 cm

15 cm

Figure 3.10: Exemplary results for one horizontal slice of the dataset ’Residential House’ (cf. 3.8(d),
for numerical results see Tab. 3.10) for different voxel resolutions (for 5 cm resolution, see first line of
Fig. 3.9). Left: room partitioning; different colors indicate different rooms; black indicates transition
spaces. Right: voxel classification, colored according to Tab. 3.1. Source: [243].
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Figure 3.11: Dependency of processing time and memory consumption on voxel size for the ’Office’
dataset. Source: [243].

corresponding results for another non-standard building are presented in Fig. 3.13.

3.4 Discussion
The quantitative evaluation results presented in Sec. 3.3 for the metrics introduced in Sec. 3.2.7
show in general low room mapping errors over the different datasets, resolutions and rotation
angles around the up-axis. This implies an overall successful mapping of segmented room
entities between ground truth and test data. Higher room mapping errors of up to 25 % occur
occasionally, e.g. for the dataset ’Attic’ at 20° rotation around the up-axis in Tab. 3.4 or for the
dataset ’Basement’ at 11 and 13 cm voxel grid resolution in Tab. 3.9, respectively. Furthermore,
heightened room mapping errors occur frequently in the dataset ’Residential House’ (cf. Tab. 3.6
and 3.10) as can also be seen in the visualization of one horizontal voxel slice of this dataset
in Fig. 3.10. Here, under-segmentation of rooms occurs in the case of 3 cm and 15 cm voxel
resolution while, in the latter case, over-segmentation does also occur.

The values for room segmentation precision and recall only refer to those rooms for which
an unambiguous mapping between test and ground truth data could be derived. They are thus
determined only for a fraction of 100 %−RoomMapping Error of non-empty voxels. The values
for room segmentation precision and recall are mostly above 90 % with outliers down to about
75 %, e.g. in the case of the dataset ’Basement’ at 11 cm and 13 cm voxel resolution.

The evaluation of the voxel classification, however, is performed completely independent of
the room affiliation of the respective voxels and thus refers to all non-empty voxels, not only
those with unambiguous room mapping. The values of precision and recall are for most voxel
classes predominantly in the range of 70 % to 90 %. In most cases, these values rise significantly
when using the metric of neighborhood precision/recall as defined in Sec. 3.2.7. By doing so,
directly neighboring voxels of a ground truth voxel are considered as well for evaluating the class
label of a given voxel. The difference between precision/recall and neighborhood precision/recall
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Figure 3.12: Left: Triangle mesh from the Matterport3D dataset [94]. Right: Results from our indoor
reconstruction procedure applied on this mesh. In the first two rows, the results are colored according
to Tab. 3.1. In the third row, different rooms are indicated by different colors while transition spaces
are depicted in black. Source: [243].
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Figure 3.13: Left: Triangle mesh from the Matterport3D dataset [94]. Right: Results from our indoor
reconstruction procedure applied on this mesh. In the first row, the results are colored according to
Tab. 3.1. In the second row, different rooms are indicated by different colors while transition spaces
are depicted in black. Source: [243].

implies that the majority of wrongly classified voxels are only one voxel away from a ground
truth voxel having the correctly assigned value.

Generally, it seems less suitable for indoor reconstruction tasks to use classical metrics for
pure classification tasks. It would rather be more appropriate to consider the metric distance of
reconstructed geometric entities like wall surfaces to their respective counterpart from ground
truth data. In the case at hand, however, quantifying the metric displacement between voxels
proves to be unpractical due to the discretization caused by the rather coarse voxel resolution.
Also, the difference between precision/recall and neighborhood precision/recall does not seem to
change considerably with varying voxel resolution. For indoor reconstruction algorithms that
output room surfaces in vector format or for very high voxel resolutions, however, a metric
quantifying the distance between test and ground truth geometries like for instance the one
proposed by Schuster and Weidner [514] would be more appropriate.

Overall, rather poor results – in regard to precision/recall as well as neighborhood preci-
sion/recall – are achieved in case of ’Wall Opening’. In this case, ground truth geometries had
to be manually constructed. One of the reasons for the rather poor precision results for this
class is the inaccuracy inherent in modelling the respective ground truth geometries into the
noisy triangle meshes captured by the Microsoft HoloLens. Furthermore, ’Wall Opening’ is in
fact a challenging class for our reconstruction approach. In particular, the low results for recall
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are caused by the abundance of false positive wall opening voxels caused by occlusion or missing
input geometries due to incomplete mapping. We deal with this by checking for the presence of
furniture objects causing wall occlusions and by enforcing consistency between adjacent room
surfaces as detailed in Sec. 3.2.5.2. However, especially in the case of walls adjacent to the
outside, it is not easy to distinguish between actual wall openings and missing room geometries,
if no assumptions on the shape of wall openings are made. The achieved results could be further
improved by considering a narrower definition of wall openings, e.g. by enforcing them to be
rectangular.

The proposed approach is based on rather generic assumptions about the layout of indoor
environments and thus its versatility is demonstrated by the results achieved on two datasets
that are particularly challenging in this regard as presented in Fig. 3.12 and 3.13. Common
assumptions made for indoor modelling like Manhattan world or planar room surfaces do not
hold in these cases. The dataset presented in Fig. 3.12 is characterized by a spherical outer
surface and a complex vertical room layout, where the room depicted in greyish color in our
depicted room partitioning results extends over both storeys. Its two floor levels are connected
via a staircase which is reconstructed as an own space (ramp space). This ramp space is separated
from the main room by a transition space along their boundary surface in accordance with
the general thoughts on the partitioning of indoor spaces presented in Sec. 3.2.6.1. Also in
the case of the other dataset depicted in Fig. 3.13, the staircase (spiral stairs in this case) is
reconstructed as a separate room, vertically connecting two distinct rooms. In the visualization
of the room partitioning results, it is depicted in light brown. In its vicinity, it is apparent that
the surrounding lower-level room is extended in the reconstruction result over the uncanopied
outdoor space outside the circular main room. While the presented approach is generally able
to reconstruct uncanopied space by assuming a fixed virtual ceiling height when no trace of
a ceiling is found, the problems at hand result from the treatment of holes in ceiling surfaces
as detailed in Sec. 3.2.2.2. Here, the decision if a hole is to be closed depends on the presence
of walls along its borders. A large window surface adjacent to the outside like in the case at
hand can thus cause inner yards and other parts of outdoor space to be wrongly attributed to a
room. Generally, complex vertical room layouts and transitions between indoor and outdoor
space are still a challenging and worthwhile subject to future research in indoor reconstruction
and modelling.

A general drawback of voxel-based methods like the one presented here is scalability. As
Fig. 3.11 demonstrates, processing time and memory consumption increase rapidly with the voxel
grid resolution becoming increasingly finer. However, all presented examples could be processed
within reasonable time on commodity hardware. Furthermore, the experiments investigating
the effect of varying voxel resolution e.g. presented in Fig. 3.10 demonstrate that the proposed
method still performs well with coarse voxel grid resolutions that are efficiently processable in
terms of time and memory consumption. Thus, pyramid approaches are feasible, where the
general room layout could be determined in coarse voxel resolution. The input data could then
be processed in a finer resolution more efficiently by room-wise processing and loading into
working memory from a database. Also the application of less redundant data structures such as
octrees is conceivable.

The resulting voxel representation is certainly quite redundant in comparison to more prevalent
formats for storing indoor building models. However, deriving vector surface representations
from the resulting voxel indoor models is not a trivial matter, especially when maintaining the
generic nature of this indoor reconstruction approach, and is thus outside the scope of this work.
However, the proposed voxel representation holds some advantages that make it interesting for
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future research taken by itself. For instance, the explicit representation of empty space and the
straightforward neighborhood relations between voxels make it suited for tasks such as indoor
navigation as demonstrated by Gorte et al. [201]. Besides, application in the field of indoor
simulation and analysis such as heat dispersion or air quality modeling are conceivable.

3.5 Conclusion and Outlook
In this chapter, a novel fully-automatic voxel-based approach for the geometric and semantic
reconstruction of indoor environments from triangle meshes was presented. First, the input
triangle mesh is converted to a voxel representation, where the voxel values are based on the
dominant normal directions of the contained triangles. Here, a voxel resolution of 5 cm is
used, however this value is freely adjustable as demonstrated within the scope of the presented
evaluation. Ceiling segments are detected in this voxel grid by region growing of voxels with
main normal direction pointing downwards. For each ceiling segment, a corresponding floor
segment is determined and holes in ceiling and floor caused by occlusion or gaps in the input
data are closed. The voxels in-between ceiling and floor are classified in ’Empty Interior’ or
’Interior Object’ within the room interior and in ’Wall’ or ’Wall Opening’ along the lateral room
boundary surfaces based on the voxels being empty or not. The geometry of the walls and
especially the occurrence of wall openings behind occluding furniture are subsequently refined.
Finally, the resulting interior space is repartitioned into rooms and transition spaces with special
consideration of ramp spaces as vertically slanted floor surfaces like stair flights.

The proposed approach is applicable to a range of challenging scenarios encompassing
indoor environments with curved walls and complex room layouts extending vertically over
multiple storeys. The performance of the proposed approach is investigated by means of a
thorough quantitative evaluation encompassing the variation of the key parameter represented
by the voxel resolution. To this aim, a method for the automated quantitative evaluation of
indoor reconstruction results against ground truth by means of appropriate metrics is presented.
Furthermore, the datasets (including ground truth) used in this evaluation as well as the code of
the implementation are provided to the community.

Further research should be directed to converting the reconstructed digital representations
of indoor environments as voxel grid in less redundant surface-based or voluminous models
that would allow conversion to prevalent data formats for the representation of digital building
models such as IFC or CityGML. Another interesting direction of future research is focusing on
supervised methods such as contextual classification approaches and deep learning approaches
in contrast to the presented unsupervised, rule-based approach. While the proposed approach
is based on a quite generic view on indoor building structures, there will always be specific
buildings and datasets that are not suited for a given rule-based indoor reconstruction algorithm.
Such cases could be identified to adapt the respective algorithm accordingly. More favorable in
this regard however, would be a supervised, data-driven approach, that could be improved by
simply adding the identified critical examples to the pool of training data. While mature machine
learning based approaches already exist for the semantic segmentation of three-dimensional
geometries [214, 311, 473, 312, 567], supervised methods are still rarely applied to the more
complex task of indoor reconstruction which encompasses the creation of non-existent (occluded)
geometries and assigning semantic meaning to empty space [129, 124].

Another promising subject of future research is further engagement with ground truth data as
manually creating ground truth triangle meshes proved to be cumbersome and time-consuming.
Available benchmark datasets like Stanford 2D-3D-S [30] or Matterport3D [94] provide an
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abundance of labeled indoor geometries (as point clouds as well as triangle meshes) but are
however missing non-visible geometries like occluded parts of walls that should also be considered
when evaluating indoor reconstruction methods. Also geometrically not present entities such
as wall openings are typically not considered and, while the data is usually partitioned into
distinct indoor spaces, it is often not clearly stated on what basis this room partitioning is
conducted. Enriching these datasets with the aforementioned missing information – preferably
in an automated, unsupervised manner – would be a worthwhile endeavour. This would not only
enable an automated large-scale evaluation on an abundance of challenging indoor environments
but also provide the basis to apply supervised machine learning techniques such as deep neural
networks to the task of three-dimensional indoor reconstruction.

Other benchmark datasets such as the ISPRS benchmark on indoor modelling [281] already
provide ground truth data that exceed sole labelling of input geometries. However, here, input
geometries are only given as point clouds instead of triangle meshes. While the method proposed
in this work is generally also applicable to indoor mapping point clouds, it currently presupposes
the presence of oriented normal vectors. While normal directions can easily be determined for
point clouds, determining their orientation – i.e. the distinction between inside and outside –
can be more challenging. Overcoming the need for oriented normals (or efficiently determining
them for indoor mapping point clouds) would make the proposed method also applicable for
these datasets.
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Chapter 4

Indoor Localization

Digital building models that can for instance be created by acquiring data by means of indoor
mapping techniques as discusses in Chap. 2 and a subsequent step of automatic indoor reconstruction
as discussed in Chap. 3 can subsequently be used as data basis for indoor fused reality applications
as presented in Sec. 1.2.5. To this aim, it is necessary to realize the spatial correspondence between
the real indoor environment and the building model representing it by means of indoor localization
techniques. This is the topic of this chapter.

While the term localization is sometimes used to describe the tracking of the movement of mobile
devices within their environment (i.e. the ’L’ in SLAM), in the context of this work, it is used
to describe the determination of an absolute, initial pose of a mobile device with respect to its
environment. In the context of indoor localization, this initial pose is used to localize a device
within the coordinate system defined by a given digital building model in order to achieve a spatial
coincidence between the building model and the physical building environment it represents. Thus,
virtual content from the building model can be visualized in the correct position throughout the
whole building environment when the mobile augmented reality device used to this aim can track its
pose dynamically in real-time (see Sec. 1.2.3) relative to this initial, absolute pose determined by the
indoor localization.

Consequently, indoor localization approaches do not necessarily need to operate continuously or
in real-time, as they only need to be applied once or at least sporadically to set an absolute pose
from which efficient tracking approaches with real-time capability can take over. Only when tracking
loss happens, the indoor localization process has to be repeated in order to restore the alignment of
the virtual building model with its physical counterpart. In this case, the last reliable pose before
the tracking loss occurred could be potentially utilized to facilitate this task.

In the following, first, Sec. 4.1 gives a general overview on the topic of indoor localization,
detailing the different approaches that have been proposed to this aim. Afterwards, in Sec. 4.2,
a straight-forward, marker-based approach for localizing the Microsoft HoloLens within building
environments is presented and evaluated. The evaluation results presented in Sec. 4.3 show, that once
an absolute localization of the device within the respective building environment has been achieved,
the tracking system of the HoloLens is indeed capable to visualize virtual content from a building
model in its correct position with respect to the physical building environment in real time. Finally,
Sec. 4.4 presents further discussions on this topic before Sec. 4.5 closes this chapter with a summary
and an outlook on potential future research aims.

This chapter contains material published in [241].
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4.1 Fundamentals of Indoor Localization

The topic of localizing mobile devices within pre-known indoor environments has been the focus
of intensive research efforts [296, 660, 20, 205, 380, 668, 522]. Besides its fundamental role in the
realization of indoor fused reality applications, indoor localization also holds importance for other
fields of research such as on-site emergency response operations [331, 137], assistive systems for
visually impaired persons [226, 527] and the deployment of autonomous robots in indoor environments
[446, 437]. It differs from the more general task of localization in arbitrary environments as, particulary
in open outdoor environments, one can rely on the availability of GNSS and extensive publicly
available datasets such as Open Street Map20 or Google Street View21 [485, 670, 453, 544]. As the
microwave signals used for GNSS localization cannot penetrate sufficiently into indoor environments
to allow for an adequate position estimation and as data about the geometric structure of building
interiors is typically not publicly available in any centralized and standardized form due to the
legally private nature of interiors, indoor environments are a particularly challenging environment for
automated, absolute pose estimation.

Thus, some approaches for indoor localization in the context of indoor fused reality rely on user
interaction for conducting the initial localization of the respective AR device [662, 122, 198, 296]. In
this context, manual localization can e.g. be achieved by panning and rotating the virtual building
structure in the AR visualization until an adequate overlay with the physical building structure is
achieved and model based tracking methods can take over or via the manual selection of control
points in both domains.

Other indoor localization approaches make use of indoor positioning systems that rely on a
similar principal as GNSS in outdoor environments. In this case, fixed references deployed in an
indoor environment are sending signals that allow mobile receivers within the building to determine
their position. These systems can e.g. rely on ultrasound [245], Bluetooth22 technology [616] or
the encoding of signals in electric light sources [392]. Suchlike indoor positioning system however
rely on a dedicated infrastructure that has to be installed and maintained in every building where
localization is required. Thus, it is more favorable, to rely on indoor localization approaches that do
not require a dedicated infrastructure [629].

One possibility to so is to use the infrastructure already present in most buildings. In this context,
WiFi signals can be used as well for indoor localization [585, 314]. This however requires a process of
preparatory acquisition of the spatial patterns of the WiFi signals known as ’fingerprinting’ [206].
This fingerprinting has to be updated at times in order to adapt to changing WiFi pattern in the
respective building complex.

Due to their ubiquitous availability and their diverse sensor equipment [313], smartphones are
frequently used devices for indoor localization tasks. Particularly their inertial measurement unit
(IMU) is often used for a trajectory-based tracking approach called pedestrian dead reckoning (PDR)
[54, 266]. In the context of indoor localization, floor plans are frequently used as reference, while other
kinds of reference signals such as WiFi can also be integrated when available [33, 484, 639, 207]. These
approaches often rely on particle filtering techniques [211], particularly Monte Carlo localization
[136]. However, as in many fields of research, approaches based on machine learning have gained in
favor recently [412, 494].

Suchlike approaches relying purely on non-visual sensors are however not particularly accurate in
comparison to the required accuracies for augmented reality applications [36]. Furthermore, only
positions and at most a bearing angle can be determined with this kind of indoor positioning in

20https://www.openstreetmap.de/ (Last visited on 12/06/2021)
21https://www.google.de/intl/de/streetview/ (Last visited on 12/06/2021)
22https://www.bluetooth.com/ (Last visited on 12/06/2021)
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contrast to the required poses with fully three-dimensional orientation. Due to this, camera-based
approaches are of fundamental importance for indoor localization in the context of augmented reality
applications [394]. However, the presented non-visual positioning methods can none-the-less be
valuable for supporting camera-based approaches or for the determination of coarse, initial localization
priors to ease visual localization.

A special case in this context are visual approaches where the cameras are mounted statically
in the building environment (e.g. surveillance cameras), observing mobile units and thus able to
support them in localization and tracking tasks [576, 227, 650]. More prevalent however are visual
indoor localization approaches where the camera moves through the indoor environment and the
task is the determination of an absolute camera pose.

An easy, straight-forward means for determining camera poses is to rely on artificial, planar
markers [39, 450]. This approach has been frequently applied in the context of indoor localization
[306, 612, 445, 390, 554]. A disadvantage of this method however is the necessity to equip the
respective indoor environment with markers. Though, it needs to be mentioned, that many indoor
environments are already equipped with some kind of planar markers that can readily be utilized for
indoor localization if their respective poses in the building model are known, i.e. door plates or other
kinds of unambiguously identifiable information signs [292, 432, 411].

More flexible however are marker-less indoor localization approaches relying on natural features.
In this context, different possibilities are available to determine the absolute pose of a query image or
video sequence within a known building environment. Many localization procedures rely on an image
retrievable approach that aims to find the most similar one to a query image within a large collection
of images and corresponding poses covering the respective indoor environment as completely as
possible [332, 109, 555, 68, 644, 680]. The found image candidates with the highest similarity can
subsequently be used to determine the pose of the target image.

Alternatively, other approaches aim to match the query image against a 3D representation of the
respective indoor environment, either reconstructed from a similar collection of images or directly
acquired three-dimensionally [443, 508, 324, 330, 329, 358]. These approaches based on 3D structures
typically achieve a higher localization accuracy than approaches based on image retrieval. Recent
research however has shown, that the image retrieval strategy can indeed achieve competitive results
to structure-based approaches if the image coverage in the database is sufficiently dense with respect
to the possible poses covering the respective indoor environment [571].

Lastly, image poses can be directly regressed by deep neural networks trained in an end-to-
end manner [274, 397, 76, 42, 155]. However, pose regression based on deep learning has yet to
achieve competetive results in comparison to structure-based localization and does not even clearly
outperform approaches based on image retrieval [509]. Particularly, deep learning based approaches
show difficulties in generalizing to poses that differ from the trajectories of image sequences used for
training. It has been proposed to improve the generalizability via data augmentation approaches
by rendering additional views from 3D reconstructions of the respective environment to increase
coverage and amount of training data [396]. Furthermore, recent research hints at essential matrices
being more favourable than directly regressing pose matrices [688].

All approaches for image-based indoor localization presented so far suffer from the drawback of
requiring sufficiently up-to-date image data covering the whole indoor environment where localization
should be possible. As indoor environments are often quite dynamic in their appearance due to
changes in furniture and usage, frequent updates of the reference data used for localization are
necessary. This is a major disadvantage as it implies repeated laborious on-site data acquisition in a
manner similar to the WiFi-fingerprinting (visual fingerprinting [591]) and, in the case of approaches
based on deep learning - time-consuming retraining of the networks. Thus, it seems favorable to use
more generalized representations of indoor environments as reference for localization tasks. This
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strategy has for instance been applied in the context of localization based on image retrieval where it
has been proposed to generate the image database via virtual rendering from a BIM model instead
of image acquisition in the real building [212].

Furthermore, model-based approaches for determining image poses on the basis of texture-less 3D
CAD models as reference can be applied to this aim [150, 581, 566, 638]. In the context of augmented
reality, model-based localization has e.g. been used with city models as reference [485, 32]. This being
an outdoor scenario, GNSS can be relied upon for acquiring a coarse, initial positioning. However, also
in the context of indoor localization where suchlike priors are not available, model-based localization
approaches using untextured building models as reference have successfully been applied [583, 1].

An even more abstract form of reference data that has been used for image-based indoor localization
are two-dimensional floor plans [118, 379, 586]. The presented approaches aim at mimicking the way
humans read floor plans and work out their current location in the respective building. To this end,
image-sequences instead of single frames are used to cope with ambiguous situations. This idea has
recently also been applied to pose regression with untextured building models using deep learning [3].

Finally, instead of using single images or image sequences to query for absolute poses in indoor
environments, three-dimensional data as acquired by indoor mapping systems (see Chap. 2) can be
used as input. In this case, the reference data can be comprised of other indoor mapping results
from earlier mapping campaigns [196, 388], untextured building models [224, 685] or floor plans
[630, 367, 18].

Furthermore, the evaluation of indoor localization approaches is also subject of research [7, 462].
Evaluation efforts in this context have been driven by on-site competitions [357, 461, 356, 487], public
benchmark datasets [393, 479, 503, 600] and simulation frameworks [172, 561].

4.2 Methodology
To achieve a spatially correct augmentation of an indoor scene with virtual building model
content on the HoloLens, the spatial relationship between the environment in which the device
is operating and its corresponding model has to be known. This comes down to determining the
pose TApp

Model of the building model in the coordinate frame of the HoloLens application.
In the following, Sec. 4.2.1 presents a simple, marker-based method to the aim of determining

this building model pose TApp
Model. Subsequently, the practical realization of this localization

method with room-scale model data of a laboratory room is described in Sec. 4.2.2. Finally,
in Sec. 4.2.3, an evaluation method suitable for quantifying the placement accuracy of virtual
building model content that can be achieved with the proposed localization method is presented.

4.2.1 Localization Method
To the aim of overlaying indoor environments with virtual building model data, the pose of
the HoloLens device with respect to the building model has to be determined. This equates to
determining the pose TApp

Model of the building model in the HoloLens application coordinate frame
that leads to a correct alignment between the virtual and physical building geometry.

In the HoloLens application coordinate system App, the pose of the HoloLens device is
described by its tracking system. The definition of the App coordinate system is derived from
the pose of the device in the moment of starting the respective HoloLens application.

The current pose TApp
HoloLens of the HoloLens device in this App coordinate system can be

queried by HoloLens applications via the HoloLens SDK23. Furthermore, an arbitrary virtual
object – a so-called ’hologram’ – can be positioned by setting its pose TApp

Hologram in this App
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Figure 4.1: A room can be augmented with corresponding model data using a Microsoft HoloLens
by determining the pose TApp

Model of the virtual room model inside the HoloLens App coordinate
frame. This pose can be determined via marker-based localization of the HoloLens camera. The
pose TApp

HoloLens of the HoloLens device itself with respect to the App frame can be queried via the
HoloLens SDK. Source: [241].

coordinate system via the SDK. In this manner, building model data can be positioned in the
App coordinate system as holograms if the correct pose TApp

Model of the building model can be
determined.

An easy way to achieve this is by placing a marker in the building environment that is to be
augmented with model data. The pose TModel

Marker of this marker in the coordinate system of the
corresponding building model has to be known. If the pose of this marker can also be determined
in the HoloLens App coordinate system as (TApp

Marker), the model pose TApp
Model results in

TApp
Model = TApp

MarkerT
Marker
Model = TApp

MarkerT
Model−1

Marker (4.1)

The marker pose TApp
Marker in the App coordinate system can be determined by observing

the marker with the HoloLens color camera (the ’Photo/Video’ camera from Tab. 2.1) and by
determining its pose THoloLens

Marker in the local coordinate system of this camera. The camera pose
in the App coordinate system in the moment of capturing the image of the marker can in turn
be queried via the HoloLens SDK. The marker pose TApp

Marker in the App coordinate system then
results to

TApp
Marker = TApp

HoloLensT
HoloLens
Marker (4.2)

A schematic overview of this marker-based method for localizing the HoloLens device inside
building models corresponding to its surrounding indoor environment is depicted in Fig. 4.1.

23https://docs.microsoft.com/en-us/windows/mixed-reality/ (Last visited on 14/06/2021)
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Figure 4.2: Room model: components like tables, cabinets, plug sockets and wall-mounted cameras
are depicted in black and green wire frame, while infrastructure pipelines with fictive course inside
the walls are depicted in red for heating pipes, blue for water pipelines and yellow for power supply
lines. Source: [241].

4.2.2 Implementation
To demonstrate that the Microsoft HoloLens is capable of visualizing large room-scale virtual
data with good spatial accuracy and stability, a simple marker-based localization method as
described in Sec. 4.2.2 has been implemented.

For this purpose, a building model of a laboratory room of the dimensions of about
8m×5m×3m was created. This room model includes the room geometry like walls, win-
dows and doors as well as furniture and various infrastructure pipelines with fictive courses
inside the walls. An overview of the room model is depicted in Fig. 4.2. For reasons of clarity,
the wall geometry has been omitted in this depiction.

The room which this model represents is equipped with various ArUco markers [186] of
different sizes, as can be seen in Figures 4.3, 4.4 and 4.5. The local coordinate coordinate used
for the creation of the room model equates to the local coordinate system of one of those ArUco
markers with corresponding points of origin.

Thus, the localization of the HoloLens device in the local coordinate frame of the room
model can be achieved by capturing an image of the respective ArUco marker in the room with
the HoloLens color camera and determining the pose of this camera relative to the marker. The
current pose of the HoloLens camera in the coordinate frame in which the HoloLens tracks itself
can be queried via the HoloLens SDK. In this way, the pose of the ArUco marker corresponding
to the pose of the room model can be determined in the App coordinate system which in turn
allows for the correct placement of virtual objects representing room components.

Fig. 4.3 for example shows the ArUco marker used for localization augmented with a virtual
representation of this marker and its coordinate frame which corresponds to the coordinate frame
of the room model. Fig. 4.4 shows the room augmented with the model depicted in Fig. 4.2 from
the perspective of a camera placed directly in front of this localization marker looking into the
room.
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Figure 4.3: The ArUco marker used for localization augmented with a virtual representation of the
marker and the coordinate system of the room model. Source: [241].

Figure 4.4: The real room augmented by the room model from Fig. 4.2 after localizing the HoloLens
via the ArUco marker shown in Fig. 4.3. Source: [241].
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Figure 4.5: The ArUco marker used for evaluating the spatial accuracy of its overlay with the room
model (blue rectangle). Source: [241].

4.2.3 Evaluation Scheme
For evaluating the spatial accuracy of the overlay between the real room and its virtual rep-
resentation as visualized via the HoloLens device, another ArUco marker placed diametrically
opposed to the one used for localization was augmented by a blue rectangle as part of the room
model. This evaluation marker and its augmenting blue frame can be seen in Fig. 4.5. The
spatial accuracy of the placement of the virtual room model can be quantified by determining
the spatial deviation between the corners of the virtual rectangle and the respective corners of
the physical evaluation marker.

However, for evaluating the apparent accuracy of the overlay of this evaluation marker,
it is not advisable to use the ’Photo/Video’ camera of the HoloLens. As shown in Sec. 4.3.1,
the apparent position of virtual content with respect to the real objects in the background as
depicted via the camera can differ considerably from its apparent position as perceived by the
user wearing the HoloLens.

Consequently, an evaluation procedure has to be applied, that directly evaluates the impression
as perceived by the user of the HoloLens device. Vassallo et al. [590] who evaluate the spatial
stability of virtual content over time observed through the HoloLens achieve this by measuring
the perceived position of the corners of a rectangular virtual object by contacting them with
a stylus tracked with a motion capture system. This of course limits the possible evaluation
distance of the virtual content to the range in which manual contacting can be performed by the
user. In our case, the spatial accuracy of the placement of room-scale virtual content had to be
evaluated. Thus, a contact-free measuring method was applied.

To this end, the corners of the evaluation marker and its virtual pendant were targeted
with the laser pointer of a tachymeter and their Cartesian coordinates in the local coordinate
system of the tachymeter were sequently determined. A value for the spatial accuracy of the
overlay between the physical and the virtual evaluation marker can be derived by averaging the
Euclidean distances between the coordinates of their four corresponding corners.

In this way, deviations between the virtual and physical marker rectangle in the direction
perpendicular to the wall which the physical marker is affixed to cannot be measured directly
because the distance meter of the tachymeter always measures the distances to the wall surface
regardless of the virtual marker being placed before or inside the wall. Thus, the projections
of the corners of the virtual rectangle on the wall surface are actually measured and compared
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with the physical marker corners.
Large deviations of the placement of the virtual marker rectangle perpendicular to the wall

surface contribute to the determined value of the placement accuracy, in so far as they cause
deviations of the position of the virtual corners projected on the wall surface. Actually, this
apparent position deviation on the wall surface causes the impression of the virtual rectangle
being positioned in front or behind the wall surface in the perception of the user wearing the
HoloLens device. Thus, measuring the position of the marker corners projected on the wall
surface can be considered as justified for quantifying the placement accuracy of virtual objects
as perceived by the user.

4.3 Results
When evaluating the apparent spatial placement accuracy of virtual objects that can be achieved
with a head-worn AR device like the Microsoft HoloLens, it is of importance to take into account
that the three-dimensional impression of a virtual object can essentially only be experienced by
an operator using the respective device and its near-eye display.

Head-worn AR devices may provide means of capturing images which themselves include
renderings of the virtual objects augmenting the scene as is the case with the HoloLens and
its camera. However, it is by no means certain that the apparent position of virtual objects
depicted in suchlike images is in accordance with the augmented scene the user is experiencing
while looking through the near-eye display of the respective head-mounted AR device.

In the case of the Microsoft HoloLens, Sec. 4.3.1 demonstrates, that the apparent position
of virtual objects in augmented images captured with the ’Photo/Video’ camera can differ
noticeably from their apparent position as experienced by the user wearing the device. Therefore,
it is imperative for an adequate and objective evaluation of the positioning accuracy of virtual
objects to always measure the apparent position of a hologram directly as the user is experiencing
it and not by means of an additional capturing mechanism like the HoloLens ’Photo/Video’
camera.

The applied evaluation procedure as presented in Sec. 4.2.3 takes this into account. The
evaluation results derived by this evaluation scheme are presented in Sec. 4.3.2.

4.3.1 Observations on the HoloLens Camera
Besides its tracking cameras, the Microsoft HoloLens is equipped with an additional camera,
that allows for capturing images and videos that include visualizations of the holograms (i.e.
virtual objects) the user wearing the device is seeing. The position of those virtual objects
relative to the physical surroundings in the images of this camera however is not in every case
identical to their position as it is perceived by the user looking through the see-through display
of the device. The position of holograms overlaying physical objects can thus appear deviated in
images captured with the HoloLens camera while the user wearing the device perceives them as
correctly overlaying the surrounding environment.

This effect appears when the object to be overlaid with virtual content is not in the center of
the image, i.e. when the cursor symbolizing the gaze direction of the user is not placed roughly
on the object of interest. In those cases, when the user does not look directly at a hologram, but
it is still within the field-of-view that can be augmented with virtual content by the HoloLens
display, the apparent position of the respective virtual object in the image deviates noticeably
from its apparent position as observed by the user.

This offset between the content of the images captured with the HoloLens camera and the
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Figure 4.6: An ArUco marker is augmented with a manually positioned, blue virtual border. The
images have been recorded with the HoloLens camera positioned in front of the marker while the
camera is rotated subsequently to the left and to the right respectively. With increasing angle, an
offset between the virtual rectangle and the physical marker is apparent that is not perceived by the
user wearing the HoloLens device. Source: [241].

perception of the user wearing the device is demonstrated in Fig. 4.6. In this experiment, a blue
rectangle was placed as a hologram manually by the user in such a way, that it exactly overlays
the ArUco marker depicted in the images. Then, the user was standing in front of the marker
looking directly at it. While the user gradually turned his head to the left and respectively to
the right, images of the marker and the virtual rectangle augmenting it were captured with the
camera. Some of these images labeled with the respective angle of horizontal rotation of the
device are depicted in the figure.

While it is clearly visible in Fig. 4.6, that the virtual rectangle as depicted in the images
increasingly shifts from the physical marker while the user is turning the gaze direction sideways,
no such offset was perceived by the user through the see-through display of the HoloLens device.
The user rather perceived an unvaryingly correct augmentation of the marker over the whole
rotation range allowed by the field-of-view of the HoloLens display.

This aberration between the images captured with the HoloLens camera and the perception
of the user has implications on the adequacy of this camera for various possible usage scenarios.
Firstly, the spatial accuracy of the placement of virtual objects can appear worse in images
and videos captured with the HoloLens camera than it actually is. This can cause problems in
the context of demonstration and documentation of HoloLens applications where the precise
placement of virtual content is of importance. Furthermore, the spatial accuracy of the placement
of virtual objects cannot be evaluated automatically via those images under these circumstances
(e.g. by placing virtual markers next to physical ones and comparing their offset as determined
from the images with the actual reference offset).

This shift of holograms in the images of the HoloLens camera normally is not that conspicuous
because in most use-cases, a hologram of interest is focused by the user (i.e. placed roughly in
the center of the image) so that the offset between what the user sees through the HoloLens
display and what the camera image shows is minor. Furthermore, holograms normally do not
represent and overlay physically existing objects. Positional offsets of few centimeters are thus
not that noticeable in prevalent use-cases.

This work however, intends to overlay physical building geometry with a corresponding
virtual building model. In this scenario of overlaying physical objects with virtual content, even
small deviations in the apparent position of virtual objects stand out noticeably. Furthermore,
here, large-scale virtual objects are used which, even when directly focused, extend over the
bounds of the region around the cursor where no offsets of the position of virtual content are
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Figure 4.7: A checkerboard pattern augmented by its virtual counterpart in blue. The increasing
offset between the virtual and real pattern with distance from the position of the HoloLens cursor only
appears in the images captured with the HoloLens camera. The user wearing the device perceives an
overall correct overlay. Source: [241].

visible in the images.
The inadequacy of spatially extended virtual objects for correct representation in the images

captured with the HoloLens camera is demonstrated in Fig. 4.7. Here, a blue virtual grid was
placed manually over a spatially extended checkerboard pattern to achieve a precise overlay in
the perception of the user wearing the HoloLens device. While offsets between the checkerboard
pattern and its virtual pendant are clearly visible in this image, the user perceived no such
deviations.

4.3.2 Evaluation of the Localization Method
A quantitative evaluation of the augmentation of a room with building model data as described
in Sec. 4.2.2 achieved by localizing the HoloLens device in the coordinate system of the respective
model with the marker-based method proposed in Sec. 4.2.1 was performed according to the
evaluation procedure presented in Sec. 4.2.3. In the course of doing so, the mean overlay error of
the evaluation marker was measured from seven different points of view as depicted in Fig. 4.8
after localizing the HoloLens device via the opposing localization marker. The points of view
differ in the angle under which the evaluation marker is observed and their distance to the
evaluation marker. This procedure of localizing the HoloLens and the subsequent measurement
of the overlay accuracy from the seven respective points of view was repeated 15 times.

The results of this evaluation (see Tab. 4.1) show that the mean overlay accuracy achievable
by placing the virtual room model automatically via marker-based localization of the HoloLens
device amounts to 2.3 cm. While the mean overlay errors per localization averaged over all
points of view cover a wide range of values from 1.4 to 4.1 cm, the overlay errors per view point
averaged over all 15 localizations all fall in the narrow range between 2.0 and 2.5 cm.
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Point of view

Evaluationmarker

Localizationmarker

Figure 4.8: Placement of the seven different points of view that were used during the evaluation in
relation to both ArUco markers. Source: [241].

Table 4.1: Overlay error [cm] between the real and the virtual evaluation marker depicted in Fig. 4.5
for all localizations and points of view (see Fig. 4.8 for positions of the points of view). Source: [241].

Point of View
1 2 3 4 5 6 7 ∅

L
oc
al
iz
at
io
n

1 2.8 2.0 2.9 2.3 2.2 2.1 2.1 2.3
2 1.9 1.7 1.9 1.3 1.2 1.3 1.4 1.5
3 1.7 0.8 1.7 1.4 2.1 2.0 1.9 1.7
4 1.1 0.6 0.9 1.8 3.2 3.2 3.0 2.0
5 3.5 3.3 3.7 2.6 1.2 0.8 1.0 2.3
6 3.3 2.7 3.4 3.9 4.8 4.9 5.1 4.0
7 2.5 2.3 2.7 1.7 0.8 0.5 1.1 1.7
8 0.2 0.3 0.4 1.1 2.6 3.0 2.4 1.4
9 0.4 1.4 0.6 1.1 2.0 2.3 1.8 1.4
10 3.2 3.1 3.2 2.7 2.9 2.2 2.5 3.5
11 0.8 1.0 0.5 1.7 3.2 3.3 3.4 2.0
12 3.7 4.0 4.0 3.7 4.2 4.3 4.8 4.1
13 2.5 2.3 3.0 2.3 3.5 3.2 3.4 2.9
14 1.4 1.8 1.7 0.7 1.9 2.0 1.5 1.6
15 2.6 2.8 2.9 2.1 2.6 2.3 2.6 2.5
∅ 2.1 2.0 2.2 2.0 2.5 2.5 2.5 2.3
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4.4 Discussion
The experiment presented in Sec. 4.3.2 demonstrates the general applicability of the Microsoft
HoloLens device for the on-site visualization of building model data. First of all, it could be
shown that large room-scale model data can be visualized as holograms without experiencing
adverse effects like jittering or noticeably reduced rendering frame rate. Building model data
in an on-site indoor usage scenario is mainly perceived on a per-room basis, i.e. in most cases
only the data in the direct surrounding of the user, e.g. just for the currently visited room, has
to be visualized. So, the usage of large building-scale BIM data in this context should also be
feasible, as it does not need to be visualized completely but mainly in room-scale parts around
the current position of the user inside the building.

Furthermore, it could be demonstrated that correct, automatic on-site placement of building
model data in indoor environments with sufficient spatial accuracy is feasible even with a rather
simple marker-based approach. Of course, marker-based approaches are in practice not desirable
in many usage scenarios, because they require physical preparation of the building environment
via placement of markers. Fonnet et al. [177] for example discuss a marker-based localization
approach in the context of on-site AR visualization of cultural heritage BIM data (hBIM),
but discard this method because it would not be feasible to equip a large number of different
historical buildings with artificial markers.

Anyhow, even if marker-based approaches for localization are not adequate for various
scenarios, there certainly are use-cases, where markers can provide simple and efficient means
for localization. In the context of historical buildings, a suchlike marker-based localization is
suitable, if the number of buildings where the respective AR application should be used is not
too large. For example, a single building can easily be equipped with an artificial marker in the
entrance area for localizing the pose of the building model data with respect to the real world.

Other usage scenarios where a marker-based approach for augmented reality applications is
feasible, concern environments, that are already equipped with marker-like planar signs that
can be used for determining the location of a mobile AR client in a large-scale building model.
In this context, e.g. the usage of door-plates as markers would be an option for applications in
the field of facility management, with pre-known door-plate geometry providing means for pose
estimation and room numbers on the door-plates providing for unambiguousness of location.
Orlosky et al. [432] for example use optical detection of door-plates in combination with magnetic
tracking for localization in indoor emergency scenarios.

Irrespective of the way in which the localization is achieved – be it marker-based, via manual
adjustment or via some sophisticated method of automatic localization like the approach proposed
by Urban et al. [583] – once the room model is localized as holograms in the environment of the
user, it stays affixed over time independent of the position of the user inside the respective room
[590]. The evaluation results presented in Sec. 4.3.2 show little variation in the mean position
error of the virtual room model content over the seven different points of view in the room on
which the evaluation procedure was performed. The process of acquiring evaluation data from all
seven points took about 30 minutes. During this time, no grave displacements of the apparent
position of the holograms presenting the room model were experienced. It was also tested to
leave the room through the door and enter it again. In doing so, the virtual room model still
proofed to match the real room geometry after re-entering.

Ultimately, it can be concluded that the HoloLens as an AR device is principally usable
for the on-site visualization of BIM data, if the correct pose of the model data corresponding
to the physical building environment it represents can be determined. In contrast to tracking,
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this localization procedure does not have to be performed in real-time. It is rather sufficient to
localize building model content just initially at the beginning or from time to time, e.g. when
entering new rooms or if tracking is lost. Furthermore, it is possible to set so-called ’Spatial
Anchors’24 for the holograms representing the BIM data. This allows storing the poses of the
respective holograms with respect to the spatial mapping data of the respective room they are
placed in. Thus, when the HoloLens application is started a second time in a room, that contains
’Spatial Anchors’, the respective holograms can be loaded automatically and are visualized in
the correct positions without having to perform a localization procedure with respect to the
building model again.

4.5 Conclusion and Outlook
This chapter demonstrated that the Microsoft HoloLens as a mobile augmented reality platform
is suited for the spatially correct on-site visualization of building model data. Once the virtual
building model content is placed to correctly overlay the physical structures of the indoor building
environment it represents, the tracking capacity of the HoloLens is sufficient to keep its apparent
position stable over time independent of the movements of the user wearing the device.

So, using the HoloLens as an AR client for the on-site inspection of BIM data comes down
to a localization procedure for aligning the virtual building data with its physical counterparts.
This chapter presented a simple marker-based approach to this aim. Furthermore, an evaluation
procedure was proposed, that measures the spatial precision of hologram placement directly
as it is experienced by the user and does not rely on the HoloLens ’Photo/Video’ camera that
proofed to produce apparent positions of virtual content that differ from the impression the user
is perceiving.

Use-cases suited for a marker-based localization approach in the context of AR-based in-situ
presentation of BIM data certainly exists. However, automatic localization methods that do
not require the use of artificial markers or manual adjustment of the pose of a building model
are a promising field of future research. In this context, the range sensor and indoor mapping
capability of the HoloLens (see Chap. 2) could be made use of for detecting the part of a building
model which the indoor mapping meshes best correspond to. Here, special emphasis has to be
laid on how to deal with ambiguities inherent in certain building structures and how to remove
those parts of the indoor mapping meshes that are not represented in corresponding building
model data (e.g. furniture) and can disturb the correlation with building model structures.

24https://docs.microsoft.com/en-us/windows/mixed-reality/spatial-anchors (Last visited on 14/05/2021)
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Chapter 5

Pose Normalization of Indoor Mapping
Datasets

The indoor reconstruction approach presented in Chap. 3 along with many other recently proposed
approaches in this field does not rely on the Manhattan world assumption (see Sec. 1.2.1). However,
many other approaches proposed for the task of indoor reconstruction do rely on this assumption
about the geometric structure of the building environments to be reconstructed.
The fact that a given indoor reconstruction approach relies on the Manhattan world assumption
does not only imply that the building structure to be reconstructed itself must be compliant to
the Manhattan world assumption. Rather, this also implies that the geometric representation of
the respective building in the indoor mapping data must be correctly aligned with the coordinate
axes in accordance with the definition of the Manhattan world assumption, i.e. that the surfaces
pertaining to the three main directions (or six when considering oriented directions) are aligned
with the three axes of the coordinate system.

In the context of indoor mapping however (see Chap. 2), the pose of the captured building
structure with respect to the coordinate system does not necessarily fulfill this requirement.
Frequently, the coordinate system is determined by the initial pose of the indoor mapping system
at the beginning of the mapping process. Thus, the orientation of the indoor mapping data
can deviate from the Manhattan world assumption by a rotation around the vertical coordinate
axis even if the mapped building structure itself is totally compliant with the Manhattan world
assumption. Moreover, the orientation of the vertical axis itself can also deviate from its optimal
orientation according to the Manhattan world assumption, i.e. being perpendicular to horizontal
ceiling and floor surfaces. This is generally not the case when a leveled mounting of the respective
indoor mapping sensor is used, e.g. in the case of tripod-mounted systems like TLS or trolley-
based systems. In the case of hand-held or head-worn indoor mapping systems where a perfectly
leveled orientation at the start of the indoor mapping process cannot be guaranteed, an eventual
misalignment of the indoor mapping data with respect to the vertical coordinate axis needs to
be taken into account.

Aligning an indoor mapping dataset with the coordinate axes - horizontally and depending
on the used indoor mapping system also vertically - is thus a necessary preprocessing step for
automated indoor reconstruction approaches that rely on the Manhattan world assumption.
Moreover, a suchlike alignment process - also known as pose normalization - can still be a
reasonable choice, even if the respective indoor reconstruction method does not presuppose a
Manhattan world compliant building structure. This is for instance the case, when a respective
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indoor reconstruction approach makes use of a voxel grid or octree representation of the input data,
like for instance the one proposed in Chap. 3 [174, 201, 124, 242]. Even if a voxel-based indoor
reconstruction approach is able to handle building structures deviating from the Manhattan
world assumption, having room surfaces aligned with the coordinate axes and thus with the
voxel grid will result in a cleaner and visually more appealing reconstruction in voxel space.
Furthermore, spatially discretizing data which is not aligned with the coordinate axes can lead to
aliasing effects that can impede a successful reconstruction process [370, 371, 646]. Besides, pose
normalization often - but not necessarily always, depending on the respective building structure
- results in a minimal axis-aligned bounding box circumscribing the indoor mapping data and
thus to reduced memory size of the voxel grid structure.

Lastly, pose normalization of indoor mapping data can also be of benefit in the context
of the co-registration of multiple datasets representing the same indoor environment that are
to be aligned with each other [626, 107, 237]. The respective datasets to be aligned can be
acquired by different sensor systems or at different times, e.g. in the context of change detection
[52, 294, 360]. While pose normalization with respect to a Manhattan world structure does not
entirely solve this problem as an ambiguity of rotations of multiples of 90° around the vertical
axis remains, it nonetheless can be reasonable to apply pose normalization when co-registering
indoor mapping datasets as it reduces the problem to finding the correct of only four possible
states per dataset.

The same arguments speaking in favor of pose normalization - even if an indoor reconstruction
approach does not necessarily depend on it - also hold for the case of building structures that
are only partly compliant to the Manhattan world assumption. Thus, a pose normalization
approach should be robust against a substantial amount of the given indoor mapping geometries
deviating from the Manhattan world structure of the building. Particularly in the case of
building environments that contain multiple Manhattan world structures (i.e. Atlanta world),
the dominant Manhattan world structure (e.g. in terms of the largest fraction of supporting
geometries) should be used for alignment with the coordinate axes. In situations, where multiple
Manhattan World structures have about the same support, it might be reasonable to detect
them all and create multiple solutions for a valid pose normalization.

This chapter presents a novel pose normalization method for indoor mapping point clouds
and triangle meshes that is robust to the represented building structures being only partly
compliant to the Manhattan world assumption. In case there are multiple major Manhattan
world structures present in the data, the dominant one is detected and used for alignment.
Besides the horizontal alignment of the Manhattan world structure with the coordinate system
axes, vertical alignment is also supported for cases where the deployed indoor mapping system is
not leveled and the resulting dataset is thus misaligned with respect to the vertical coordinate
axis. In this context, the indoor mapping dataset is assumed to be coarsely leveled to within ±30°
of the optimal vertical direction which can usually be expected to be the case for hand-carried
or head-worn mobile indoor mapping systems. Furthermore, the individual indoor mapping
geometries are assumed to have normal vectors which however do not need to be consistently
oriented and can thus be easily determined as a preprocessing step for point clouds while triangle
meshes do already have normal vectors inherent in the geometries of the individual triangles.
The implementation of the proposed pose normalization approach along with the code for the
presented quantitative evaluation on publicly available indoor mapping datasets is made available
to the community25.

25https://github.com/huepat/im-posenorm (Last visited on 15/07/2021)
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After discussing related work in Sec. 5.1, the presented approach for pose normalization is
described in Sec. 5.2 along with a method to resolve the ambiguity of a rotation of multiples of
90° around the vertical axis and the procedure applied for quantitative evaluation. The results
of this evaluation procedure applied to several publicly available indoor mapping point clouds
and triangle meshes are subsequently presented in Sec. 5.3 and discussed in further detail in
Sec. 5.4. Finally, Sec. 5.5 closes with concluding remarks and an outlook on future research.

This chapter contains material published in [244].

5.1 Related Work
Besides applications in the context of building structures, a range of pose normalization approaches
have been presented that aim at aligning arbitrary three-dimensional objects with the coordinate
axes. In this more general context, these objects do not necessarily represent building structures
[273, 441, 95, 179, 336, 96, 337, 517]. These approaches are mainly motivated by the need to
design rotation invariant shape descriptors in the context of shape retrievable, i.e. finding all
similar three-dimensional objects to a given query shape from a large database of 3D objects
[674, 560].

In this context, variations of the principal component analysis (PCA) algorithm [258] are often
made use of [273, 441, 95, 96]. Also, symmetries in the geometry of the respective object are often
exploited as well [95, 179, 96]. Other approaches rely on the geometric property of rectilinearity
[336, 337] or aim to minimize the size of a surface-oriented bounding box circumscribing the
target object [517].

More specifically concerning building structures, a recent pose normalization approach makes
use of point density histograms, discretizing and aggregating the points of an indoor mapping
point cloud along the direction of one of the horizontal coordinate axes [370, 371]. The optimal
horizontal alignment of the point cloud is determined by maximizing the size and distinctness of
peaks in this histogram varying with the rotation around the vertical axis.

Other approaches, including the one proposed in this work, do not discretize the data with
respect to their position but with respect to their orientation [430, 280, 143, 127]. This is
conducted on the extended Gaussian image [231] which consists of the normal vectors of the
individual indoor mapping geometries projected on the unit sphere. Besides its application in
the context of pose normalization, the extended Gaussian image is also frequently applied to the
segmentation of point clouds [615, 547, 523, 546, 684] or plane detection [341], particularly with
regard to building structures.

In a straight-forward approach for instance, the points in the extended Gaussian image are
subjected to a k-Means clustering [365, 350] to determine three clusters corresponding to the
main directions of the Manhattan world structure while disregarding the absolute orientation of
the normal vectors (i.e. projecting them all in the same hemisphere) [280, 143]. This however
is not robust to deviations of the indoor mapping point cloud from an ideal Manhattan world
structure. In contrast, using DBSCAN [163] for clustering on the extended Gaussian image has
been proposed [127] which is more robust as it does not fix the number of clusters to exactly
three. This allows for the presence of surfaces deviating from an ideal Manhattan world system.
The proposed approach however only aims at detecting dominant planes to remove them from
the point cloud and does not assemble the detected orientation clusters to Manhattan world
structures. In another approach, dominant horizontal directions are detected by projecting the
normal vectors to the horizontal plane and binning the resulting angles to a horizontal reference
coordinate axis in a similar manner to the approach presented here [430].
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All of the approaches mentioned above only concern themselves with determining an orien-
tation around the vertical axis to achieve an alignment of the Manhattan world structure of
an indoor mapping dataset with the coordinate axes. To best knowledge, no approach on pose
normalization of indoor mapping point clouds or triangle meshes has yet been proposed that
aims at determining an optimal alignment with respect to the orientation of the vertical axis as
well. Furthermore, the presented approaches do not address the topic of robustness to deviations
of the respective building structure from an ideal Manhattan world scenario or the presence of
multiple Manhattan world structures in the same building.

5.2 Methodology
This section presents a novel method for automatic pose normalization of indoor mapping point
clouds or triangle meshes which represent building structures that are at least partially compliant
to the Manhattan world assumption. The presented method aims at rotating the given indoor
mapping geometries to a pose with respect to the surrounding coordinate system for which the
largest possible fraction of normal vectors is aligned with the three Cartesian coordinate axes.
This comprises an optional leveling step to orient horizontal surfaces like floors and ceilings to be
orthogonal to a chosen vertical axis if this is not already achieved by the data acquisition process
(e.g. by using leveled tripod or trolley mounted acquisition systems). Subsequently, a second
step determines the optimal rotation angle around this vertical axis in order to align the largest
possible fraction of the building surfaces with the horizontal pair of orthogonal coordinate axes.

The presented method is applicable to all kind of indoor mapping point clouds and triangle
meshes. However, it assumes the individual geometric primitives comprising the input data to
have normal vectors. While these are intrinsically given for the individual triangles comprising
a triangle mesh, the individual points of indoor mapping point clouds do not generally have
normal vectors. These can however be easily determined by means of established methods like
[391, 75, 666, 500] which are assumed in this work as a necessary preprocessing step. Note that
these normal vectors need not be oriented, i.e. only their direction is of importance. Furthermore,
the input data is assumed to be at least coarsely levelled, i.e. the represented building structures
is assumed to be coarsely aligned with the vertical axis within the range of ±30°.

In the following, ~ni denotes the i-th normal vector of N given input geometries (i.e. points
or triangles) while 〈·,·〉 denotes the dot product of two 3D vectors. Furthermore, the vector
determining the vertical axis is denoted by ~z. However, it needs to be stated that this vector
need not necessarily equal (0 0 1) T . It can be chosen freely in accordance with the intended
coordinate system. However, it must coincide within ±30° with the current vertical orientation
of the input data. Similarly, a horizontal axis ~x orthogonal to the configured ~z-axis is to be
chosen. Lastly, the second horizontal axis completing the Cartesian coordinate system must not
be explicitly stated but can be determined as

~y = ~z × ~x (5.1)

Again, note that the horizontal axes need not necessarily equal (1 0 0) T and (0 1 0) T .
In the following, Sec. 5.2.1 first presents the proposed method for determining an optimal

rotation around the vertical axis in order to horizontally align the indoor mapping data with the
coordinate system in case the dataset is already vertically aligned in relation to the vertical axis.
A suitable method for ensuring this vertical alignment that can be applied as a preprocessing
step to datasets that are only coarsely aligned with the vertical direction (±30°) is subsequently
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Figure 5.1: Exemplary triangle mesh of a building with multiple Manhattan world systems (dataset
’mJXqzFtmKg4’ from Matterport3D [94]). The green bounding box on the top-down-view on the
right-hand side illustrates the alignment along the dominant Manhattan world structure considered
as ground truth pose while the red bounding box illustrates the pose rotated by 30° around the
vertical axis as exemplarily used in Sec. 5.2.1. Source: [244].

presented in Sec. 5.2.2. As the proposed method for determining the rotation around the vertical
axis is ambiguous with regard to multiples of 90°, Sec. 5.2.3 presents an approach to solve this
ambiguity. Lastly, Sec. 5.2.4 presents the evaluation methodology applied in this study.

5.2.1 Rotation around the Vertical Axis
This section preliminarily assumes, that the given indoor mapping data (comprised of triangles or
points) is already leveled with regard to a chosen vertical axis ~z (that does not necessarily need
to equal (0 0 1) T ). Thus, only one rotation angle around this vertical axis is to be determined in
order to align the two horizontal axes of the coordinate system with the horizontal directions of
the dominant Manhattan world structure underlying the respective building represented by the
input data.

In case the given input data is not entirely compliant to the Manhattan world assumption,
a best-possible solution in terms of the alignment of all normal vectors with the horizontal
coordinate axes is to be found. Even indoor mapping data that represents building structures
entirely compliant to the Manhattan world assumption can have a significant amount of normal
vector directions deviating from the directions of the respective Manhattan world system. These
deviating normal vector directions can be caused by actual unevenness of walls, by noise inherent
in data acquisition and normal determination as well as by clutter like furniture objects being
present in the indoor mapping data additionally to the building structure itself.

Besides being robust against these restrictions, the presented method is also applicable to
building structures that are only partially Manhattan world conform. Building structures with
multiple Manhattan world systems like the one depicted in Fig. 5.1 are aligned according to the
respective Manhattan world system supported by the largest fraction of normal vector directions.

Thus, the task at hand is to determine an angle of rotation around the vertical axis ~z that
leads to the largest positive fraction of normal vectors being aligned with the horizontal axes ~x
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Figure 5.2: The normal vectors ~ni of the triangle mesh shown in Fig. 5.1 visualized as extended
Gaussian image (thinned out by factor 25 for the sake of visibility). The normal vectors ~nhi that are
horizontal within the range of ±45° are visualized in black while the others are visualized in gray.
The coordinate axes are visualized in red for ~x, green for ~y and blue for the vertical axis ~z. Source:
[244].

and ~y. To this aim, first, the normal vectors that can be considered coarsely horizontal with
respect to the vertical axis ~z are filtered. For this, all Nh normal vectors ~nhi that are within the
range of ±45° of a horizontal orientation are considered, thus

45° 6 |^(~ni,~z)| 6 135° (5.2)

where ^(·,·) denotes the smallest angle between two 3D vectors with respect to any rotation
axis. For the indoor mapping mesh depicted in Fig. 5.1, the corresponding horizontal normal
vectors ~nhi are depicted in the form of an extended Gaussian image in Fig. 5.2. In this example,
the triangle mesh of Fig. 5.1 is rotated by 30° around the vertical axis relative to the ground
truth pose aligned to the dominant Manhattan world structure.

These horizontal normal vectors ~nhi can subsequently be projected in the horizontal plane
formed by the horizontal axes ~x and ~y by

~̃nhi = ~nhi − 〈~nhi ,~z〉~z (5.3)

where their respective angles to the reference direction of ~x around ~z as axis of rotation

γi = ^~z(~̃n
h
i ,~x) = arctan

〈~z,~̃nhi × ~x〉
〈~̃nhi ,~x〉

∈ [−180°,180°) (5.4)

can be determined.
The problem at hand can be formulated as determining the rotation angle γ ∈ [0°,90°) around

the vertical axis that minimizes the sum of angular distances of each horizontal normal vector to
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the respectively nearest horizontal coordinate axis, i.e.:

γ = arg min
γ̂∈[0°,90°)

Nh∑
i=0

wi min


|γ̂ − γi|

|γ̂ − γi + 90°|
|γ̂ − γi + 180°|
|γ̂ − γi − 90°|

 (5.5)

Here, the angular distances of each angle γi to the nearest horizontal axis are weighted by
factor wi. This factor can be constantly set to 1 for the points of an indoor mapping point
cloud. In the case of triangle meshes however, it allows to weigh the individual triangles by their
respective area as larger triangles imply a larger quantity of points in a corresponding point
cloud representation.

Eq. 5.5 is not analytically solvable. It can however be solved numerically by derivative-free
minimization methods like e.g. Brent minimization [78]. This, however, does not scale well with
the size of the input data, as all the angles derived from the horizontal normal vectors need
to be iterated in each step of the respective numeric method. And - particularly in the case
of indoor mapping point clouds - the amount of geometric primitives and thus of angles to be
processed can reach a tremendous size.

Thus, this work proposes an approach that discretizes the input data into a one-dimensional
grid of fixed resolution by means of which the angle of rotation for aligning the input data with
the horizontal coordinate system can be determined non-iteratively in one step. In this context,
a resolution of 1° proved to be suited for a coarse initial determination of the rotation angle for
horizontal alignment that can subsequently be refined. For each angle γi, the respective grid cell
is determined which is incremented by the respective weight wi, which again is constantly 1 for
points of point clouds but in the case of triangle meshes weights the respective angle by the area
of the corresponding triangle.

Fig. 5.3 visualizes a suchlike one-dimensional grid representation of the horizontal angles
γi over the full circle of 360° for the mesh presented in Fig. 5.1. The peaks in the summarized
weights per grid cell correspond to the eight horizontal main directions of the two Manhattan
world systems present in the dataset depicted in Fig. 5.1.

To decide about the dominant of the two Manhattan world systems involved and to determine
the corresponding rotation angle for an alignment of the input data with it, the weights of the
involved grid cells need to be summarized over all peaks pertaining to the same Manhattan
world system. To this end, the peaks belonging to the same Manhattan world system and thus
having an angular difference of a multiple of 90° between each other need to be identified and
associated. Thus, the angles γi ∈ [−180°,180°) are mapped to [0°,90°) by

γ∗i =

{
γi + 180° γi < 0°
γi else

∈ [0°,180°) (5.6)

and

γ̃i =

{
γ∗i − 90° γ∗i > 90°
γ∗i else

∈ [0°,90°) (5.7)

The discretized grid representation of the angles γ̃i ∈ [0°,90°) thus needs only a quarter of
the size in comparison to discretizing the angles γi ∈ [−180°,180°) with the same resolution.
Furthermore, the resulting grid as visualized in Fig. 5.4 enables the coarse initial determination of
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Figure 5.3: Visualization of a one-dimensional 360° grid corresponding to Fig. 5.1. The grid cells
contain the summarized weights wi of the contained angles γi with value colorization ranging from
blue for low values over green and yellow to red for large values. Source: [244].

the rotation angle γ. To this end, the weight sums per grid cell are thresholded with a threshold
value of 0.75 times the maximal weight sum of the whole grid and subsequently clustered. While
clustering, the fact that clusters can extend over the discontinuity between 0° and 90° needs to
be taken account of.

Finally, the grid cell cluster with the largest weight summarized over the contained cells
is selected and γ is determined as the weighted average of the angle values corresponding to
the cluster cells (with 1° resolution) weighted by their respective weight sum values. Fig. 5.5(a)
shows the horizontal triangle mesh faces of Fig. 5.1 corresponding to the largest peak at 60°
in Fig. 5.4 that determines the dominant Manhattan world system of that dataset. The faces
corresponding to the second peak at 15° in Fig. 5.4 are visualized in Fig. 5.5(b).

The resulting value for γ can subsequently be further refined by determining the weighted
median over all γ̃i within a certain angular distance of the initial value for γ while applying the
weights wi. A threshold of 5° was found to be suitable for this task.

Finally, the indoor mapping data can be rotated by the thus refined angle γ around the
vertical axis to achieve the alignment of the building geometry with the horizontal coordinate
axes. In the case of a triangle mesh, it is sufficient to rotate the vertices of the triangles as the
respective normal vectors of the rotated triangles can be calculated on the basis of the triangle
geometry. In the case of point clouds however, the respective normal vectors of the points need
to be explicitly updated along with the coordinates of the points.

5.2.2 Orientation of the Vertical Axis
In the preceding Sec. 5.2.1, the rotation around the vertical axis was determined under the
assumption that the vertical axis is perfectly leveled with respect to the building structure, i.e.
that it is orthogonal to horizontal floor and ceiling surfaces. In the case of tripod mounted indoor
mapping systems like terrestrial laser scanners, this assumption is justified as these devices
are typically leveled before usage. However, in the case of mobile indoor mapping systems like
hand-carried or head-worn devices, this is generally not the case. In these cases, the coordinate
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Figure 5.4: Visualization of a one-dimensional 90° grid corresponding to Fig. 5.1. The grid cells
contain the summarized weights wi of the contained angles γ̃i with value colorization ranging from
blue for low values over green and yellow to red for large values. Source: [244].

system of the indoor mapping data is often defined by the initial pose of the mobile mapping
device when starting the data acquisition process. In consideration of typical usage postures
of such mobile systems, it can be assumed that the respective vertical axis of the coordinate
system is still roughly pointing upwards ±30°. If this is not the case, a coarse leveling within
this range can easily be conducted manually.

To justify the assumption made in the previous section, this section presents an approach for
automatically leveling indoor mapping point clouds or triangle meshes where a chosen vertical
axis ~z corresponds coarsely within ±30° with the actual upwards direction of the building
structure standing orthogonally on horizontal floor surfaces. As in the preceding section, the
input data for conducting this alignment of the input mapping data with the coordinate system
are again the N normal vectors ~ni of the individual geometric primitives comprising the indoor
mapping data (i.e. points or triangles).

Analogous to Eq. 5.5, the task of vertically aligning the indoor mapping geometries with the
coordinate system axis ~z can be formulated as(

α
β

)
= arg min

α̂,β̂∈[−30°,30°]

Nv∑
i=0

wi min

{
|^(R(α̂,β̂)~nvi ,~z)|

|^(R(α̂,β̂)~nvi ,~z)− 180°|

}
(5.8)

where ~nvi are the Nv normal vectors that are vertically oriented within the range

|^(~ni,~z)| 6 40° ∧ |^(~ni,~z)| > 140° (5.9)

and wi again is a weighting factor being constant for points of a point cloud but corresponding
to the respective triangle area for the faces of a triangle mesh. Furthermore, R(α,β) denotes
a 3× 3 rotation matrix determined by two rotation angles α and β around the two horizontal
coordinate axes ~x and ~y respectively.

Thus, the aim of Eq. 5.8 is two find the optimal vertical axis ~z∗ as a vector
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(a) Faces corresponding to the largest peak at 60° in Fig. 5.4 determining the dominanting Manhattan
World structure.

(b) Faces corresponding to the minor peak at 15° in Fig. 5.4.

Figure 5.5: The vertical faces of the triangle mesh presented in Fig. 5.1 corresponding to the horizontal
normal vectors ~nhi . The faces corresponding to the two peaks shown in Fig. 5.4 are depicted in red
respectively. Source: [244].
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Figure 5.6: Exemplary triangle mesh of a building with partially slanted ceiling (dataset ’Attic’ from
[243]). The green line visualizes the reference orientation of the vertical axis considered as ground
truth while the red line visualizes the vertical axis rotated −25° around the horizontal ~x axis and 15°
around the horizontal ~y axis as examplarily used in Sec. 5.2.2. Source: [244].

~z∗ = R(α, β)~z (5.10)

in the initially given coordinate system that has a minimal sum of angles to the vertical normals
~nvi . This optimal vertical axis ~z∗ as well as the initial vertical axis ~z are exemplarily depicted
in Fig. 5.6 for a building with slanted ceilings only coarsely aligned with the actual vertical
direction.

As it already was the case with Eq. 5.5 in Sec. 5.2.1, Eq. 5.8 is not analytically solvable and
solving it numerically is all the more inefficient as this time, a two-dimensional minimization is
concerned. Thus, as in the case of determining the rotation angle around the vertical axis in
Sec. 5.2.1, we again seek to formulate the problem at hand as the task of searching a maximum
peak within a discrete grid representation of the relevant input elements.

The relevant input elements in this case are the three-dimensional vertical normal vectors
~nvi . However, the problem at hand is actually two-dimensional as a rotation around the two
horizontal axes ~x and ~y by the rotation angles α and β is sufficient for aligning the vertical axis
~z with the optimal vertical direction ~z∗.

In an alternative formulation, this can also be considered as the task of finding the position
of the optimal vertical direction ~z∗ on the surface of a unit sphere, i.e. within the extended
Gaussian image. The orientation of a normal vector with respect to the coordinate system can
be expressed via the polar angles azimuth

ϕi = arctan
〈~ni,~y〉
〈~ni,~x〉

∈ [−180°,−180°) (5.11)

and inclination

θi = arccos 〈~ni,~z〉 ∈ [0°,−180°) (5.12)
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Figure 5.7: Azimuth ϕ and inclination θ. Source: [244].

indicating the position of a respective normal vector ~ni on the unit sphere. The definition of
azimuth and inclination with respect to the coordinate system is further illustrated in Fig. 5.7.
This representation allows to construct a two-dimensional azimuth/inclination grid analogous to
the approach presented in Sec. 5.2.1 whose cells are weighted by the summarized weights wi of
the contained normal vectors ~ni. A suchlike grid of a resolution of 1° extending over the whole
unit sphere is depicted in Fig. 5.8 corresponding to the exemplary case presented in Fig. 5.6.

As before in Sec. 5.2.1, this grid over the full range of the sphere surface is transformed to a
smaller grid where the weights of cells pertaining to opposing normal vectors get accumulated.
This is achieved by

ϕ̃i =
∣∣∣|ϕi| − 90°

∣∣∣ ∈ [0°,90°) (5.13)

and

θ̃i = 90°− |θi − 90°| ∈ [0°,90°) (5.14)

while restricting the extension of the grid in the dimension of the inclination to the range of
[0°, 40°] and thus only considering the vertical normal vectors ~nvi . A schematic visualization of
this transformation is depicted in Fig. 5.9(a) while Fig. 5.10 shows the resulting two-dimensional
azimuth/inclination grid corresponding to the dataset presented in Fig. 5.6.

Subsequently, peaks with cell grid weights above a threshold of 75 % of the highest weight
value are again clustered like in the case of the one-dimensional grid of Sec. 5.2.1. While doing so
however, not only the azimuth discontinuity between 0° and 90° needs to be considered, but also
the pole point at 0° inclination where all azimuth values merge to one and the same grid cell.

While in the case of the one-dimensional grid of Sec. 5.2.1, grid cell indices could be directly
mapped to angles by multiplication with the grid resolution, here, it is not possible to infer the
direction of the optimal vertical axis from grid cell indices as the transformed azimuth values ϕ̃
are ambiguous by multiples of 90°. This ambiguousness did also exist in Sec. 5.2.1. However, it
did not affect the correctness of the resulting horizontal alignment as is the case here.

Thus, to be able to deduce correct directions from peaks in the two-dimensional grid, the
respective normal vectors ~nvi need to be hashed per grid cell. So, the correct direction of the
vertical axis can be initialized by a weighted average of all the hashed normal directions weighted
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Figure 5.8: Azimuth/inclination grid of 1° resolution over the whole surface of the unit sphere
corresponding to Fig. 5.6. The grid cells contain the summarized weights wi of the contained normal
vectors ~ni at polar angles (ϕi, θi) with value colorization ranging from blue for low values over green
and yellow to red for large values. Source: [244].

by their respective wi value of the cluster with the largest summarized weight. In doing so,
normal vectors pointing downwards need to be corrected by inverting the direction to point
upwards when calculating the weighted average vector. Like in Sec. 5.2.1, the initial result is
further refined by a weighted median of all normal vectors within ±5° of the coarsely determined
resulting vertical axis.

Besides the need to deduce the correct direction from the detected maximum peak grid cells,
there is a second reason to hash normal directions per grid cell. As illustrated in Fig. 5.9(b), two
normal vectors that are oriented by the same angle around the vertical axis ~z in a way that the
axis ~z is the angle bisector between both normals get projected to the same (ϕ̃, θ̃) grid cell by
Eq. 5.13 and Eq. 5.14. On the one hand, this can distort the weight sums of the individual grid
cells that are used for peak detection. On the other hand, the presence of normal vectors with
deviating orientations beyond the ambiguity of ±180° between opposing surfaces can severely
distort the initial determination of the vertical direction from the largest peak in the grid.

For this reason, a cluster analysis is conducted among the hashed normal vectors per grid cell.
In doing so, all the normal vectors in a grid cell are assigned to clusters. A normal vector can be
assigned to an existing cluster if its direction coincides within ±2° with the average direction of
the cluster (with consideration of an ambiguity of ±180°). Else, the respective normal vector
initializes a new cluster. Finally, for each grid cell, only the largest cluster of normals is retained
while the others are discarded. The grid cell weights and the hashed normal vectors are adapted
accordingly.

5.2.3 Unambiguousness of the Rotation around the Vertical Axis
The alignment of indoor mapping point clouds or triangle meshes along the coordinate axes
as described in the preceding sections 5.2.1 and 5.2.2 is ambiguous with respect to a rotation
around the vertical axes by multiples of 90°. This is per se not a problem as the aim of the
presented approach is to align the indoor mapping data with respect to its Manhattan world
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(b) In case the vertical axis ~z is the angle bisector between
the directions of two normal vectors (same angle δ to ~z axis),
these get transformed to the same point even if they are not
opposed. This needs to be dealt with by means of a cluster
analysis per (ϕ̃, θ̃) grid cell.

Figure 5.9: Transformation of (ϕ, θ) positions on the whole unit sphere to (ϕ̃, θ̃) positions on one
eighth of the unit sphere by Eq. 5.13 and Eq. 5.14. Source: [244].
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Figure 5.10: Transformed azimuth/inclination grid of 1° resolution corresponding to Fig. 5.6. The
grid cells contain the summarized weights wi of the contained vertical normal vectors ~nvi at polar
angles (ϕ̃i, θ̃i) with value colorization ranging from blue for low values over green and yellow to red
for large values. The larger peak corresponds to the floor and the horizontal part of the ceiling while
the minor peak corresponds to one of the slanted ceiling surfaces. Source: [244].

structure which inherently implies this ambiguity with respect to four possible rotations around
the vertical axis, i.e. all four possible result poses are equally valid with respect to the stated
aim.

However, in some situations, it can be desirable to derive an unambiguous pose of the indoor
mapping data. For instance, this can be the case when multiple indoor mapping results of the
same building environment are to be aligned by the proposed method. These multiple datasets
of the same building can e.g. be obtained by different indoor mapping systems or be acquired at
different times in the context of change detection.

For this reason, a simple method for resolving the ambiguity in the rotation around the vertical
axis by reproducibly choosing one of the four possible horizontal orientations is presented. The
proposed method is a straight-forward solution that does not require any semantic interpretation of
the indoor mapping data or any elaborate analysis. It can however fail in cases of highly symmetric
building layouts with respect to its four inherent Manhattan world directions. Furthermore, it
presupposes that two datasets to be aligned unambiguously by this method cover approximately
the same section of an indoor environment. If this is not the case, an approach that incorporates
semantic knowledge of the represented indoor environment would be more promising.

Here, the unambiguousness between the four possible horizontal orientations is resolved by
first aligning the one of the two possible horizontal Manhattan world directions with the chosen
reference axis ~x that corresponds to a larger extent of the bounding box of the respective dataset
in this horizontal direction, i.e. the longer horizontal edges of the bounding box should be
parallel to the ~x axis. This is quite straight forward but can fail in cases where the bounding
box is nearly quadratic.

The ambiguity is now reduced to a rotation of 180°. To resolve this, the weighted count of
indoor mapping geometries in both proximal 10 % sections of the bounding box in ~x direction are
considered and the rotation for which the proximal 10 % section of the bounding box pointing
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towards the positive ~x axis has the higher weight sum is chosen. In this context, the indoor
mapping geometries are again weighted by a constant in the case of points of point clouds and by
triangle area in the case of triangle mesh faces. This approach fails, when the amount of mapped
indoor structures in both proximal sections of the bounding box along the ~x axis is about equal.

5.2.4 Evaluation Method
Quantitatively evaluating the proposed method is fortunately quite straight forward as ground
truth data can be easily obtained. If an indoor mapping dataset is not already correctly aligned
with the coordinate system axes in the sense of the aim of this study, it can be aligned manually
without great effort. A thus aligned dataset can then be rotated to an arbitrary pose within the
defined range applicable for the presented method. For this a 3× 3 ground truth rotation matrix
RGT (α,β,γ) is created, determined by the rotation angles α,β ∈ [−30°,30°] around the horizontal
axes ~x and ~y respectively and an arbitrary rotation γ ∈ [−180°,180°) around the vertical axis ~z.
For creating RGT , the rotation γ around the vertical axis is applied first and then successively β
and α around their respective horizontal axis.

Finally, the method presented in Sec. 5.2.1 and Sec. 5.2.2 is applied to the rotated dataset
which should return the rotated dataset back to its aligned state. The resulting 3× 3 rotation
matrix RTest is consituted by

RTest = RTesthorizontalR
Test
vertical (5.15)

where first RTestvertical is determined by aligning the rotated dataset vertically with the vertical
axis as described in Sec. 5.2.2 and then subsequently, the rotation RTesthorizontal around the vertical
axis is determined as described in Sec. 5.2.1.

As an evaluation metric, the angular difference δv between the vector of the ground truth
axis ~z and the resulting vector

~zTest = RTestRGT~z (5.16)

is determined by

δv = |^(~zTest,~z)| (5.17)

as well as the analogous angular difference δh for the horizontal axis ~x. In case of the horizontal
deviation δh, the ambiguity of valid rotations around the vertical axis by multiples of 90° needs
to be considered. To this aim,

δh =

{
δh − 90° δh > 45°
δh else

(5.18)

is iteratively applied until δh < 45°.
The proposed evaluation metrics δv and δh can be determined for multiple randomly chosen

rotations within the mentioned ranges of [−30°,30°] for the horizontal axes and [−180°,180°) for
the vertical axis in sufficient quantity to allow for a statistical analysis.
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(a) ’Office’. (b) ’Basement’.

(c) ’Attic.’ (d) ’Residential House’.

Figure 5.11: The Microsoft HoloLens triangle meshes from Fig. 3.8 used for evaluation. The red box
indicates the aligned ground truth pose. Source: [244].

5.3 Results
In order to quantitatively evaluate the approach presented in Sec. 5.2.1 and Sec. 5.2.2, the
evaluation procedure proposed in Sec. 5.2.4 was applied to a range of different indoor mapping
datasets. Firstly, the four triangle meshes presented in Fig. 3.8 were used for evaluation. These
triangle meshes are depicted in Fig. 5.11 along with 3D bounding boxes indicating their respective
ground truth pose.

The alignment with the coordinate axes of the HoloLens triangle meshes as presented
in Chap. 3 was found to be inaccurate. Actually, in Chap. 3, the presented datasets have
been automatically aligned with the coordinate axes by means of an early, inferior version of
the approach presented in this chapter. To enable a reasonable evaluation of the proposed
approach on these triangle meshes, ground truth poses were determined by manually aligning the
datasets with the coordinate axes. The newly aligned datasets along with the implementation
of the proposed approach and the evaluation procedure is made publicly available to allow for
reproducibility of the presented evaluation results26.

All four represented indoor environments show a clearly defined Manhattan world structure.

26https://github.com/huepat/im-posenorm (Last visited on 15/07/2021)
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While the dataset ’Office’ has mostly horizontal ceiling surfaces with the exception of the stairwell,
the datasets ’Attic’ and ’Residential House’ have slanted ceiling surfaces. The dataset ’Basement’
on the other hand shows a range of different barrel-shaped ceilings.

Furthermore, the six indoor mapping point clouds of the ISPRS Indoor Modelling Benchmark
dataset presented in [281, 284] were used for evaluation purposes. These point clouds as visualized
in Fig. 5.12 were acquired by means of different indoor mapping systems with a broad variety
of sensor characteristics regarding accuracy and noise. Furthermore, the represented indoor
environments are characterized by varying amounts of clutter.

While the other five datasets mostly adhere to the Manhattan World assumption, the
dataset ’Case Study 6’ has a high amount of horizontally curved wall surfaces and rooms oriented
diagonally with respect to the dominant Manhattan World structure defined by three rooms.
Furthermore, the point cloud includes a part of the surrounding outdoor terrain with uneven
topography and vegetation. As the dataset ’Case Study 6’ is quite challenging with respect to
the aim of this work, it is depicted in more detail in Fig. 5.13.

The point clouds of the ISPRS benchmark dataset as they are published are already aligned
with the coordinate axes in accordance with the aim of this work. Thus, the poses of the point
clouds could directly be used as ground truth poses without any manual adjustment. Contrary
to triangle meshes however, point clouds do not intrinsically provide normal vectors per point.
This is also the case with the point clouds of the ISPRS Indoor Modelling Benchmark. Normal
vectors were thus determined for the points after subsampling the point clouds with a resolution
of 2 cm using CloudCompare 2.10-alpha [195].

Lastly, some triangle meshes from the Matterport3D dataset [94] were also considered.
Matterport3D includes 90 triangle meshes of various kinds of indoor environments acquired with
the trolley-mounted Matterport indoor mapping system consisting of multiple RGBD cameras.
Among the represented indoor environments are some for which the proposed alignment approach
is not applicable, as they are not subject to any clearly identifiable Manhattan world structure.
Many others do have a clearly identifiable Manhattan world structure but are to a large extent
comparable to general building layouts already covered by the HoloLens triangle meshes or
ISPRS point clouds used in the scope of this evaluation.

Thus, 14 triangle meshes from the Matterport3D dataset were selected that were deemed
particularly interesting and challenging in the context of this work. This, for instance, comprises
triangle meshes representing indoor environments that contain more than one underlying Man-
hattan World system like the one already presented in Fig. 5.1. In these cases, the presented
alignment method is supposed to align the triangle mesh with the most dominant of the Man-
hattan World structures at hand being supported by the largest fraction of geometries. The 14
selected triangle meshes from the Matterport3D dataset are depicted in Fig. 5.14.

As with the ISPRS benchmark point clouds, the poses of the triangle meshes as they are
published were again treated as ground truth alignments without any manual adjustments. To
which extent this decision is justified will be discussed in the subsequent Sec. 5.4.

The different datasets used in the scope of this evaluation are listed in Tab. 5.1 along with the
respective number of points or triangles comprising them and the respective evaluation results.
For conducting the evaluation, the evaluation procedure described in Sec. 5.2.4 was applied to
the individual datasets. In doing so, each dataset was rotated 50 times while each time, the
respective rotation consists of a randomly determined rotation angle γ ∈ [−180°,180°) around
the vertical axis and two random rotations α,β ∈ [−30°,30°] around the respective horizontal
coordinate axes.
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(a) ’Case Study 1’. (b) ’Case Study 2’.

(c) ’Case Study 3’. (d) ’Case Study 4’.

(e) ’Case Study 5’. (f) ’Case Study 6’.

Figure 5.12: The point clouds of the ISPRS Indoor Modelling Benchmark dataset [281, 284] used for
evaluation. The red box indicates the aligned ground truth pose. Source: [244].
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(a) Side view.

(b) Top down view.

Figure 5.13: Detailed visualization of the dataset ’Case Study 6’ from the ISPRS Indoor Modelling
Benchmark dataset [284] also depicted in Fig. 5.12(f). The vertical axis is visualized in blue while
the two horizontal axes aligned with the dominant Manhattan World structure of the building are
depicted in red and green. Source: [244].
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(a) ’2azQ1b91cZZ’. (b) ’759xd9YjKW5’. (c) ’ac26ZMwG7aT’. (d) ’fzynW3qQPVF’.

(e) ’gTV8FGcVJC9’. (f) ’mJXqzFtmKg4’. (g) ’p5wJjkQkbXX’. (h) ’PuKPg4mmafe’.

(i) ’ULsKaCPVFJR’. (j) ’ur6pFq6Qu1A’. (k) ’VFuaQ6m2Qom’. (l) ’Vt2qJdWjCF2’.

(m) ’x8F5xyUWy9e’. (n) ’ZMojNkEp431’.

Figure 5.14: The triangle meshes of the Matterport3D dataset [94] used for evaluation. The red box
indicates the aligned ground truth pose. Source: [244].
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Table 5.1: Evaluation results for the datasets presented in Figures 5.11, 5.12 and 5.14. The presented
values represent 50 randomly chosen orientations per dataset within the range of [−180°,180°) for
rotations around the vertical axis and [−30°,30°] for rotations around the horizontal axes. The
reported numbers of points for the point clouds of the ISPRS Indoor Modelling Benchmark refer to
point clouds downsampled to a resolution of 2 cm as used in this evaluation. The values marked in
red are discussed in more detail in Sec. 5.4. Source: [244].

Source Type Dataset

Number
of

Points/
Triangles

Mean
δv [°]

Std.Dev.
δv [°]

Mean
δh [°]

Std.Dev.
δh [°]

Mean
Time [s]

Std.Dev.
Time [s]

HoloLens
[243]

Triangle
Mesh

Office 958,820 0.28 0.25 0.33 0.07 0.68 0.10
Basement 695,041 0.45 0.06 0.10 0.08 0.50 0.04
Attic 147,146 3.54 23.86 0.26 0.42 0.13 0.02
Residential House 252,820 0.16 0.05 0.71 0.42 0.30 0.04

ISPRS
Indoor

Modelling
Benchmark
[281, 284]

Point
Cloud

Case Study 1 5,014,452 0.01 0.05 0.03 0.16 4.41 0.19
Case Study 2 8,202,319 0.01 0.02 0.01 0.13 7.40 0.26
Case Study 3 5,906,718 0.02 0.01 0.04 0.17 5.68 0.29
Case Study 4 4,846,736 0.01 0.26 0.03 0.44 4.19 0.27
Case Study 5 4,409,794 0.02 0.07 0.02 0.06 3.96 0.23
Case Study 6 11,760,325 0.02 0.02 0.06 0.77 8.65 0.53

Matterport3D
[94]

Triangle
Mesh

2azQ1b91cZZ 9,549,830 0.03 0.02 0.44 0.06 8.24 0.39
759xd9YjKW5 6,208,440 0.05 0.01 0.18 0.05 5.48 0.35
ac26ZMwG7aT 10,811,581 0.05 0.09 0.52 0.06 9.84 0.49
fzynW3qQPVF 9,105,979 0.09 0.02 0.05 0.06 10.75 0.60
gTV8FGcVJC9 14,436,867 0.05 0.05 0.11 0.07 12.29 0.96
mJXqzFtmKg4 8,237,802 0.07 0.33 2.73 14.29 6.90 0.54
p5wJjkQkbXX 10,678,539 0.07 0.02 0.40 0.03 10.35 0.68
PuKPg4mmafe 1,968,102 0.05 0.01 15.28 20.07 1.83 0.11
ULsKaCPVFJR 6,612,194 0.05 0.01 44.41 0.04 5.51 0.47
ur6pFq6Qu1A 9,277,187 0.02 0.01 12.85 0.05 9.42 0.42
VFuaQ6m2Qom 9,453,891 0.03 0.02 0.13 0.06 8.53 0.37
Vt2qJdWjCF2 6,429,106 0.10 0.01 0.05 0.09 6.40 0.38
x8F5xyUWy9e 2,862,858 0.07 0.01 0.21 0.08 2.66 0.16
ZMojNkEp431 4,690,777 0.06 0.05 0.18 0.08 4.31 0.27

For each of the 50 random input rotations, the alignment procedure described in Sec. 5.2.1
and Sec. 5.2.2 was applied and the resulting vertical and horizontal angular deviations δv and δh
as defined in Sec. 5.2.4 were determined. Tab. 5.1 lists mean values and standard deviations for
these evaluation metrics aggregated over all 50 samples per dataset. Furthermore, mean values
and standard deviations for the processing time are given as well. The stated values refer to
a system with a i7-8550U CPU with 24 GB RAM and do not include data import and export.
The implementation is CPU-parallelized.

As can be seen in Tab. 5.1, the resulting averaged vertical and horizontal angular deviations
are largely below 1° with the corresponding standard deviations being in a similar range. Some
outliers marked in red will be discussed in further detail in the subsequent Sec. 5.4.

5.4 Discussion
Taking a closer look at the evaluation results presented in Tab. 5.1, the overall quite low values
for the horizontal and vertical angular deviations δh and δv with overall equally low standard
deviations indicate that the proposed alignment method works overall quite well for a large
range of different indoor mapping point clouds and triangle meshes with randomly varying input
rotations within the defined bounds. The consistently larger δv and δh values for the triangle
meshes acquired with the Microsoft HoloLens may be attributable to them being less accurate
and more affected by noise. Triangles pertaining to an actually smooth planar room surface
show a considerable variation in normal vector direction. However, the reported δv and δh values
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Figure 5.15: Histogram of the 50 δv values resulting in the mean value of 3.54°± 23.86° presented in
Tab. 5.1 for the triangle mesh ’Attic’ depicted in Fig. 5.11(c). Without the 5 outliers around 31°,
mean δv results in 0.50°± 0.13°. Source: [244].

for these datasets are still mostly well below 1°.
Some datasets however show significantly higher averaged values for δv or δh, sometimes

with the corresponding standard variation being significantly raised as well. These outliers are
marked red in Tab. 5.1 and will be discussed in more detail in the following paragraphs. To
analyze these cases, a closer look at the distribution of the individual 50 deviations constituting
the respective mean value and standard deviation will be taken.

In the case of the HoloLens triangle mesh ’Attic’ for instance, the histogram of δv values
depicted in Fig. 5.15 indicates, that the heightened mean and standard deviation values for the
angular deviation in the vertical alignment are not caused by a large variability in the resulting
vertical alignment. The vertical orientations resulting from the evaluated alignment method
rather fluctuate between two clearly defined states, one being the correct vertical orientation
according to the ground truth pose at around 0° angular deviation δv of the vertical axis supported
by 45 of the 50 measurements. The other state is a vertical orientation with an angular deviation
of about 30° occurring in the remaining five measurements. As visualized by the red box in
Fig. 5.16, this corresponds to an alignment where the vertical axis is oriented orthogonally to
one of the slanted ceiling surfaces.

This is the only case where the vertical alignment did not work satisfyingly in all 50 samples
for all the datasets used in the evaluation. It can be suspected, that the misalignments occurring
sporadically on this dataset can be ascribed to the noisy surfaces of the HoloLens triangle meshes.
The triangles comprising the large horizontal floor surface for instance differ significantly in the
direction of their normal vectors. Thus, only a fraction of the triangles comprising the floor
actually corresponds to the proper vertical direction with respect to the applied resolution of
1°. Depending on the input rotation, a peak caused by a slanted ceiling surface with a not
insignificant area in comparison to horizontal surfaces like in the case of the dataset at hand
representing only the attic story may thus induce a larger peak and consequently a misalignment.
In cases like this, applying an angular resolution of more than 1° may be more suited to prevent
suchlike misalignments.
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Figure 5.16: Resulting vertical alignments of the triangle mesh ’Attic’ from Fig. 5.11(c) for the two
peaks in the histogram of δv values depicted in Fig. 5.15. The green bounding box corresponds to
the peak at δv ≈ 0° while the red bounding box corresponds to the minor peak at δv ≈ 30°. Source:
[244].

Besides the discussed outlier in the vertical aligment, some outliers in the horizontal alignment
do exist. The Matterport3D datasets ’mJXqzFtmKg4’ and ’PuKPg4mmafe’ for instance show
heightened average δh values along with high standard deviations. The histograms showing the
distribution of all 50 δh values are again depicted in Fig. 5.17 and Fig. 5.18 respectively. Like in
the case before, it is apparent that the alignment results fluctuate between two states depending
on the input rotation for both cases while each time, one peak at 0° corresponds to the correct
horizontal alignment according to the respective ground truth pose. As can be seen in Fig. 5.19
and Fig. 5.20, the respective second peak corresponds in both cases to a valid second Manhattan
world structure present in the respective indoor environment.

In the case of the dataset ’mJXqzFtmKg4’, this seems immediately plausible, as both
Manhattan world structures present in the indoor environment are supported by a comparable
amount of geometries, as was already demonstrated in Fig. 5.4 and Fig. 5.5. Thus, different
input rotations may result in slightly different discretizations within the grid of 1° resolution,
sometimes favoring one and sometimes the other Manhattan world structure as having the largest
peak of summarized geometry weights.

In the case of the dataset ’PuKPg4mmafe’ however, the two Manhattan world structures
present in the indoor environment apparently do not seem to be supported by an approximately
equal fraction of geometries. Rather, the upper right section in Fig. 5.20 constituting the one
Manhattan world structure seems to be far smaller than the section on the lower left constituting
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Figure 5.17: Histogram of the 50 δh values resulting in the mean value of 2.73°± 14.29° presented in
Tab. 5.1 for the triangle mesh ’mJXqzFtmKg4’ depicted in Fig. 5.14(f). Source: [244].
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Figure 5.18: Histogram of the 50 δh values resulting in the mean value of 15.28°± 20.07° presented
in Tab. 5.1 for the triangle mesh ’PuKPg4mmafe’ depicted in Fig. 5.14(h). Source: [244].
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Figure 5.19: Resulting horizontal alignments of the triangle mesh ’mJXqzFtmKg4’ from Fig. 5.17
for the two peaks in the histogram of δh values depicted in Fig. 5.17. The green bounding box
corresponds to the peak at δh ≈ 0° while the red bounding box corresponds to the minor peak at
δh ≈ 45°. Source: [244].

the other Manhattan world structure. In this case, the ground truth pose of the triangle mesh
as published in [94] is aligned with the apparently smaller Manhattan world structure. It is thus
not surprising that in the evaluation, a majority of measurements results in high δh deviations
as the evaluated alignment method favors the larger Manhattan world structure. However, it is
surprising that a not insignificant fraction of 17 of the 50 randomly chosen input rotations results
in a horizontal alignment along the apparently significantly smaller Manhattan world structure.

This situation may be explainable by taking a closer look at the walls constituting the
respective Manhattan world structures. As can be seen in Fig. 5.21, the smaller Manhattan
world section on the right hand side consists of wall surfaces that are generally smooth and
completely covered with geometries. The larger section on the left however has a large fraction
of open wall surface were there are no geometries due to the walls there actually being openings
or glass surfaces that cannot be captured by the Matterport system used for the acquisition of
this dataset. Furthermore, large parts of the actually represented wall surfaces are covered with
curtains or other structures resulting in inhomogeneous normal vector directions. In consideration
of this, it seems plausible that the actual support for both Manhattan World structures present
in the building could be approximately equal and the applied alignment method could thus be
prone to fluctuate between both Manhattan world systems with varying input rotations.
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Figure 5.20: Resulting horizontal alignments of the triangle mesh ’PuKPg4mmafe’ from Fig. 5.14(h)
for the two peaks in the histogram of δh values depicted in Fig. 5.18. The green bounding box
corresponds to the peak at δv ≈ 0° while the red bounding box corresponds to the peak at δv ≈ 23°.
Source: [244].

Figure 5.21: Detailed view of the triangle mesh ’PuKPg4mmafe’ from the Matterport3D dataset [94]
also depicted in Fig. 5.14(h) and Fig. 5.20. Note that in the case of the larger part of the building
structure determining the Manhattan world system visualized by the red bounding box in Fig. 5.20,
large parts of the wall surfaces are missing as wall openings or constituted by curtains or other
structures with inhomogeneous normal direction. The smaller part of the building structure on the
right hand side which determines the Manhattan world system visualized by the green bounding box
in Fig. 5.20 however has largely closed, smooth wall surfaces. Source: [244].
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Figure 5.22: The green bounding box represents the horizontal alignment of the triangle mesh
’ULsKaCPVFJR’ from Fig. 5.14(i) as it is published in [94] and used as ground truth pose for the
evaluation results presented in Tab. 5.1. The red bounding box on the other hand represents the
horizontal alignment resulting from our presented approach. Source: [244].

Besides these both cases discussed so far, there are two further datasets with high average
horizontal angular alignment deviations in the evaluation results reported in Tab. 5.1. These
are the triangle meshes ’ULsKaCPVFJR’ and ’ur6pFq6Qu1A’ which are also part of the
Matterport3D dataset. Unlike the cases discussed before, these however only show heightened
mean values for δh while the respective standard deviations are low in a range comparable to
the other Matterport3D triangle meshes where the evaluated alignment method proofed to be
consistently successful.

This suggests that the proposed method consistently results in the same horizontal orientation
for all 50 input rotations for both datasets. The respective resulting alignment however deviates
from the assumed ground truth pose in the rotation around the vertical axis. This is further
illustrated by Fig. 5.22 and Fig. 5.23 where it is easily discernible that the depicted buildings
again respectively contain two Manhattan world structures and that the evaluated alignment
method consistently chooses the respective other Manhattan world structure that does not
coincide with the ground truth pose.
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Figure 5.23: The green bounding box represents the horizontal alignment of the triangle mesh
’ur6pFq6Qu1A’ from Fig. 5.14(j) as it is published in [94] and used as ground truth pose for the
evaluation results presented in Tab. 5.1. The red bounding box on the other hand represents the
horizontal alignment resulting from our presented approach. Source: [244].

Arguably, it is disputable which of the two Manhattan world structures respectively present
in the datasets is the ’correct’ one as again in these two examples, both seem to encompass
more or less the same fraction of the represented building environment and it is not readily
discernable which is the dominant one. Nevertheless, the proposed method proofs to find a
reasonable alignment with high accuracy in almost all cases with the only exception being the
vertical alignment of the HoloLens triangle mesh ’Attic’. In all other cases where the resulting
pose deviates from the ground truth pose, the resulting alignment is still reasonable in the sense
that it corresponds to another Manhattan world structure inherent in the respective dataset that
is readily identifiable by a human observer even if it may differ from the given ground truth pose
corresponding to another alternative Manhattan world structure.

Besides aligning an indoor mapping dataset with the dominant Manhattan world structure
supported by the largest fraction of geometries, the proposed method can easily be augmented
to identify all major wanhattan World structures along with the respective sets of associated
geometries. Among other possible fields of application that will be briefly discussed in the
following Sec. 5.5, this allows for providing multiple possible alternatives for alignment to the
user to choose from in cases where multiple major Manhattan World structures are present in
the dataset at hand and it is not readily apparent which among these to use for alignment.
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5.5 Conclusion and Outlook
This chapter presented a novel method for the automated pose normalization of indoor mapping
data like point clouds and triangle meshes. The aim of the proposed method is to align an
indoor mapping point cloud or triangle mesh along the coordinate axes in a way that a chosen
vertical axis points upwards with respect to the represented building structure, i.e. the chosen
vertical axis is expected to be orthogonal to horizontal floor and ceiling surfaces. Furthermore, a
rotation around this vertical axis is to be determined in a way that aligns the two horizontal
coordinate axes with the main direction of the dominant Manhattan world structure of the
respective building geometry. In case multiple Manhattan world systems are present in the data,
the dominant structure supported by the largest fraction of geometries should determine the
horizontal alignment.

For both fundamental steps of the proposed method - determining the correct orientation of
the vertical axis and subsequently the correct horizontal rotation around this resulting vertical
axis - a theoretical solution is presented. As the proposed formulation of the problem at hand
cannot be solved efficiently, an efficient approximate solution for a practical implementation is
presented. This encompasses discretizing the input data into a grid with fixed resolution while
transforming it in a way that enables the problem to be solved by determining the largest peak
within this grid of fixed size and finally refining the resulting coarse result by resorting to the
original input data in the vicinity of the detected peak. A CPU-parallelized implementation
of the proposed method along with the code for the automated evaluation procedure is made
available to the public.

The proposed method is quantitatively evaluated on a range of different indoor mapping
point clouds and triangle meshes that are publicly available. The presented results show, that
the approach is overall able to consistently produce correct poses for the considered datasets
for different input rotations with high accuracy. Furthermore, cases where high deviations with
respect to the given ground truth pose occur are presented and discussed.

Concerning potential for future research, it has already been mentioned that the proposed
method offers the possibility to not only identify the dominant Manhattan world structure
along with the associated geometries in an indoor mapping dataset, but also to detect multiple
Manhattan world structures that are sufficiently supported by geometries. Besides enabling to
present multiple reasonable alternatives for alignment to choose from, this could potentially also
be used in the context of automated indoor reconstruction (see Chap. 3). In particular, knowing
the major Manhattan world structures and their associated geometries could be beneficial for
abstracting and idealizing indoor surfaces, i.e. reconstructing suitable surfaces as planes that
perfectly conform the Manhattan world assumption. In addition, automatically detecting the
involved Manhattan world structures in a building may also be of interest in the context of
automatically analyzing the architectural structure of buildings [9, 493].

Furthermore, the presented methodology could possibly also be used in the context of
indoor environments and indoor mapping in general (see Chap. 2). Here, identifying Manhattan
World stuctures during the mapping process (or in post processing if the individual indoor
mapping geometries have associated timestamps to reconstruct the sequence of acquisition) could
potentially be used to correct or reduce drift effects by applying the assumption that building
structures that apparently seem to deviate only slightly from an ideal Manhattan world system
are to be corrected according to the Manhattan world assumption [447, 510, 545, 546, 661, 345].
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Chapter 6

Synopsis

In the preceding chapters, the different topics in which contributions were presented within this work
were discussed individually. Here, a synoptic discussion encompassing all topics relevant to this work
is presented.

First, Sec. 6.1 starts with a concise summary of the content discussed in the previous chapters.
Next, Sec. 6.2 presents further discussions on these topics. In this context, special focus is placed
on outlining the potential for future research opportunities. Finally, Sec. 6.3 closes this work with
concluding remarks.

6.1 Summary

Within the previous chapters, first, the topic of indoor mapping was discussed in Chap. 2. Indoor
mapping encompasses the process of the geometric acquisition of indoor building structures by means
of adequate sensor systems. While stationary systems such as terrestrial laser scanners (TLS) can be
used to this aim, mobile sensor systems such as backpack-mounted or hand-carried laser scanners or
range cameras are more favorable in this context due to the geometric complexity of typical indoor
environments, requiring a multitude of TLS positions. Besides dedicated indoor mapping systems,
specifically tailored towards this task, mobile augmented reality (AR) systems are equipped with
suitable sensors as well, in order to acquire the structure of their surrounding environment. Thus, it is
conceivable to use indoor augmented reality systems for the task of indoor mapping. In this context,
Chap. 2 presented an evaluation of the AR headset Microsoft HoloLens regarding its aptitude to
the task of indoor mapping. The evaluation study first focused individually on the range camera
and the tracking system of the device, these two being the two main components determining the
quality of an indoor mapping system. Both components were evaluated against respective ground
truth data and finally, the indoor mapping results in the form of triangle meshes acquired with the
HoloLens were evaluated against ground truth data as well. The presented results demonstrate, that
the Microsoft HoloLens is overall quite suited to the task of indoor mapping and can readily be
deployed to this aim. However, it should be taken into account, that drift effects can occur over
large distances. While loop closure errors are detected by the tracking system of the device, they
are however not corrected globally in the acquired triangle meshes, as the actual intended usage of
the HoloLens as an AR device only requires local consistency of the acquired structures with the
physical environment.

Subsequently, Chap. 3 discussed the topic of automated indoor reconstruction, i.e. the extraction
of semantically meaningful and geometrically completed and refined indoor building models from
unstructured geometries as acquired by the indoor mapping systems discussed in the preceeding
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chapter. After giving an overview of the diversity of different approaches to address the challenging
problem of indoor reconstruction, a novel approach applicable to triangle meshes as acquired by the
Microsft HoloLens was presented. The proposed approach relies on a voxel representation of the
input data. Indoor voxel models are reconstructed semantically as well as geometrically by means
of rule-based procedures. Besides classifying voxels in the semantic classes ’Wall’, ’Wall Opening’,
’Floor’, ’Ceiling’, ’Empty Interior’ and ’Interior Object’, the voxel space is partitioned into rooms
as well. The main advantage of the proposed approach lies in its genericity regarding the structure
of indoor environments to be reconstructed. While many indoor reconstruction approaches rely
on simplifying assumptions such as the Manhattan world assumption, the proposed approach only
requires wall surfaces to be vertically straight. Horizontally, walls can be of arbitrary shape while
ceiling and floor surfaces can be arbitrarily shaped as well. Furthermore, the input geometries are
required to have consistently oriented normals allowing a distinction between inside and outside.
Besides the indoor reconstruction approach itself, adequate evaluation methodology was presented
along with the quantitative evaluation results achieved on four different datasets which are made
available to the public.

In order to use building models in the context of indoor fused reality scenarios, the augmented
reality device needs to be able to determine its initial position within the respective building
represented by the model. This indoor localization process has been discussed in Chap. 4. After
first addressing the different methods available to this aim, a rather straight-forward, marker-
based approach for indoor localization using the Microsoft HoloLens was presented. While a
marker-based localization method may be less favored due to the necessity to equip the respective
indoor environment with artificial markers, it is nonetheless applicable in many scenarios where
unambiguously recognizable, planar objects are present anyway, e.g. in the case of door plates. The
presented quantitative evaluation shows, that the Microsoft HoloLens can indeed by deployed for the
in-situ visualization of room-scale building model data.

Lastly, Chap. 5 presented a novel method for the pose normalization of indoor mapping datasets.
The coordinate system, in which building geometries are acquired is often determined by the initial
pose of the respective indoor mapping system when starting the acquisition process. While the
orientation of the horizontal coordinate axes is oftentimes arbitrary, the vertical axis of the coordinate
system can in most cases be expected to be roughly pointing towards the actual upwards direction
due to typical usage poses of hand-held or head-worn indoor mapping devices. The proposed method
aims to automatically align indoor mapping datasets with the coordinate axes in a way, that the
rough initial leveling is optimally refined and the rotation of the horizontal axes around the thus
refined vertical axis is determined so as to optimally align them with the dominant Manhattan world
system underlying the structure of the respective indoor environment. A suchlike alignment of indoor
mapping data with the coordinate axes is a necessary preprocessing step for indoor reconstruction
procedures that rely on the Manhattan world assumption. Indeed, this assumption not only implies
that a respective building structure conforms with it, but also that the building structure is aligned
with the coordinate axes accordingly. Even in the case of indoor reconstruction procedures that
do net rely on the Manhattan world structure, a pose normalization process can nonetheless make
sense when grid structures are used as is the case with the indoor reconstruction approach proposed
in Chap. 3. The robustness and accuracy of the proposed method was demonstrated by means of
quantitative evaluation.
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6.2 Discussion and Outlook

As already hinted on in the previous section, all topics covered by this work are interconnected by
their usefulness for the realization of the concept of indoor fused reality as presented in Sec. 1.1 and
1.2.5. Indoor mapping systems discussed in Chap. 2 can be used to acquire raw geometric data which
is the input to automated indoor reconstruction procedures as discussed in Chap. 3. The resulting
building models can in turn be used in the context of indoor fused reality applications to visualize
building-related information in-situ after determining the global pose of a mobile augmented reality
device within the respective building environment by means of indoor localization as discussed in
Chap. 4. Finally, the pose normalization methodology presented in Chap. 5 can be deployed as a
preprocessing step for indoor reconstruction approaches besides other potential application fields
such as for instance the co-registration of multiple indoor mapping datasets. In the following, the
interrelations between these main topics will be further discussed. In this context, special emphasis
will be put on the potentials for future research beyond the state which has been realized within the
scope of this work.

The feasibility of a continuous workflow from indoor mapping to indoor reconstruction could
be clearly demonstrated by using indoor mapping results of the Microsoft HoloLens evaluated in
this regard in Chap. 2 as input data for the indoor reconstruction approach presented in Chap. 3.
Regarding indoor reconstruction and indoor localization however, only the individual feasibility of
both aspects was demonstrated. Using the actual results of the proposed indoor reconstruction
method to localize an AR device within the represented building and visualize digital building
information spatially registered to this model remains subject of future research.

In this context, an important aspect is the conversion of the indoor building model in voxel
representation resulting from the proposed indoor reconstruction method to a more compact and
established, vector-based data representation. Due to the generic nature of the presented indoor
reconstruction approach where few restricting assumptions about the shape of room surfaces are
made, this is not a straight-forward task. While planar room surfaces could be detected among the
room surfaces in the form of voxel segments and modeled accordingly as planes, voxel segments with
a more complex shape could for instance be represented as parametrized free-form shapes or triangle
meshes. Assembling the resulting surfaces to water-tight rooms however, is a complex task requiring
further research efforts.

However, it must be stressed, that representing indoor building environments by voxel grids is
not only a suitable means for realizing indoor reconstruction tasks, but can in itself be regarded
as a promising form of data representation. Combined with pyramid approaches and efficient data
structures such as octrees to mitigate the disadvantageous scaling of memory consumption and
processing time with increasing size of a given grid, voxel representations do indeed hold great
potential for all kinds of analysis tasks. This is especially the case for scenarios where not only given
geometries, but also the empty space between, within or around them is the object of analysis. In
this regard, it can be conjectured, whether voxel grids could not be a suitable way to represent
building environments in the context of indoor localization tasks as well.

Generally, the field of indoor localization still holds potential for future research. While many
different approaches were proposed to this aim, their feasibility is most often demonstrated only for
small examples lacking the ambiguity typically inherent in large buildings. A promising strategy
to tackle ambiguous environments in the context of indoor localization is to use image sequences
instead of single query images for pose regression [118, 3]. This allows the mobile unit which is to be
localized to explore a sufficiently large part of its environment in order to resolve these ambiguities.
A rigorous study of ambiguities and self-similar structures in indoor environments and their effects on
indoor localization tasks is however still missing and would certainly be a worthwhile endeavor in the
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context of indoor localization research. Another interesting aspect in this regard is to investigate, how
ambiguous localization results can be utilized in indoor fused reality approaches. For instance, some
useful information can already be displayed, when it can be determined, where in a given storey of a
multi-storey building the mobile AR device currently is, even if there still remains an ambiguity about
which storey it is in. For displaying more building-related information, the ambiguity concerning the
storey needs to be resolved and to this aim, the user could be guided to a part of the building which
is unambiguously identifiable, e.g. the stairwell. In this context, simple marker-based localization
approaches like the one discussed in Chap. 4 could potentially be integrated into more complex indoor
localization schemes relying on images or indoor mapping data. Thus, door plates or signboards with
storey numbers in stairwells could be utilized to resolve localization ambiguities due to self-similar
building geometry.

Another potentially worthwhile field of future research is to not only apply indoor reconstruction
methods to indoor mapping data, but to directly integrate them into the indoor mapping process. That
is to say, instead reconstructing building models in a single step from already acquired indoor mapping
geometries covering the complete indoor environment to be reconstructed, indoor reconstruction
could also be applied dynamically, on-the-fly to the indoor mapping data as it is acquired. Thus, the
indoor building model would grow successively with the advancement of the indoor mapping process.
Realizing a suchlike dynamic indoor reconstruction is by no means trivial. However, it could for
instance proof to be advantageous to the task of indoor localization as well.

Furthermore, in case an augmented reality device like the Microsoft HoloLens is used for indoor
mapping, user interaction could be integrated in the dynamic indoor reconstruction process. This
could already be realized by just visualizing the current state of the dynamically derived indoor
model in-situ overlaying the physical building structures. For instance, when using the HoloLens for
indoor mapping, the already captured triangle meshes are visualized, allowing the user to directly
assess where the building is already sufficiently captured and which parts need more attention in
order to achieve a complete indoor mapping result. Similarly, visualizing the current state of the
envisioned on-the-fly indoor reconstruction process would allow the user to specifically focus on
acquiring more observations of those parts of the building environment that are not yet sufficiently
reconstructed, e.g. due to too sparse acquisition. Furthermore, it is also conceivable for the user to
directly intervene into the reconstruction process by correcting errors in the arising building model,
e.g. via gestures or voice commands.

In this context, enriching the reconstructed building models with further information which is
valuable for indoor fused reality applications but can usually not be reconstructed automatically
is also possible. Suchlike information, e.g. concerning the course of pipes and cables within the
walls or semantic information not discernible from indoor mapping data, is typically modeled
manually using building models derived from manual or automated reconstruction processes as basis.
Here, augmented reality devices like the Microsoft HoloLens could again facilitate and improve this
process substantially, by allowing the user to conduct the process directly in-situ while capturing the
underlying building geometry in place. Investigating different ways of user interaction, e.g. modeling
cables by tapping on the walls in specific locations, or automatically integrating measurements from
external sensors such as electronic cable finders could be an interesting field of research as well while
at the same time offering the means to easily create rich building models for existing buildings that
can be deployed in indoor fused reality applications.

Concerning indoor reconstruction (either as a seperate postprocessing step applied to indoor
mapping data or directly integrated into the indoor mapping process), further potential for future
research exists as well as already laid out in Sec. 3.5. In this context, applying deep learning techniques
to this task is particularly interesting. While a number of indoor reconstruction approaches using
deep learning have been proposed recently [104, 288, 183, 653], these typically apply deep learning
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techniques on 2D raster data orthoprojected from the three-dimensional indoor mapping data or use
them to classify points in indoor mapping point clouds and then applying indoor reconstruction on
the segmented point clouds. Voxel representations like the one used in the indoor reconstruction
approach presented in Chap. 3 could be potentially well-suited for applying deep learning methods
to indoor reconstruction. While initially being frequently applied in the context of 3D deep learning
[375, 637, 516, 563], voxel representations have meanwhile lost in favor for applications in this field
[473, 474, 161, 334, 551]. Nonetheless, they may still be a reasonable choice in the context of indoor
reconstruction. Here, comparably coarse voxel resolutions are sufficient for understanding the layout
of indoor building environments and empty space holds semantic meaning, e.g. when reconstructing
occluded room surfaces or partitioning the indoor space in rooms. 3D deep learning on voxel grids in
the context of indoor environments has for instance successfully been applied in the field of semantic
scene reconstruction [129, 124].

The method for pose normalization of indoor mapping datasets as a preprocessing step for indoor
reconstruction procedures presented in Chap. 5 holds potential for further research as well. Besides
its usage for pose normalization, the proposed methodology could potentially also be applied in the
context of indoor reconstruction itself. Here, it could be deployed to refine extracted wall surfaces
to perfect Manhattan world structures if they are found to constitute a local Manhattan world
system within the bounds of a certain accuracy threshold determined by the quality of the respective
indoor mapping data and the building structure itself. Furthermore, the proposed methodology could
potentially also be applied to reduce drift in indoor mapping. Lastly, applications in the context of
indoor localization and the co-registration of indoor mapping datasets are conceivable as well.

6.3 Conclusion

This work started with the illustrative example of an imaginary mechanic performing repair tasks in a
large building environment while being guided and instructed by an headset-based augmented reality
application which draws information from a digital building model. Within the preceding chapters,
different technological requirements necessary in order to realize this scenario of indoor fused reality
were introduced and discussed. Among these requirements, the need for digital models for existing
building structures where suchlike AR applications are to be deployed can be satisfied by acquiring
indoor geometry data by means of indoor mapping systems and subsequently converting them to
digital building models in a process of automated indoor reconstruction. Furthermore, spatially
overlaying physical building structures with virtual information from a corresponding building model
can be achieved by a process of indoor localization which determines the global pose of a mobile
augmented reality device within the building.

As already discussed in the previous section, all these topics investigated and discussed in this
work still hold ample potential for future research. However, the potential of the indoor fused reality
scenario enabled by the presented components is worthy of further attention as well. The envisioned
combination of digital building models and augmented reality techniques holds great potential for
driving future research in both fields and demonstrating their respective worth for building-related
application fields such as facility management, energy efficiency, construction, architecture and
navigation. In this context, such applications focusing on building environments have the potential
of becoming a prime example and demonstration case for the usefulness and economic worth of
augmented reality technology applied to geospatial data - a concept defined and discussed in this work
as ’fused reality’. Likewise, disciplines related to building environments can benefit tremendously
from the prospects, augmented reality technology can offer them.
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