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Introduction 
In its 3rd edition, the “Workshop on Proximity Perception in Robotics” at IROS 2020 On Demand 
aimed at exploring and showing the potential that proximity perception has for cognitive robotics.  

Active proximity perception has great potential for Human-Robot Interaction (HRI) as well as for 
modeling objects and the environment in a multi-modal context. Today, this technology is mature 
enough to be deployed alongside cameras and tactile sensors. Many researchers have already 
successfully addressed the challenge of multi-modal skins that include tactile and proximity 
perception. However, not much research has been directed towards active perception and sensor 
fusion that includes the proximity modality. Our workshop addressed this issue and featured experts 
from multi-modal HRI and visio-haptic perception, who fostered the discussion with their experience. 
In addition, experts from industry contributed by linking this discussion to current and future 
commercial applications and the associated challenges. Finally, a special forum with talks by PhD-
students helped round off the workshop, who had an opportunity to present their work to an 
interested audience. 

These proceedings contain the abstracts of the PhD-Forum and a paper accepted and presented 
during the poster session of the workshop. 
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Robotic visual-tactile multi-modal sensing for fracture detection

Francesca Palermo1,3∗, Wanlin Li1, Gentiane Venture3, Stefan Poslad1, Kaspar Althoefer1,
Ildar Farkhatdinov1,2

Abstract— We present results for an innovative approach
involving vision as well as force and proximity sensing to detect
and characterise mechanical features such as fractures. The
proposed algorithm localises fractures on surfaces of a remote
environment via video/images which is then inspected with a
tactile sensor mounted at the end-effector of a manipulator.The
fracture recognition via proximity and tactile force information
achieves 86.43% when implementing Mean Absolute Value
(MAV) feature. For the vision localisation and recognition the
model achieves mean Average Precision (mAP) of ∼97% when
evaluated on 900 images. In the future, these two modalities will
be fused together for optimised crack localisation and detection.

I. INTRODUCTION

An important task often performed in remote hazardous
environments is the detection of mechanical fractures on
the object such as containers used for keeping chemical
and radioactive waste. In this situation, crack detection is
particularly important since it can avoid the spillage of
hazardous material from the container or identify cracks
on the surface of concrete surfaces before they grow and
affect structural integrity. The effects of non-detected frac-
tures may lead to larger macro-scale catastrophic failures
making the cracked surface mechanically weak to perform
its function. Existing techniques for crack detection rely on
visual analysis of the analysed segment [1], the implemen-
tation of eddy current measuring devices [2] or ultrasonic
techniques [3]. Jahanshahi et al. [4] developed a contact-less
remote sensing crack detection and quantification method
based on 3D scene reconstruction. They utilise depth percep-
tion to detect cracks and quantify their width. This feature is
especially useful for incorporating mobile systems into struc-
tural inspection methods since it would allow inaccessible
regions to be properly inspected for cracks. They classify
also the width of the cracks and compare their proposed
crack quantification approach with a caliper reading for 8
different cracks ranging from 0.5mm to 1.78mm, with a
maximum error of 0.47 mm. Chen et al. [5] propose a fusion
deep learning framework called NB-CNN (Naı̈ve Bayes -
Convolutional Neural Network). It analyses individual video
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Fig. 1. Algorithm of the proposed multi-modal approach combining both
visual and force and proximity data for fracture recognition and localisation.

frames for crack detection and detects crack patches in each
video frame. The proposed framework achieves a 98.3%
hit rate against 0.1 false positives per frame. The above-
described crack detection methods are based on computer
vision techniques and can fail in remote environments with
limited luminosity. Furthermore, vision-based methods are
not capable of acquiring material properties such as texture
and hardness. In contrast to the visual modality, tactile and
force sensing combined with proximity sensing can provide
important information on material properties such as shape,
texture and hardness [6]. The stiffness of objects has been
investigated [7] implementing a hybrid force and proximity
finger-shaped sensor achieving 87% classification accuracy
on a set of household objects. Liu et al [8] developed a
contact-sensing fingertip sensor to estimate the direction and
the magnitude of the friction, normal forces and the local
torque generated at the surface of explored objects with
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limitation of exploration for light weight objects. In [9] it
is demonstrated how it is possible to use fibre optics to
recognise and classify fractures on surfaces. For real-time
application, exploring the whole surface with only tactile
approach would be time-consuming and may produce errors.

Proposed scenario. In this work it is considered a me-
chanical fracture recognition task performed by a remotely
controlled mobile manipulator equipped with a vision and
tactile sensing system. A possible remote inspection scenario
may include a robot entering a space to be inspected, and
performing a visual scan of the environment. The scanned
visual data is analysed by the algorithm proposed in this
work to identify the areas which are likely to contain
mechanical fractures. Following the identification of the
area of interest, the robot moves closer to the object to be
inspected and uses the on-board manipulator equipped with
tactile sensors to physically explore the surface for further
characterisation. The complete algorithm is shown in Figure
1 In the following, preliminary work with separate vision
and tactile scenarios for crack recognition is presented. In
the future, these two modalities will be fused together for
the autonomous inspection of fractures.

II. ALGORITHM AND SETUP

Improving the work implemented in [9], the proposed
work consists of a preliminary multi-modal approach with
both vision and force sensing.

For the vision feedback part, we use a Logitech Stream-
Cam to scan the surface and localise possible fractures. In the
future, the position of the extracted patches will be sent to the
manipulator for real-time investigation. The visual algorithm
is based on a Faster Region-based Convolutional Neural Net-
work (Faster R-CNN) [10] developed on Windows with the
TensorFlow Object Detection API [11] based on Python 3.7,
Tensorflow-GPU 1.14, CuDNN 7.6.5 and Pycharm 2019.3.3.
Faster R-CNN with Inception v2 architecture [12] is used
due to its high accuracy and fast recognition. A COCO
(Common Objects in COntext) pre-trained Faster R-CNN
with Inception v2, configured for Oxford-IIIT Pets Dataset
is implemented. The network is then trained, tested and
validated on a total of 3000 images (227x227 pixels with
RGB channels) of fractures in concrete extracted from [13].
All the images were manually labelled with LabelImg, a
graphical image annotation tool. The dataset is divided into
70% for training and 30% for testing and validation. Figure
3a-b) show, respectively, images used for training and testing
the model. During the training, random horizontal flips of
images were performed to improve the robustness of the
model.

An integrated force and proximity finger-shaped sensor,
described in [7], is used for automatic crack detection. The
sensor employs three pairs of optical fibre cables (D1, D2,
D3) to measure the sensor’s body deformation of the flexible
middle part based on the changes in reflected light intensity.
The fourth pair of optical fibre cables (P) is used to sense

Fig. 2. Complete setup for the surface exploration via the force and
proximity sensor.

the proximity between external objects and the tip of the
finger. The sensor is attached to the end effector of a Touch
desktop haptic interface. The complete setup is shown in
Figure 2. The force and proximity data are recorded and
feature extraction is performed; the resultant output is used
as input for the classification algorithm. Feature extraction
(Mean Absolute Value) is performed on each consequent
25 ms long time window with an increment of 5 ms.
A Random Forest (100 trees) classifier is implemented to
determine both the surface pattern of examined material and
the size of the detected cracks. To recognise the surface of the
material, the classification labels were equal to: ’no crack’,
’crack’, ’bump’, ’wavy texture’ (representing an undulating
surface). The software has been developed on Windows with
Python 3.7. A set of 4 objects with different surfaces (no
crack, crack, a bump and a wavy pattern) were manufactured
employing a Ultimaker III 3D printer. The wavy pattern
consists of a repeated pattern of waves of 1mm amplitude
and 5mm magnitude. Each type of these sample objects
corresponds to a label used in the classifiers.

III. DATA ANALYSIS AND RESULTS

The work is divided into object detection via visual inspec-
tion and classification of fractures via force and proximity
data.

For the vision part, the object detection algorithm achieves
mAP of ∼97% when evaluated on 900 images and 0.07
classification loss. Table I shows the evaluation results of
the trained model.

The model is then tested in real-life via the webcam on a
laser-cut surface. The surface presents cracks from 0.5 mm
to 5mm. Figure 3 shows the results of the object detection
model on a laser-cut surface. The network is able to detect
and well localise bigger cracks while it struggles with smaller
ones. Additional analysis on more cluttered scenes will be
performed to test the robustness of the model.
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Model Training Images Testing Images MaxEpochs Classification Loss Localisation loss mAP (%)

Faster R-CNN Inception V2 2’100 900 50’000 0.066 0.038 97.128

TABLE I
EVALUATION OF THE TRAINED MODEL FASTER R-CNN INCEPTION V2.

Fig. 3. Example of images used for the crack localisation and detection. a) Images used for the training of the model; b) images used for testing and
validating the model; c) results of the crack detection and localisation with Faster R-CNN model tested in real-time via video on a laser-cut surface.

The Random Forest classifier achieves the best classifica-
tion accuracy of 86.43% when implementing a MAV feature
with force and proximity data combined. For additional
information please refer to [9].

IV. CONCLUSION AND FUTURE WORK

In this paper, a preliminary multi-modal approach for
crack detection is presented. The proposed algorithm im-
plements both visual and tactile information to classify
fractures. In the future, the extracted location of the fracture
will be sent from the model to the manipulator with the
fibre-based sensor. This will permit real-time exploration,
detection and localisation of fractures. In addition, further
experiments will be performed to increase the robustness of
the Faster R-CNN model.
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Versatile and Modular Capacitive Sensor for Robotic Application
(PhD-Forum - Extended Abstract)

Hosam Alagi1 and Björn Hein1,2

I. INTRODUCTION

As Human-Robot Collaboration (HRC) wins growing in-
tention, Short-range Perception (SRP) becomes more rele-
vant toward safe close interaction with robots. Such applica-
tions require gab-less sensing range and whole-body cover-
age to achieve continuous temporal and spacial perception.
When exploring the field of perception we face two major
issues: Visual Occlusions caused by actuators or objects and
Perception Gabs in the close proximity of the Mid-range
Perception systems. These issues become nearly insurmount-
able barriers while developing applications for close Human-
Robot Collaboration, where a gab-less perception is essential
toward safe interaction. Beyond collision avoidance, cogni-
tive skills such as Object and material recognition are key
features of Collaborative Robots e.g. Object-handover where
holistic environment perception is required for properly and
safe interaction. Also, in the field of soft robotic compliant
sensors for self and environment perception is still a matter
of research.

Capacitive Sensors (CSs) present a potential technology
to provide both proximity and contact - tactile and force -
perception. The measurement principle allows manufacturing
of scaleable and flexible sensor arrays to cover large and
complex surfaces. Novel flexible and stretchable conductive
material, printed circuits and additive manufacturing enable
large scale and highly integrated sensor systems.

II. VERSATILE CAPACITIVE SENSOR

Our work investigates the capacitive sensing technology
to provide a multi-modal and modular sensor for Short-
range Perception and Contact Perception for wide range
robotic applications. A configurable multi-channel measure-
ment circuit shift the system Beyond state of the art and
enable an online-salable spacial resolution [1] and multi-
modal measurements e.g. proximity and tactile/force sens-
ing. By developing a wide range capacitance measurement
circuit and automatic parasitic capacitance compensation a
lower installation and commissioning effort is supported [2].
A coherent demodulation increases the robustness against
electromagnetic interference and gain additional information

1The authors are with Karlsruhe Institute of Technology (KIT), Institute
for Anthropomatics and Robotics - Intelligent Process Automation and
Robotics Lab (IAR - IPR), Karlsruhe, Germany, {hosam.alagi,
bjoern.hein}@kit.edu, mail@davidkretsch.com

2 The author is with Karlsruhe University of Applied Sciences
bjoern.hein@hs-karlsruhe.de
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Fig. 1. Capacitive Measurement Unit (CMU) unit with multi In-phase
and Quadrature (I/Q) and Root Mean Square (RMS) channels and active
shield. Left: top and bottom side of the PCB. Right: Simplified functional
schematic.

about the detected object material through spectroscopic
measurement. To reach higher system scalability a modular
system design was followed, which allow networking and
synchronizing of multiple sensor modules to build large
sensor arrays [3], [4].

Fig. 1 shows a simplified schematic of the capacitive
measurement and its implementation as an Printed Circuit
Board (PCB). The latest consist of tow stack PCBs including
the analog-front-end, control unit, digital signal processing
and communication interfaces.

1 cm

10 cm

10 cm

Fig. 2. Capacitive sensors in different applications demonstrating the
system scalability. Upper-left: 4 × 4 flexible array. Upper-right: 16 × 6
flexible array. Down: 1×24 array inside a workbench. A threat-off between
the spatial resolution and the measurement range is a key point of the
capacitive sensor technology. While the electrode size is increasing (1 cm2

- 100 cm2) from left to right and thus the measurement range (2 cm -
30 cm), the spatial resolution decrease. All setups are driven with the same
Capacitive Measurement Unit.
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III. APPLICATIONS

Easy and seamless integration integration are major advan-
tage of capacitive measurement. Additionally, multi-modal
perception and the spectroscopic measurement provide sig-
nificant information that enables perception beyond proxim-
ity and contact and toward cognitive abilities.

A. Monitoring and Interaction Interface

The capacitive measurement principle allows the integra-
tion behind non-conductive surfaces without significantly
affecting the measurement. Fig. 2 shows an example of
utilizing capacitive proximity sensors to track human activity
at a collaborative workbench where the robot adapts its
movement to the worker’s action. A 1×24 sensor array with
a measurement range of up to 20 cm tracks the position and
the motion of multi humans around the workbench, while a
6×16 sensor array with a shorter measurement range tracks
the hand’s movement and workpieces. Such occlusion-free
spatial information provides the basis for further monitoring
methods like workflow analyses without involving Privacy-
invasive perception, e.g., cameras.

Fig. 3. Gripper equipped with Capacitive Proximity and Tactile Sensors for
Human-Robot Collaboration and sensor based object handover. The changes
in the proximity and tactile measurements are used to: 1. when the an object
is between the joints to be grasped for Human-to-Robot Handover and 2. to
identify when an object is grasped properly by human so it can be released
in Robot-to-Human Handover scenarios.

B. Cognitive Perception

Cognitive abilities are realized by applying Dielectric
Spectroscopy e.g. for contact-less material recognition [5]
or by utilizing the multi-modal sensing for grip detection in
object-handover tasks [6].

Fig 3 shows a two joints gripper equipped with Capacitive
Proximity and Tactile Sensors. 8 sets of electrodes - 4 at
the inner side of each joint - provide amplitude and phase
responses of multi exciter frequencies. Objects with different
dielectric properties can be distinguished and recognized by
applying classification methods. In particular, recognizing the
human hand among other objects is crucial for safe Human-
to-Robot Handover.

For Robot-to-Human Handover a robust handover is re-
quired. This means the object must be grasped stably by the
human before it is released by the robot. Combining both
proximity and tactile data enable a stable grasp detection
along different object’s material. Processing both tactile and
proximity data increases the smoothness of the handover

process, since the proximity measurement provides pre- and
early-touch information. A grasped object is instrumentalized
to act a sensing elements.

C. Sensing for Soft-Robots
The question of sensor integration becomes more challeng-

ing when it comes to sensorizing soft actuators, characterized
by continuously deformable structures. Mechanical require-
ments set hard limits for sensing methods with conventional
manufacturing materials.

The integration into soft robots using flexible conductive
material was investigated [7]. We embedded electrodes made
of Gallium-Indium-Tin (Galinstan) into Polydimethylsilox-
ane (PDMS) to realize a flexible and stretchable sensing area
as well as traces. By driving a two-layer array in single-ended
and differential mode, the detection of multi-proximity and
multi-touch events was achieved.

One of the aspects of this work is to highlight the
integration capability of capacitive sensors and to show how
combining them with various sensors enables more complex
perception, such as estimating deformation and external
forces acting on a soft actuator.
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Reactive Motions with Proximity Sensors
(PhD-Forum - Extended Abstract)

Yitao Ding1,2 and Ulrike Thomas1

I. INTRODUCTION

In a highly dynamic workspace where humans and robots
work side by side, ensuring safety is of the highest interest.
Proximity sensors mounted on the robot have an inside-out
vision concept. Compared to cameras with external vision,
they do not experience occlusion. Instead, anything that
obscures them is a relevant obstacle. Another feature of this
sensor concept is the limited amount of data, ideal for low
latency and fast responses. Moreover, since proximity always
precedes touch, we can react early, before touch occurs.
Therefore, manipulators with proximity sensors on the robot
have shown robust collision avoidance behavior. Current
solutions for proximity servoing adapt contact- or force-
based control methods by injecting virtual forces or velocities
to generate repulsive motions. This method is very reliable
in avoiding contacts but often leads to the so-called robot
freezing problem. The robot gets stuck in an equilibrium
state of attraction to the target position and repulsion from
the obstacle.

In this talk, we will discuss further obstacle avoidance
strategies that allow the robot to generate reactive motions
instantaneously. These motions aim to move around obstacles
and take full advantage of the robot’s redundancy. Two
approaches will be demonstrated. One method uses sampling
to evaluate different possible avoidance vectors in a plane
orthogonal to the obstacle direction. Another approach uses
constraints to create an avoidance space in which quadratic
optimization is used to find a set of optimal joint motion
parameters.

II. REPULSIVE MOTIONS

Repulsive motions are motions generated by obstacles
injecting virtual repulsive forces or velocity commands into
the robot’s motion controller [1]–[3]. The resulting motion is
in the opposite direction of the obstacle (Fig. 1a). The control
strategy is widely used as it is very simple and very effective
in avoiding contacts. Furthermore, the robot behaves very
predictable, which is a relevant safety feature in close human
robot collaboration. While the control strategy is simple,
it is very effective in avoiding contacts. However, as the
avoidance direction is defined by a single vector, the strategy
is very restrictive which leads to a limited exploitation of

1The authors are with the Lab of Robotics and Human Machine Interac-
tion at Chemnitz University of Technology, Germany {yitao.ding,
ulrike.thomas}@etit.tu-chemnitz.de

2 Speaker

potential robot redundancy. Therefore, the robot encounters
a freezing problem unable to further move to the target
position.

III. SAMPLING-BASED METHOD

A less restrictive avoidance strategy is the definition of
a plane (Fig. 1b) orthogonal to the obstacle direction [4] in
which the robot is allowed to move. Sampling and evaluating
different directions for specific criteria in this plane, such as
the distance to obstacles, manipulability, deviation from the
robot’s current motion, etc., allows the determination of an
optimal avoidance direction.

The integration of task priorities (null-space motion)
combines the avoidance motion and the robot’s main task
motion and makes use of the robot’s redundancy, if available.
Furthermore, the release of the main task (switching of
the task priorities) increases the robot’s flexibility around
obstacles, such that the main task is only affected when
obstacles distance falls below a critical threshold.

IV. QUADRATIC OPTIMIZATION WITH CONSTRAINTS

The generation of instantaneous reactive motion with
quadratic optimization with the definition of an avoidance
motion space through constraints [5], [6] achieves highest
flexibility and is most effective in exploiting the robot’s
redundancy (Fig. 1c).

min
q̇

1

2
q̇THq̇+ fTq̇ s.t.

{
Aq̇ ≤ b,

bl ≤ q̇ ≤ bu

, (1)

where the main task motion ẋ including singularity avoid-
ance by the damping factor µ is defined by the minimization
term

H = JTJ+ µI f = −ẋTJ. (2)

The linear inequality constraints

A =

[
d̂TJpc

−Jc

]
b =

[
ẋa

0

]
(3)

characterize the avoidance space such that the any point pc

under a critical distance threshold must not exceed a specific
approach velocity ẋa. d is the distance vector to the obstacle
and d̂ the unit direction vector. The second linear inequality
constraint increases the total distance of all points pc with
its Jacobian Jc to create evasive motions around obstacles.
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Fig. 1: Three different reactive obstacle collision strategies.

The last constraint defines mechanical limitations of the
manipulator such that the motion does not exceed maximum
joint speeds q̇u/lb or joint range boundaries qu/lb

bl =

{
0, q ≤ qlb

q̇lb, otherwise
bu =

{
0, q ≥ qub

q̇ub, otherwise
. (4)

Similar to the sampling-based method, a switching of the
main and avoidance tasks can be applied as well to let the
robot react to obstacles at an early state without affecting the
main task motion and thus increasing the chances of evading
the obstacles.
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