
Construction and analysis of an ADI
splitting for Maxwell equations with
low regularity in heterogeneous media

Konstantin Zerulla

CRC Preprint 2022/6, January 2022

KARLSRUHE INSTITUTE OF TECHNOLOGY

KIT – The Research University in the Helmholtz Association www.kit.edu



Participating universities

Funded by

ISSN 2365-662X

2
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Abstract. We construct a dimension splitting scheme for the time integra-
tion of linear Maxwell equations in a heterogeneous cuboid. The domain con-
tains several homogeneous subcuboids, and serves as a model for a rectangular
embedded waveguide. Due to discontinuities of the material parameters and
irregular initial data, the solution of the Maxwell system has regularity below
H1. The splitting scheme is adapted to the arising singularities, and is shown
to converge with order one in L2. The error result only imposes assumptions
on the model parameters and the initial data, but not on the unknown solu-
tion. To achieve this result, the regularity of the Maxwell system is analyzed
in detail, giving rise to sharp explicit regularity statements. In particular, the
regularity parameters are given in explicit terms of the largest jump of the
material parameters.

1. Introduction

Maxwell equations belong to the fundamental equations in physics, and are in
particular used to describe a large number of phenomena in optics, see [32, 25, 9, 17].
Their solutions are hence of great interest in many applications, like the design of
waveguides, see Section 9.3 in [44]. To model waveguides, heterogeneous media are
often studied that consist of several homogeneous submedia. This approach leads
to material parameters that are discontinuous at the interfaces between different
submedia. Maxwell equations with discontinuous material parameters, however,
usually have irregular solutions, see [15, 8, 7, 11, 12, 13] for instance. This poses
severe difficulties for the analysis of numerical schemes for the considered Maxwell
equations.

On domains with tensor-structure, alternating direction implicit (ADI) schemes
are very attractive methods for the time integration of linear isotropic Maxwell
equations. In the ADI splitting from [56, 42], the Maxwell operator is split ac-
cording to the spatial dimensions in which derivatives arise. The split system is
then integrated in time by means of the Peaceman-Rachford scheme, see [43]. The
splitting from [56, 42] can also be integrated in an energy conserving way, see [10].
These schemes are implicit and can be shown to be unconditionally stable, see
[56, 42, 10, 29, 31, 38] for instance. Despite being implicit, the mentioned ADI
schemes are also computationally cheap. In particular, the implicit steps can be
shown to decouple into essentially one-dimensional problems amounting to linear
complexity, see [56, 42, 10, 29, 30, 38]. In [46, 47], the Peaceman-Rachford ADI
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2 KONSTANTIN ZERULLA

scheme is transformed into an even more efficient formulation, being called funda-
mental ADI-FDTD scheme. There is also a modified ADI scheme that uniformly
preserves the exponential decay behavior of the Maxwell equations with interior
damping, see [53].

Despite their practical relevance, it seems to the best of our knowledge that only
few rigorous error results are known about ADI schemes. In [29, 20, 21, 19, 18],
the material parameters are required to be W 1,∞ respectively W 1,∞∩W 2,3 regular
on the entire cuboidal domain. In presence of appropriate initial data, the ADI
schemes from [56, 42, 10] are then shown to be of order two in H−1 and L2, respec-
tively. While the mentioned error statements focus only on the time discretization,
a fully discrete error analysis is performed in [38, 31] for the Peaceman-Rachford
ADI scheme in combination with a discontinuous Galerkin discretization in space.
[31] moreover provides estimates on time- and space-derivative errors. In [54], the
Maxwell equations are considered with positive material parameters being piecewise
constant on two adjacent cuboids. Assuming appropriate initial data, time discrete
approximations of the Maxwell system provided by the Peaceman-Rachford ADI
scheme from [56, 42] are here shown to be of order 3/2 in L2. The error analysis of
ADI schemes on the heterogeneous medium from the current paper is not covered
by the existing literature, to the best of our knowledge. The major reason is that
the solution of the considered Maxwell system has lower regularity than required
in the above mentioned literature.

We study the time dependent linear isotropic Maxwell equations

∂tE = 1
ε curlH− 1

εJ, ∂tH = − 1
µ curlE,

E(0) = E0, H(0) = H0,
(1)

for t ≥ 0 on the cuboid

Q = (a−1 , a
+
1 )× (a−2 , a

+
2 )× (a−3 , a

+
3 )

with the boundary conditions of a perfect conductor

E× ν = 0, µH · ν = 0

on the boundary ∂Q. Conditions on the divergence of E and H are incorporated
in an appropriate state space for (1), see (13) and Remark 1. The vector ν denotes
the unit exterior normal vector at ∂Q, E = E(x, t) ∈ R3 stands for the electric field,
H = H(x, t) ∈ R3 for the magnetic field, and J = J(x, t) ∈ R3 is a given external
electric current. The functions ε = ε(x) > 0 and µ = µ(x) > 0 are the electric
permittivity and magnetic permeability, respectively, and describe the properties
of the material Q consists of.

The following assumptions on the parameters ε and µ are essential throughout
the paper. The conditions are inspired by a model of a rectangular embedded
waveguide, see Section 9.3 in [44] for instance. To formulate the preconditions, we
make the following geometric constructions. The cuboid Q is divided into a chain of
smaller cuboids Q̃1, . . . , Q̃L, where the interfaces between adjacent cuboids should
be parallel to the x2-x3-plane. We collect these interfaces in a set F̃int. Each cuboid
Q̃i further contains smaller subcuboids Q̃i,1, . . . , Q̃i,K , that are separated from each
other, and touch the planes {x3 = a−3 } and {x3 = a+

3 }. The smaller subcuboids
Q̃i,1, . . . , Q̃i,K are, however, not allowed to touch an interface in F̃int. The remain-
der of Q̃i is then denoted by Q̃i,0. The resulting partition of Q corresponds to
a specific composition of materials. The subcuboids Q̃i,1, . . . , Q̃i,K play the role
of embedded waveguide structures, while Q̃i,0 serves as the surrounding medium.
Note that our analysis can in a straightforward way also be transferred to the case
that each cuboid Q̃i,j , j ∈ {1, . . . ,K}, contains further embedded subcuboids that
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again touch the planes {x3 = a−3 } and {x3 = a+
3 }, but no other face of Q̃i,j . For

the sake of a clear presentation, we however omit this extension.
For the material parameters ε and µ, we throughout impose the assumptions

ε|Q̃i,j , µ|Q̃i,j ∈ R>0,

ε|Q̃i,0 ≤ ε|Q̃i,l <
1

1 + 2
√

2− 2
√

2 +
√

2
ε|Q̃i,0 ,

ε|Q̃i,l
ε|Q̃i,0

6= 1−
2 cos( 15

7 π) sin( 6
7π)

cos( 12
7 π) sin( 9

7π)
,

µ|Q̃i,0 = µ|Q̃i,l ,

(2)

for i ∈ {1, . . . , L}, j ∈ {0, . . . ,K}, and l ∈ {1, . . . ,K}. These assumptions mean
that each subdomain Q̃i,j should consist of a homogeneous medium. Additionally,
the relative jumps of the parameter ε inside the cuboids Q̃i must not be too large,
while µ is assumed to be constant in each Q̃i. Note, however, that the difference
between the material parameters ε and µ on Q̃i,0 and Q̃k,0 is allowed to be arbitrar-
ily large for distinct i, k ∈ {1, . . . , L}. The condition in the second line of (2) will
ensure that the solutions of the Maxwell system (1) do not become too singular at
the interior edges. In fact, the regularity of the solutions can be expressed in terms
of the largest relative jump of ε in a cuboid Q̃i, see Corollary 2 and Remark 2. The
third line of (2) is used to avoid technical difficulties, see the proof of Lemma 3.5.

Due to low regularity in the x1-x2-plane of the solutions of (1), see Remark 2,
we use a different directional splitting of the Maxwell operator than the standard
one from [56, 42]. (In fact, the solution of (1) is not contained in the domains of the
standard splitting operators. Hence the standard Peaceman-Rachford ADI scheme
is not applicable to the original solution, see [29].) The idea behind the directional
splitting, we consider, is to treat the x3-direction independently, and to leave the
x1-x2-directions coupled, see Section 6.1. The split system is then integrated in time
by means of the Peaceman-Rachford scheme [43], see (101). The resulting scheme
is shown to be unconditionally stable, see Lemma 6.3. For the implicit steps in the
scheme (101), decoupled two-dimensional elliptic problems have to be solved for
the third components of the approximations to the electric and magnetic fields, see
Remark 3. All other components of the electromagnetic field approximations are
obtained by solving only one-dimensional elliptic problems.

Our main result is given in Theorem 6.4, stating that the directional splitting
scheme (101) converges with order one in L2 to the solution of (1). The error result
is rigorous in the sense that we impose assumptions only on the material parameters
and the initial data. Furthermore, we can deal with less regular initial data than
comparative literature [29, 21, 20, 19]. For these irregular data, we can, however,
only show convergence of order one instead of order two. Indeed, the local error can
only be expanded to terms of second order in the time step size, since higher order
error terms cannot be controlled properly in our regularity setting. We are also
going to provide a rigorous convergence result of (expected) order two for scheme
(101) in a subsequent work in preparation. There we, however, have to impose
stronger assumptions on the initial data.

To establish Theorem 6.4, we study the regularity of (1) in detail. The regularity
of the time-harmonic counterpart of (1) on more general heterogeneous polyhedral
domains has been analyzed in several papers, see [8, 15, 13, 7, 11, 12] for instance.
We provide a regularity analysis here to have sharp regularity statements for our
model problem that explicitly link the size of the jumps of the material parameters
to the regularity of the problem, see Corollary 2 and Remark 2. Moreover, we obtain
that the components of the electric and magnetic field have differing regularity. This
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turns out to be crucial for the numerical approximation scheme. The regularity
statement and the associated reasoning will additionally be employed in the above
mentioned follow-up work to derive higher regularity statements. For the sake of a
clear presentation, we hence give a detailed account of the arguments. In particular,
we localize at the interior edges in our medium, and study elliptic transmission
problems in a neighborhood of these edges, see Section 3 and [14, 15, 12]. To
obtain the desired sharp and explicit statement of Corollary 2 and Remark 2, we
determine the first nonzero eigenvalue of a one-dimensional transmission problem.
This turns out to be quite involved, see Lemma 3.5. The actual regularity and
wellposedness statement in Corollary 2 is then deduced by constructing a regular
state space X1 in (13) and by applying semigroup theory on the latter space in
Proposition 5.

Structure of the paper. In Section 2 we recall useful function spaces, and in-
troduce an analytical framework for the Maxwell system (1). In particular, we
construct a space X1 in (13) that turns out to be a regular state space for (1). In
the spirit of [15], we then study the regularity of a transmission problem for the
Laplacian in Section 3. Using these findings, the space X1 is shown to embed into a
certain space of piecewise fractional Sobolev regularity, see Section 4. In Section 5
we then prove the wellposedness of (1) in X1, and in this way the desired regularity
statement. A directional splitting scheme is constructed in Section 6. It is shown
to be unconditionally stable, and a rigorous error estimate is established there, see
Theorem 6.4.

Notation. For convenience, we use a partition of Q that is different from the above
Q =

⋃L
i=1
⋃K
j=0 Q̃i,j . The new one is subordinate to the above, and obtained by

appropriate refinement. In particular, the material parameters ε and µ are assumed
to be constant on each element of the new partition. We arrive at N smaller open
cuboids Q1, . . . , QN with Q =

⋃N
i=1Qi. These cuboids should not overlap and

again touch both planes {x3 = a−3 } and {x3 = a+
3 }. It is furthermore assumed that

if two subcuboids share an interface, that the edges of the corresponding faces then
coincide.

We denote the open faces of Q by
Γ±j := {x ∈ ∂Q | xj = a±j , xl ∈ (a−l , a

+
l ) for l 6= j}, Γj := Γ+

j ∪ Γ−j (3)
for j ∈ {1, 2, 3}. The set of interfaces of the fine partition Q1, . . . , QN is called
Fint, and the set of exterior faces is Fext. We also assign a unit normal vector
νF ∈ R3 to every face F ∈ Fint∪Fext in the following way. In case F is an interface
being parallel to the xj-x3-plane, we choose νF as the canonical unit vector el,
l 6= j ∈ {1, 2}. Otherwise, F is an exterior face, and νF coincides with the outer
unit normal vector ν of ∂Q. We also employ a set of effective interfaces Feff

int that
contains all physical interfaces. It is defined via
Feff

int := {F ⊆ Q is a face of Q̃i,j , i ∈ {1, . . . , L}, j ∈ {1, . . . ,K}} ∪ F̃int. (4)

Unit normal vectors for interfaces in Feff
int are defined in the same way as for inter-

faces in Fint.
The restriction of a function f ∈ L2(Q) to a subcuboid Qi is denoted by f (i)

for i ∈ {1, . . . , N}. We also need a notation for jumps of functions at interfaces in
Q. To that end, let F be an interface between two cuboids Qi1 and Qi2 with face
vector νF pointing from Qi1 to Qi2. Assume additionally that the restrictions f (i1)

and f (i2) have well defined traces trF f (i1) and trF f (i2) at F . The jump JfKF of f
at F is then defined as

JfKF := trF f (i2) − trF f (i1).
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For a linear operator A on a normed vector space (X, ‖·‖), we denote its domain
by D(A), and its graph norm by ‖x‖2D(A) := ‖x‖2 + ‖Ax‖2, x ∈ D(A).

2. Analytical preliminaries

This section is structured into two parts. The first one collects useful analytical
concepts and results about several function spaces that will throughout be employed
without further notice. We then proceed in the second part by interpreting the
Maxwell system (1) as an evolution equation on an appropriate state space.

2.1. Important function spaces. For our reasoning, the divergence operator div,
and the two- and three-dimensional curl2 and curl are essential. Formally, they are
defined by

divφ =
3∑
i=1

∂iφi, curl2 v = ∂1v2 − ∂2v1,

curlφ =
(
∂2φ3 − ∂3φ2, ∂3φ1 − ∂1φ3, ∂1φ2 − ∂2φ1

)
,

for distributions φ = (φ1, φ2, φ3) on a Lipschitz domain Ω ⊆ R3 and v = (v1, v2) on
a Lipschitz domain S ⊆ R2.

For the sake of a clear presentation, we subsequently introduce only spaces and
trace operators related to the curl2, curl, and div operators on the cuboid Q and a
rectangle S. The definitions and results, however, can be transferred to the subdo-
mains Q1, . . . , QN by appropriate adaptions. We first recall the Banach spaces
H(curl2, S) := {v ∈ L2(S)2 | curl2 v ∈ L2(S)}, ‖v‖2curl2 := ‖v‖2L2 + ‖curl2 v‖2L2 ,

H(curl, Q) := {φ ∈ L2(Q)3 | curlφ ∈ L2(Q)3}, ‖φ‖2curl := ‖φ‖2L2 + ‖curlφ‖2L2 ,

H(div, Q) := {φ ∈ L2(Q)3 | divφ ∈ L2(Q)}, ‖φ‖2div := ‖φ‖2L2 + ‖divφ‖2L2 .

We further use the subspaces H0(curl2, S), H0(curl, Q) and H0(div, Q), being
the completion of the space of test functions on S and Q with respect to the norms
‖·‖curl2 , ‖·‖curl and ‖·‖div, respectively. For these spaces, Theorems I.2.4–I.2.6 in
[24] state the following. The space C∞(Q)3 is dense in H(div, Q), and the normal
trace operator γn : v 7→ v · ν|∂Q extends from C∞(Q)3 in a linear and continuous
way to the space H(div, Q), now mapping into H−1/2(∂Q). In the following, we
will simply write v · ν instead of γn(v) for v ∈ H(div, Q). As a consequence of the
density and extension result, Green’s formula can be extended to H(div, Q), stating∫

Q

v · ∇ϕdx+
∫
Q

(div v)ϕdx = 〈v · ν, ϕ〉H−1/2(∂Q)×H1/2(∂Q)

for functions v ∈ H(div, Q) and ϕ ∈ H1(Q). Moreover, the subspace H0(div, Q)
coincides with the kernel of γn on H(div, Q).

Concerning the curl operator, Theorems I.2.10–I.2.12 in [24] establish similar
results. The space C∞(Q)3 is also dense in H(curl, Q), and the tangential trace
operator γt : v 7→ v × ν|∂Q has a unique linear and continuous extension to the
space H(curl, Q) with kernel H0(curl, Q) and range H−1/2(∂Q)3. Again, we write
only v × ν instead of γt(v) for v ∈ H(curl, Q). Here, Green’s formula has the
representation∫

Q

(curl v) · ϕdx−
∫
Q

v · curlϕdx = 〈v × ν, ϕ〉H−1/2(∂Q)×H1/2(∂Q)

for vectors v ∈ H(curl, Q) and ϕ ∈ H1(Q)3.
To cover the two-dimensional case, we additionally introduce the unit tangent

νt on ∂S. Denoting by νS = (ν1, ν2) the unit exterior normal vector of ∂S, it is
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defined by νt = (−ν2, ν1). For the two-dimensional case, Theorems I.2.10–I.2.12
in [24] then yield that C∞(S)2 is dense in H(curl2, S), and the tangential trace
γt : v 7→ v · νt|∂S extends continuously to H(curl2, S) with kernel H0(curl2, S) and
range H−1/2(∂S). In this setting, the Green’s formula is given by∫

S

(curl2 v)φ dx−
∫
S

v · (∂2φ,−∂1φ) dx = 〈v · νt, φ〉H−1/2(∂S)×H1/2(∂S)

for v ∈ H(curl2, S) and φ ∈ H1(S). We simply call the application of all three
Green’s formulas integration by parts.

Closely related are intersections of the above spaces, that are useful to derive
regularity statements. We define the spaces

HT (curl,div, Q) := H(curl, Q) ∩H0(div, Q),
HN (curl,div, Q) := H0(curl, Q) ∩H(div, Q).

We equip both with the complete norm

‖·‖2HT := ‖curl ·‖2L2(Q) + ‖div ·‖2L2(Q) .

The spaces HT (curl,div, Q) and HN (curl,div, Q) then continuously embed into
H1(Q)3, meaning that there is a constant CT > 0 with

‖H‖2H1(Q) ≤ CT ‖H‖
2
HT

= CT (‖curlH‖2L2(Q) + ‖divH‖2L2(Q)) (5)

for all H ∈ HT (curl,div, Q)∪HN (curl,div, Q), see for example Lemmas I.3.4, I.3.6
and Theorems I.3.7, I.3.9 in [24].

During the proof of the global error bound in Theorem 6.4, we also use extrap-
olation theory, see Section V.1.3 in [1] and Section 2.10 in [50]. Let A be a closed
and densely defined operator on a Banach space (X, ‖·‖X) with nonempty resolvent
set. Let additionally λ be an element of the resolvent set of A. Then the extrapo-
lation space XA

−1 with respect to A is defined as the completion of X in the norm
‖·‖XA−1

= ‖(λI −A)−1·‖X . Note that this definition is independent of the choice of
the resolvent value λ. The operator A then has a unique and bounded extension
A−1 from X to XA

−1. It is called the extrapolation operator of A to X. The resol-
vent operator (λI −A)−1 moreover extends to the bounded operator (λI −A−1)−1

from XA
−1 to X.

Interpolation theory is another important tool for our analysis. Throughout,
we only employ real interpolation on Hilbert spaces, which can be defined via the
K-method, see Section 1.1 in [41] for instance. By means of interpolation spaces,
we in particular define fractional order Sobolev spaces, see [40, 48]. These spaces
throughout serve as a measure for regularity statements. Let s ∈ [0, 2], k ∈ {1, 2},
θ ∈ (0, 1) \ {1/2}, d ∈ N, O ⊆ Rd open with a Lipschitz boundary, and define

Hs(O) := (L2(O), H2(O))s/2,2, Hθ
0 (O) := (L2(O), H1

0 (O))θ,2. (6)

We additionally note that the spaces Hθ(O) and Hθ
0 (O) coincide for θ ∈ (0, 1/2)

(this can be verified by means of Corollary 1.4.4.5 in [27] for instance).
The spaces of functions with piecewise Sobolev regularity are also important.

Let Γ∗ be a union of some faces of Q. Define the spaces

PHq(Q) := {f ∈ L2(Q) | f (i) ∈ Hq(Qi), i ∈ {1, . . . , N}}, q ∈ [0, 2],

PHs
Γ∗(Q) := {f ∈ PHs(Q) | f (i) = 0 on ∂Qi ∩ Γ∗, i ∈ {1, . . . , N}}, s ∈ (1/2, 2],

equipped with the norms

‖f‖2PHq :=
N∑
i=1

∥∥∥f (i)
∥∥∥2

Hq(Qi)
, ‖g‖PHsΓ∗ := ‖g‖PHs ,
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for f ∈ PHq(Q) and g ∈ PHs
Γ∗(Q).

The next lemma serves as a technical tool, establishing a useful density result for
function spaces related to the electric and the magnetic field. It uses to approximate
with piecewise regular functions, that satisfy prescribed transmission conditions,
and that vanish in a neighborhood of all exterior and interior edges of Q. The
result is applied in the proof for Lemma 3.1, and it will play a crucial role in a
subsequent work that is in preparation. For the statement, let Γ∗ be a (possibly
empty) union of opposite faces of the cuboid Q, and let Fint,j denote the set of
all interfaces whose normal vector is parallel to the j-th canonical unit vector ej ,
j ∈ {1, 2}.

Lemma 2.1. Let ε satisfy (2). Define the spaces

V := {ϕ ∈ PH1
Γ∗(Q) | JεϕKF = 0, JϕKF ′ = 0 for all F ∈ Fint,j ,

F ′ ∈ Fint \ Fint,j},

W := {ϕ ∈ PH2(Q) ∩ V | ϕ(i) is smooth, supp(ϕ) ∩ Γ∗ = ∅,
ϕ vanishes in a neighborhood of all edges of Q1, . . . , QN ,

∂νFϕ
(i) = 0 for faces F ⊆ ∂Qi, i ∈ {1, . . . , N}}.

The space W is dense in V with respect to the norm in PH1(Q).

Proof. We show only the density of W in V in the case Γ∗ = Γ2 ∪ Γ3, and assume
j = 2. All remaining settings can be established with the same techniques, up to
appropriate modifications.

1) Let ϕ ∈ V and δ > 0. Applying Lemma 2.5 in [15] to every interior and
exterior edge of Q, there is a function ϕ̊ ∈ V , that vanishes in an open neighborhood
of all edges of Q1, . . . , QN and satisfies

‖ϕ̊− ϕ‖PH1(Q) ≤ δ. (7)

Hence, there is a union T of tubes of inner radius ζ > 0 around all edges with ϕ̊
vanishing on Q ∩ T .

We next construct a piecewise smooth function fulfilling the required transmis-
sion, support, and normal derivative conditions. We only deal with the cuboid

Q1 = (a−,11 , a+,1
1 )× (a−,12 , a+,1

2 )× (a−,13 , a+,1
3 ),

(setting a±,13 := a±3 ) and we assume that Q1 touches the faces Γ+
1 and Γ+

2 of Q, see
(3). All other cuboids can be treated in the same way with slight modifications. Let
l ∈ {1, 2, 3}, and χm,l : R → [0, 1] be a smooth cut-off function with suppχm,l ⊆
[a−,1l , a−,1l + 1

m ]∪ [a+,1
l − 1

m , a
+,1
l ], χm,l = 1 on [a−,1l , a−,1l + 1

2m ]∪ [a+,1
l − 1

2m , a
+,1
l ],

and ‖χ′m,l‖∞ ≤ Cm for a uniform constant C > 0 for all m ≥ ml ∈ N. Let

Γ±,1l = {x ∈ ∂Q1 | xl ∈ {a±,1l }, xj ∈ (a−,1j , a+,1
j ) for j 6= l},

and denote the pyramid with basis Γ±,1l and peak (a
−,1
1 +a+,1

1
2 ,

a−,12 +a+,1
2

2 ,
a−3 +a+

3
2 ) by

P±,1l . Its reflection at the face Γ±,(1)
l is called P̌±,1l . Let further Qik be the adjacent

cuboid of Q1 in coordinate direction k ∈ {1, 2}.
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We then define the larger set Q̌1 := Q1 ∪
⋃3
l=1(P̌+,1

l ∪ P̌−,1l ), and put

gm,(1)(x) :=



ϕ̊(1)(x) for x ∈ P±,11 ∪ P−,12 ,

(1− χm,3(x3))ϕ̊(1)(x) for x = (x1, x2, x3) ∈ P±,13 ,

(1− χm,2(x2))ϕ̊(1)(x) for x = (x1, x2, x3) ∈ P+,1
2 ,

ϕ̊(i1)(x) for x ∈ P̌−,11 ,

ϕ̊(1)(−x1 + 2a+,1
1 , x2, x3) for x = (x1, x2, x3) ∈ P̌+,1

1 ,
ε(i2)

ε(1) ϕ̊
(i2)(x) for x ∈ P̌−,12 ,

0 for x ∈ P̌±,13 ∪ P̌+,1
2 ,

0 for x ∈ R3 \ Q̌1.

Since ϕ̊ is an element of V and vanishes on Q∩T , there is a number m4 ∈ N and an
open superset Q̊1 of Q1 with gm,(1)|Q̊1

∈ H1(Q̊1) for m ≥ m4. We then repeat the
same reasoning for all other subcuboids, by appropriately changing the definition
of the function gm,(i) for each subcuboid Qi. Define then a function gm on Q by
gm|Qi := gm,(i)|Qi for i ∈ {1, . . . , N}.

Taking the exterior face conditions for ϕ̊ into account, the arguments from the
proof of Lemma 2.1 in [21] show that g(i)

m converges to ϕ̊(i) in H1(P ) for P ∈
{P±,il | l ∈ {1, 2, 3}} as m→∞. There consequently is a number m̌ ≥ m4 with

‖gm̌ − ϕ̊‖PH1(Q) ≤ δ. (8)

We next employ the standard mollifier ρn,l that acts on the l-th coordinate, and
that is supported within [− 1

n ,
1
n ]. Let

ψ̃n,i := ρn,3 ∗ ρn,2 ∗ ρn,1 ∗ gm̌,(i), n ∈ N, i ∈ {1, . . . , N}.

By construction, the function ψ̃n,i is smooth, and it vanishes in a union T̃ of
tubes with radius 3

4ζ around all edges as well as in a neighborhood of all exterior
faces in Γ2 ∪ Γ3, provided that n ≥ n0 ∈ N. We also remark that the function ψ̃n,
being defined by ψ̃n|Qi := ψ̃n,i, satisfies all required transmission conditions in Q
for sufficiently large n. As a consequence of standard mollifier theory, the sequence
(ψ̃n,i)n furthermore converges in H1(Q̊i) to gm̌,(i). There consequently is a number
ň ≥ n0 with ∥∥ψ̃ň,i − gm̌,(i)∥∥H1(Q̊i)

≤ δ, i ∈ {1, . . . , N}. (9)

2) It remains to incorporate also the Neumann boundary conditions at the faces
of Q1. This is done by transferring a technique from the proof of Lemma 3.3 in [21]
to our setting. Let κ ∈ (0, a

+,1
1 −a−,11

2 ) be a fixed number. Let α̃ : [a−,11 , a+,1
1 ]→ [0, 1]

be a smooth function with supp α̃ ⊆ [a−,11 , a−,11 + κ
2 ], and α̃ = 1 on [a−,11 , a−,11 + κ

4 ].
Define then the function

h−k,1(x1, x2, x3) := ψ̃ň,1(x1, x2, x3)− α̃(x1)
∫ x1

a−,11

χk,1(s)∂1ψ̃ň,1(s, x2, x3) ds

=: ψ̃ň,1(x)− rk(x)

for x = (x1, x2, x3) ∈ P−,11 and k ∈ N. By construction of ψ̃ň,1, the functions h−k,1
and rk are smooth. We next deduce that rk tends to zero in H1(P−,11 ) as k →∞.
The integrand of rk is uniformly bounded in k, and converges pointwise to zero.
Thus, (rk)k is uniformly bounded. Applying now Lebesgue’s theorem of dominated
convergence twice, we infer that rk converges pointwise and in L2(P−,11 ) to zero as
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k →∞. A simple computation further gives rise to the formulas

∂1rk = (∂1α̃)
∫ x1

a−,11

χk,1(s)∂1ψ̃ň,1(s, ·) ds+ α̃χk,1∂1ψ̃ň,1,

∂lrk = α̃

∫ x1

a−,11

χk,1(s)∂1∂lψ̃ň,1(s, ·) ds, l ∈ {2, 3}.

Similar arguments to the ones above now imply that (∂1rk)k and (∂lrk)k are
null sequences in L2(P−,11 ). As a result, (h−k,1)k converges to ψ̃ň,1 in H1(P−,11 ),
and ∂1h

−
k,1 = 0 on Γ−,11 . By analogous constructions on all other pyramids P+,1

1 ,
P±,12 , and P±,13 , we further obtain similar functions h+

k,1, h
±
k,2 and h±k,3 for k ∈ N.

They are in particular smooth and coincide with ψ̃ň,1, provided that the distance
to the associated face is larger than κ

2 . Define now a new mapping ψk,1 on Q1
via its restrictions ψk,1|P±,1

j
:= h±k,j . As the function ψ̃ň,1 vanishes in T̃ (union of

tubes around all edges with radius 3/4ζ), we can choose κ > 0 so small that ψk,1 is
smooth on Q1. We then repeat the analogous construction for all remaining cuboids
Q2, . . . , QN , obtaining functions ψk,2, . . . , ψk,N for k ∈ N. Finally, we define the
mapping ψk elementwise by ψ(i)

k := ψk,i, for i ∈ {1, . . . , N}.
By construction, ψk is smooth on every cuboid, and it vanishes in an open

neighborhood of Γ2 ∪ Γ3 and of all edges of the subcuboids. It further satisfies the
required normal derivative condition at all faces for sufficiently large k. Using finally
that the function ψ̃ň satisfies the required transmission conditions, we conclude that
ψk also fulfills by definition the transmission conditions JεψkKF = 0, JψkKF ′ = 0 for
all F ∈ Fint,2 and F ′ ∈ Fint,1. Taking also (7)–(9) into account, ψk is contained in
W , and the estimate ‖ψk − ϕ‖PH1(Q) ≤ 4δ is valid for sufficiently large k. �

2.2. Analytical framework for the Maxwell system. Throughout, we consider
the Maxwell equations (1) as an evolution equation on the space X := L2(Q)6. The
space is equipped with the weighted inner product((

E
H

)
,

(
Ẽ
H̃

))
:=
∫
Q

εE · Ẽ + µH · H̃ dx,
(
E
H

)
,

(
Ẽ
H̃

)
∈ X,

inducing the norm ‖·‖ on X. The positivity and boundedness assumption on ε and
µ implies that ‖·‖ is equivalent to the standard L2-norm.

On X we consider the Maxwell operator

M :=
(

0 1
ε curl

− 1
µ curl 0

)
with domain

D(M) : = H0(curl, Q)×H(curl, Q) (10)

= {(E,H) ∈ L2(Q)6 | curlE(i), curlH(i)∈L2(Qi)3, JE× νF KF = 0,
JH× νF KF = 0, E× ν = 0 on ∂Q,
i ∈ {1, . . . , N}, F ∈ Fint},

involving transmission conditions in tangential direction.
We next incorporate the boundary conditions for the magnetic field, as well

as divergence and normal transmission conditions. Recall to that end the set of
effective interfaces Feff

int. The latter contains all interfaces between the submedia
Q̃i,l, i ∈ {1, . . . , L}, l ∈ {0, . . . ,K}. For each effective interface F ∈ Feff

int, we put

V (F) := (L2(F), H1
F ) 1

2 ,2
, H1

F := {u ∈ H1(F) | u = 0 on F ∩ ∂Q}. (11)
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We then define the subspace
X0 := {(E,H) ∈ L2(Q)6 | div(εE|Q̃i,l) ∈ L

2(Q̃i,l), JεE · νFKF ∈ V (F), (12)

div(µH) = 0, µH · ν = 0 on ∂Q, F ∈ Feff
int, i ∈ {1, . . . , L}, l ∈ {0, . . . ,K}},

of X, which is inspired by the spaces Xdiv and X0 in [29, 21, 20]. The space X0 is
complete with respect to the norm

‖(E,H)‖2X0
:= ‖(E,H)‖2 +

N∑
i=1

∥∥∥div(ε(i)E(i))
∥∥∥2

L2(Qi)
+

∑
F∈Feff

int

‖JεE · νFKF‖2V (F) .

Indeed, let (En,Hn)n be a Cauchy-sequence in X0, and fix numbers i ∈ {1, . . . , L},
l ∈ {0, . . . ,K}, as well as an interface F ∈ Feff

int that is a face of Q̃i,l. The given
sequence converges to a limit (E,H) in L2(Q)6 with respect to the norm ‖·‖. Since
also the sequence (divµHn)n converges in L2(Q), we infer from the closedness
of the divergence operator and the continuity of the normal trace operator that
div(µH) = 0 and µH · ν = 0 on ∂Q. For the vector E, we observe that also the
sequence (εEn|Q̃i,l)n converges with respect to the graph norm of the divergence
operator on Q̃i,l, whence div(εE|Q̃i,l) is an element of L2(Q̃i,l). Employing now the
continuity of the normal trace operator for F , we conclude that (trF (εEn)|Q̃i,l)n
converges in H−1/2(F) to trF (εE)|Q̃i,l . We repeat this reasoning on every other
submedium. By definition of the norm in X0 and the uniqueness of limits, the jump
JεE · νFKF is consequently contained in V (F). Altogether, (E,H) is an element of
X0, and the limit of (En,Hn) in X0.

To equip the Maxwell operator with the magnetic boundary as well as the electric
and magnetic divergence conditions, we introduce the restrictionM0 of the Maxwell
operator to the space X0, and consider it on the space

X1 := D(M0) := D(M) ∩X0, (13)
which is equipped with the norm∥∥∥∥(EH

)∥∥∥∥2

X1

:=
∥∥∥∥(EH

)∥∥∥∥2

X0

+
∥∥∥∥M (

E
H

)∥∥∥∥2
,

(
E
H

)
∈ X1.

Remark 1. By interpreting the Maxwell equations (1) on X1, we only assume
that the divergence of the electric field is an L2-function on every submedium
Q̃i,l, i ∈ {1, . . . , L}, l ∈ {0, . . . ,K}. In particular, we allow for nonzero jumps
of the normal component of the field εE across effective interfaces in Feff

int. These
discontinuities represent surface charges on the interfaces, see Section 3.5 in [25].♦

Although the space X1 is mainly defined by means of the domains of the di-
vergence and curl operators, which themselves allow for irregular functions, the
space X1 indeed embeds into a space of functions with piecewise fractional Sobolev
regularity above 1/2, see Proposition 4.

The next lemma deals with M0, and it shows that M0 is not only the restriction
of M to X0, but also its part in this space. The statement corresponds to relation
(2.5) in [21].

Lemma 2.2. The identity D(Mk
0 ) = D(Mk) ∩ X0 is valid for all k ∈ N, and

M(D(M)) is a subset of X0. In particular, M0 is the part of M in X0, and the
space X1 is complete.

Proof. We show only that the space X1 is complete. The remaining statements can
be established in the same way as identity (2.5) in [21].

To deduce the completeness of X1, we first note that M0 is closed in X0 as the
part of a closed operator, and thus its domain X1 is complete with respect to the
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graph norm of M0. It hence suffices to show that the graph norm of M0 coincides
with the standard norm on X1.

Let (E,H) ∈ X1 = D(M) ∩ X0. Combining the relation div(ε(M(E,H))1) =
div(curlH) = 0 with the transmission conditions in H(curl, Q) and H(div, Q) and
the definition of the norms on X0 and X1, the identities∥∥∥∥(EH

)∥∥∥∥2

X1

=
∥∥∥∥(EH

)∥∥∥∥2

X0

+
∥∥∥∥M (

E
H

)∥∥∥∥2

X0

=
∥∥∥∥(EH

)∥∥∥∥2

D(M0)

immediately follow. �

The part of M in X1 is denoted by M1, and it is shown to generate a strongly
continuous semigroup on X1. Thus, the space X1 serves as a state space for the
Maxwell equations (1), see Proposition 5. Using a regularity statement for the
space X1, we can then conclude that the system (1) possesses solutions of piecewise
H1−θ-regularity, θ ∈ (0, 1) appropriate, see Corollary 2 and Remark 2. As a starting
point, the following result states the generator property of the Maxwell operator
on X. The statement is part of Proposition 3.5 in [29].

Proposition 1. Let ε and µ satisfy (2). The Maxwell operator M generates a
unitary C0-group (etM )t∈R on X.

3. Analysis of an elliptic transmission problem

This section is concerned with investigations of transmission problems for the
Laplacian on the cuboid Q with homogeneous transmission conditions, see (14). By
homogeneous we mean that the solution and its normal derivative are required to
be continuous at all interfaces up to multiplication with the discontiunous param-
eters ε and µ. The considered elliptic transmission problem arises several times in
literature, see [15, 36, 39, 34, 11, 12, 13] for instance. Note, however, that there
are no explicit regularity statements for our particular application of the embedded
waveguide at hand, to the best of our knowledge. In other words, we are interested
in precise results in terms of the size of jumps of the parameters ε and µ. This is
because the below system (14) arises naturally when analyzing the regularity of the
electric and magnetic field, see the proof of Lemma 4.2 and [15, 11, 12]. Because we
are also going to transfer some arguments from the analysis of (14) to a different
elliptic transmission problem in a subsequent work, we analyze the problem here in
detail to have a self-contained presentation.

Let η ∈ {ε, µ} satisfy the assumptions (2). The function η will throughout serve
as a placeholder for the material parameters ε and µ. Let further Γ∗ be a nonempty
union of some of the sets Γ1,Γ2,Γ3, consisting of opposite boundary faces of Q, see
(3). Consider the elliptic transmission problem

−∆ψ(i) = f (i) on Qi for i ∈ {1, . . . , N},
ψ = 0 on Γ∗,

∇ψ · ν = 0 on ∂Q \ Γ∗,
JψKF = 0 = Jη∇ψ · νFKF on F ∈ Fint,

(14)

involving a given function f ∈ L2(Q).
We next recall the decompositionQ =

⋃L
i=1
⋃K
j=0 Q̃ij from Section 1. To measure

the regularity of the solution of (14) in the case η = ε, we introduce the number
κ ∈ (0, 1] with

max
i∈{1,...,L},
l∈{1,...,K}

(ε|Q̃i,l − ε|Q̃i,0)2

ε|Q̃i,lε|Q̃i,0
= − 4 sin2(κπ)

sin(κ2π) sin( 3κ
2 π)

. (15)
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As the function on the right is monotonically decreasing in κ on ( 2
3 , 1], we infer

that κ decreases if the relative discontinuities of the material parameter ε in the
subcuboids Q̃1, . . . , Q̃L become stronger, meaning the material becomes more het-
erogeneous. In the limit case of homogeneous subcuboids Q̃1, . . . , Q̃L, on the other
hand, the number κ is one. We further note that the assumptions (2) imply the
crucial lower estimate

κ > 3/4. (16)

Indeed, using (2) twice, we can estimate the left hand side of (15) via

(ε|Q̃i,l − ε|Q̃i,0)2

ε|Q̃i,lε|Q̃i,0
<

ε|2
Q̃i,l

ε|Q̃i,lε|Q̃i,0

(
2
√

2− 2
√

2 +
√

2
)2

<

(
2
√

2− 2
√

2 +
√

2
)2

1 + 2
√

2− 2
√

2 +
√

2
= 4
√

2.

The central result of this section is the following regularity statement for (14). To
state it, we employ the following notation. We define Q̃ := Q ∩ {x3 = 1/2}, Q̃i :=
Qi ∩ {x3 = 1/2}, i ∈ {1, . . . , N}, and interpret them as rectangles in R2. Piecewise
Sobolev regularity on Q̃ is then defined with respect to the partition Q̃1, . . . , Q̃N .
We put

V2−κ := H2
x3

((0, 1), L2(Q̃)) ∩H1
x3

((0, 1), H1(Q̃)) ∩ L2
x3

((0, 1), PH2−κ(Q̃)) (17)

for κ ∈ [0, 1). This space is canonically equipped with the sum of the norms.

Proposition 2. Let η ∈ {ε, µ}, and let ε and µ satisfy (2). Let further κ > 1− κ
if η = ε, and κ = 0 if η = µ. Assume also that f ∈ L2(Q), and let Γ∗ be nonempty.
There is a unique solution ψ ∈ V2−κ of (14) with ‖ψ‖V2−κ

≤ C ‖f‖L2(Q) for a
constant C = C(Q, η, κ) > 0.

The remainder of this section is concerned with the proof of Proposition 2. The
structure of the argument is oriented towards the papers [36, 39, 15].

We express system (14) equivalently by the formula

∆0,Γ∗u = f, (18)

involving the Laplacian

(∆0,Γ∗u)(i) := ∆u(i), on Qi, i ∈ {1, . . . , N}, (19)

u ∈ D(∆0,Γ∗) := {v ∈ H1
Γ∗(Q) | ∆v(i) ∈ L2(Qi), ∇v · ν = 0 on ∂Q \ Γ∗,

Jη∇v · νFKF = 0 for F ∈ Fint, i ∈ {1, . . . , N}}.

3.1. Energy estimates for the Laplacian with transmission conditions. In
the next two lemmas, we provide a useful energy identity and an a priori estimate
for the Laplace operator on D(∆0,Γ∗) ∩ PH2(Q). This is done in the spirit of
Grisvard, see [26].

Lemma 3.1. Let η ∈ {ε, µ} satisfy (2). The identity
N∑
i=1

η(i)
(∥∥∥∂2

1u
(i)
∥∥∥2

L2(Qi)
+
∥∥∥∂2

2u
(i)
∥∥∥2

L2(Qi)
+
∥∥∥∂2

3u
(i)
∥∥∥2

L2(Qi)
+ 2

∥∥∥∂1∂2u
(i)
∥∥∥2

L2(Qi)

+ 2
∥∥∥∂1∂3u

(i)
∥∥∥2

L2(Qi)
+ 2

∥∥∥∂2∂3u
(i)
∥∥∥2

L2(Qi)

)
=

N∑
i=1

η(i)
∥∥∥∆u(i)

∥∥∥2

L2(Qi)

is valid for u ∈ D(∆0,Γ∗) ∩ PH2(Q).
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Proof. 1) We only treat the case Γ∗ = Γ1. The remaining cases are proved in a
similar way. A simple calculation first leads to the equation∥∥∥∆u(i)

∥∥∥2

L2(Qi)
=
∥∥∥∂2

1u
(i)
∥∥∥2

L2(Qi)
+
∥∥∥∂2

2u
(i)
∥∥∥2

L2(Qi)
+
∥∥∥∂2

3u
(i)
∥∥∥2

L2(Qi)
(20)

+ 2
∫
Qi

(∂2
1u

(i))(∂2
2u

(i)) dx+ 2
∫
Qi

(∂2
1u

(i))(∂2
3u

(i)) dx+ 2
∫
Qi

(∂2
2u

(i))(∂2
3u

(i)) dx

for i ∈ {1, . . . , N}. It now remains to consider the last three terms on the right
hand side.

2) By Lemma 2.1, there are two sequences (ϕn)n and (ψn)n in PH2(Q) satisfying
ϕ

(i)
n → ∂3u

(i), ψ(i)
n → ∂2u

(i) in H1(Qi) as n→∞, and fulfilling the boundary and
transmission conditions ϕ(i)

n = 0 on Γ(i)
3 , ψ(i)

n = 0 on Γ(i)
2 ∩ ∂Q, and JϕnKF = 0 =

JηψnKF for F ∈ Fint,2 for all i ∈ {1, . . . , N} and n ∈ N. Employing Lemma 2.1 of
[21] and Lemma 7.1 of [54], the relations

∂2ϕ
(i)
n = 0 on Γ(i)

3 , ∂3ψ
(i)
n = 0 on Γ(i)

2 ∩ ∂Q,

J∂3ϕ
(i)
n KF = 0 = Jη∂3ψ

(i)
n KF for F ∈ Fint,2,

are furthermore valid. An integration by parts then leads to the formula
N∑
i=1

∫
Qi

η(i)(∂3ϕ
(i)
n )(∂2ψ

(i)
n ) dx =

N∑
i=1

∫
Qi

η(i)(∂2ϕ
(i)
n )(∂3ψ

(i)
n ) dx.

Taking limits, we infer the formula
N∑
i=1

∫
Qi

η(i)(∂2
3u

(i))(∂2
2u

(i)) dx =
N∑
i=1

∫
Qi

η(i)(∂2∂3u
(i))2 dx (21)

for the last term on the right hand side of (20). Similar reasoning also gives rise to
the equations

N∑
i=1

η(i)
∫
Qi

(∂2
1u

(i))(∂2
3u

(i)) dx =
N∑
i=1

η(i)
∫
Qi

(∂1∂3u
(i))2 dx, (22)

N∑
i=1

η(i)
∫
Qi

(∂2
1u

(i))(∂2
2u

(i)) dx =
N∑
i=1

η(i)
∫
Qi

(∂1∂2u
(i))2 dx. (23)

Inserting (21)–(23) into (20), we finally arrive at the desired statement. �

Lemma 3.2. Let u ∈ D(∆0,Γ∗)∩PH2(Q), and η ∈ {ε, µ} satisfy (2). The estimate
N∑
i=1

η(i)
∥∥∥u(i)

∥∥∥
H2(Qi)

≤ C
N∑
i=1

η(i)
∥∥∥∆u(i)

∥∥∥
L2(Qi)

is valid with a uniform constant C = C(η,Q) > 0.

Proof. The interface and boundary conditions for u lead in an integration by parts
to the relation

N∑
i=1

∫
Qi

η(i)|∇u(i)|2 dx ≤
N∑
i=1

∥∥∥u(i)
∥∥∥
L2(Qi)

η(i)
∥∥∥∆u(i)

∥∥∥
L2(Qi)

.

Since u is an element of H1
Γ∗(Q), the Poincaré inequality, see Theorem 13.6.9 in

[50], leads to the inequalities
N∑
i=1

∫
Qi

η(i)|∇u(i)|2 dx ≤
( N∑
i=1

η(i)
∥∥∥∆u(i)

∥∥∥2

L2(Qi)

)1/2( N∑
i=1

η(i)
∥∥∥u(i)

∥∥∥2

L2(Qi)

)1/2
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≤ CP
( N∑
i=1

η(i)
∥∥∥∆u(i)

∥∥∥2

L2(Qi)

)1/2( N∑
i=1

η(i)
∥∥∥∇u(i)

∥∥∥2

L2(Qi)

)1/2
,

with a uniform constant CP > 0. Similar reasoning also shows that the L2-norm
of u can be estimated by means of the L2-norm of the Laplacian of u. In view of
Lemma 3.1, we have derived the asserted statement. �

3.2. Geometric constructions for the elliptic transmission problem. Hav-
ing classical elliptic regularity theory in mind, it is natural that the behavior of
functions in D(∆0,Γ∗) near interior edges is most important. This subsection in-
troduces appropriate geometric objects for the analysis close to an interior edge.
We denote the union of all edges of the interfaces by S. The latter is also called
skeleton.

Definition 3.3. Let e ⊆ S ∩Q be an interior edge, and let Qin,1, . . . , Qin,4 be the
four adjacent cuboids to e. The material parameter ε has a strong discontinuity
at e if ε|Qin,1∪···∪Qin,4 has a strictly larger value on one cuboid than on the remaining
three.

In the following, we fix an interior edge ein ⊆ S∩Q. After translation and scaling
we assume the identity

ein = {(0, 0)} × [0, 1]. (24)

We moreover assume that ε has a strong discontinuity at ein, and fix four cuboids
Qin,1, . . . , Qin,4 having ein as a common edge. We denote by εin the restriction of ε
to the latter cuboids. The notation ε(i)

in then refers to εin|Qin,i . As ε satisfies (2), it
then suffices to treat the configuration

ε
(1)
in = ε

(2)
in = ε

(3)
in < ε

(4)
in <

1
1 + 2

√
2− 2

√
2 +
√

2
ε

(1)
in ,

ε
(4)
in

ε
(1)
in
6= 1− 2

cos( 15
7 π) sin( 6

7π)
cos( 12

7 π) sin( 9
7π)

.

(25)

All other cases (such as ε(1)
in having the largest value) are then covered by symmetry.

As in [14, 15], we use a cylindrical coordinate system to deal with the behavior of
functions in D(∆0,Γ∗) near the interior edge ein. To that end, we employ a cylinder
Zin around ein with radius 1, that touches the faces Γ+

3 and Γ−3 of Q. After scaling,
we can assume that Z touches no interior edge (except ein, of course). We set

Zin,i := Zin ∩Qin,i, i ∈ {1, . . . , 4},

and transfer the notion of restrictions of functions and piecewise regularity to this
partition of Zin. Also εin is defined accordingly on Zin. The interfaces

FZk := Zin,k ∩ Zin,k+1, FZ4 := Zin,1 ∩ Zin,4, k ∈ {1, 2, 3},

are furthermore employed. After rotating, the representation
Zin,i = {(x, y, z) | (x, y) ∈ Din,i, z ∈ [0, 1]},
Din,i = {(r cosϕ, r sinϕ) | r ∈ (0, 1), ϕ ∈ Iin,i}

(26)

is valid for i ∈ {1, . . . , 4}, using the intervals

Iin,1 := (0, π2 ), Iin,2 := (π2 , π), Iin,3 := (π, 3
2π), Iin,4 := ( 3

2π, 2π).

By (r, ϕ, z) we throughout denote cylindrical coordinates. Note thatDin,1, . . . , Din,4
give rise to a partition of the unit disc D. The partition represents the regions,
where εin is constant.
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The interfaces near ein are then represented by the interfaces between the sub-
domains Din,i. To address them, we set

Ǎin,k := ∂Din,k ∩ ∂Din,k+1, Ǎin,4 := ∂Din,1 ∩ ∂Din,4,

for i ∈ {1, 2, 3}. Also the definition of the jump J·K is transferred to the interfaces
FZi and Ǎin,i.

3.3. Analysis of a Laplacian on the disc with transmission conditions. In
this Subsection, we use the notation from Subsection 3.2 without further notice.
Our goal is a precise spectral knowledge of the two-dimensional Laplacian

(Ľinψ)(i) := ∆ψ(i) on Din,i, (27)

ψ ∈ D(Ľin) := {ψ ∈ H1
0 (D) | ∆ψ(i) ∈ L2(Din,i),

Jεin∂νψKǍin,i
= 0 for i ∈ {1, . . . , 4}}

with transmission conditions on the unit disc D. Note that the transmission con-
ditions fit to the ones of the Laplacian ∆0,Γ∗ , see (19).

The next statement provides the selfadjointness and invertibility of Ľin on L2(D).
Although the statement is well known, see [36] for instance, we provide the proof
for the sake of a self-contained presentation.

Lemma 3.4. Let εin satisfy (25). The operator Ľin is invertible, has a compact
resolvent, and is selfadjoint on L2(D) with respect to the inner product

(f, g)εin,D :=
∫
D

εinfg dx, f, g ∈ L2(D).

Proof. We first show that Ľin is surjective. Let f ∈ L2(D). We consider the
associated variational formulation

4∑
i=1

∫
Din,i

ε
(i)
in ∇u(i)∇ϕ(i) dx =

∫
D

fϕdx, ϕ ∈ H1
0 (D). (28)

The Lax-Milgram Lemma then yields a unique function u ∈ H1
0 (D) satisfying

(28) for all ϕ ∈ H1
0 (D). Inserting smooth test functions ϕ with compact support in

D into (28), we further infer that div(εin∇u) is an element of L2(D). Altogether,
u is an element of D(Ľin), and Ľin is surjective. The injectivity of Ľin can be
established with similar reasoning.

Let now v, w ∈ D(Ľin). Employing the boundary and interface conditions from
(27) in an integration by parts, we infer the relations

−
4∑
i=1

∫
Din,i

ε
(i)
in v

(i)∆w(i) dx =
4∑
i=1

∫
Din,i

ε
(i)
in ∇v(i)∇w(i) dx

= −
4∑
i=1

∫
Din,i

ε
(i)
in (∆v(i))w(i) dx.

This shows the symmetry of the operator Ľin. The remaining asserted statements
follow now from the closedness of Ľin. �

The eigenvalue problem for Ľin can be handled by transferring the reasoning
in [49]. This means that we switch into polar coordinates (r, ϕ) on the disc D,
and proceed with a separation of variables. Recall the intervals Iin,1, . . . , Iin,4 from
(26). As the coefficient εin depends only on the angle ϕ, it can be interpreted as a
piecewise constant function on the union Iin,1 ∪ · · · ∪ Iin,4.
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We study the eigenvalue problem

(ψ(i)
in )′′(ϕ) = −κ2

inψ
(i)
in (ϕ) for ϕ ∈ Iin,i, i ∈ {1, . . . , 4},

ψ
(1)
in (0) = ψ

(4)
in (2π), ε

(1)
in (ψ(1)

in )′(0) = ε
(4)
in (ψ(4)

in )′(2π),

ψ
(1)
in (π2 ) = ψ

(2)
in (π2 ), (ψ(1)

in )′(π2 ) = (ψ(2)
in )′(π2 ),

ψ
(2)
in (π) = ψ

(3)
in (π), (ψ(2)

in )′(π) = (ψ(3)
in )′(π),

ψ
(3)
in ( 3

2π) = ψ
(4)
in ( 3

2π), ε
(1)
in (ψ(3)

in )′( 3
2π) = ε

(4)
in (ψ(4)

in )′( 3
2π).

(29)

For the formulation of the derivative transmission condition in the third and
fourth line of (29), we employ the condition ε(1)

in = ε
(2)
in = ε

(3)
in . By Lemma 4.2 in

[37], system (29) has countably many eigenvalues 0 = κ2
in,0 < κ2

in,1 ≤ · · · → ∞,
and associated piecewise smooth eigenfunctions ψin,0, ψin,1, . . . . The latter form an
orthonormal basis of L2(0, 2π) with respect to the inner product

(f, g)εin =
∫ 2π

0
εinfg dϕ, f, g ∈ L2(0, 2π).

We next derive a sharp lower bound for the square root of the first nonzero
eigenvalue of (29). To that end, we employ the number κ from (15).

Lemma 3.5. Let εin satisfy (25). Then κ ≤ κin,1 < 1 ≤ κin,2.

Proof. 1) We first assume that λ ∈ (0, 1) is an eigenvalue of (29) with an associated
eigenfunction ψ 6= 0. The first line of (29) then implies the representation

ψ(i)(ϕ) = a(i) cos(
√
λϕ) + b(i) sin(

√
λϕ), a(i), b(i) ∈ R, ϕ ∈ Iin,i (30)

for i ∈ {1, . . . , 4}. The third and fourth line of (29) lead to the relations a(1) =
a(2) = a(3) and b(1) = b(2) = b(3). The second and fifth lines of (29) further result
in the formulas

a(1) = a(4) cos(
√
λ2π) + b(4) sin(

√
λ2π), (31)

b(1) = ε
(4)
in
ε
(1)
in

(
− a(4) sin(

√
λ2π) + b(4) cos(

√
λ2π)

)
,

a(4) cos(
√
λ 3

2π) + b(4) sin(
√
λ 3

2π) = a(1) cos(
√
λ 3

2π) + b(1) sin(
√
λ 3

2π)

= a(4) cos(
√
λ2π) cos(

√
λ 3

2π) + b(4) sin(
√
λ2π) cos(

√
λ 3

2π) (32)

− ε
(4)
in
ε
(1)
in
a(4) sin(

√
λ2π) sin(

√
λ 3

2π)

+ ε
(4)
in
ε
(1)
in
b(4) cos(

√
λ2π) sin(

√
λ 3

2π).

Reformulating the last identity, the equation

a(4)( cos(
√
λ 3

2π)− cos(
√
λ2π) cos(

√
λ 3

2π) + ε
(4)
in
ε
(1)
in

sin(
√
λ2π) sin(

√
λ 3

2π)
)

= b(4)( sin(
√
λ2π) cos(

√
λ 3

2π)− sin(
√
λ 3

2π) + ε
(4)
in
ε
(1)
in

cos(
√
λ2π) sin(

√
λ 3

2π)
)

=: b(4)A1(λ) (33)

is derived. Relating the derivative condition in the fifth line of (29) to (31), we
conclude the formulas
a(4)(− ε(4)

in sin(
√
λ 3

2π) + ε
(1)
in cos(

√
λ2π) sin(

√
λ 3

2π) + ε
(4)
in sin(

√
λ2π) cos(

√
λ 3

2π)
)

= b(4)(− ε(4)
in cos(

√
λ 3

2π)− ε(1)
in sin(

√
λ2π) sin(

√
λ 3

2π) + ε
(4)
in cos(

√
λ2π) cos(

√
λ 3

2π)
)

=: b(4)A2(λ). (34)
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2) We next show by contradiction that a(4) is nonzero. Assume hence that
a(4) = 0. Equations (31) and (33) then imply that b(4) is nonzero and that A1(λ)
vanishes. In the following, the numbers

ω := ε
(4)
in /ε

(1)
in − 1, ξ := ε

(4)
in − ε

(1)
in

are employed. Manipulating (33) by means of trigonometric identities, we infer the
relations

0 = A1(λ) = sin(
√
λ2π) cos(

√
λ 3

2π)− sin(
√
λ 3

2π) + ( ε
(4)
in
ε
(1)
in
− 1) cos(

√
λ2π) sin(

√
λ 3

2π)

+ cos(
√
λ2π) sin(

√
λ 3

2π)

= ω cos(
√
λ2π) sin(

√
λ 3

2π) + 2 cos(
√
λ 5

2π) sin(
√
λπ).

Since the two summands in the last line have no common zeros on (0, 1), the last
line gives rise to the formula

ω = ω(λ) = −
2 cos(

√
λ 5

2π) sin(
√
λπ)

cos(
√
λ2π) sin(

√
λ 3

2π)
. (35)

From (34) we further deduce that the expression A2(λ) vanishes. Manipulating
the defining relation for A2(λ) by means of trigonometric identities, the equations

0 = − ε
(4)
in
ε
(1)
in

cos(
√
λ 3

2π)− sin(
√
λ2π) sin(

√
λ 3

2π) + ε
(4)
in
ε
(1)
in

cos(
√
λ2π) cos(

√
λ 3

2π)

= − ε
(4)
in
ε
(1)
in

cos(
√
λ 3

2π)− sin(
√
λ2π) sin(

√
λ 3

2π) + ω cos(
√
λ2π) cos(

√
λ 3

2π)

+ cos(
√
λ2π) cos(

√
λ 3

2π)

= − ε
(4)
in
ε
(1)
in

cos(
√
λ 3

2π) + cos(
√
λ 7

2π) + ω cos(
√
λ2π) cos(

√
λ 3

2π)

= −ω cos(
√
λ 3

2π)− 2 sin(
√
λ 5

2π) sin(
√
λπ) + ω cos(

√
λ2π) cos(

√
λ 3

2π)

follow. The right hand side is next multiplied with the factor cos(
√
λ2π) sin(

√
λ 3

2π).
Using also (35), we then infer the formulas

0 = −ω cos(
√
λ 3

2π) cos(
√
λ2π) sin(

√
λ 3

2π)

− 2 sin(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ2π) sin(

√
λ 3

2π)

+ ω cos2(
√
λ2π) cos(

√
λ 3

2π) sin(
√
λ 3

2π)

= 2 cos(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ 3

2π)

− 2 sin(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ2π) sin(

√
λ 3

2π)

− 2 cos(
√
λ 5

2π) sin(
√
λπ) cos(

√
λ2π) cos(

√
λ 3

2π). (36)

We next divide (36) by sin(
√
λπ) 6= 0, and we use besides the angle sum formula

for cosine the trigonometric relations
cos(
√
λ 5

2π) cos(
√
λ 3

2π) = 1
2 (cos(

√
λ4π) + cos(

√
λπ)),

cos(
√
λ2π) cos(

√
λπ) = 1

2 (cos(
√
λ3π) + cos(

√
λπ)).

In this way, we arrive at the equations
0 = cos(

√
λ 5

2π) cos(
√
λ 3

2π)− sin(
√
λ 5

2π) cos(
√
λ2π) sin(

√
λ 3

2π)

− cos(
√
λ 5

2π) cos(
√
λ2π) cos(

√
λ 3

2π)

= cos(
√
λ 5

2π) cos(
√
λ 3

2π)− cos(
√
λ2π) cos(

√
λπ)

= 1
2 (cos(

√
λ4π)− cos(

√
λ3π)) = − sin(

√
λ 7

2π) sin(
√
λ 1

2π).
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As sin(
√
λ 1

2π) 6= 0, we conclude that λ is an element of the set { 4
49 ,

16
49 ,

36
49}. Plugging

these values for λ into the formula (35) for ω(λ), we obtain, however, that ω(4/49)
and ω(16/49) are negative (thus contradicting (25)), while ω(36/49) is excluded in
(25). We conclude that a(4) is different from zero.

3) Taking the results of part 2) into account, we can assume that a(4) = 1. In
the following, we distinguish the cases of A2(λ) being zero and nonzero, see (34).

3.i) Suppose A2(λ) = 0, and proceed similar to case 2). The formula for A2(λ)
in (34) is divided by ε(4)

in , and the number

ω0 := 1 + ε
(1)
in /ε

(4)
in

is introduced. By means of trigonometric identities, the equations

0 = − cos(
√
λ 3

2π)− ε
(1)
in
ε
(4)
in

sin(
√
λ2π) sin(

√
λ 3

2π) + cos(
√
λ2π) cos(

√
λ 3

2π)

= − cos(
√
λ 3

2π)− ω0 sin(
√
λ2π) sin(

√
λ 3

2π) + cos(
√
λ 1

2π)

= 2 sin(
√
λπ) sin(

√
λ 1

2π)− ω0 sin(
√
λ2π) sin(

√
λ 3

2π) (37)
are then obtained. Since the summands on the right hand side of (37) have no
common zero on (0, 1), the formula

ω0 =
2 sin(

√
λπ) sin(

√
λ 1

2π)
sin(
√
λ2π) sin(

√
λ 3

2π)
(38)

follows. Treating the left hand side of (34) in the same way, we further arrive at

0 = −2 cos(
√
λπ) sin(

√
λ 1

2π) + ω0 cos(
√
λ2π) sin(

√
λ 3

2π).

Multiplying the right hand side by sin(
√
λ2π) and inserting (38), we deduce

0 = −2 sin(
√
λ2π) cos(

√
λπ) sin(

√
λ 1

2π) + 2 cos(
√
λ2π) sin(

√
λπ) sin(

√
λ 1

2π).

Dividing by sin(
√
λ 1

2π) and using the sum formula for sine, we arrive at the identity
0 = sin(

√
λπ). Since λ is assumed to belong to (0, 1), this is a contradiction.

3.ii) In consideration of the results in 3.i), we infer that A2(λ) has to be nonzero.
Dividing in (34) by A2(λ), and using trigonometric identities as well as the number
ξ = ε

(4)
in − ε

(1)
in , we then obtain the equations

b(4) =
−ε(4)

in sin(
√
λ 3

2π) + ε
(1)
in cos(

√
λ2π) sin(

√
λ 3

2π) + ε
(4)
in sin(

√
λ2π) cos(

√
λ 3

2π)
−ε(4)

in cos(
√
λ 3

2π)− ε(1)
in sin(

√
λ2π) sin(

√
λ 3

2π) + ε
(4)
in cos(

√
λ2π) cos(

√
λ 3

2π)

=
−ε(4)

in sin(
√
λ 3

2π) + ε
(4)
in sin(

√
λ 7

2π)− ξ cos(
√
λ2π) sin(

√
λ 3

2π)
−ε(4)

in cos(
√
λ 3

2π) + ε
(4)
in cos(

√
λ 7

2π) + ξ sin(
√
λ2π) sin(

√
λ 3

2π)

= −
2ε(4)

in cos(
√
λ 5

2π) sin(
√
λπ)− ξ cos(

√
λ2π) sin(

√
λ 3

2π)
2ε(4)

in sin(
√
λ 5

2π) sin(
√
λπ)− ξ sin(

√
λ2π) sin(

√
λ 3

2π)
. (39)

We next reformulate (33) algebraically with the number ω = ε
(4)
in /ε

(1)
in − 1 and

the relation a(4) = 1. We derive the identities

0 = cos(
√
λ 3

2π)− cos(
√
λ2π) cos(

√
λ 3

2π) + ε
(4)
in
ε
(1)
in

sin(
√
λ2π) sin(

√
λ 3

2π)

− b(4)( sin(
√
λ2π) cos(

√
λ 3

2π)− sin(
√
λ 3

2π) + ε
(4)
in
ε
(1)
in

cos(
√
λ2π) sin(

√
λ 3

2π)
)

= cos(
√
λ 3

2π)− cos(
√
λ 7

2π) + ω sin(
√
λ2π) sin(

√
λ 3

2π)

− b(4)(− sin(
√
λ 3

2π) + sin(
√
λ 7

2π) + ω cos(
√
λ2π) sin(

√
λ 3

2π)
)

= 2 sin(
√
λ 5

2π) sin(
√
λπ) + ω sin(

√
λ2π) sin(

√
λ 3

2π)
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− b(4)(2 cos(
√
λ 5

2π) sin(
√
λπ) + ω cos(

√
λ2π) sin(

√
λ 3

2π)
)
. (40)

The representation (39) for b(4) is next inserted into the right hand side of (40),
and all arising expressions are multiplied with the denominator in (39). In this way,
we deduce the equations

0 = 4ε(4)
in sin2(

√
λ 5

2π) sin2(
√
λπ) + 2ωε(4)

in sin(
√
λ2π) sin(

√
λ 3

2π) sin(
√
λ 5

2π) sin(
√
λπ)

− 2ξ sin(
√
λ 5

2π) sin(
√
λπ) sin(

√
λ2π) sin(

√
λ 3

2π)− ωξ sin2(
√
λ2π) sin2(

√
λ 3

2π)

+ 4ε(4)
in cos2(

√
λ 5

2π) sin2(
√
λπ)− 2ξ cos(

√
λ 5

2π) sin(
√
λπ) cos(

√
λ2π) sin(

√
λ 3

2π)

+ 2ωε(4)
in cos(

√
λ2π) sin(

√
λ 3

2π) cos(
√
λ 5

2π) sin(
√
λπ)

− ωξ cos2(
√
λ2π) sin2(

√
λ 3

2π) (41)

= 4ε(4)
in sin2(

√
λπ) + 2(ωε(4)

in − ξ) cos(
√
λ 1

2π) sin(
√
λπ) sin(

√
λ 3

2π)

− ωξ sin2(
√
λ 3

2π). (42)
To further simplify the expressions on the right hand side, we use the formulas

cos(
√
λ 1

2π) sin(
√
λπ) = 1

2 (sin(
√
λ 1

2π) + sin(
√
λ 3

2π)),

ωε
(4)
in − ξ = (ε(4)

in )2

ε
(1)
in
− 2ε(4)

in + ε
(1)
in = (ε(4)

in −ε
(1)
in )2

ε
(1)
in

= ( ε
(4)
in
ε
(1)
in
− 1)(ε(4)

in − ε
(1)
in )

= ωξ.

Inserting these relations in (42), we arrive at the identities

0 = 4ε(4)
in sin2(

√
λπ) + 2ωξ cos(

√
λ 1

2π) sin(
√
λπ) sin(

√
λ 3

2π)− ωξ sin2(
√
λ 3

2π)

= 4ε(4)
in sin2(

√
λπ) + ωξ sin(

√
λ 1

2π) sin(
√
λ 3

2π).
As the two summands on the right hand side have no common zeros on (0, 1), we
conclude the representation

(ε(4)
in − ε

(1)
in )2

ε
(1)
in

= ωξ = − 4ε(4)
in sin2(

√
λπ)

sin(
√
λ 1

2π) sin(
√
λ 3

2π)
. (43)

Note that λ is uniquely determined by (43), and that it is greater or equal than
κ2, see (15). Altogether, there is at most one eigenvalue of (29) in (0, 1), and if
it exists, it is greater or equal than κ2. The associated eigenspace is furthermore
one-dimensional.

4) Let λ ∈ (0, 1) satisfy (43). Then
√
λ ≥ κ > 3

4 , see (16). It remains to show
that λ is indeed an eigenvalue of (29). We first prove that the denominator in (39),
being A2(λ), is nonzero. So, assume A2(λ) was zero. By definition of λ, (41) is still
valid. Rewriting (41) in product formula, we then deduce the identities

0 =
(
2 sin(

√
λ 5

2π) sin(
√
λπ) + ω sin(

√
λ2π) sin(

√
λ 3

2π)
)

·
(
2ε(4)

in sin(
√
λ 5

2π) sin(
√
λπ)− ξ sin(

√
λ2π) sin(

√
λ 3

2π)
)

+
(
2 cos(

√
λ 5

2π) sin(
√
λπ) + ω cos(

√
λ2π) sin(

√
λ 3

2π)
)

·
(
2ε(4)

in cos(
√
λ 5

2π) sin(
√
λπ)− ξ cos(

√
λ2π) sin(

√
λ 3

2π)
)

=
(
2 cos(

√
λ 5

2π) sin(
√
λπ) + ω cos(

√
λ2π) sin(

√
λ 3

2π)
)

·
(
2ε(4)

in cos(
√
λ 5

2π) sin(
√
λπ)− ξ cos(

√
λ2π) sin(

√
λ 3

2π)
)
.

Since the second factor on the right hand side is positive (as
√
λ > 3

4 ), we conclude
that the first one has to be zero. This expression is, however, equal to A1(λ), see
(33). (This can be seen by reversing the reasoning in (40)). Now the arguments in
part 2) lead to a contradiction. This means that A2(λ) is nonzero.
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We then define b(4) according to (39), set a(4) = 1, define a(1) = a(2) = a(3),
b(1) = b(2) = b(3) by (31), and choose ψ as in (30).

Altogether, only the required transmission conditions need to be validated for ψ.
By definition of b(4), formula (34) is satisfied. Due to (43), identity (42) is also true.
Dividing the right hand side of (42) by A2(λ), we then conclude that (40) holds.
This finally means that also the first transmission condition (33) is fulfilled. �

In the following, we construct eigenfunctions for the Dirichlet Laplacian Ľin from
(27). This is done by means of Bessel functions and the eigenvalues of (29). The
spectral analysis is concluded in Lemma 3.6. We recall for ν ≥ 0 the Bessel function
Jν of order ν as

Jν(t) :=
∞∑
j=0

(−1)j
( t2 )ν+2j

j!Γ(ν + j + 1) , t ≥ 0, (44)

involving the Gamma function Γ(·). The mapping Jν is smooth on (0,∞), see for
example the Theorem in Section 5.5.1 of [49]. The positive zeros of Jν are denoted
by 0 < µ

(ν)
1 < µ

(ν)
2 < · · · → ∞.

Recall that κ2
in,l is an eigenvalue of system (29) with associated eigenfunction

ψin,l. We define the numbers

λ̌in
k,l := (µ(κin,l)

k )2, k ∈ N, l ∈ N0,

and the associated mappings

Ψin
k,l(r, ϕ) := Jκin,l(

√
λ̌in
k,lr)ψin,l(ϕ), r ∈ (0, 1), ϕ ∈ (0, 2π), (45)

with k ∈ N and l ∈ N0. Due to the choice of λ̌in
k,l, the function Ψin

k,l vanishes on
the boundary of D. We further note that the functions Ψin

k,1 have second weak
derivatives with singularities at r = 0. This eventually causes the weaker reg-
ularity statement than H2 in Proposition 2. These singular functions are hence
incorporated separately by means of the spaces

M̌in := span{Ψin
k,l | k ∈ N, l ∈ N0 \ {1}}, Ňin := span{Ψin

k,1 | k ∈ N}. (46)
In the next lemma, we derive useful spectral properties of the Laplace opera-

tor Ľin. The proof employs ideas from Theorem 2 in Section 5.5.2, Lemma 1 in
Section 6.4.2, and Theorem 1 in Section 6.4.2 of [49]. Recall for the statement
definition (27).

Lemma 3.6. Let εin satisfy (25).
a) The family {Ψin

k,l | k ∈ N, l ∈ N0} is an orthonormal basis of L2(D) with
respect to the inner product (·, ·)εin,D from Lemma 3.4.

b) The sets M̌in and Ňin are contained in the domain D(Ľin). Furthermore, M̌in
is a subspace of PH2(D). The eigenvector relation

ĽinΨin
k,l = −λ̌in

k,lΨin
k,l, k ∈ N, l ∈ N0,

is satisfied.

Proof. a) The asserted orthogonality follows by combining the choice of the func-
tions {ψin,l | l ∈ N0} with Theorem 2 in Section 5.5.2 of [49]. The completeness
of the system {Ψin

k,l | k ∈ N, l ∈ N0} can be concluded in the same manner as in
the proof of Lemma 1 in Section 6.4.2 of [49], now employing the completeness of
{ψin,l | l ∈ N0} in L2(−π2 ,

3
2π) ∼= L2(0, 2π).

b.i) Let k ∈ N and l ∈ N0. We first focus on the transmission and boundary
conditions. The mapping Ψin

k,l satisfies the required transmission conditions as a
consequence of the choice of ψin,l, see (29). The function Ψin

k,l furthermore satisfies
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homogeneous Dirichlet boundary conditions on ∂D, as
√
λ̌in
k,l = µ

(κin,l)
k is a zero of

Jκin,l .
We next show that every function Ψin

k,l is better than H1-regular. Denote by
(r, ϕ) polar coordinates, and let i ∈ {1, . . . , 4}. Since ψin,l solves (29), it has the
representation

ψ
(i)
in,l(ϕ) = a

(i)
l cos(κin,lϕ) + b

(i)
l sin(κin,lϕ), ϕ ∈ Iin,i, (47)

with real numbers a(i)
l , b

(i)
l . We then infer the formula

(Ψin
k,l)(i)(r, ϕ) = 2−κin,l(a(i)

l cos(κin,lϕ)+b(i)l sin(κin,lϕ))rκin,l

·
∞∑
j=0

(−1)j(µ(κin,l)
k )κin,l+2j ( r

2

4 )j

j!Γ(ν + j + 1) .

As the series on the right hand side converges uniformly in r ∈ [0, 1], the function
Ψin
k,l is as regular as the function (a(i)

l cos(κin,lϕ) + b
(i)
l sin(κin,lϕ))rκin,l . If l = 0,

this means that Ψin
k,0 is piecewise smooth. In case l ∈ N, Ψin

k,l then belongs to the
space H1+κ(Din,i) for every κ < min{1, κin,l}, see [4, 5, 3, 55] for instance.

It hence suffices to show the stated eigenvalue-eigenvector relations to conclude
that M̌in and Ňin are contained in D(Ľin). Applying Theorem 2 in Section 5.5.2 of
[49] together with the choice of ψin,l, see (29), we arrive at the desired relations

(ĽinΨin
k,l)(i)(r, ϕ) = ∆(Ψin

k,l)(i)(r, ϕ)

= 1
r
∂r(r∂rJκin,l(

√
λ̌in
k,lr))ψ

(i)
in,l(ϕ) + 1

r2 (∂2
ϕψ

(i)
in,l(ϕ))Jκin,l(

√
λ̌in
k,lr)

=
(

1
r∂r(r∂rJκin,l(

√
λ̌in
k,lr))−

1
r2κ

2
in,lJκin,l(

√
λ̌in
k,lr)

)
ψ

(i)
in,l(ϕ)

= −λ̌in
k,lψ

(i)
in,l(ϕ)Jκin,l(

√
λ̌in
k,lr) = −λ̌in

k,l(Ψin
k,l)(i)(r, ϕ).

b.ii) It remains to show that every function in M̌in is at least piecewise H2-
regular. Let l ∈ N with κin,l = 1, where κ2

in,l is an eigenvalue of (29). Note that
there might be no l ∈ N with this property. With formula (47) and cartesian
coordinates, we arrive at the formula

(Ψin
k,l)(i)(r, ϕ) = 1

2(a(i)
l x1 + b

(i)
l x2)

∞∑
j=0

(−1)j(µ(1)
k )2j+1 (x

2
1+x2

2
4 )j

j!Γ(j + 2)

=: (Φin
k,l)(i)(x1, x2)

for (x1, x2) ∈ Din,i. As a result of the uniform convergence of the series and its
derivatives, we conclude that (Φin

k,l)(i) is smooth on Din,i. This means that Φin
k,l and

consequently also Ψin
k,l are elements of PH2(D). Similar reasoning shows that also

the functions Ψin
k,0 belong to PH2(D).

It remains to consider the case l ∈ N with κin,l > 1 (the case κin,l < 1 is excluded
by definition of the space M̌in). Then, Ψin

k,l has the representation

Ψin
k,l(r, ϕ) = 1

2κin,l
ψin,l(ϕ)rκin,l

∞∑
j=0

(−1)j
(
√
λ̌in
k,l)2j+κin,l( r2 )2j

j!Γ(κin,l + j + 1) .

Taking the uniform convergence of the series and its derivatives as well as the
piecewise smoothness of ψin,l into account, the function Ψin

k,l satisfies the estimate∫ 1

0

∫
Iin,i

(
1
r |∂r(Ψ

in
k,l)(i)|2 + r|∂2

r (Ψin
k,l)(i)|2 + 1

r |∂r∂ϕ(Ψin
k,l)(i)|2
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+ 1
r3 |∂ϕ(Ψin

k,l)(i)|2 + 1
r3 |∂2

ϕ(Ψin
k,l)(i)|2

)
dϕdr <∞,

proving that Ψin
k,l is an element of PH2(D). Altogether, the space M̌in is contained

in PH2(D). �

We next present a useful a-priori energy estimate for the Laplacian Ľin for func-
tions in M̌in. The estimate is established in Lemma 2.2 and the subsequent Remark
in [36]. The statement uses the space

Y̌in := {ψ ∈
4⋂
i=1

H2(Din,i) | ψ = 0 on ∂D,

JψKǍin,k
= 0 = Jεin∂νψKǍin,k

for k ∈ {1, . . . , 4}}. (48)

Lemma 3.7. Let εin satisfy (25). There is a constant C = C(εin) > 0 with

‖ψ‖PH2(D) ≤ C
(
‖ψ‖L2(D) +

( 4∑
i=1
‖∆ψ(i)‖2L2(Din,i)

)1/2)
for ψ ∈ Y̌in.

Note that Lemma 3.6 shows that M̌in is a subspace of Y̌in. Standard reasoning,
see (67) for instance, then leads to the inequality

‖ψ‖PH2(D) ≤ C‖Ľinψ‖L2(D), ψ ∈ M̌in, (49)
with a uniform constant C = C(εin) > 0.

To derive a counterpart of Lemma 3.7 for functions in the space Ňin from (46),
we transfer ideas by Kellogg in the next two lemmas to our setting, see Theorem 5.2
and Lemma 5.6 in [36].

Let ν ∈ (1/2, 1) and f ∈ C([0, 1]). In a first step, a norm estimate is derived for
the one-dimensional equation
r1/2ψ′′(r) + r−1/2ψ′(r)− ν2r−3/2ψ(r) = f(r), r ∈ (0, 1), ψ ∈ L2(0, 1). (50)

We note that the expression on the left hand side corresponds to the radial part of
the operator Laplacian Ľin, acting on functions in Ňin. The inequality provided by
the next lemma will thus be crucial for an energy estimate for Ľin, see the proof of
Lemma 3.9.

Lemma 3.8. Let κ > 2(1−ν) with parameter ν ∈ (1/2, 1) from (50). The solution
ψ of (50) with boundary conditions ψ(0) = ψ(1) = 0 satisfies the inequality∫ 1

0
rκ(r−1(ψ′)2 + r−3ψ2) dr ≤ C

∫ 1

0
f2 dr

with a uniform constant C = C(κ, ν) > 0.

Proof. We first note that there is at most one solution ψ ∈ L2(0, 1) to (50). (The
homogeneous counterpart has the fundamental system {rν , r−ν}. The integrability
constraint rules out the latter basis function. As a result, the endpoint condition at
r = 1 suffices to ensure uniqueness.) Using the technique of variation of parameters,
we obtain the solution formula

ψ(r) = αrν + 1
2ν r

ν

∫ r

0
t1/2−νf(t) dt− 1

2ν r
−ν
∫ r

0
t1/2+νf(t) dt =:

3∑
j=1

φj(r)

for r ∈ (0, 1), involving the number

α := − 1
2ν

∫ 1

0
(t1/2−ν − t1/2+ν)f(t) dt.
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We establish the desired estimate separately for the three functions φ1, φ2, φ3.
The choice of κ > 2(1− ν) first implies the identities∫ 1

0

1
r3−κφ

2
1 dr =

∫ 1

0

α2

r3−2ν−κ dr = α2

κ+ 2ν − 2 .

Applying the Cauchy-Schwarz inequality to the defining formula for α, the relations

α2 ≤ 1
4ν2

∫ 1

0
(t1−2ν − 2t+ t1+2ν) dt

∫ 1

0
f2 dt =: C1(ν)

ν2

∫ 1

0
f2 dt (51)

are also obtained. This implies the first result∫ 1

0

1
r3−κφ

2
1(r) dr ≤ C1(ν)

(κ+ 2(ν − 1))ν2

∫ 1

0
f2 dt. (52)

For the functions φ2, φ3, the analogous estimates∫ 1

0

1
r3−κφ

2
2 dr ≤ 1

8ν2(1− ν)(κ+ 2(ν − 1))

∫ 1

0
f2 dt, (53)∫ 1

0

1
r3−κφ

2
3 dr ≤ 1

8ν2(ν + 1)κ

∫ 1

0
f2 dr (54)

are valid. Inequalities (52)–(54) then lead to the result∫ 1

0

1
r3−κψ

2(r) dr ≤ C2(ν, κ)
∫ 1

0
f2 dr. (55)

It remains to estimate the first derivative of ψ. Employing (51), the relations∫ 1

0

1
r1−κ (φ′1)2 dr =

∫ 1

0

1
r1−κα

2ν2r2ν−2 dr ≤ C1(ν)
(κ+ 2(ν − 1))

∫ 1

0
f2 dr (56)

are immediately obtained. For φ2 and φ3, the analogous inequalities∫ 1

0

1
r1−κ (φ′2)2 dr = 1

4ν2

∫ 1

0

1
r1−κ

(
νrν−1

∫ r

0
t1/2−νf(t) dt+ r1/2f(r)

)2 dr

≤ 1
2
( 1

2(1− ν)(2(ν − 1) + κ) + 1
ν2

) ∫ 1

0
f2 dr, (57)∫ 1

0

1
r1−κ (φ′3)2 dr = 1

4ν2

∫ 1

0

1
r1−κ

(
− νr−ν−1

∫ r

0
t1/2+νf(t) dt+ r1/2f(r)

)2 dr

≤ 1
2
( 1

2(ν + 1)κ + 1
ν2

) ∫ 1

0
f2 dr (58)

are true. The asserted statement is now a consequence of (55)–(58). �

We are now in the position to establish the desired a-priori estimate in fractional
order Sobolev spaces for the operator Ľin on the space Ňin from (46). Recall the
number κ from (15).

Lemma 3.9. Let εin satisfy (25), κ0 ∈ (2(1 − κ), 1), and φ ∈ Ňin
‖·‖D(Ľin) . The

inequality
‖φ‖PH2−κ0/2(D) ≤ C‖Ľinφ‖L2(D)

is valid with a uniform constant C = C(κ0) > 0.

Proof. 1) Let φ ∈ Ňin. We use the sets
Di,ξ := {(x, y) ∈ Din,i | |(x, y)| ≥ ξ}

for ξ > 0, and denote by (r, ϕ) polar coordinates. Recall the definition of Din,i in
(26). Note moreover that φ is smooth on each Di,ξ by definition of Ňin in (46).
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Combining the relation |x1|κ0/2|x2|κ0/2 ≤
√
x2

1 + x2
2
κ0 , (x1, x2) ∈ R2, with

Lemma 2.12 from [6], it suffices to prove the estimate

‖r
κ0
2 φ‖L2(D) +

2∑
j=1
‖r

κ0
2 ∂jφ‖2L2(D) +

2∑
j,k=1

‖r
κ0
2 ∂j∂kφ‖2L2(D) ≤ C‖Ľinφ‖L2(D)

with a uniform constant C.
Transforming to polar coordinates, we infer the formula

4∑
i=1

∫
Di,ξ

rκ0ε
(i)
in

[
(∂2
xφ

(i))(∂2
yφ

(i))− (∂x∂yφ(i))2
]

d(x, y) (59)

=
4∑
i=1

∫ 1

ξ

∫
Iin,i

ε
(i)
in

[
− (∂r∂ϕφ(i))2 1

r1−κ0 − (∂ϕφ(i))2 1
r3−κ0 + (∂2

rφ
(i))(∂rφ(i))rκ0

+ (∂2
rφ

(i))(∂2
ϕφ

(i)) 1
r1−κ0 + 2(∂r∂ϕφ(i))(∂ϕφ(i)) 1

r2−κ0

]
dϕdr,

see Section 1.5.4 in [52] for instance. Integrating the fourth expression on the right
hand side with respect to the r- and ϕ-variable by parts, the identity

4∑
i=1

∫ 1

ξ

∫
Iin,i

ε
(i)
in r

κ0−1(∂2
rφ

(i))(∂2
ϕφ

(i)) dϕdr

=
4∑
i=1

∫ 1

ξ

∫
Iin,i

ε
(i)
in [rκ0−1(∂ϕ∂rφ(i))2 − (1− κ0)rκ0−2(∂ϕ∂rφ(i))(∂ϕφ(i))] dϕdr

−
4∑
i=1

∫
Iin,i

ε
(i)
in [rκ0−1(∂rφ(i))(∂2

ϕφ
(i))]|r=ξ dϕ (60)

is obtained. Inserting (60) into (59) and manipulating the arising expressions alge-
braically, the equations

4∑
i=1

∫
Di,ξ

rκ0ε
(i)
in [(∂2

xφ
(i))(∂2

yφ
(i))− (∂x∂yφ(i))2] d(x, y)

=
4∑
i=1

∫ 1

ξ

∫
Iin,i

ε
(i)
in [−rκ0−3(∂ϕφ(i))2 + rκ0(∂2

rφ
(i))(∂rφ(i))

+ (1 + κ0)rκ0−2(∂ϕ∂rφ(i))(∂ϕφ(i))] dϕdr

−
4∑
i=1

∫
Iin,i

ε
(i)
in [rκ0−1(∂rφ(i))(∂2

ϕφ
(i))]|r=ξ dϕ

=
4∑
i=1

∫ 1

ξ

∫
Iin,i

ε
(i)
in
[
− (2−κ0)(1+κ0)

2 rκ0−3(∂ϕφ(i))2 + (1 + κ0)rκ0−2(∂ϕ∂rφ(i))(∂ϕφ(i))

+ rκ0(∂2
rφ

(i))(∂rφ(i)) + (2−κ0)(1+κ0)−2
2 rκ0−3(∂ϕφ(i))2] dϕdr

−
4∑
i=1

∫
Iin,i

ε
(i)
in [rκ0−1(∂rφ(i))(∂2

ϕφ
(i))]|r=ξ dϕ

=
4∑
i=1

∫ 1

ξ

∫
Iin,i

ε
(i)
in
[ 1

2∂r((1 + κ0)rκ0−2(∂ϕφ(i))2) + rκ0(∂2
rφ

(i))(∂rφ(i))

+ κ0(1−κ0)
2 rκ0−3(∂ϕφ(i))2] dϕdr
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−
4∑
i=1

∫
Iin,i

ε
(i)
in [rκ0−1(∂rφ(i))(∂2

ϕφ
(i))]|r=ξ dϕ

follow. An integration by parts with respect to the r-variable then leads to
4∑
i=1

∫
Di,ξ

rκ0ε
(i)
in [(∂2

xφ
(i))(∂2

yφ
(i))− (∂x∂yφ(i))2] d(x, y)

=
4∑
i=1

∫ 1

ξ

∫
Iin,i

ε
(i)
in [rκ0(∂2

rφ
(i))(∂rφ(i)) + κ0(1−κ0)

2 rκ0−3(∂ϕφ(i))2] dϕdr

+
4∑
i=1

∫
Iin,i

ε
(i)
in [( 1+κ0

2 (∂ϕφ(i))2)|r=1 − (rκ0−1(∂rφ(i))(∂2
ϕφ

(i))

+ 1+κ0
2 rκ0−2(∂ϕφ(i))2)|r=ξ] dϕ. (61)

2) The first term on the right hand side of (61) is next treated separately by
means of Lemma 3.8. We first note that φ has the representation

φ(r cosϕ, r sinϕ) =
Z∑
k=1

αkJκin,1(
√
λ̌in
k,1r)ψin,1(ϕ), (62)

for r ∈ (0, 1), ϕ ∈ (0, 2π), with numbers Z ∈ N and α1, . . . , αZ ∈ R. (The function
φ is an element of Ňin, see (46).) Since ψin,1 is an eigenfunction of (29) to the
eigenvalue κ2

in,1, we deduce the identity

r1/2∆φ(i) = r1/2∂2
rφ

(i) + r−1/2∂rφ
(i) − κ2

in,1r
−3/2φ(i) =: f (i), r ∈ (0, 1). (63)

To apply Lemma 3.8, we note that the function f is continuous in r and that φ
belongs to L2(D). Indeed, using Lemma 3.6, the formula

∆φ(i)(r, ϕ) = −
Z∑
k=1

λ̌in
k,1αkJκin,1(

√
λ̌in
k,1r)ψ

(i)
in,1(ϕ)

is valid. Combining (63) with Lemma 3.8, we then deduce the estimate
4∑
i=1

∫ 1

0

∫
Iin,i

rκ0−1(∂rφ(i))2 dϕdr ≤ C̃
4∑
i=1

∫ 1

0

∫
Iin,i

r(∆φ(i))2 dϕdr

with a constant C̃ = C̃(κ0) > 0. For the first term on the right hand side of (61),
we consequently arrive at the inequalities

4∑
i=1

∫ 1

ξ

∫
Iin,i

ε
(i)
in r

κ0(∂2
rφ

(i))(∂rφ(i)) dϕdr

≥ −
4∑
i=1

( 1
16

∫ 1

ξ

∫
Iin,i

ε
(i)
in r

κ0+1(∂2
rφ

(i))2 dϕdr + 4
∫ 1

0

∫
Iin,i

ε
(i)
in r

κ0−1(∂rφ(i))2 dϕdr
)

≥ −
( 4∑
i=1

1
16

∫ 1

ξ

∫
Iin,i

ε
(i)
in r

κ0+1(∂2
rφ

(i))2 dϕdr + 4C̃‖
√
εinĽinφ‖2L2(D)

)
, (64)

additionally using the Young and Cauchy-Schwarz estimates.
3) We next focus on the face integrals on the right hand side of (61). To that end,

we analyze the behavior of φ near the center of D. Since φ has the representation
(62), it suffices to treat in the following only the function φ̃(r, ϕ) := Jκin,1(r)ψin,1(ϕ).
As ψin,1 is an eigenfunction of (29), definition (44) leads to the identity

(∂rφ̃(i))(∂2
ϕφ̃

(i))(r, ϕ)
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= − (κin,1)2

2
( ∞∑
j=0

(−1)j(κin,1 + 2j) ( r2 )κin,1+2j−1

j!Γ(κin,1+j+1)
)
(ψ(i)

in,1(ϕ))2
∞∑
j=0

(−1)j ( r2 )κin,1+2j

j!Γ(κin,1+j+1) .

Since κ0 > 2(1−κin,1), this implies that the function rκ0−1(∂rφ̃(i))(∂2
ϕφ̃

(i)) possesses
a continuous extension to [0, 1]× Iin,i, and that it tends to zero as r → 0. Similar
reasoning further shows the same statements for the function rκ0−2(∂ϕφ̃(i))2. The
Lebesgue theorem of dominated convergence hence yields the result

lim
ξ→0

4∑
i=1

∫
Iin,i

ε
(i)
in [rκ0−1(∂rφ(i))(∂2

ϕφ
(i)) + 1+κ0

2 rκ0−2(∂ϕφ(i))2]|r=ξ dϕ = 0. (65)

4) For the next step, the formula

∂2
rφ

(i) = x2

r2 (∂2
xφ

(i)) + 2xyr2 ∂x∂yφ
(i) + y2

r2 ∂
2
yφ

(i)

is useful. Combining (61) and (64), we derive the estimates
4∑
i=1

∫
Di,ξ

rκ0ε
(i)
in (∆φ(i))2 d(x, y) + 4C̃‖

√
εinĽinφ‖2L2(D)

≥
4∑
i=1

(∫
Di,ξ

rκ0ε
(i)
in [(∂2

xφ
(i))2 + (∂2

yφ
(i))2 + 2(∂x∂yφ)2] d(x, y)

− 1
16

∫ 1

ξ

∫
Iin,i

ε
(i)
in r

κ0+1(∂2
rφ

(i))2 dϕdr

−
∫
Iin,i

ε
(i)
in [rκ0−1(∂rφ(i))(∂2

ϕφ
(i)) + 1+κ0

2 rκ0−2(∂ϕφ(i))2]|r=ξ dϕ
)

≥ 1
2

4∑
i=1

(∫
Di,ξ

rκ0ε
(i)
in [(∂2

xφ
(i))2 + (∂2

yφ
(i))2 + 2(∂x∂yφ(i))2] d(x, y)

− 2
∫
Iin,i

ε
(i)
in [rκ0−1(∂rφ(i))(∂2

ϕφ
(i)) + 1+κ0

2 rκ0−2(∂ϕφ(i))2]|r=ξ dϕ
)
.

In the limit ξ → 0, the monotone convergence principle and (65) lead to the relation

(1 + 4C̃)‖
√
εinĽinφ‖2L2(D)

≥ 1
2

4∑
i=1

∫
Din,i

rκ0ε
(i)
in [(∂2

xφ
(i))2 + (∂2

yφ
(i))2 + 2(∂x∂yφ(i))2] d(x, y). (66)

Combining the Cauchy-Schwarz inequality with an integration by parts, we fur-
thermore infer the estimate

‖
√
εinĽinφ‖L2(D) · ‖

√
εinφ‖L2(D) ≥ −

4∑
i=1

∫
Din,i

ε
(i)
in (Ľinφ)(i)φ(i) d(x, y)

=
4∑
i=1

∫
Din,i

ε
(i)
in |∇φ(i)|2 d(x, y).

Taking additionally the Poincaré inequality into account, we conclude the remaining
estimate

‖
√
εinĽinφ‖L2(D) ≥ C‖

√
εinφ‖PH1(D). (67)

Altogether, (66) and (67) imply the desired energy inequality. �

The following corollary is an important consequence of Lemmas 3.6 and 3.9, as
well as (49).
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Corollary 1. Let εin satisfy (25), and κ > 1−κ. The domain D(Ľin) is a subspace
of PH2−κ(D) with ‖u‖PH2−κ(D) ≤ C‖Ľinu‖L2(D), u ∈ D(Ľin), for a constant
C = C(κ) > 0.

Proof. Combining Lemmas 3.6 with (49), the estimate

‖u‖PH2−κ(D) ≤ C‖
√
εinĽinu‖L2(D)

is valid for u ∈ M̌in with a uniform constant C > 0. Lemma 3.9 implies the
analogous inequality on Ňin (with a constant C = C(κ) > 0). Let v+w ∈ M̌in⊕Ňin.
The triangle inequality and Lemma 3.6 then imply the desired estimates

‖v + w‖2PH2−κ(D) ≤ 2(‖v‖2PH2−κ(D) + ‖w‖2PH2−κ(D))

≤ 2C2(‖
√
εinĽinv‖2L2(D) + ‖

√
εinĽinw‖2L2(D))

= 2C2‖
√
εinĽin(v + w)‖2L2(D). (68)

By Lemmas 3.4 and 3.6, the identity M̌in ⊕ Ňin
D(Ľin)

= D(Ľin) is valid. The
stated embedding hence is a consequence of (68). �

3.4. Conclusion of the regularity statement. We now establish the desired
regularity statement for functions in the domain of the operator ∆0,Γ∗ from (19),
resulting in a regularity result for the solution to the interface problem (14). To
that end, we first use a cut-off argument to focus on thin cylinders around interior
edges. This principle is well known to experts in the field, see [16, 14, 15] for
instance. To have a self-contained presentation, we however sketch the arguments.

Let us first fix some notation for the next statements. Recall that S is the union
of all edges of the interfaces. Let ein ⊆ S be an interior edge, and δ > 0 be so
small, that all cylinders around the interior edges with radius δ are disjoint from
each other. We denote by dist(ein, ·) : Q → [0,∞] the distance function to ein.
Let additionally χδ : [0,∞) → [0, 1] be a smooth cut-off function with χδ = 1
on [0, δ2/4] and suppχδ ⊆ [0, 9δ2/16]. Note that χδ(dist(ein, ·)2) is cylindrically
symmetric on Q with respect to ein and smooth.

Lemma 3.10. Let ε satisfy (2), and let ein ⊆ S be an interior edge. Let furthermore
u ∈ D(∆0,Γ∗). The function χδ(dist(ein, ·)2)u belongs to D(∆0,Γ∗).

Proof. After translating, scaling and rotating, we can assume that δ = 1, and that
ein satisfies (24). We abbreviate v := χ1(dist(ein, ·)2)u.

Recall definition (19). As the mapping χ1(dist(ein, ·)2) is smooth and u ∈ H1(Q),
v is also contained inH1(Q). Furthermore, v satisfies the same boundary conditions
as u, since the factor χ1(dist(ein, ·)2) does not depend on x3. Using the product
rule for the Laplacian, we furthermore infer ∆v(i) ∈ L2(Qi).

It consequently remains to verify the first order transmission condition for v. By
construction, it suffices to focus on the interfaces that touch ein. Let F be such an
interface. We assume the representation

F = {0} × [0, 1]× [0, 1],

as the other interfaces can be treated in the same way. Let x = (x1, x2, x3) =
(0, x2, x3) ∈ F . We calculate

∇χδ(dist(ein, x)2) · νF = χ′δ(dist(ein, x)2)∂1(x2
1 + x2

2)|x1=0 = 0.
This means that v fulfills the same interface conditions as u, whence v is an element
of the domain D(∆0,Γ∗). �

Recall for the next statement Definition 3.3, (17), and (15).
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Lemma 3.11. Let ε satisfy (2), and let ein ⊆ S be an interior edge, where ε has
a strong discontinuity. Let furthermore u ∈ D(∆0,Γ∗) and κ > 1− κ. The function
χδ(dist(ein, ·)2)u belongs to V2−κ ∩ D(∆0,Γ∗) and

‖χδ(dist(ein, ·)u‖V2−κ ≤ C‖∆0,Γ∗(χδ(dist(ein, ·)u)‖L2(Q)

with a number C = C(δ, ε, κ).

Proof. 1) After translating, scaling and rotating, we can assume that δ = 1, and
ein satisfies (24). We moreover adopt the constructions in Section 3.2, and assume
that Γ3 ⊆ Γ∗. (The case Γ3 6⊆ Γ∗ can be handled with the usual modifications
for homogeneous Neumann boundary conditions.) Throughout, C = C(δ, ε, κ) is a
constant that changes from line to line. As in the proof of Lemma 3.10, we set

v := χ1(dist(ein, ·)2)u ∈ D(∆0,Γ∗).

By construction of v, it suffices to prove the inequality

‖v‖L2((0,1),PH2−κ(D)) + ‖v‖H1((0,1),H1(D)) + ‖v‖H2((0,1),L2(D))

≤ C‖∆0,Γ∗v‖L2(Zin). (69)

2) The function v is odd reflected at Γ3 to the large cylinder Z̃in := D× (−1, 2),
and the resulting mapping is still denoted by v. The parameter εin is reflected in
an even way. Note that v belongs to H1(Z̃in), and that εin∇v|Din,i×(−1,2) is an
element of H(div, Z̃in).

3) Let χ̊3 : R → [0, 1] be a smooth cut-off function with χ̊3 = 1 on [0, 1] and
supp χ̊3 ⊆ [−1/2, 3/2]. We analyze the product χ̊3(x3)v in the following, and
thereby use ideas and techniques from [16, 14]. To that end, we extend the function
χ̊3(x3)v trivially by zero in x3-direction to the infinite cylinderD×R. The extended
function is denoted by the same symbol. Note that this extension argument does
not change the transmission behavior.

Put now

−∆(χ̊3v
(i)) =: f̃ (i) ∈ L2(Din,i × R), (70)

for i ∈ {1, 2, 3, 4}. The above extension procedure then implies the fact

‖f̃‖L2(D×R) ≤ C‖f‖L2(Z̃in). (71)

Next we apply a partial Fourier-Transform with respect to the x3-variable, and
we denote the resulting function by ŵ for w ∈ L2(D × R). The inverse transform
of a function v ∈ L2(D×R) is denoted by v̌. We moreover call the new variable in
Fourier space ξ. Relation (70) then gives rise to the formula

(ξ2 − ∂2
x1
− ∂2

x2
)̂ (χ̊3v

(i))(x1, x2, ξ) = (̂f̃ (i)), (x1, x2, ξ) ∈ Din,i × R. (72)

The variable ξ is considered to be fixed in the next steps (the statements are
then tacitly valid for almost all ξ). Fubini’s Theorem throughout provides L2-
integrability of the arising expressions. Equation (72) in this respect means that
the mapping (∂2

x1
+ ∂2

x2
)̂ (χ̊(i)

3 v(i))(·, ξ) is an element of L2(Din,i). Furthermore,
(̂χ̊3v)(·, ξ) belongs to H1

0 (D). Combining the fact div(εin∇χ̊3v) ∈ L2(D×R) with
the reasoning for (72), we conclude that (̂χ̊3v)(·, ξ) fulfills on D the boundary and
transmission conditions that are required in D(Ľin), see (27). Altogether, we arrive
at the fact (̂χ̊3v)(·, ξ) ∈ D(Ľin).

4) Corollary 1, the triangle inequality and (72) provide the relations

‖̂ (χ̊3v)(·, ξ)‖2PH2−κ(D) ≤ C‖Ľin (̂χ̊3v)(·, ξ)‖2L2(D)

≤ C
(
‖ξ2 (̂χ̊3v)(·, ξ)‖2L2(D) + ‖̂ (f̃)(·, ξ)‖2L2(D)

)
. (73)
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We next take also the estimate
0 ≤ −<

(
εinξ

2 (̂χ̊3v)(·, ξ), Ľin̂ (χ̊3v)(·, ξ)
)
L2(D), (74)

into account, that is a consequence of the positivity of −Ľin. Combining (72)–(74),
we arrive at the inequalities

‖̂ (χ̊3v)(·, ξ)‖2PH2−κ(D) ≤ C
(
‖
√
εinξ

2 (̂χ̊3v)(·, ξ)‖2L2(D)

− 2<
(
εinξ

2 (̂χ̊3v)(·, ξ), Ľin̂ (χ̊3v)(·, ξ)
)
L2(D)

+ ‖
√
εinĽin̂ (χ̊3v)(·, ξ)‖2L2(D) + ‖

√
εin (̂f̃)(·, ξ)‖2L2(D)

)
≤ C‖

√
εin (̂f̃)(·, ξ)‖2L2(D). (75)

Integrating now with respect to ξ and using Plancherel’s Theorem, we conclude the
estimate

‖χ̊3v‖2L2(R,PH2−κ(D)) ≤ C‖f̃‖
2
L2(D×R)

follows. In view of (71), we consequently derive the relation
‖χ̊3v‖L2(R,PH2−κ(D)) ≤ C‖f‖L2(Z̃in). (76)

This means that the function v belongs to the space L2((0, 1), PH2−κ(D)).
5) The reasoning in (75) further yields the inequality

‖ξ2 (̂χ̊3v)(·, ξ)‖2L2(D) ≤ C‖
√
εin (̂f̃)(·, ξ)‖2L2(D).

Integrating with respect to ξ and using (71), we infer the estimate
‖χ̊3v‖H2(R,L2(D)) ≤ C‖f‖L2(Z̃in). (77)

In the following, we employ the equivalence of the piecewise H1-norm and the
graph norm in D(−Ľin)1/2 several times. With the selfadjointness of the operator
(−Ľin)1/2 and the Cauchy-Schwarz estimate, we next deduce the inequalities

‖
√
εin|ξ|(−Ľin)1/2 (̂χ̊3v)(·, ξ)‖L2(D)

≤
((
εin|ξ|(−Ľin)1/2 (̂χ̊3v)(·, ξ), |ξ|(−Ľin)1/2 (̂χ̊3v)(·, ξ)

)
L2(D)

)1/2

=
((
εin|ξ|2 (̂χ̊3v)(·, ξ), (−Ľin)̂ (χ̊3v)(·, ξ)

)
L2(D)

)1/2

≤ ‖
√
εin|ξ|2 (̂χ̊3v)(·, ξ)‖1/2L2(D)‖

√
εinĽin (̂χ̊3v)(·, ξ)‖1/2L2(D).

We now integrate with respect to ξ. The statements in (71) and (75), and the
representation of the spaceH1(R, H1(D)) by means of the partial Fourier Transform
in x3 now give rise to the relation

‖
√
εinχ̊3v‖H1(R,H1(D)) ≤ C‖f‖L2(Z̃in). (78)

Combining (76)–(78), inequality (69) is valid. �

For the next statement, we collect all interior edges ein, at which ε has a strong
discontinuity, into a set E(ε), see Definition 3.3. We also set E(µ) := ∅, and recall
that δ is introduced at the beginning of this Subsection. The below lemma then
states that functions in the domain D(∆0,Γ∗) from (19) are H2-regular near every
edge of an interface at which ε has no strong discontinuity.

Lemma 3.12. Let η ∈ {ε, µ} satisfy (2), and let u ∈ D(∆0,Γ∗). The function
w := (1−

∑
e∈E(η) χδ(dist(e, ·)2))u is contained in PH2(Q) with

‖w‖PH2(Q) ≤ ‖∆0,Γ∗w‖L2(Q).
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Proof. 1) We only treat the case η = ε and Γ3 ⊆ Γ∗, as the remaining can be
handled with similar arguments. By Lemma 3.10, the function w is an element
of D(∆0,Γ∗). In view of Lemma 3.2, it suffices to show that w is piecewise H2-
regular. To reach this goal, we first analyze w on two adjacent cuboids Q1 and
Q2 that share an interface F with two interior edges. After appropriate coordinate
transformations, we can assume the identities

Q1 = (−1, 0)× (−1, 1)2, Q2 = (0, 1)× (−1, 1)2, F = {0} × [−1, 1]2.

A smooth cut-off function χ : [−1, 1] → [0, 1] is furthermore employed. It satisfies
suppχ ⊆ [−1 + δ/8, 1 − δ/8] and χ = 1 on [−1 + δ/4, 1 − δ/4] for the number δ
from the beginning of the current Subsection 3.4. Set also Q̃ := (−1, 1)3.

By construction, the function

f(x1, x2, x3) := ηχ(x1)χ(x2)w(x1, x2, x3)

is then an element of the space

{f ∈ PH1(Q̃) | ∆f |Qi ∈ L2(Qi), i ∈ {1, 2}, J 1
ηfKF = J∂1fKF = 0,

f(·,±1, ·) = 0, f(±1, ·, ·) = 0, ∂3f(·, ·,±1) = 0}.

By Proposition 8.1 in [54], the mapping f is then H2-regular on Q1 and Q2.
2) Note that w is also piecewise H2-regular in a neighborhood of the boundary

faces Γ1 and Γ2. (The cuboids that touch the exterior faces Γ1 or Γ2 are handled
as in part 1) but the cut-off procedure in the definition of f is not applied near the
respective boundary face.) Taking the definition of w into account, the function w
is altogether piecewise H2-regular on Q. �

Combining Lemmas 3.11 and 3.12, we derive the desired regularity statement
for functions in the domain D(∆0,Γ∗). Recall for the statement definitions (15) and
(17).

Lemma 3.13. Let u ∈ D(∆0,Γ∗), and let η ∈ {ε, µ} satisfy (2). Choose further
κ = 0 if η = µ, and κ > 1− κ if η = ε. The estimate

‖u‖V2−κ
≤ C‖∆0,Γ∗u‖L2(Q)

is valid with a uniform constant C = C(κ, η,Q).

Proof. 1) In the following, C = C(κ, ε,Q) > 0 is a constant that changes from line
to line. Integration by parts and the Poincare inequality imply the relations

‖∆0,Γ∗u‖L2(Q)‖∇u‖L2(Q) ≥ C‖∆0,Γ∗u‖L2(Q)‖u‖L2(Q) ≥ −C
∫
Q

(∆0,Γ∗u)udx

= C‖∇u‖2L2(Q) ≥ C‖u‖
2
L2(Q). (79)

2) For e ∈ E(η), we set ve := χδ(dist(e, ·)2)u. Combining the triangle inequality
with Lemmas 3.11 and 3.12, we infer the inequalities

‖u‖V2−κ ≤
∑

e∈E(η)

‖ve‖V2−κ + ‖u−
∑

e∈E(η)

ve‖V2−κ

≤ C
( ∑

e∈E(η)

‖∆0,Γ∗ve‖L2(Q) + ‖∆0,Γ∗(u−
∑

e∈E(η)

ve)‖L2(Q)

)
.

With Young’s inequality, we then infer the estimate

‖u‖2V2−κ
≤ C

( ∑
e∈E(η)

‖∆0,Γ∗ve‖2L2(Q) + ‖∆0,Γ∗(u−
∑

e∈E(η)

ve)‖2L2(Q)

)
. (80)
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3) Let e ∈ E(η), and abbreviate we := χδ(dist(e, ·)2). Employing the product
rule for the Laplacian as well as Young’s inequality, we deduce the relations

‖∆0,Γ∗ve‖2L2(Q) =
N∑
i=1
‖(∆we)u(i) + 2(∇we) · (∇u(i)) + we∆u(i)‖2L2(Qi)

≤ 16
N∑
i=1

(
‖(∆we)u(i)‖2L2(Qi) + ‖(∇we) · (∇u(i))‖2L2(Qi) + ‖we∆u(i)‖2L2(Qi)

)
.

We next take into account that all functions we have disjoint support. In view of
the regularity of we on Q and and inequality (79), we arrive at the result∑

e∈E(η)

‖∆0,Γ∗ve‖2L2(Q) ≤ C
(
‖
∑

e∈E(η)

(∆we)u‖2L2(Q) + ‖
∑

e∈E(η)

(∇we) · (∇u)‖2L2(Q)

+ ‖
∑

e∈E(η)

we∆0,Γ∗u‖2L2(Q)

)
≤ C‖∆0,Γ∗u‖2L2(Q). (81)

Analogous reasoning also establishes the statement

‖∆0,Γ∗(u−
∑

e∈E(η)

ve)‖2L2(Q) ≤ C‖∆0,Γ∗u‖2L2(Q). (82)

The desired estimate is a consequence of (80)–(82). �

Proposition 2 is a direct consequence of Lemma 3.13.

Proof of Proposition 2. System (14) has the weak formulation∫
Q

η(∇ψ) · (∇ϕ) dx =
∫
Q

ηfϕ dx, ϕ ∈ H1
Γ∗(Q). (83)

In view of the Lax-Milgram Lemma (and the Poincaré estimate), (83) has a
unique (weak) solution ψ ∈ H1

Γ∗(Q). Relation (83) being valid for all elements ϕ
of H1

0 (Q), we infer that div(η∇ψ) = ηf is an element of L2(Q). This means that
η∇ψ satisfies the derivative interface conditions. Standard arguments further show
that ψ fulfills homogeneous Neumann boundary conditions on the boundary part
∂Q\Γ∗, see part 2 of the proof for Proposition 8.12 in [54] for instance. This means
that ψ belongs to the domain of the operator ∆0,Γ∗ , see (19). Lemma 3.13 now
implies the asserted regularity and energy statements. �

We can also treat the pure Neumann case Γ∗ = ∅, as the difference only arises in
the energy estimates. For the statement, recall the space V2−κ from (17) and the
number κ from (15).

Proposition 3. Let η ∈ {ε, µ} satisfy (2), and let f ∈ L2(Q). We set κ = 0 if
η = µ, and κ > 1− κ if η = ε. There is a unique function ψ ∈ V2−κ solving

(1−∆)ψ(i) = f (i) on Qi for i ∈ {1, . . . , N},
∇ψ · ν = 0 on ∂Q,
JψKF = 0 = Jη∇ψ · νFKF for F ∈ Fint.

(84)

It satisfies ‖ψ‖V2−κ
≤ C ‖f‖L2(Q) with a constant C = C(κ, η,Q) > 0.

Proof. To unify the arguments, we introduce the appropriate Neumann-Laplacian
(∆0,∅v)(i) := ∆v(i),

v ∈ D(∆0,∅) := {v ∈ H1(Q) | ∆v(i) ∈ L2(Qi), ∇v · ν = 0 on ∂Q,
JψKF = 0 = Jη∇ψKF for F ∈ Fint, i ∈ {1, . . . , N}}.
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As the reasoning in Lemmas 3.11–3.12 focuses only on the local behavior of func-
tions in the domain of ∆0,Γ∗ around the interior edges and also allows homogeneous
Neumann boundary conditions, the mentioned statements are also valid for func-
tions in the domain D(∆0,∅). (In the proof of Lemma 3.12, one uses Proposition 8.2
from [54] instead of Proposition 8.1.)

Adapting the arguments in the proofs of Lemmas 3.2 and 3.13 to the current
setting of Neumann boundary conditions, we furthermore derive the energy estimate
‖u‖V2−κ ≤ C‖(I − ∆0,∅)u‖L2(Q) for u ∈ D(∆0,∅) with a uniform constant C =
C(κ, η,Q) > 0.

We moreover note that system (84) has the weak formulation∫
Q

ηψϕ+ η(∇ψ) · (∇ϕ) dx =
∫
Q

ηfϕdx, ϕ ∈ H1(Q).

Employing the Lax-Milgram Lemma, (84) has a unique weak solution ψ ∈ H1(Q).
Combining the reasoning in the proof for Proposition 2 with the above regularity
statement and energy estimate, we finally arrive at the asserted result. �

4. Regularity result for the space X1

This section is devoted to an embedding result for the spaceX1 from (13). To this
end, we extend the well known regularity results for the spaces HN (curl,div, Q) and
HT (curl,div, Q), see Sections I.3.4 and I.3.5 in [24] for instance. The corresponding
spaces for our setting of discontinuous coefficients are

HN,00(curl,div ε,Q) := {E ∈ H0(curl, Q) | div(εE) = 0},
HN,0(curl,div ε,Q) := {E ∈ H0(curl, Q) | div(εE) ∈ L2(Q)}, (85)
HT,00(curl,divµ,Q) := {H ∈ H(curl, Q) | div(µH) = 0, µH · ν = 0 on ∂Q}.

The first and last space are already complete with respect to the norm in
H(curl, Q) (making use of the bounded normal trace operator from H(div, Q) into
H−1/2(∂Q)). The second space in (85) is complete with respect to the norm

‖E‖2HN,0 := ‖E‖2L2(Q) + ‖curlE‖2L2(Q) + ‖div(εE)‖2L2(Q) .

Our first goal is to establish embeddings of the spaces from (85) into appropriate
fractional Sobolev spaces. In a next step, we then derive the desired embedding of
X1, see Proposition 4. In literature, we could detect neither the precise dependence
of κ on ε and µ, nor the distinction between the regularity of the single components
of the electric and magnetic field. These results, however, turn out to be essential
for the error analysis in Section 6.2 and another paper that is in preparation. For
a clear presentation, we hence deduce the desired embeddings in a sequence of
lemmas. Note that [7, 11, 12, 8] contain regularity statements for the above or
related spaces in a more general setting, allowing general polyhedral domains for
instance. Our plan is to transfer parts of the reasoning in paragraphs I.3.3–I.3.5 in
[24] to our setting of a transmission problem.

We start with the study of HN,00(curl,div ε,Q).

Lemma 4.1. Let ε satisfy (2). The curl-operator is injective on HN,00(curl,div ε,Q).

Proof. Let E ∈ HN,00(curl,div ε,Q) with curlE = 0. Theorem I.3.4 in [24] provides
a potential Φ ∈ H1(Q)3 with E = 1

ε curl Φ and div Φ = 0 on Q. Integrating by
parts, we obtain the result∫

Q

ε|E|2 dx =
∫
Q

(curl Φ) ·Edx =
∫
Q

Φ · curlEdx = 0. �
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We next introduce the space
Hε := {E ∈ L2(Q)3 | div(εE) = 0, εE · ν = 0 on ∂Q}.

Note that Hε is a closed subspace of L2(Q)3. (The divergence operator is closed
in L2(Q)3 on its maximal domain H(div, Q), and the normal trace operator is
bounded on H(div, Q).)

The following statement characterizes the preimage of the curl-operator for the
space Hη. The result corresponds to Theorem I.3.6 in [24], and extends Lemma 6.3
in [8] to our setting of multiple submedia in a cuboid. For the statement, we recall
the number κ from (15), and introduce the space

V1−κ := (PH1−κ(Q)2 ×H1(Q)) ∩ {v ∈ L2(Q)3 | ∂3v ∈ L2(Q)3}, (86)
‖v‖2V1−κ

:= ‖v‖2PH1−κ(Q)2×H1(Q) + ‖∂3v‖2L2(Q)3 , v ∈ V1−κ.

Lemma 4.2. Let ε satisfy (2), and let κ > 1 − κ. Each function E ∈ Hε has the
representation

E = 1
ε

curl Φ

with a unique function Φ ∈ HN,00(curl,div ε,Q). Moreover, Φ belongs to the space
V1−κ, and it satisfies the estimate ‖Φ‖V1−κ

≤ C ‖E‖L2(Q) with a uniform constant
C > 0 depending only on ε, κ,Q.

Proof. 1) Throughout the proof, C = C(ε, κ,Q) > 0 is a constant that is allowed
to change from line to line. Lemma 4.1 already implies that there is at most one
function Φ with the required properties. Consequently, it remains to show the
existence of the desired vector Φ as well as its regularity.

Using Theorem I.3.6 in [24], there is a vector Φ̃ ∈ H1(Q)3 ∩ H0(curl, Q) with
1
ε curl Φ̃ = E and div Φ̃ = 0 on Q. The parameter ε being piecewise constant on
the subcuboids Q1, . . . , QN , this implies the formula

div(ε(i)Φ̃(i)) = 0. (87)

In general, Φ̃ does, however, not satisfy the additional transmission condition JεΦ̃ ·
νFKF = 0 for all interfaces F .

2) We next extend the traces JεΦ̃ · νFKF for the effective interfaces F ∈ Feff
int,

see the notation paragraph in Section 1. There is a function ψ̂ ∈ H1(Q)∩PH2(Q)
with ∇ψ̂ × ν = 0 on ∂Q, Jε∇ψ̂ · νFKF = JεΦ̃ · νFKF for F ∈ Feff

int, and

‖ψ̂‖PH2(Q) ≤ C
∑
F∈Feff

int

‖JεΦ̃ · νFKF‖V (F) ≤ C‖E‖L2(Q). (88)

Recall that V (F) is defined in (11). To show this claim, we consider the model case
of four subcuboids

Q1 = (−1, 0)2 × (0, 1), Q2 = (0, 1)× (−1, 0)× (0, 1), Q3 = (0, 1)3,

Q4 = (−1, 0)× (0, 1)2, Fj = Qj ∩Qj+1, j ∈ {1, 2, 3}, F4 = Q1 ∩Q4,

ε(1) > ε(2) = ε(3) = ε(4),

and construct a function ψ̊ on Q̃ := (−1, 1)2 × (0, 1) that satisfies the extension
property Jε∇ψ̊ ·νF1KF1 = JεΦ̃·νF1KF1 , homogeneous Neumann boundary conditions
on ∂Q̃\Γ3, homogeneous Dirichlet boundary conditions on ∂Q̃∩Γ3, and the required
regularity and energy properties of ψ̂. Due to symmetry, the trace JεΦ̃ · νF4KF4 can
be extended in a similar way. The desired function ψ̂ is then obtained by combining
this reasoning with a cut-off argument around the edges in Q and the extension
result from Propositions 2.2 and 2.3 in [2].
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In the following, we use techniques from the proof of Lemma 3.1 in [20] and
Lemma 8.13 in [54]. Set g := Φ̃1|F1 , with Φ̃1 denoting the first component of Φ̃.
Identify F1 with [−1, 0]× [0, 1], and consider the Laplacian ∆F1 on F1 with domain

D(∆F1) := {u ∈ H2(F1) | u(·, 0) = u(·, 1) = 0, ∂2u(0, ·) = ∂2u(1, ·) = 0}.

The operator −∆F1 is then selfadjoint and positive definite on L2(F1). We can
hence define positive definite and selfadjoint fractional powers (−∆F1)γ , γ > 0, of
−∆F1 . Hence, −(−∆F1)γ generates an analytic semigroup (e−t(−∆F1 )γ )t≥0. Note
further that the domain of (−∆F1)1/2 coincides with the domain of the bilinear
form

a(ϕ, ϕ̃) =
∫
F1

∇ϕ · ∇ϕ̃dx, D(a) = {ϕ ∈ H1(F1) | ϕ(·, 0) = ϕ(·, 1) = 0},

that is associated with −∆F1 , see Theorem VI.2.23 in [35] for instance. Combining
furthermore the trace theorem with the boundary conditions for Φ̃, we conclude
that g is an element of the real interpolation space (L2(F1),D(−∆F1)1/2)1/2,2 with

‖g‖(L2(F1),D(−∆F1 )1/2)1/2,2
≤ C‖Φ̃1‖H1(Q). (89)

Let χ : [−1, 1] → [0, 1] be a smooth cut-off function with χ = 1 on [−1/2, 1/2]
and support in [−3/4, 3/4]. We then set

ψ̊(1)(x1, x2, x3) := χ(x1)x1
(
e−x1(−∆F1 )1/2

g
)
(x2, x3), (x1, x2, x3) ∈ Q1.

In consideration of the analyticity of (e−t(−∆F1 )1/2)t≥0, we conclude the identities

ψ̊(1)|F1 = 0, ∂1ψ̊
(1)|F1 = g, ψ̊(1)|Γ3 = 0,

as well as homogeneous Neumann boundary conditions on all other faces of Q1. We
further calculate

∂1χ̊
(1) =

(
χ′(x1)x1 + χ(x1)− χ(x1)x1(−∆F1)1/2

)
e−x1(−∆F1 )1/2

g,

∂2
1 ψ̊

(1) =
(
χ′′(x1)x1 + 2χ′(x1)− 2χ′(x1)x1(−∆F1)1/2 − 2χ(x1)(−∆F1)1/2

− χ(x1)x1∆F1

)
e−x1(−∆F1 )1/2

g.

We moreover note that the H1- and H2-norm on F1 are equivalent to the norms
‖(−∆F1)1/2·‖L2(F1) and ‖∆F1 ·‖L2(F1) on D(−∆F1)1/2 and D(∆F1), respectively.
Using Remark 6.3 and Proposition 6.4 in [41], we hence conclude that ψ̊(1) belongs
to H2(Q1) with

‖ψ̊(1)‖H2(Q1) ≤ C‖g‖(L2(F1),D(−∆F1 )1/2)1/2,2
≤ C‖Φ̃1‖H1(Q),

see (89). Define now

ψ̊(2)(x1, x2, x3) := −ψ̊(1)(−x1, x2, x3), (x1, x2, x3) ∈ Q2,

ψ̊(3)(x1, x2, x3) := ψ̊(2)(x1,−x2, x3), (x1, x2, x3) ∈ Q3,

ψ̊(4)(x1, x2, x3) := ψ̊(1)(x1,−x2, x3), (x1, x2, x3) ∈ Q4.

By construction, ψ̊ belongs to PH2(Q̃)∩H1(Q̃), and satisfies the extension property
Jε∇ψ̊ · νF1KF1 = JεΦ̃ · νF1KF1 as well as the continuity relation Jε∇ψ̊ · νFj KFj = 0
for j ∈ {2, 3, 4}. Taking also (5) into account, we obtain the energy estimate

‖ψ̊‖PH2(Q̃) ≤ C‖Φ̃1‖H1(Q) ≤ C‖E‖L2(Q).

Altogether, ψ̊ is the desired extension on Q̃.
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3) Proposition 2 provides a unique function ψ̃ ∈ D(∆0,∂Q) ↪→ V2−κ with ∆ψ̃(i) =
∆ψ̂(i) on Qi and

‖ψ̃‖V2−κ ≤ C‖ψ̂‖PH2(Q) ≤ C‖E‖L2(Q). (90)

Altogether, Φ := Φ̃ − ∇ψ̂ + ∇ψ̃ is the desired function. The asserted norm
estimate is a consequence of (5), (87)–(90) and the definition of V2−κ in (17). �

The next proposition summarizes the results of the last two lemmas. The proof
is a modification of the one for Theorem I.3.7 in [24]. As an intermediate result of
the proof is crucial for the below reasoning, we elaborate the argument.

Lemma 4.3. Let ε satisfy (2), and choose κ > 1 − κ. Then HN,00(curl,div ε,Q)
embeds continuously into V1−κ.

Proof. Let E ∈ HN,00(curl,div ε,Q). Lemma 4.2 yields that the operator 1
ε curl

is bijective from HN,00(curl,div ε,Q) into Hε. Since it is also bounded and both
mentioned spaces are complete, we infer by the open mapping principle that 1

ε curl
is an isomorphism between these spaces. Lemma 4.2 and Remark I.2.5 in [24]
further lead to the identities

1
ε

curl
(
HN,00(curl,div ε,Q)

)
= Hε

= 1
ε

curl (HN,00(curl,div ε,Q) ∩ V1−κ) .

As 1
ε curl is an isomorphism, this implies that HN,00(curl,div ε,Q) is a subspace of

V1−κ. The estimate from Lemma 4.2 furthermore yields the relation
‖E‖H(curl,Q) + ‖E‖V1−κ

≤ C‖ 1
ε curlE‖L2(Q), (91)

with a uniform constant C = C(ε, κ,Q) > 0. This means that the inverse (1/ε curl)−1

is bounded from Hε into HN,00(curl,div ε,Q) ∩ V1−κ. Altogether, the identity
I = ( 1

ε curl)−1 ◦ 1
ε curl is bounded from HN,00(curl,div ε,Q) into V1−κ. �

In order to show the embedding property of the space X1 from (13) into V1−κ×
PH1(Q)3, we prove next that one can omit the L2-norm in the definition of ‖·‖HN,0 .

Lemma 4.4. Let ε satisfy (2). The estimate
‖E‖L2(Q) ≤ CN0(‖curl E‖L2(Q) + ‖div(εE)‖L2(Q))

is valid for all functions E ∈ HN,0(curl,div ε,Q) with a uniform constant CN0 =
CN0(ε,Q) > 0.

Proof. 1) Let E ∈ HN,0(curl,div ε,Q). The main tool is an appropriate decompo-
sition of E into a vector we can apply (91) to, and a remainder. For that purpose,
we consider the transmission problem

∆φ(i) = div(E(i)) on Qi for i ∈ {1, . . . , N},
φ = 0 on ∂Q,

JφKF = Jε∇φ · νFKF = 0 on F ∈ Fint.

(92)

By Proposition 2, this system has a unique solution φ ∈ V2−κ for κ > 1 − κ.
Employing the boundary conditions, we obtain the formula ∇φ × ν = 0 on ∂Q,
see Lemma 2.1 in [21] for instance. The transmission conditions further imply that
the function ∇φ is an element of HN,0(curl,div ε,Q). Consequently, the mapping
ψ := ∇φ− E belongs to HN,00(curl,div ε,Q), and we can apply inequality (91) to
it. In this way, we obtain the relations

‖E‖L2(Q) ≤ ‖ψ‖L2(Q) + ‖∇φ‖L2(Q) ≤
C

min ε‖curlE‖L2(Q) + ‖∇φ‖L2(Q),
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where C is the uniform constant from (91). In view of the weak formulation of
system (92) and the Poincaré inequality, we infer the estimates

‖∇φ‖2L2(Q) ≤ −
1

min ε

∫
Q

φ div(εE) dx ≤ 1
min ε ‖φ‖L2(Q) ‖div(εE)‖L2(Q)

≤ CP
min ε‖∇φ‖L

2(Q) ‖div(εE)‖L2(Q) , (93)

employing the Poincaré constant CP > 0 for Q. �

In view of the assumptions (2), the parameter µ is piecewise constant on the
chain Q̃1, . . . , Q̃L of cuboids. As the setting of two cuboids from [54] transfers to
the partition

⋃L
l=1 Q̃L in a straightforward way, the reasoning for Proposition 9.7

in [54] yields the following statement.

Lemma 4.5. Let µ satisfy (2). The space HT,00(curl,divµ,Q) embeds continuously
into PH1(Q)3.

We now deduce the desired regularity statement for functions in the space X1.
For the statement, recall the number κ from (15) and the space V1−κ from (86).

Proposition 4. Let ε, µ satisfy (2), and κ > 1− κ. The space X1 embeds contin-
uously into V1−κ × PH1(Q)3.

Proof. 1) Let (E,H) ∈ X1 = D(M) ∩X0. We first show the asserted regularity of
(E,H). In view of Lemma 4.5, it remains to deal with the electric field E.

Consider the elliptic transmission problem

∆ψ(i) = divE(i) on Qi for i ∈ {1, . . . , N},
ψ = 0 on ∂Q,

JψKF = 0 for F ∈ Fint,

Jε∇ψ · νFKF = JεE · νFKF for F ∈ Fint,

(94)

which has a unique solution ψ ∈ V2−κ ∩ H1
0 (Q). (The space V2−κ is defined in

(17).) Indeed, a modification of the reasoning in the proof for Lemma 4.2 and
the precondition JεE · νFKF ∈ V (F), F ∈ Feff

int, see (12), yield a unique mapping
ψ̃ ∈ V2−κ ∩ H1

0 (Q) with ∆ψ̃(i) = 0 on Qi, satisfying the required boundary and
transmission conditions in (94). We then arrive at the transmission problem (92),
having a unique solution ψ̌ ∈ V2−κ ∩H1

0 (Q), see Proposition 2. Altogether, ψ :=
ψ̃ + ψ̌ ∈ V2−κ ∩H1

0 (Q) is the unique solution of (94).
Hence, E − ∇ψ is an element of HN,00(curl,div ε,Q) ⊆ V1−κ, see Lemma 4.3.

The vector ∇ψ being an element of V1−κ, we infer the stated regularity result.
2) It remains to show the asserted embedding property. In the following, C =

C(ε, κ,Q) > 0 is a constant that changes from line to line. Lemma 4.5 yields the
required estimate for H, whence we again only treat the electric field component
E. Proposition 2 yields the estimate

‖ψ̌‖V2−κ ≤ C
N∑
i=1
‖div(ε(i)E(i))‖L2(Qi). (95)

The reasoning for (88) and (90) furthermore leads to the bound

‖∇ψ̃‖V1−κ ≤ C2
∑
F∈Feff

int

‖JεE · νFKF‖V (F). (96)

Applying Lemma 4.3 to E−∇ψ, the relations
‖E‖V1−κ ≤ ‖E−∇ψ‖V1−κ + ‖∇ψ‖V1−κ
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≤ C
(
‖E‖L2(Q) + ‖curlE‖L2(Q) + ‖∇ψ‖L2(Q)

)
+ ‖∇ψ‖V1−κ

≤ C
(
‖M(E,H)‖+ ‖E‖L2(Q) + ‖ψ̌‖V2−κ + ‖∇ψ̃‖V1−κ)

follow. The desired embedding is a consequence of (95) and (96). �

5. Wellposedness of the Maxwell system in X1

The main result of Section 4 establishes a regularity statement for the space X1,
see Proposition 4. To conclude a corresponding regularity result for the solutions
of the Maxwell system (1), we show in this Section that X1 is a state space of (1).
This is done by means of semigroup theory.

The proof of the next proposition transfers techniques from the proof of Propo-
sition 2.3 in [21] to the current setting. Recall for the statement that M1 is the
part of M in X1.

Proposition 5. Let ε and µ satisfy (2). The part M1 of M generates a contractive
C0-semigroup (etM1)t≥0 on X1. The family (etM1)t≥0 is the restriction of (etM )t≥0
to X1.

Proof. 1) Employing the theory of subspace semigroups, see for instance Paragraph
II.2.3 in [22], it suffices to show that the family (etM )t≥0 leaves the space X1
invariant, and that it is strongly continuous on it.

We first note that semigroup theory implies the inclusion etM (D(M)) ⊆ D(M)
for t ≥ 0. Regarding the magnetic conditions, the arguments in the proof of Propo-
sition 2.3 in [21] apply also here. This reasoning results in the invariance of the
space

Xmag := {(u, v) ∈ X | div(µv) = 0, (µv) · ν = 0 on ∂Q}

under the resolvent map R(λ,M) for λ > 0, and in the invariance of Xmag with
respect to the family (etM )t≥0.

2) Let (ũ, ṽ) ∈ X1, and set (u(t), v(t)) := etM (ũ, ṽ) for t ≥ 0. Semigroup theory
then yields that the function (u, v) belongs to C([0,∞),D(M)). The Maxwell
equations (1) with J = 0 lead to the formula

∂tu = 1
ε curl v, t ≥ 0.

Taking the divergence of this equation, the relation ∂t div(εu(t)) = 0 follows in
L2(Q̃i,l), i ∈ {1, . . . , L}, l ∈ {0, . . . ,K}, for the subdomains (Q̃i,l) from Section 1.
This is equivalent to the identity

div(εu(t)) = div(εũ) (97)

on Q̃i,l. As a result, the mapping [0,∞)→ H(div, Q̃l,k), t 7→ εu(t) is continuously
differentiable (employing here the continuous differentiability in time of u on X).
Due to the continuity of the normal trace operator on H(div, Q̃i,l), the relations

∂tJεu(t) · νFKF = Jcurl ṽ · νFKF = 0, t ≥ 0,

follow inH−1/2(F) for every effective interface F ∈ Feff
int, see the notation paragraph

in Section 1. This shows that the function

Jεu(t) · νFKF = Jεũ · νFKF (98)

belongs to the space V (F) from (11) for F ∈ Feff
int, and that the mapping [0,∞)→

V (F), t 7→ Jεu(t) · νFKF is continuously differentiable.
Altogether, we have derived that the vector (u(t), v(t)) belongs to X1 for every

t ≥ 0, and that (u, v) is continuous on X1. The contractivity of (etM )t≥0 on X, as
well as (97) and (98) imply the contractivity of (etM |X1)t≥0 on X1. �
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The next statement is a conclusion of Proposition 5, and it transfers parts of
Proposition 2.3 from [21] to our setting of discontinuous coefficients. Although the
proof basically follows the lines of the one for Corollary 9.24 in [54], we present it
here for the sake of a self-contained presentation. Note that the formula for ρF is
also deduced in Section 1 of [45]. For the external current density J, the space

W := L1([0, T ],D(M1)) +W 1,1([0, T ], X1),
‖f‖W := inf

f=f1+f2,
f1∈L1([0,T ],D(M1)),
f2∈W 1,1([0,T ],X1)

(
‖f1‖L1([0,T ],D(M1)) + ‖f2‖W 1,1([0,T ],X1)

)
, f ∈W,

is employed for fixed T > 0.

Corollary 2. Let ε and µ satisfy (2). Let T > 0, w0 = (E0,H0) be initial data
from D(M1) = D(M2) ∩ X0, and let g := ( 1

εJ, 0) : [0, T ] → X1 be the weighted
external current density that is continuous, and an element of W . The following
items are valid.

a) The Maxwell system (1) possesses a unique classical solution w = (E,H),
belonging to C([0, T ],D(M1)) ∩ C1([0, T ], X1). It satisfies the bounds

‖w(t)‖X1
≤ ‖w0‖X1

+ ‖g‖L1([0,t],X1) ,

‖Mw(t)‖X1
≤ ‖w0‖D(M1) + ( 2

T + 3) ‖g‖W ,

for t ∈ [0, T ].
b) The volume charge density ρ(i) on Qi and the surface charge ρF are given via

ρ(i)(t) = div(ε(i)E(i)(t)) = div(ε(i)E(i)
0 )−

∫ t

0
div(J(i)(s)) ds,

ρF (t) = JεE(t) · νFKF = JεE0 · νFKF −
∫ t

0
JJ(s) · νFKF ds,

for t ∈ [0, T ], i ∈ {1, . . . , N}, and F ∈ Feff
int.

Proof. a) The stated classical wellposedness of (1) on X1 follows from Proposition 5
and semigroup theory, see Theorem 8.1.4 in [51] for instance. Duhamel’s formula
leads to the representation

w(t) = etM1w0 +
∫ t

0
e(t−s)M1g(s) ds = etM1w0 +

∫ t

0
e(t−s)M1( 1

εJ(s), 0) ds.

Taking the contractivity of (etM1)t≥0 into account, the relations

‖w(t)‖X1
≤ ‖w0‖X1

+
∫ t

0

∥∥( 1
εJ(s), 0)

∥∥
X1

ds

= ‖w0‖X1
+
∥∥( 1

εJ, 0)
∥∥
L1([0,T ],X1)

follow.
Let ( 1

εJ, 0) ∈ W , ζ > 0, and J1 ∈ L1([0, T ],D(M1)), J2 ∈ W 1,1([0, T ], X1) with
( 1
εJ, 0) = J1 + J2 and

‖( 1
εJ, 0)‖W ≥ ‖J1‖L1([0,T ],D(M1)) + ‖J2‖W 1,1([0,T ],X1) − ζ.

An integration by parts in the above Duhamel formula leads to the identities

Mw(t) = etMMw0 +
∫ t

0
Me(t−s)M (J1(s) + J2(s)) ds

= etMMw0 +
∫ t

0
e(t−s)MMJ1(s) ds−

∫ t

0
( d
ds

e(t−s)M )J2(s) ds
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= etMMw0 +
∫ t

0
e(t−s)MMJ1(s) ds− J2(t) + etMJ2(0)

+
∫ t

0
e(t−s)MJ′2(s) ds.

Combining Lemma 7.6 in [54] with Proposition 5, the relations

‖Mw(t)‖X1
≤ ‖w0‖D(M1) + ‖J1‖L1([0,T ],D(M1)) + ( 2

T + 3) ‖J2‖W 1,1([0,T ],X1)

≤ ‖w0‖D(M1) + ( 2
T + 3)(‖( 1

εJ, 0)‖W1 + ζ)

are derived. Letting ζ tend to zero, we infer the second stated estimate.
b) The representation for the current density is obtained by modifying the argu-

ments from Proposition 2.3 in [21] and part 2) from the proof of Proposition 5.
The linear mapping X1 → L2(Qi), (u, v) 7→ div(ε(i)u(i)) being continuous for
i ∈ {1, . . . , N}, the regularity of w implies that ρ(i) : [0, T ] → L2(Qi) is con-
tinuously differentiable. Similar reasoning further shows that [0, T ] → L2(Qi),
s 7→ div(J(i)(s)) is continuous. Taking the divergence in (1), leads to

∂t div(ε(i)E(i)(t)) = −div(J(i)(t)), t ∈ [0, T ],

in L2(Qi). The first asserted formula is obtained by integration with respect to
t. Analogously, the arguments in part 2) of the proof for Proposition 5 result in
the stated formula for the surface charge ρF in V (F) for every effective interface
F ∈ Feff

int. �

Remark 2. In view of Proposition 4, Corollary 2 provides a classical solution of
the Maxwell system (1) in the space C1([0, T ],V1−κ×PH1(Q)3) for κ > 1−κ with
the number κ from (15) and the space V1−κ from (86). ♦

6. Analysis of a directional splitting scheme

This section is concerned with the construction and analysis of a directional
splitting scheme for (1). The scheme can deal with the low regularity of the solution
of the Maxwell system, see Remark 2. In particular, the regularity requirement for
the initial data is weaker than for the ADI schemes from [56, 42, 10], see [29, 21,
19, 20, 23]. In Section 6.1, we introduce the splitting and analyze the splitting
operators. We furthermore comment on the efficiency of the scheme. Subsequently,
we bound the error of the scheme in Section 6.2. Here the regularity results from
Section 5 are essential.

6.1. Construction of a directional splitting scheme. In view of the H1-
regularity in x3-direction of the solution to (1), see Remark 2, we split the x3-
coordinate off and leave the x1, x2 coordinates coupled. This strategy leads to the
splitting

M

(
E
H

)
=
( 1

ε curlH
− 1
µ curlE

)
=



1
ε∂2H3
− 1
ε∂1H3

1
ε curl2(H1,H2)
− 1
µ∂2E3

1
µ∂1E3

− 1
µ curl2(E1,E2)

+



− 1
ε∂3H2

1
ε∂3H1

0
1
µ∂3E2
− 1
µ∂3E1

0


=: A

(
E
H

)
+B

(
E
H

)
(99)

involving the curl2-operator from Section 2.1. To define appropriate domains for
the operators A and B, we denote S := (a−1 , a

+
1 )×(a−2 , a

+
2 ), using the representation



40 KONSTANTIN ZERULLA

Q = (a−1 , a
+
1 ) × (a−2 , a

+
2 ) × (a−3 , a

+
3 ). Employing also the space H0(curl2, S) from

Section 2.1, we consider the splitting operators A and B on the domains

D(A) := {(E,H) ∈ L2(Q)6 | (E1,E2) ∈ L2((a−3 , a
+
3 ), H0(curl2, S)),

(H1,H2) ∈ L2((a−3 , a
+
3 ), H(curl2, S)),

∂1E3, ∂2E3, ∂1H3, ∂2H3 ∈ L2(Q),
E3 = 0 on Γ1 ∪ Γ2},

D(B) := {(E,H) ∈ L2(Q)6 | ∂3E1, ∂3E2, ∂3H1, ∂3H2 ∈ L2(Q),
E1 = 0 = E2 on Γ3}. (100)

With these domains, the operators A and B are closed and densely defined on
X = L2(Q)6. Note additionally that Corollary 2 provides a classical solution of the
Maxwell system (1) that is contained in D(A)∩D(B). (This follows from Remark 2
and the embedding of X1 into D(M).)

Let τ ∈ (0, T ) be a fixed time step size, n ∈ N with nτ ≤ T , and ( 1
εJ, 0) ∈

C([0, T ], X1). We then approximate the solution (E,H) of (1) with initial datum
(E0,H0) at time tn := τn ≤ T by means of the Peaceman-Rachford directional
splitting(

En
Hn

)
= Tτ,n

[(En−1

Hn−1

)]
= (I − τ

2B)−1(I + τ
2A)

[
(I − τ

2A)−1(I + τ
2B)

(
En−1

Hn−1

)
− τ

2ε

(
J(tn−1) + J(tn)

0

)]
(101)

with exact initial data (E0,H0) = (E0,H0) ∈ X1. For a different operator splitting,
this Peaceman-Rachford time integrator is employed in [43, 56, 42, 21, 29, 30, 46,
38, 18, 20, 31, 47, 54], for instance.

In the next two lemmas we derive that both splitting operators are skewadjoint.
This implies that the scheme (101) is well defined and unconditionally stable, see
Lemma 6.3. Recall that the inner product on X = L2(Q)6 is defined in Section 2.2.

Lemma 6.1. Let ε and µ satisfy (2). The operators A and B are skewsymmetric
on X.

Proof. 1) Let (E,H), (Ẽ, H̃) ∈ D(A). We next employ Green’s identities from
Section 2.1. Taking the boundary conditions in D(A) into account, we infer the
equations(
A

(
E
H

)
,

(
Ẽ
H̃

))
=
∫
Q

[
(∂2H3)Ẽ1 − (∂1H3)Ẽ2 + (curl2(H1,H2))Ẽ3 − (∂2E3)H̃1

+ (∂1E3)H̃2 − (curl2(E1,E2))H̃3
]

dx

=
∫
Q

[
H3 curl2(Ẽ1, Ẽ2) + H1∂2Ẽ3 −H2∂1Ẽ3 −E3 curl2(H̃1, H̃2)

−E1∂2H̃3 + E2∂1H̃3
]

dx

= −
((E

H

)
, A

(
Ẽ
H̃

))
.

This shows that A is skewsymmetric.
2) Let (Ě, Ȟ), (Ê, Ĥ) ∈ D(B). Using the boundary conditions in D(B) for an

integration by parts, we arrive at the identities(
B

(
Ě
Ȟ

)
,

(
Ê
Ĥ

))
=
∫
Q

[
− (∂3Ȟ2)Ê1 + (∂3Ȟ1)Ê2 + (∂3Ě2)Ĥ1 − (∂3Ě1)Ĥ2

]
dx
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=
∫
Q

[
Ȟ2∂3Ê1 − Ȟ1∂3Ê2 − Ě2∂3Ĥ1 + Ě1∂3Ĥ2

]
dx

= −
((Ě

Ȟ

)
, B

(
Ê
Ĥ

))
.

Hence the operator B is also skewsymmetric. �

Using arguments from the proof of Lemma 4.1 in [29], we next conclude that
both splitting operators are skewadjoint.

Lemma 6.2. Let ε and µ satisfy (2). The operators A and B are skewadjoint on
X. In particular, the operators (I − τL)−1 and (I + τL)(I − τL)−1 are contractive
on X for L ∈ {A,B} and τ > 0.

Proof. 1) AsA andB are densely defined, closed, and skewsymmetric, see Lemma 6.1,
it suffices to show that the operators I ±A and I ±B have dense range in X. We
only consider the operators I −A and I −B, and show that the space of test func-
tions C∞c (Q)6 is contained in their range. (The operators I +A and I +B can be
treated with the same arguments.)

2) Let (Ẽ, H̃) ∈ C∞c (Q)6. We want to show the existence of a vector (E,H) ∈
D(A) with (I −A)(E,H) = (Ẽ, H̃). This is equivalent to the system

E1 − 1
ε∂2H3 = Ẽ1, H1 + 1

µ∂2E3 = H̃1,

E2 + 1
ε∂1H3 = Ẽ2, H2 − 1

µ∂1E3 = H̃2,

E3 − 1
ε∂1H2 + 1

ε∂2H1 = Ẽ3, H3 − 1
µ∂2E1 + 1

µ∂1E2 = H̃3.

(102)

By formally inserting the left equations of the first and second line into the right
equation of the third line, we derive the formula

µH3 − ∂1( 1
ε∂1H3)− ∂2( 1

ε∂2H3) = µH̃3 + ∂2Ẽ1 − ∂1Ẽ2 =: f ∈ L2(Q). (103)

2) Recall the rectangle S := (a−1 , a
+
1 ) × (a−2 , a

+
2 ), being the projection of Q =

(a−1 , a
+
1 )× (a−2 , a

+
2 )× (a−3 , a

+
3 ) to the x1 − x2 plane. We consider the equation∫ a+

3

a−3

∫
S

[
µwϕ+ 1

ε (∇x1,x2w) · (∇x1,x2ϕ)
]

d(x1, x2) dx3 (104)

=
∫ a+

3

a−3

∫
S

fϕd(x1, x2) dx3, ϕ ∈ L2((a−3 , a
+
3 ), H1(S)),

being the weak formulation of (103). The Lax-Milgram Lemma provides a unique
solution w ∈ L2((a−3 , a

+
3 ), H1(S)) of (104). Taking ϕ ∈ L2((a−3 , a

+
3 ), C∞c (S)) in

(104), we moreover obtain that H3 := w satisfies (103) and that 1
ε∇x1,x2H3 is an

element of L2((a−3 , a
+
3 ), H0(div, S)). Put

E1 := Ẽ1 + 1
ε∂2H3, E2 := Ẽ2 − 1

ε∂1H3. (105)

By construction, the left equations in the first and second line of (102) are then
fulfilled. Using (103), we then derive the relation

∂2E1 − ∂1E2 = ∂2Ẽ1 − ∂1Ẽ2 + divx1,x2( 1
ε∇x1,x2H3) = µ(H3 − H̃3) (106)

in H−1(Q). As the right hand side belongs to L2(Q), we infer that curl2(E1,E2)
is an element of L2(Q).

We next deal with the boundary conditions for (E1,E2). Let φ be an ele-
ment of L2((a−3 , a

+
3 ), H1(S)). By means of (105)–(106) and the fact 1

ε∇x1,x2H3 ∈
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L2((a−3 , a
+
3 ), H0(div, S)), we calculate∫ a+

3

a−3

∫
S

(E1,E2) · (∂2φ,−∂1φ) d(x1, x2) dx3

=
∫ a+

3

a−3

∫
S

Ẽ1∂2φ+ 1
ε (∂2H3)∂2φ− Ẽ2∂1φ+ 1

ε (∂1H3)∂1φd(x1, x2) dx3

=
∫ a+

3

a−3

∫
S

−(∂2Ẽ1)φ+ (∂1Ẽ2)φ− div( 1
ε∇x1,x2H3)φ d(x1, x2) dx3

=
∫ a+

3

a−3

∫
S

curl2(E1,E2)φd(x1, x2) dx3.

With Lemma I.2.4 in [24] we conclude (E1,E2) ∈ L2((a−3 , a
+
3 ), H0(curl2, S)).

3) Treating the remaining equations in (102) in a similar fashion, we arrive at a
desired vector (E,H) ∈ D(A) with (I −A)(E,H) = (Ẽ, H̃).

4) We next deal with the splitting operator B, and proceed similar to the above
case for A. Solving the formula (I−B)(Ě, Ȟ) = (Ẽ, H̃) for (Ě, Ȟ) ∈ D(B) amounts
to determining the solution of the system

Ě1 + 1
ε∂3Ȟ2 = Ẽ1, Ȟ1 − 1

µ∂3Ě2 = H̃1,

Ě2 − 1
ε∂3Ȟ1 = Ẽ2, Ȟ2 + 1

µ∂3Ě1 = H̃2,

Ě3 = Ẽ3, Ȟ3 = H̃3.

(107)

Formally inserting the equation on the right hand side of the second line of (107)
into the one on the left hand side of the first line yields

Ě1 − 1
εµ∂

2
3Ě1 = Ẽ1 − 1

ε∂3H̃2 ∈ L2(Q). (108)

As in the proof of Lemma 4.3 in [29], we obtain a unique Ě1 ∈ L2(S,H2(a−3 , a
+
3 ))

solving (108). (We use here the fact that ε and µ are constant in x3-direction.) It
satisfies the boundary condition Ě1 = 0 on Γ3. We put

Ȟ2 := H̃2 − 1
µ∂3Ě1.

Then, ∂3Ȟ2 is an element of L2(Q), and (108) leads to the identity

Ě1 + 1
ε∂3Ȟ2 = Ě1 + 1

ε∂3H̃2 − 1
εµ∂

2
3Ě1 = Ẽ1.

The remaining relations of (107) can be handled in the same way. Altogether, we
obtain a vector (Ě, Ȟ) ∈ D(B) with (I −B)(Ě, Ȟ) = (Ẽ, H̃). �

Combining formula (4.5) in [21] with Lemma 6.2, we can now conclude the
unconditional stability of scheme (101).

Lemma 6.3. Let ε and µ satisfy (2), τ > 0, and T > nτ . Let also (E0,H0) ∈
D(B), and ( 1

εJ, 0) ∈ C([0, T ],D(A)). Then the estimate

‖(En,Hn)‖ ≤ ‖(E0,H0)‖D(B) + T max
t∈[0,T ]

‖( 1
εJ, 0)‖D(A)

is valid.

Using the reasoning in the proof of Lemma 6.2, we can also draw an important
conclusion on the complexity of scheme (101).

Remark 3. Let ε and µ satisfy (2), and let τ > 0. Each application of scheme (101)
essentially amounts to solving only two-dimensional decoupled elliptic transmission
problems for E3 and H3, and one-dimensional decoupled elliptic problems for E1
and E2. To show this claim, we first note that the main effort for (101) consists in
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evaluating the resolvents of A and B. In the following, we analyze both resolvent
operators separately.

1) Let (Ẽ, H̃) ∈ X = L2(Q)6, and (E,H) = (I − τ
2A)−1(Ẽ, H̃). We then arrive

at system (102) (with τ
2ε instead of 1

ε and τ
2µ instead of 1

µ ). From the identity on
the right hand side of the third line in (102), we obtain the relations∫

Q

µH̃3ϕdx =
∫ a+

3

a−3

∫
S

µH3ϕ+ τ
2 curl2(E1,E2)ϕd(x1, x2)

=
∫ a+

3

a−3

∫
S

[µH3ϕ+ τ
2E1∂2ϕ− τ

2E2∂1ϕ] d(x1, x2) dx3

for all ϕ ∈ L2((a−3 , a
+
3 ), H1(S)). Inserting the equations on the left hand side of

the first and second line of (102), we arrive at the relation∫
Q

µH̃3ϕ− τ
2 Ẽ1∂2ϕ+ τ

2 Ẽ2∂1ϕdx

=
∫ a+

3

a−3

∫
S

µH3ϕ+ τ2

4ε (∇x1,x2H3) · (∇x1,x2ϕ) d(x1, x2) dx3 (109)

for all ϕ ∈ L2((a−3 , a
+
3 ), H1(S)). Having solved the essentially two-dimensional

problem (109), E1 and E2 are directly obtained via the formulas on the left hand
side of the first and second line of (102). A similar statement is true for E3.

2) Let (Ě, Ȟ) = (I − τ
2B)−1(Ẽ, H̃). Then system (107) is valid with τ

2ε instead
of 1

ε and τ
2µ instead of 1

µ . The identity on the left hand side of the first line in (107)
leads to the equation∫

Q

εẼ1φ dx =
∫ a+

3

a−3

∫
S

εĚ1φ− τ
2 Ȟ2∂3φd(x1, x2) dx3, φ ∈ H1

0 ((a−3 , a
+
3 ), L2(S)).

Plugging in the formula on the right hand side of the second line of (107), we
conclude the weak formulation∫

Q

εẼ1φ+ τ
2 H̃2∂3φ dx =

∫ a+
3

a−3

∫
S

εĚ1φ+ τ2

4µ (∂3Ě1)(∂3φ) d(x1, x2) dx3,

φ ∈ H1
0 ((a−3 , a

+
3 ), L2(S)), of (108). Having solved this one-dimensional elliptic

problem, Ȟ2 is directly obtained as Ȟ2 = H̃2 − τ
2µ∂3Ě1. Similar statements are

true for Ě2 and Ȟ1. ♦

6.2. Error bound for the directional splitting scheme. This Section is de-
voted to a first order convergence result for scheme (101). The statement is proved
by combining the regularity results from Section 5 with the statements about the
splitting operators from Section 6.1.

In order to expand the semigroup (etM )t≥0 for positive times, we additionally
employ the functions

Λj(t)w := 1
tj(j − 1)!

∫ t

0
(t− s)j−1esMw ds, Λ0(t) := etM , (110)

for w ∈ X, t ≥ 0 and j ∈ N, see [28, 29] for instance. Note that Proposition 5
implies that Λj(t) leaves the space X1 invariant for j ∈ N0, and t ≥ 0.

Standard semigroup theory and Proposition 5 moreover lead to the useful rela-
tions

‖Λj(t)‖L(X1) ≤
1
j! , ‖Λj(t)‖L(D(M1)) ≤

1
j! , (111)
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tMΛj+1(t) = Λj(t)−
1
j!I on D(M), j ∈ N0, (112)

for t ≥ 0, see Section 4 in [29]. The operator Λj(t) furthermore maps D(M1) into
D(M1) for all t ≥ 0.

We next demonstrate an error bound for the directional splitting scheme (101).
Here arguments from the proofs of Theorem 4.2 in [29], Theorem 5.1 in [21], and
Theorem 10.7 in [54] are employed. Throughout the statement and the associated
proof, the solution of the Maxwell system (1) is denoted by w = (E,H), while the
approximate solution at time tn = nτ is wn. For the external current J in (1), we
also use the space

WT := W 1,1([0, T ], X1) ∩ C([0, T ],D(M1))
with corresponding norm

‖·‖WT
:= ‖·‖W 1,1([0,T ],X1) + ‖·‖C([0,T ],D(M1)) ,

for a fixed final time T > 0, see Section 2.2. Note the relation D(M1) = D(M2)∩X0.

Theorem 6.4. Let ε and µ satisfy (2), T ≥ 1, and w0 = w(0) ∈ D(M2)∩X0. Let
also ( 1

εJ, 0) ∈WT , and τ ∈ (0, T ). There is a constant C > 0 with

‖w(tn)− wn‖L2(Q) ≤ CτT
(
‖w0‖D(M1) + ‖( 1

εJ, 0)‖WT

)
for all n ∈ N0 with nτ ≤ T . The number C depends only on ε, µ, and Q.

Proof. 1) We first estimate the local error. Throughout the proof, C > 0 denotes
a constant that depends only on ε, µ, and Q. It is allowed to change from line to
line. Let k ∈ N0 with (k + 1)τ ≤ T , and recall the notation tk = kτ . Inserting the
identity

1
εJ(tk + s) = 1

εJ(tk) +
∫ s

0

1
εJ
′(tk + r) dr, s ∈ [0, τ ], (113)

into the Duhamel formula for w, we infer the representation

w(tk+1) = eτMw(tk) +
∫ τ

0
e(τ−s)M (− 1

εJ(tk + s), 0) ds

= eτMw(tk) +
∫ τ

0
erM (− 1

εJ(tk), 0) dr

+
∫ τ

0
e(τ−s)M

∫ s

0
(− 1

εJ
′(tk + r), 0) dr ds

= eτMw(tk) + τΛ1(τ)(− 1
εJ(tk), 0) +Rk(τ),

involving the remainder term

Rk(τ) :=
∫ τ

0
e(τ−s)M

∫ s

0
(− 1

εJ
′(tk + r), 0) dr ds.

Using (113) in scheme (101), we on the other hand obtain the equations

Tτ,k+1(w(tk)) = (I − τ
2B)−1(I + τ

2A)
[
(I − τ

2A)−1(I + τ
2B)w(tk) + τ(− 1

εJ(tk), 0)

+ τ
2

∫ τ

0
(− 1

εJ
′(tk + r), 0) dr

]
= (I − τ

2B)−1
[
(I − τ

2A−1)−1(I + τ
2A−1)(I + τ

2B)w(tk)

+ τ(I + τ
2A)(− 1

εJ(tk), 0) + τ
2 (I + τ

2A)
∫ τ

0
(− 1

εJ
′(tk + r), 0) dr

]
.

Note that A is extrapolated in the second identity, as Bw(tk) is in general not con-
tained in D(A), see Remark 2. (The original solution w(t) of (1) belongs, however,
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to D(B) for every t > 0, as X1 embeds into D(B), see Corollary 2 and Propo-
sition 4.) Note furthermore that the functions (− 1

εJ(t), 0), Λ1(τ)(− 1
εJ(t), 0) and

(− 1
εJ
′(t), 0) belong to D(A) ∩ D(B) for every t ∈ [0, T ], see Propositions 4 and 5,

as well as (13).
Subtracting the representations for w(tk+1) and Tτ,k+1(w(tk)), we conclude
Tτ,k+1(w(tk))− w(tk+1)

= (I− τ
2B)−1(I− τ

2A−1)−1
[
(I+ τ

2A−1)(I+ τ
2B)−(I− τ

2A−1)(I− τ
2B)eτM

]
w(tk)

+ τ(I − τ
2B)−1

[
(I + τ

2A)− (I − τ
2B)Λ1(τ)

]
(− 1

εJ(tk), 0)

+ τ
2 (I − τ

2B)−1(I + τ
2A)

∫ τ

0
(− 1

εJ
′(tk + r), 0) dr −Rk(τ)

=: e1,k(τ) + e2,k(τ) + e3,k(τ)−Rk(τ). (114)
In the next steps, we separately estimate the summands on the right hand side of
(114).

2) We first deal with e1,k(τ). Recall that the operators Λ1(τ) and Λ2(τ) leave
the spaces D(M1) and X1 invariant. ThusMΛ1(τ)w(tk) is an element of D(B), and
Λj(τ)w(tk) belongs to D(M2) for j ∈ {1, 2}. Algebraic manipulations and (112)
hence lead to the relations
e1,k(τ)

= (I− τ
2B)−1(I− τ

2A−1)−1
[
(I+ τ

2A−1)(I+ τ
2B)−(I− τ

2A−1)(I− τ
2B)eτM

]
w(tk)

= (I− τ
2B)−1(I− τ

2A−1)−1
[
I + τ

2M + τ2

4 A−1B − (I − τ
2M + τ2

4 A−1B)eτM
]
w(tk)

= (I − τ
2B)−1(I − τ

2A−1)−1
[
I − eτM + τ

2M(I + eτM ) + τ2

4 A−1B(I − eτM )
]
w(tk)

= (I − τ
2B)−1(I − τ

2A−1)−1
[
− τMΛ1(τ) + τM + τ2

2 M
2Λ1(τ)

− τ3

4 A−1BMΛ1(τ)
]
w(tk)

= (I− τ
2B)−1(I− τ

2A−1)−1
[
− τ2M2Λ2(τ) + τ2

2 M
2Λ1(τ)− τ3

4 A−1BMΛ1(τ)
]
w(tk).

Combining Corollary 2, Remark 2 and (111), we conclude the estimates
‖e1,k(τ)‖ ≤ Cτ2‖w(tk)‖D(M2)∩X0 , (115)

‖(I + τ
2B)e1,k(τ)‖ ≤ Cτ2‖w(tk)‖D(M2)∩X0 .

3) We next deal with the second term on the right hand side of (114). We
note that the vector MΛ2(τ)(− 1

εJ(t), 0) is contained in D(B) for every t ∈ [0, T ],
as WT ↪→ C([0, T ],D(M1)), Λ2(τ) leaves D(M1) invariant, and X1 ↪→ D(B), see
Proposition 4. With (112), algebraic manipulations then lead to the relations

e2,k(τ) = τ(I − τ
2B)−1[(I + τ

2A)− (I − τ
2B)Λ1(τ)

]
(− 1

εJ(tk), 0)
= τ2(I − τ

2B)−1[ 1
2M −MΛ2(τ) + τ

2BMΛ2(τ)
]
(− 1

εJ(tk), 0).
Proposition 4 and (111) then lead to the estimate

‖e2,k(τ)‖+ ‖(I + τ
2B)e2,k(τ)‖ ≤ Cτ2‖(− 1

εJ, 0)‖WT
. (116)

4) To bound e3,k(τ) and Rk(τ), we employ the embedding of X1 into D(A) ∩
D(B), see Proposition 4, as well as the contractivity of (etM )t≥0 in X1, see Propo-
sition 5. We then infer the inequalities

‖e3,k(τ)‖+ ‖(I + τ
2B)e3,k(τ)‖ ≤ Cτ‖(− 1

εJ, 0)‖W 1,1([tk,tk+1],X1), (117)
‖Rk(τ)‖+ ‖(I + τ

2B)Rk(τ)‖ ≤ Cτ‖(− 1
εJ, 0)‖W 1,1([tk,tk+1],X1). (118)
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5) The stated bound on the global error is now obtained in the standard way
from the above results for the local error and the stability of scheme (101). Using
the Lady Winderemere’s fan argument, we first infer the global error formula

wn − w(tn) =
n−1∑
k=0

[
(I − τ

2B)−1(I + τ
2A)(I − τ

2A)−1(I + τ
2B)

]n−1−k

·
(
Tτ,k+1w(tk)− w(tk+1)

)
.

We next combine (114)–(118) with the stability statement in Lemma 6.2. Abbre-
viating the Cayley transform (I + τ

2L)(I − τ
2L)−1 of L ∈ {A,B} by γτ (L), we then

infer the stated bound

‖wn − w(tn)‖ ≤
n−2∑
k=0
‖(I − τ

2B)−1‖‖
(
γτ (A)γτ (B)

)n−2−k
γτ (A)‖

· ‖(I + τ
2B)(Tτ,k+1w(tk)− w(tk+1))‖+ ‖Tτ,nw(tn−1)− w(tn)‖

≤ C
n−1∑
k=0

(
τ2‖w(tk)‖D(M2)∩X0 + τ2‖(− 1

εJ, 0)‖WT
+ τ‖(− 1

εJ, 0)‖W 1,1([tk,tk+1],X1)
)

≤ CτT
(
‖w0‖D(M1) + ‖(− 1

εJ, 0)‖WT

)
.

For the last estimate we employ Corollary 2 and the relation nτ ≤ T . �
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