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CONSTRUCTION AND ANALYSIS OF AN ADI SPLITTING
SCHEME FOR MAXWELL EQUATIONS WITH LOW
REGULARITY IN HETEROGENEOUS MEDIA

KONSTANTIN ZERULLA

Department of Mathematics, Karlsruhe Institute of Technology
Englerstr. 2
76131 Karlsruhe, Germany

ABSTRACT. We construct a dimension splitting scheme for the time integra-
tion of linear Maxwell equations in a heterogeneous cuboid. The domain con-
tains several homogeneous subcuboids, and serves as a model for a rectangular
embedded waveguide. Due to discontinuities of the material parameters and
irregular initial data, the solution of the Maxwell system has regularity below
H!. The splitting scheme is adapted to the arising singularities, and is shown
to converge with order one in L2. The error result only imposes assumptions
on the model parameters and the initial data, but not on the unknown solu-
tion. To achieve this result, the regularity of the Maxwell system is analyzed
in detail, giving rise to sharp explicit regularity statements. In particular, the
regularity parameters are given in explicit terms of the largest jump of the
material parameters.

1. INTRODUCTION

Maxwell equations belong to the fundamental equations in physics, and are in
particular used to describe a large number of phenomena in optics, see [32, 25,9, 17].
Their solutions are hence of great interest in many applications, like the design of
waveguides, see Section 9.3 in [44]. To model waveguides, heterogeneous media are
often studied that consist of several homogeneous submedia. This approach leads
to material parameters that are discontinuous at the interfaces between different
submedia. Maxwell equations with discontinuous material parameters, however,
usually have irregular solutions, see [15, 8, 7, 11, 12, 13] for instance. This poses
severe difficulties for the analysis of numerical schemes for the considered Maxwell
equations.

On domains with tensor-structure, alternating direction implicit (ADI) schemes
are very attractive methods for the time integration of linear isotropic Maxwell
equations. In the ADI splitting from [56, 42], the Maxwell operator is split ac-
cording to the spatial dimensions in which derivatives arise. The split system is
then integrated in time by means of the Peaceman-Rachford scheme, see [43]. The
splitting from [56, 42] can also be integrated in an energy conserving way, see [10].
These schemes are implicit and can be shown to be unconditionally stable, see
[56, 42, 10, 29, 31, 38] for instance. Despite being implicit, the mentioned ADI
schemes are also computationally cheap. In particular, the implicit steps can be
shown to decouple into essentially one-dimensional problems amounting to linear
complexity, see [56, 42, 10, 29, 30, 38]. In [46, 47], the Peaceman-Rachford ADI
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scheme is transformed into an even more efficient formulation, being called funda-
mental ADI-FDTD scheme. There is also a modified ADI scheme that uniformly
preserves the exponential decay behavior of the Maxwell equations with interior
damping, see [53].

Despite their practical relevance, it seems to the best of our knowledge that only
few rigorous error results are known about ADI schemes. In [29, 20, 21, 19, 18],
the material parameters are required to be W1 respectively W1 NW?23 regular
on the entire cuboidal domain. In presence of appropriate initial data, the ADI
schemes from [56, 42, 10] are then shown to be of order two in H~! and L?, respec-
tively. While the mentioned error statements focus only on the time discretization,
a fully discrete error analysis is performed in [38, 31] for the Peaceman-Rachford
ADI scheme in combination with a discontinuous Galerkin discretization in space.
[31] moreover provides estimates on time- and space-derivative errors. In [54], the
Maxwell equations are considered with positive material parameters being piecewise
constant on two adjacent cuboids. Assuming appropriate initial data, time discrete
approximations of the Maxwell system provided by the Peaceman-Rachford ADI
scheme from [56, 42] are here shown to be of order 3/2 in L2. The error analysis of
ADI schemes on the heterogeneous medium from the current paper is not covered
by the existing literature, to the best of our knowledge. The major reason is that
the solution of the considered Maxwell system has lower regularity than required
in the above mentioned literature.

We study the time dependent linear isotropic Maxwell equations

OE =1curlH — %J, oH = f%curlE,

E(0) - B, H(0) = H,,
for ¢ > 0 on the cuboid
Q= (ar,af) x (a5, a3) x (az,a)
with the boundary conditions of a perfect conductor
Exv=0, vH-v=20

on the boundary 0Q. Conditions on the divergence of E and H are incorporated
in an appropriate state space for (1), see (13) and Remark 1. The vector v denotes
the unit exterior normal vector at Q, E = E(z,t) € R? stands for the electric field,
H = H(z,t) € R3 for the magnetic field, and J = J(x,t) € R3 is a given external
electric current. The functions € = ¢(z) > 0 and p = p(z) > 0 are the electric
permittivity and magnetic permeability, respectively, and describe the properties
of the material () consists of.

The following assumptions on the parameters € and p are essential throughout
the paper. The conditions are inspired by a model of a rectangular embedded
waveguide, see Section 9.3 in [44] for instance. To formulate the preconditions, we
make the following geometric constructions. The cuboid @ is divided into a chain of
smaller cuboids Q1, ..., Qr, where the interfaces between adjacent cuboids should
be parallel to the zo-z5-plane. We collect these interfaces in a set Finy. Each cuboid
Q, further contains smaller subcuboids Qi,l, ey Qz‘, K, that are separated from each
other, and touch the planes {x3 = a3 } and {z3 = ai}. The smaller subcuboids
Qm, ey Ql x are, however, not allowed to touch an interface in .7:'int. The remain-
der of Q; is then denoted by Qi,o. The resulting partition of ¢ corresponds to
a specific composition of materials. The subcuboids QM, .. .,QL x play the role
of embedded waveguide structures, while Qi,o serves as the surrounding medium.
Note that our analysis can in a straightforward way also be transferred to the case
that each cuboid Qm», j€{1,..., K}, contains further embedded subcuboids that
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again touch the planes {3 = a3 } and {z3 = a3 }, but no other face of Q, ;. For
the sake of a clear presentation, we however omit this extension.
For the material parameters ¢ and u, we throughout impose the assumptions

5|Qi,jnu’|QM € R>07

1
elg,  <elg < ela. s
QLO Qz,l 1+2f_2 2+\/§ QL,U 2
ela,, 2 cos(22 ) sin(E) @
— 71- 12\ i (9 )
elai, cos(= ) sin(=m)
M'Qi,o =p Qz‘,z’

forie {1,...,L},j €{0,....,K}, and [ € {1,...,K}. These assumptions mean
that each subdomain Q” should consist of a homogeneous medium. Additionally,
the relative jumps of the parameter ¢ inside the cuboids Q; must not be too large,
while 4 is assumed to be constant in each Q;. Note, however, that the difference
between the material parameters € and p on Qw and Qk,o is allowed to be arbitrar-
ily large for distinct i,k € {1,...,L}. The condition in the second line of (2) will
ensure that the solutions of the Maxwell system (1) do not become too singular at
the interior edges. In fact, the regularity of the solutions can be expressed in terms
of the largest relative jump of ¢ in a cuboid Q;, see Corollary 2 and Remark 2. The
third line of (2) is used to avoid technical difficulties, see the proof of Lemma 3.5.

Due to low regularity in the z1-z5-plane of the solutions of (1), see Remark 2,
we use a different directional splitting of the Maxwell operator than the standard
one from [56, 42]. (In fact, the solution of (1) is not contained in the domains of the
standard splitting operators. Hence the standard Peaceman-Rachford ADI scheme
is not applicable to the original solution, see [29].) The idea behind the directional
splitting, we consider, is to treat the x3-direction independently, and to leave the
x1-xo-directions coupled, see Section 6.1. The split system is then integrated in time
by means of the Peaceman-Rachford scheme [43], see (101). The resulting scheme
is shown to be unconditionally stable, see Lemma 6.3. For the implicit steps in the
scheme (101), decoupled two-dimensional elliptic problems have to be solved for
the third components of the approximations to the electric and magnetic fields, see
Remark 3. All other components of the electromagnetic field approximations are
obtained by solving only one-dimensional elliptic problems.

Our main result is given in Theorem 6.4, stating that the directional splitting
scheme (101) converges with order one in L? to the solution of (1). The error result
is rigorous in the sense that we impose assumptions only on the material parameters
and the initial data. Furthermore, we can deal with less regular initial data than
comparative literature [29, 21, 20, 19]. For these irregular data, we can, however,
only show convergence of order one instead of order two. Indeed, the local error can
only be expanded to terms of second order in the time step size, since higher order
error terms cannot be controlled properly in our regularity setting. We are also
going to provide a rigorous convergence result of (expected) order two for scheme
(101) in a subsequent work in preparation. There we, however, have to impose
stronger assumptions on the initial data.

To establish Theorem 6.4, we study the regularity of (1) in detail. The regularity
of the time-harmonic counterpart of (1) on more general heterogeneous polyhedral
domains has been analyzed in several papers, see [8, 15, 13, 7, 11, 12] for instance.
We provide a regularity analysis here to have sharp regularity statements for our
model problem that explicitly link the size of the jumps of the material parameters
to the regularity of the problem, see Corollary 2 and Remark 2. Moreover, we obtain
that the components of the electric and magnetic field have differing regularity. This
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turns out to be crucial for the numerical approximation scheme. The regularity
statement and the associated reasoning will additionally be employed in the above
mentioned follow-up work to derive higher regularity statements. For the sake of a
clear presentation, we hence give a detailed account of the arguments. In particular,
we localize at the interior edges in our medium, and study elliptic transmission
problems in a neighborhood of these edges, see Section 3 and [14, 15, 12]. To
obtain the desired sharp and explicit statement of Corollary 2 and Remark 2, we
determine the first nonzero eigenvalue of a one-dimensional transmission problem.
This turns out to be quite involved, see Lemma 3.5. The actual regularity and
wellposedness statement in Corollary 2 is then deduced by constructing a regular
state space X; in (13) and by applying semigroup theory on the latter space in
Proposition 5.

Structure of the paper. In Section 2 we recall useful function spaces, and in-
troduce an analytical framework for the Maxwell system (1). In particular, we
construct a space X; in (13) that turns out to be a regular state space for (1). In
the spirit of [15], we then study the regularity of a transmission problem for the
Laplacian in Section 3. Using these findings, the space X7 is shown to embed into a
certain space of piecewise fractional Sobolev regularity, see Section 4. In Section 5
we then prove the wellposedness of (1) in X7, and in this way the desired regularity
statement. A directional splitting scheme is constructed in Section 6. It is shown
to be unconditionally stable, and a rigorous error estimate is established there, see
Theorem 6.4.

Notation. For convenience, we use a partition of @ that is different from the above
Q= UiL:1 UJK:O ngj- The new one is subordinate to the above, and obtained by
appropriate refinement. In particular, the material parameters € and p are assumed
to be constant on each element of the new partition. We arrive at N smaller open
cuboids Q1,...,Qn with Q = Uf\;@z These cuboids should not overlap and
again touch both planes {73 = a3 } and {3 = aj }. It is furthermore assumed that
if two subcuboids share an interface, that the edges of the corresponding faces then
coincide.
We denote the open faces of @ by

I‘;-t ={zxeiQ|z;= a;-t, z € (a; ,a)) for I # j}, I := I‘j ur;y  (3)

for j € {1,2,3}. The set of interfaces of the fine partition Q1,...,Qy is called
Fint, and the set of exterior faces is Fexy. We also assign a unit normal vector
vi € R3 to every face F' € Fine U Fexs in the following way. In case F is an interface
being parallel to the x;-x3-plane, we choose vp as the canonical unit vector e,
I # j € {1,2}. Otherwise, F is an exterior face, and vp coincides with the outer
unit normal vector v of Q. We also employ a set of effective interfaces F£ that
contains all physical interfaces. It is defined via

FM.={FcCQisafaceof Qij, i€ {l,....,L}, j€{l,...,K}}UFm. (4

Unit normal vectors for interfaces in F<f are defined in the same way as for inter-
faces in Fipy.

The restriction of a function f € L?(Q) to a subcuboid Q; is denoted by f@)
for i € {1,..., N}. We also need a notation for jumps of functions at interfaces in
Q. To that end, let F' be an interface between two cuboids Q;; and @Q;2 with face
vector vp pointing from Qi1 to Q2. Assume additionally that the restrictions f(*1)
and f(?) have well defined traces trp fV) and trp f(2) at F. The jump [f]r of f
at F' is then defined as

[f]F = trp £02) — trp £,
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For a linear operator A on a normed vector space (X, ||-||), we denote its domain
by D(A), and its graph norm by |\3:||2D(A) = ||lz||? + |Az|]?, x € D(A).

2. ANALYTICAL PRELIMINARIES

This section is structured into two parts. The first one collects useful analytical
concepts and results about several function spaces that will throughout be employed
without further notice. We then proceed in the second part by interpreting the
Maxwell system (1) as an evolution equation on an appropriate state space.

2.1. Important function spaces. For our reasoning, the divergence operator div,
and the two- and three-dimensional curly and curl are essential. Formally, they are
defined by

3
legb = Z 31(,25“ CuI'12 v = 811}2 — 821)17

i—1
curl ¢ = (0203 — D3¢9, D31 — D193, 01002 — Dah1),

for distributions ¢ = (¢1, ¢2, ¢3) on a Lipschitz domain Q C R?® and v = (vy, v2) on
a Lipschitz domain S C R2.

For the sake of a clear presentation, we subsequently introduce only spaces and
trace operators related to the curls, curl, and div operators on the cuboid ) and a
rectangle S. The definitions and results, however, can be transferred to the subdo-
mains @1, ...,Qn by appropriate adaptions. We first recall the Banach spaces

H(curly, S) :={v € L2(S)2 | curlyv € LQ(S)}, ||11H3ur12 = ||v||2Lz + |lcurly v||2L2,
H(curl, Q) == {¢ € L*(Q)* | curlg € LH(Q)%},  |0/I° := 6] 72 + lcwrl ||,
H(div,Q) := {¢ € L*(Q)° | divo € L2(Q)},  [|6l3 := 19]72 + [[divg||>= -

We further use the subspaces Hy(curls, S), Ho(curl,Q) and Hy(div,Q), being
the completion of the space of test functions on S and @) with respect to the norms
[l eurtys Illeurs @nd |||l i, respectively. For these spaces, Theorems 1.2.4-1.2.6 in
[24] state the following. The space C°°(Q)? is dense in H(div, @), and the normal
trace operator v, : v — v - V|sg extends from C°°(Q)? in a linear and continuous
way to the space H(div,Q), now mapping into H~/2(9Q). In the following, we
will simply write v - v instead of 7, (v) for v € H(div, Q). As a consequence of the
density and extension result, Green’s formula can be extended to H(div, @), stating

/Qv -Vepdx + /Q(divv)ga dz = (v v,0) g-1/2(00)x H1/2(00)
for functions v € H(div,Q) and ¢ € H'(Q). Moreover, the subspace Hy(div, Q)
coincides with the kernel of ~,, on H(div, Q).

Concerning the curl operator, Theorems 1.2.10-1.2.12 in [24] establish similar
results. The space C*°(Q)? is also dense in H(curl, @), and the tangential trace
operator -y, : v — v X V|gg has a unique linear and continuous extension to the
space H(curl, Q) with kernel Hy(curl, Q) and range H~'/2(0Q)3. Again, we write
only v x v instead of v (v) for v € H(curl,@). Here, Green’s formula has the
representation

/Q(curlv) ~pdr — /Q v-curlpdz = (Vv X V,0) g-1/2(00)x H1/2(00)

for vectors v € H(curl,Q) and ¢ € HY(Q)3.
To cover the two-dimensional case, we additionally introduce the unit tangent
vy on 0S. Denoting by vs = (v1,v2) the unit exterior normal vector of 9, it is



6 KONSTANTIN ZERULLA

defined by vy = (—va,v1). For the two-dimensional case, Theorems 1.2.10-1.2.12
in [24] then yield that C*°(S)? is dense in H(curly, S), and the tangential trace
Y1 U= v - v|as extends continuously to H(curly, S) with kernel Hy(curls, S) and
range H~1/2(9S). In this setting, the Green’s formula is given by

/S((mrlg U)gf) dx — / (% (82¢, 781¢) de = <”U * Vg, ¢>H—1/2(BS)><H1/2(OS)

s
for v € H(curly, S) and ¢ € H'(S). We simply call the application of all three
Green’s formulas integration by parts.
Closely related are intersections of the above spaces, that are useful to derive
regularity statements. We define the spaces

Hyp(curl,div, Q) := H(curl, Q) N Hy(div, @),
Hy(curl, div, Q) := Ho(curl, Q) N H(div, Q).
We equip both with the complete norm

2 2 .2
e = llewrl {72 gy + l[div {72 g -

The spaces Hrp(curl,div, Q) and Hy/(curl,div, Q) then continuously embed into
H'(Q)3, meaning that there is a constant Cr > 0 with

I 71y < Cr [HIG, = Or(leurd H||72 ) + [[divE]72 () (5)

for all H € Hr(curl, div, Q) U Hy(curl, div, Q), see for example Lemmas 1.3.4, 1.3.6
and Theorems 1.3.7, 1.3.9 in [24].

During the proof of the global error bound in Theorem 6.4, we also use extrap-
olation theory, see Section V.1.3 in [1] and Section 2.10 in [50]. Let A be a closed
and densely defined operator on a Banach space (X, ||| x) with nonempty resolvent
set. Let additionally A be an element of the resolvent set of A. Then the extrapo-
lation space X4, with respect to A is defined as the completion of X in the norm
[lxa, = [[(M - A)71.||x. Note that this definition is independent of the choice of
the resolvent value A\. The operator A then has a unique and bounded extension
A_; from X to X4,. It is called the extrapolation operator of A to X. The resol-
vent operator (A — A)~! moreover extends to the bounded operator (Al — A_;)~!
from X4, to X.

Interpolation theory is another important tool for our analysis. Throughout,
we only employ real interpolation on Hilbert spaces, which can be defined via the
K-method, see Section 1.1 in [41] for instance. By means of interpolation spaces,
we in particular define fractional order Sobolev spaces, see [40, 48]. These spaces
throughout serve as a measure for regularity statements. Let s € [0,2], k € {1,2},
0 € (0,1)\ {1/2}, d € N, O C R? open with a Lipschitz boundary, and define

H*(0) := (L*(0), H*(0))sj22,  HG(0) := (L*(0), Hy(0))p.2. (6)

We additionally note that the spaces H?(O) and H§(O) coincide for 8 € (0,1/2)
(this can be verified by means of Corollary 1.4.4.5 in [27] for instance).

The spaces of functions with piecewise Sobolev regularity are also important.
Let I'* be a union of some faces of (). Define the spaces

PHYQ) :={f € L*(Q) | f) € HU(Q:), i € {1,...,N}}, q €[0,2],
PH: (Q):={f e PH*Q) | fY =000 dQ;NI* ie{l,....,N}}, se(1/2,2],
equipped with the norms

e =3 |7
i=1

2
. lgllprs. = llgllpms,
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for f € PHY(Q) and g € PH}{. (Q).

The next lemma serves as a technical tool, establishing a useful density result for
function spaces related to the electric and the magnetic field. It uses to approximate
with piecewise regular functions, that satisfy prescribed transmission conditions,
and that vanish in a neighborhood of all exterior and interior edges of ). The
result is applied in the proof for Lemma 3.1, and it will play a crucial role in a
subsequent work that is in preparation. For the statement, let I'* be a (possibly
empty) union of opposite faces of the cuboid @, and let Fi, ; denote the set of
all interfaces whose normal vector is parallel to the j-th canonical unit vector e;,

je{1,2}.

Lemma 2.1. Let € satisfy (2). Define the spaces

Vi:={p € PHL(Q) | [e¢]r =0, [¢]7 =0 for all F € Fintj,
F' € Fint \ Fintj}s
W= {p e PH*Q)NV | ¢ is smooth, supp(p) NT* =0,
@ vanishes in a neighborhood of all edges of Q1,...,QnN,
Dy, =0 for faces F C0Q;, i € {1,...,N}}.

The space W is dense in V with respect to the norm in PH(Q).

Proof. We show only the density of W in V in the case I'" =I'; UT'3, and assume
7 = 2. All remaining settings can be established with the same techniques, up to
appropriate modifications.

1) Let ¢ € V and 6 > 0. Applying Lemma 2.5 in [15] to every interior and
exterior edge of @), there is a function ¢ € V', that vanishes in an open neighborhood
of all edges of Q1,...,Qn and satisfies

¢ —ellpriq) <. (7)

Hence, there is a union T of tubes of inner radius ¢ > 0 around all edges with ¢
vanishing on QN 7.

We next construct a piecewise smooth function fulfilling the required transmis-
sion, support, and normal derivative conditions. We only deal with the cuboid

Q1= (a7 alh) x (a7 a3"") x (ag*!,adt),

(setting agt’l := a3) and we assume that @, touches the faces T] and I'j of Q, see

(3). All other cuboids can be treated in the same way with slight modifications. Let
1 €{1,2,3}, and xum, : R — [0,1] be a smooth cut-off function with supp xm,; C
S +1 +1 -1 -1 41 11
o a " + Ul = ] Xma =L on [a a5 Ul — 5 a

and |x7, ;llc < Cm for a uniform constant C' > 0 for all m > m; € N. Let

)

Dt = {2z € 0Q: | m € {a]"}, j € (a; ! 0t for j #1},

—1, +,1 —1, +,1 -+
and denote the pyramid with basis I‘li’l and peak (% ;al L2 ;a"’ , 22 ;a“" ) by

Pli’l. Its reflection at the face l"li’(l) is called IVDli’l. Let further @;, be the adjacent
cuboid of @1 in coordinate direction k € {1,2}.

b
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We then define the larger set Q; := @, U U?:1(pz+71 U B, and put

oM () for x € Pli’1 up;
(1 = Xm.3(23))pW (2) for © = (21,29, 23) € P;E’l7
(1= Xm,2(22))¢) (2) for = (21,22, 73) € Py,
@) () for z € ]31_’1,

I (7) 1= @M (—zy + 20" o, 3)  for & = (x1, 29, 23) € P,
E;;f; @l2) () for z € Py,
0 forazefj’;:’lup;"l,
0 for z € R3\ Q.

Since ¢ is an element of V and vanishes on QN7T, there is a number m, € N and an
open superset Q1 of Q7 with gm,(l)bl € Hl(él) for m > my4. We then repeat the
same reasoning for all other subcuboids, by appropriately changing the definition
of the function g,, (;) for each subcuboid @;. Define then a function g,, on Q by
gm|qu = gm,(i)|Qi forie{l,...,N}

Taking the exterior face conditions for ¢ into account, the arguments from the
proof of Lemma 2.1 in [21] show that g converges to ¢( in H'(P) for P €
{Pli’i | 1€ {1,2,3}} as m — co. There consequently is a number m > my with

g — SEHPHl(Q) <. (8)

We next employ the standard mollifier p,, ; that acts on the I-th coordinate, and
that is supported within [—%, %] Let

djn,i ‘= Pn,3 * Pn,2 * Pn,1 * gﬁz,(i)a n e NaZ € {L ceey N}

By construction, the function 1/37” is smooth, and it vanishes in a union 7 of
tubes with radius %C around all edges as well as in a neighborhood of all exterior
faces in I'y U '3, provided that n > ng € N. We also remark that the function in,
being defined by ¢n|Q = ﬁn,i, satisfies all required transmission conditions in @
for sufficiently large n. As a consequence of standard mollifier theory, the sequence
(@nl)n furthermore converges in H 1(Qz) t0 gyn,(s)- There consequently is a number
n > ng with

i = gl oy <0 i€ {1, N} (9)

2) Tt remains to incorporate also the Neumann boundary conditions at the faces
of Q1. This is done by transferring a technique from the proof of Lemma 3.3 in [21]

F1_ =t B o
to our setting. Let s € (0, “—"1—) be a fixed number. Let @ : [a; 1ab = 0,1)

be a smooth function with supp & C [al_’l, al_’1 +%],and @ =1 on [al_’l,al_’l + 5],
Define then the function
1

hy (21, T2, 23) = U1 (21, T2, 3) — A21) /7 ) Xk1(8) 0101 (s, 72, w3) ds

ay

=: zﬁnl(z) —ri(x)

for x = (x1, 22, 23) € Pf’l and k € N. By construction of QZ;TVL’]7 the functions h,_,
and rj, are smooth. We next deduce that rj, tends to zero in H! (Pf’l) as k — oo.
The integrand of rj is uniformly bounded in k, and converges pointwise to zero.
Thus, (rg)g is uniformly bounded. Applying now Lebesgue’s theorem of dominated
convergence twice, we infer that r; converges pointwise and in LQ(Pl_’l) to zero as
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k — oo. A simple computation further gives rise to the formulas

Dire = (01d) /

a

1

) Xk,l(s)ﬁlﬂ;h,ﬂ& -)ds + ka,lal'l;h,ly

1

1
ory = 54/7 ) X1 (8)01005. 1 (s, ) ds, le{2,3}
a;’

Similar arguments to the ones above now imply that (017%); and (9rg)g are
null sequences in L2(P; '), As a result, (hy.1)k converges to Yna in HY(P),
and 01h; ; = 0 on F;’l. By analogous constructions on all other pyramids Pl+ ’1,
P;E’l, and P3i’1, we further obtain similar functions h;l, hfz and h,is for k € N.
They are in particular smooth and coincide with 1;;%1, provided that the distance

K

to the associated face is larger than 5. Define now a new mapping 11 on Q1

via its restrictions ¢y 1| p+.1 = h,f,j. As the function 1[)%’1 vanishes in T (union of
tubes around all edges wi]th radius 3/4¢), we can choose k > 0 so small that vy 1 is
smooth on @)1. We then repeat the analogous construction for all remaining cuboids
Q2,...,QnN, obtaining functions vy 2,...,%, N for k& € N. Finally, we define the
mapping 1 elementwise by 1/1,(:) =4, fori € {1,...,N}.

By construction, 1 is smooth on every cuboid, and it vanishes in an open
neighborhood of I'; UT'3 and of all edges of the subcuboids. It further satisfies the
required normal derivative condition at all faces for sufficiently large k. Using finally
that the function 1;71 satisfies the required transmission conditions, we conclude that
¥y, also fulfills by definition the transmission conditions [ex]F = 0, [¢r]+ = 0 for
all F € Fine 2 and F' € Fiyg 1. Taking also (7)—(9) into account, ¢y is contained in
W, and the estimate [|¢, — @[l ppp1(q) < 46 is valid for sufficiently large k. O

2.2. Analytical framework for the Maxwell system. Throughout, we consider
the Maxwell equations (1) as an evolution equation on the space X := L?(Q)°. The
space is equipped with the weighted inner product

() (2) - [ oo (). (8) e

inducing the norm ||-|| on X. The positivity and boundedness assumption on ¢ and
w implies that ||-|| is equivalent to the standard L?-norm.
On X we consider the Maxwell operator

1
Mo (10 1 E%uﬂ)
-, cur
with domain

D(M) : = Hy(curl, Q) x H(curl, Q) (10)
={(E,H) € L*(Q)° | curlEY curlHY € L?(Q;)?, [E x vp]r = 0,
[Hxvp]r=0, Exv=0on0Q,
ie{l,...,N}, F € Fint},

involving transmission conditions in tangential direction.

We next incorporate the boundary conditions for the magnetic field, as well
as divergence and normal transmission conditions. Recall to that end the set of
effective interfaces F¢. The latter contains all interfaces between the submedia

Qi,l, i€{l,...,L},1€{0,...,K}. For each effective interface F € Ff we put

V(F):= (L*(F), H¥) Hy:={ue H(F)|u=0o0n FNOQ}. (11)

1
3.2
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We then define the subspace

Xo:={(B,H) € L*(Q)° | div(cE|y,,) € L*(Qiy), [E-vr]Fr € V(F), (12)
div(pH) =0, pH- v =000 0Q, Fe Ft iec{1,...,L},1€{0,...,K}},

of X, which is inspired by the spaces Xgq;y and Xy in [29, 21, 20]. The space X is
complete with respect to the norm

N
1B ), = IE P + Y [divEED)|
i=1

S+ SR vE# Y 5 -

2
L2(Q;
( FeFst

Indeed, let (E",H™),, be a Cauchy-sequence in Xy, and fix numbers i € {1,..., L},
1 €{0,...,K}, as well as an interface F € F<T that is a face of Qzl The given
sequence converges to a limit (E, H) in L?(Q)® with respect to the norm ||-||. Since
also the sequence (divuH™), converges in L?(Q), we infer from the closedness
of the divergence operator and the continuity of the normal trace operator that
div(pH) = 0 and pH - v = 0 on 9Q. For the vector E, we observe that also the

sequence (eE"|5, )n converges with respect to the graph norm of the divergence
operator on Q; ;, whence div(eE|g, ) is an element of L%(Q;,;). Employing now the
continuity of the normal trace operator for F, we conclude that (trz(eE")|5, ,)n

converges in H~'/2(F) to trz(cE)|s,,. We repeat this reasoning on every other
submedium. By definition of the norm in X, and the uniqueness of limits, the jump
[€E - vx]F is consequently contained in V(F). Altogether, (E, H) is an element of
Xo, and the limit of (E",H") in Xj.

To equip the Maxwell operator with the magnetic boundary as well as the electric
and magnetic divergence conditions, we introduce the restriction My of the Maxwell
operator to the space Xy, and consider it on the space

X = D(MO) = D(M) N Xo, (13)

which is equipped with the norm
2 2 2
o), @)@ R)
= + || M R c X;.
160 (G N R )

Remark 1. By interpreting the Maxwell equations (1) on X;, we only assume
that the divergence of the electric field is an L?-function on every submedium
Qig, i€ {1,...,L}, 1 € {0,...,K}. In particular, we allow for nonzero jumps
of the normal component of the field eE across effective interfaces in F¢ff. These

int*
discontinuities represent surface charges on the interfaces, see Section 3.5 in [25].0

Although the space X; is mainly defined by means of the domains of the di-
vergence and curl operators, which themselves allow for irregular functions, the
space X7 indeed embeds into a space of functions with piecewise fractional Sobolev
regularity above 1/2, see Proposition 4.

The next lemma deals with My, and it shows that My is not only the restriction
of M to Xg, but also its part in this space. The statement corresponds to relation
(2.5) in [21].

Lemma 2.2. The identity D(M¥) = D(M*) N Xy is valid for all k € N, and
M(D(M)) is a subset of Xo. In particular, My is the part of M in Xy, and the
space X1 is complete.

Proof. We show only that the space X7 is complete. The remaining statements can
be established in the same way as identity (2.5) in [21].

To deduce the completeness of X7, we first note that M is closed in X as the
part of a closed operator, and thus its domain X; is complete with respect to the
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graph norm of M. It hence suffices to show that the graph norm of M coincides
with the standard norm on Xj.

Let (E,H) € X; = D(M) N Xy. Combining the relation div(e(M(E,H));) =
div(curl H) = 0 with the transmission conditions in H(curl, Q) and H(div, Q) and
the definition of the norms on Xy and X, the identities

GG @I - 16

immediately follow. O

2
D(Mo)

The part of M in X; is denoted by Mj, and it is shown to generate a strongly
continuous semigroup on X;. Thus, the space X; serves as a state space for the
Maxwell equations (1), see Proposition 5. Using a regularity statement for the
space X1, we can then conclude that the system (1) possesses solutions of piecewise
H'~%regularity, 6 € (0, 1) appropriate, see Corollary 2 and Remark 2. As a starting
point, the following result states the generator property of the Maxwell operator
on X. The statement is part of Proposition 3.5 in [29].

Proposition 1. Let ¢ and p satisfy (2). The Mazwell operator M generates a
unitary Co-group (e"™);cr on X.

3. ANALYSIS OF AN ELLIPTIC TRANSMISSION PROBLEM

This section is concerned with investigations of transmission problems for the
Laplacian on the cuboid @ with homogeneous transmission conditions, see (14). By
homogeneous we mean that the solution and its normal derivative are required to
be continuous at all interfaces up to multiplication with the discontiunous param-
eters € and p. The considered elliptic transmission problem arises several times in
literature, see [15, 36, 39, 34, 11, 12, 13] for instance. Note, however, that there
are no explicit regularity statements for our particular application of the embedded
waveguide at hand, to the best of our knowledge. In other words, we are interested
in precise results in terms of the size of jumps of the parameters ¢ and u. This is
because the below system (14) arises naturally when analyzing the regularity of the
electric and magnetic field, see the proof of Lemma 4.2 and [15, 11, 12]. Because we
are also going to transfer some arguments from the analysis of (14) to a different
elliptic transmission problem in a subsequent work, we analyze the problem here in
detail to have a self-contained presentation.

Let n € {e, u} satisfy the assumptions (2). The function n will throughout serve
as a placeholder for the material parameters € and p. Let further I'* be a nonempty
union of some of the sets I'y, I'y, I's, consisting of opposite boundary faces of @, see
(3). Consider the elliptic transmission problem

AP = O on Q; fori € {1,...,N},
=0 r=
G on (14)
Vv =0 on 0Q \ T'*,

[Vl =0=[nVY-vr]r onF € Fin,
involving a given function f € L?(Q). o
We next recall the decomposition Q = UZ-L:1 Uj—io Qij from Section 1. To measure

the regularity of the solution of (14) in the case n = €, we introduce the number
% € (0,1] with

(Elg,, —€lo.,)” 4sin? (%)
max - =

ic{l,..L}, €

1e{1,....K}

- - T wn(E < (3E_\ (15)
Qi,lg‘Qi.O Sln(a’/T)Sln(77T)
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As the function on the right is monotonically decreasing in & on (%, 1], we infer
that ® decreases if the relative discontinuities of the material parameter € in the
subcuboids Q1, ..., Q1 become stronger, meaning the material becomes more het-
erogeneous. In the limit case of homogeneous subcuboids Q1, ..., Qp, on the other
hand, the number % is one. We further note that the assumptions (2) imply the
crucial lower estimate

R > 3/4. (16)
Indeed, using (2) twice, we can estimate the left hand side of (15) via

(2v2 - 2v/2+2)
1+2V2 —2vV24+ V2
= 4V2.

The central result of this section is the following regularity statement for (14). To
state it, we employ the following notation. We define Q := Q N {x3 = 1/2}, Q; :=
QiN{x3=1/2},i€{1,...,N}, and interpret them as rectangles in R?. Piecewise
Sobolev regularity on Q is then defined with respect to the partition Q1, ..., Qx.
We put

Vo i= HZ((0,1), L2(Q)) N Hy ((0,1), HY(Q)) N LZ,((0,1), PH*™(Q))  (17)

elo,, —€lo,,)? el?, 2
( |Qz,l |Q’L,U) < Qz,l (2\/572 2+\/§) <

€1, .Elo., €la, €lg.,

for k € [0,1). This space is canonically equipped with the sum of the norms.

Proposition 2. Let n € {e,u}, and let € and p satisfy (2). Let further k > 1—F&
ifn=-¢, and k = 0 if n = p. Assume also that f € L*(Q), and let T* be nonempty.
There is a unique solution ¥ € Vo, of (14) with ||¢lly, =~ < C||fllp2(q) for a
constant C = C(Q,n, k) > 0.

The remainder of this section is concerned with the proof of Proposition 2. The
structure of the argument is oriented towards the papers [36, 39, 15].
We express system (14) equivalently by the formula

AO’F*U = f, (18)
involving the Laplacian
(Aor-uw)?D = Au?,  onQy, ie{l,...,N}, (19)
ueD(Aor-) = {v e Ht(Q) | Av') € L*(Q;), Vv-v=00ndQ\T*,
[nVv-ve]r =0 for F € Fint, 1 € {1,...,N}}.
3.1. Energy estimates for the Laplacian with transmission conditions. In
the next two lemmas, we provide a useful energy identity and an a priori estimate

for the Laplace operator on D(Agr+) N PH%(Q). This is done in the spirit of
Grisvard, see [26].

Lemma 3.1. Let n € {e,u} satisfy (2). The identity

N 2 2 2 2
S ( [z, +||oza@||, oz 2 |aeu®|
pt 12(Qu) 12(Q.) 12(Q) 12(Qu)
91 9.u®|° 8:9.0 || 0 [ Ay
2| 2| ) =X
TRIAE T e g TR g ;n Yl

is valid for u € D(Agr-) N PH?(Q).
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Proof. 1) We only treat the case I'* = I';. The remaining cases are proved in a
similar Way A simple calculation first leads to the equation
2 2 2

2@ H 12(Q.) 12(Q2)
42 / (02uD)(02uD) dz + 2 / (02u)(02u) dz + 2 / (02u®)(02u) dz

k3 i i

924,

HAU i) h

o

(20)

20 A+H8§u(1)

for i € {1,...,N}. Tt now remains to consider the last three terms on the right
hand side.

2) By Lemma 2.1, there are two sequences (i, ), and (¢, ), in PH?(Q) satisfying
cpgf) — O3u®, 'l/)r(zi) — Oou in H'(Q;) as n — oo, and fulfilling the boundary and
transmission conditions gagf) =0 on I‘éi), ) =0 on I‘g’) N OQ, and [p,]r =0 =
[nn]l7 for F € Fipgo for all i € {1,...,N} and n € N. Employing Lemma 2.1 of
[21] and Lemma 7.1 of [54], the relations

82@5? =0on ]."z()f)7 831/}9 =0on ng) N oaQ,
[050] 7 = 0= [n03¢ "] 7 for F € Fins 2,

are furthermore valid. An integration by parts then leads to the formula

N N
> / 1 (0505)) (02 P) dar = / 1 (9205)) (0591 da
=17 Qi =17 Qi

Taking limits, we infer the formula

Z/ ) (92uD)(02uD) dx—Z/ )(0,05uD)? dx (21)

for the last term on the right hand side of (20). Similar reasoning also gives rise to
the equations

N
Zn(i) / (PuD)(92uD) dx = Z n® / (0105u)? da, (22)
i—1 —1 Qi

N ‘ ‘ N .

Zn(i) / (020 (024D dz = Z n® / (D103uD)? dz. (23)
i=1 Qi i=1 Qi

Inserting (21)—(23) into (20), we finally arrive at the desired statement. O
Lemma 3.2. Letu € D(Agr-)NPH?(Q), andn € {e, u} satisfy (2). The estimate

N N
(2) (4)
21 [ gy = € 2

is valid with a uniform constant C = C(n, Q) > 0.

‘uu)

‘ Au®

L2(Qq)

Proof. The interface and boundary conditions for u lead in an integration by parts
to the relation

Z/ )|Vu(l dx<ZH ()

Since u is an element of Hf. (Q), the Poincaré inequality, see Theorem 13.6.9 in
[50], leads to the inequalities
1/2
L2(Qi) )

Z/ l)|Vu( )|2 de < ( 77(Z

‘Au(l

L@ L2(Qi)

2

mm)l”(zﬂ
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N 2 12, N 2 1/2
<C ( (i) ) ( (i) ) 7
r ;n L2(Q1) ;77 L2(Q:)

with a uniform constant Cp > 0. Similar reasoning also shows that the L?-norm
of u can be estimated by means of the L?-norm of the Laplacian of . In view of
Lemma 3.1, we have derived the asserted statement. O

’Au(i)

‘Vu(i)

3.2. Geometric constructions for the elliptic transmission problem. Hav-
ing classical elliptic regularity theory in mind, it is natural that the behavior of
functions in D(Ag,r+) near interior edges is most important. This subsection in-
troduces appropriate geometric objects for the analysis close to an interior edge.
We denote the union of all edges of the interfaces by S. The latter is also called
skeleton.

Definition 3.3. Let e C SN Q be an interior edge, and let Qin 1, ..., Qin,a be the
four adjacent cuboids to e. The material parameter € has a strong discontinuity
at eif /g, ;u...UQi,.. has a strictly larger value on one cuboid than on the remaining
three.

In the following, we fix an interior edge e;,;, C SNQ. After translation and scaling
we assume the identity

em = {(0,0)} x [0, 1]. (24)
We moreover assume that ¢ has a strong discontinuity at e, and fix four cuboids

Qin,1,- -, Qin,a having e, as a common edge. We denote by e;, the restriction of ¢

to the latter cuboids. The notation Ei(fl) Qin.i- As € satisfies (2), it

then suffices to treat the configuration

L _ @ _ .3 _ @ 1 (1)

then refers to &,

€in €in €in < €in < €in s

14+2vV2-2V2+ V2 .
€i(§) 41 2008(1—7577) sin(Sm) (25)
gi(i) cos(m)sin(27)’

All other cases (such as el having the largest value) are then covered by symmetry.

mn

As in [14, 15], we use a cylindrical coordinate system to deal with the behavior of
functions in D(Ag r+) near the interior edge e,. To that end, we employ a cylinder
Zin around e, with radius 1, that touches the faces F; and I'y of (). After scaling,
we can assume that Z touches no interior edge (except e, of course). We set

Zini = Zin N Qingi, i€ {l,...,4},

and transfer the notion of restrictions of functions and piecewise regularity to this
partition of Z;,. Also ¢y, is defined accordingly on Z;,. The interfaces
FE =2k N Zingrt, Fi = Zm1NZma,  ke{1,2,3},
are furthermore employed. After rotating, the representation
Zini ={(z,y,2) | (x,y) € Diny, z €10,1]}, (26)
Diyi = {(rcosg,rsing) | r e (0,1), ¢ € Lin;i}

is valid for ¢ € {1,...,4}, using the intervals
Iing = (0,%), Iinz:=(3.7), ling:=(m37), Lina:=(3m,2m).

By (r, ¢, z) we throughout denote cylindrical coordinates. Note that Dip 1,. .., Din 4
give rise to a partition of the unit disc D. The partition represents the regions,
where ¢;, is constant.
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The interfaces near e, are then represented by the interfaces between the sub-
domains D, ;. To address them, we set

Ain g = ODinj N ODiy 11, Aing := D51 NODiy 4,

for i € {1 2,3}. Also the definition of the jump [-] is transferred to the interfaces
FZ and Am i

3.3. Analysis of a Laplacian on the disc with transmission conditions. In
this Subsection, we use the notation from Subsection 3.2 without further notice.
Our goal is a precise spectral knowledge of the two-dimensional Laplacian

(Ivlm'(/))(v) = A"/J(Z) on Din,i7 (27)
¢ € D(Lin) := {¢ € HY(D) | AYp® € L*(Din ),
[emdu] 4, =0forie{l,...,4}}

with transmission conditions on the unit disc D. Note that the transmission con-
ditions fit to the ones of the Laplacian Ag r~, see (19).

The next statement provides the selfadjointness and invertibility of Linon L? (D).
Although the statement is well known, see [36] for instance, we provide the proof
for the sake of a self-contained presentation.

Lemma 3.4. Let ey, satisfy (25). The operator Iv/in is invertible, has a compact
resolvent, and is selfadjoint on L?(D) with respect to the inner product

(fag)sin,D ::Lsinfgdxa fa ELQ( )

Proof. We first show that L, is surjective. Let f € L?(D). We consider the
associated variational formulation

4
Z/ Ei(:l)Vu(i)V@(i) dz = / fede, ¢ € Hy(D). (28)
i Din,i D

The Lax-Milgram Lemma then yields a unique function u € Hg (D) satisfying
(28) for all ¢ € HE(D). Inserting smooth test functions ¢ with compact support in
D into (28), we further infer that div(e;, Vu) is an element of L?(D). Altogether,
1 is an element of D(Ein), and L, is surjective. The injectivity of Li, can be
established with similar reasoning.

Let now v,w € D([V/in). Employing the boundary and interface conditions from
(27) in an integration by parts, we infer the relations

4
- Z/ ei(fl) O Aw® dz = Z/ (Z Vo vw® dz
i=1 Y Din,i Din i
:—Z/ () (Av)w® dz.

m i

This shows the symmetry of the operator Lin. The remaining asserted statements
follow now from the closedness of Liy,. O

The eigenvalue problem for Ly, can be handled by transferring the reasoning
n [49]. This means that we switch into polar coordinates (r,¢) on the disc D,
and proceed with a separation of variables. Recall the intervals [iy 1, ..., fin 4 from
(26). As the coefficient €;, depends only on the angle ¢, it can be interpreted as a
piecewise constant function on the union I3 U--- U [in 4.
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We study the eigenvalue problem
W) () = k2l (@) for ¢ € Lins, ie{l .4},
P 0) = vl @2m), e W) 0) = e (i) (2m),
¢m< )= (5), (WR))(5) = @) (5), (29)
»2 () = (), <<2>)<> WY (),
YD Er) = ol Gm), Q@Y Er) =L @Y (En).

For the formulation of the derivative transmission condition in the third and

fourth line of (29), we employ the condition 6(1) = 5(2) = 5(3). By Lemma 4.2 in
[37], system (29) has countably many eigenvalues 0 = k2, o < k%, < -+ = 00,
and associated piecewise smooth eigenfunctions iy 0, %in,1, - - . The latter form an

orthonormal basis of L?(0,27) with respect to the inner product

2
(fs9)eim =/ einfg de, f,9 € L*(0,2m).
0

We next derive a sharp lower bound for the square root of the first nonzero
eigenvalue of (29). To that end, we employ the number % from (15).

Lemma 3.5. Let ¢in satisfy (25). Then B < Kin,1 < 1 < Kin2.

Proof. 1) We first assume that A € (0,1) is an eigenvalue of (29) with an associated
eigenfunction ¢ # 0. The first line of (29) then implies the representation

PO (p) = a' cos(VAp) +bP sin(Vap), o@D eR, p €L,  (30)

for i € {1,...,4}. The third and fourth line of (29) lead to the relations a(*) =
a® = a® and b = b = p®). The second and fifth lines of (29) further result
in the formulas
aM = a™ cos(VA27) + b sin(vVA27), (31)
R
b = E‘(‘;) (—a® sin(vA27) + b™ cos(vVA2r)),

4) COS(\/X%W) + ™ sin(ﬁ%ﬂ') =a® cos(ﬁ%w) + b sin(ﬁ%w)
= a™ cos(V/A2n) COS(\/X%W) + ™ sin(vVA27) cos(\ﬂgw) (32)

@
— Z5a™ sin(vA2r) sin(VAS )

in

@
+ i‘(‘;) b cos(VA2r) sin(vVA3).

Reformulating the last identity, the equation

a(4)(cos(\f/\%7r) — cos(V/\2r) cos(ﬁ ) + 2‘}) sin(V/A27) sm(\/ng))

= b(4)(sin(\5\27r) cos(ﬁ%w) - sin(ﬁgw) + ?{) cos(V/\2r) Sin(\f)\%w))
=M A () (33)

is derived. Relating the derivative condition in the fifth line of (29) to (31), we
conclude the formulas

a® (- zsi(f) sin(\f)\%w) + Ei(i) cos(VA2r) sin(\ﬂ%ﬂ) + Ei(ﬁ) sin(v/\2r) cos(ﬁ%w))
= b(4)( - Ei(ﬁ) COS(\/X%W) — €i(i) sin(vV/\27) sin(\f)\%ﬂ) + si(fl‘) cos(V/\2r) COS(\/X%W))
=: bW Ay(N). (34)
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2) We next show by contradiction that a*) is nonzero. Assume hence that
a = 0. Equations (31) and (33) then imply that b®*) is nonzero and that A;(\)
vanishes. In the following, the numbers

By S

are employed. Manipulating (33) by means of trigonometric identities, we infer the

relations
(4)
0= A1 () = sin(vVA27) cos(VAZ7) — sin(VA37) 4 (385 — 1) cos(VA27) sin(VAZT)

in

+ cos(VA27) sin(ﬁ%ﬂ')
= wcos(VA2n) sin(\f)\%ﬂ) +2 COS(\/X%?T) sin(v/Ar).

Since the two summands in the last line have no common zeros on (0, 1), the last
line gives rise to the formula

2 COS(\/X%?T) sin(v/An)
cos(VA2m) sin(vVAST)
From (34) we further deduce that the expression As(\) vanishes. Manipulating

the defining relation for A3(\) by means of trigonometric identities, the equations

@
?(';) cos(VA27) COS(\/X%W)

in in

w=w\) = (35)

@)
0= —3in cos(ﬁ%w) — sin(V/A27) sin(ﬁ%w) +

g

(4)

= —Z'(';) cos(\ﬂ%w) — sin(vV/\27) sin(\ﬂ%ﬂ) + weos(VA27) cos(VA3T)

in

+ cos(VA2) COS(\/X%TI‘)
= —% COS(\/X%TF) + cos(\f)\%ﬂ) +w COS(\/XQW) cos(\ﬂ%w)
=—w cos(ﬁ%w) - ZSin(\[\%W) sin(VAT) + w cos(V/A2r) COS(\/X%W)

follow. The right hand side is next multiplied with the factor cos(v/A27) sin(vV A2 ).
Using also (35), we then infer the formulas

0=—w cos(xf)\%w) cos(VA2m) sin(ﬁ%ﬁ)
-2 sin(\r)\%ﬂ') sin(vVAr) cos(V/A27) sin(\r)\%ﬂ')
+ wcos?(V/A2r) cos(ﬁ%w) sin(\&%w)
= 2cos(VASm) sin(V A7) cos(VAST)
-2 sin(\r)\%w) sin(vV A7) cos(V/A2r) sin(\&%w)
-2 COS(\/XgT() sin(V A7) cos(VA27) cos(\r)\%w). (36)

We next divide (36) by sin(vA7) # 0, and we use besides the angle sum formula
for cosine the trigonometric relations

cos(\ﬂgw) COS(\/X%TF) = %(cos(\f)\éhr) + cos(VAn)),
cos(VA27) cos(VAT) = %(COS(\/X?)?T) + cos(VAn)).
In this way, we arrive at the equations
0= cos(\ﬂ%ﬂ) COS(\/X%T(‘) - sin(\ﬂ%ﬂ) cos(V/\2r) sin(\[\%ﬂ)
- cos(\&%w) cos(VA2m) cos(\&%w)
= cos(ﬁ%w) cos(\[\%ﬂ) — cos(V/\2r) cos(V/An)
= %(COS(\/X47T) — cos(VA3m)) = — sin(\ﬂ%ﬂ) sin(\ﬂ%ﬂ').
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As sin(ﬁ ) # 0, we conclude that A is an element of the set {15, 15, 35}. Plugging
these Valueb for X into the formula (35) for w(\), we obtain, however, that w(4/49)
and w(16/49) are negative (thus contradicting (25)), while w(36/49) is excluded in
(25). We conclude that a(¥) is different from zero.
3) Taking the results of part 2) into account, we can assume that a® =1. In
the following, we distinguish the cases of A3(\) being zero and nonzero, see (34).
3.1) Suppose A, ()\) = 0, and proceed similar to case 2). The formula for As(X)

in (34) is divided by ¢; ™) "and the number

=1+ 5 /Em
is introduced. By means of trigonometrlc identities, the equations
0=— COS(\/X%W) - j; sin(VA27) sin(ﬁ%w) + cos(V/A2r) COS(\/X%?T)
=— cos(ﬁ%w) — wo sin(VA27) sin(\[\%%) + cos(\f)\%w)
= 2sin(VAr) sin(VAL7) — wo sin(vA27) sin(VAZT) (37)

are then obtained. Since the summands on the right hand side of (37) have no
common zero on (0,1), the formula

2sin(v/Ar) sin(vVALT)
Wwo = (38)
sin(v/A27) sin(vVAS )
follows. Treating the left hand side of (34) in the same way, we further arrive at
0 = —2cos(V A7) sin(ﬁ%ﬂ') + wp cos(VA27) sin( A3m).
Multiplying the right hand side by sin(v/A27) and inserting (38), we deduce
0 = —2sin(v/A2) cos(VAr) sin(VAL7) + 2 cos(vVA2r) sin(VAr) sin(V A3 7).

Dividing by Sin(\/X%ﬂ') and using the sum formula for sine, we arrive at the identity

0 = sin(v/A). Since A is assumed to belong to (0, 1), this is a contradiction.
3.ii) In consideration of the results in 3.i), we infer that As(A) has to be nonzero.
Dividing in (34) by A2(\), and using trigonometric identities as well as the number

§= 81(4) sl(i), we then obtain the equations
@) — m sm(\f?’ )+5$)cos(\ﬂ27r) sin(VA2r )+5m in(vX27) cos(VAST)
1(:f) cOb(\fS ) — (1) sin(v/\27) sin(\/X%ﬂ) co&(f ) co (\/X%ﬂ')
_ —ey sin(VAS7 )+ el Sln(ﬁ%ﬂ) —§cos(\f27r) sin(f% )
_gi(i) cos(\f?» )+ El(i) cos(ﬁ% ) + Esin(v/A27) sm(\f% )
_ _255;‘;) cos(VAZT) sin(VAr) — € cos(vA2r) sin(vV A2 ) (39)
25&) sin(\/>f7r) sin(vAr) — €sin(v/A27) sin(\f% )

We next reformulate (33) algebraically with the number w = 5(4)/5(1) 1 and
the relation a(* = 1. We derive the identities

@
0= cos(\f)\%w) — cos(V/\2r) Cos(ﬁ%w) + S5 sin(VA2n) sin(ﬁ%w)

- b(4)(sin(\f)\27r) COS(\/X%W) - sin(\[\%ﬁ) + Z‘Ei cos(V\2m) sin(\/X%W))
= COS(\/X%TF) - cos(\[\%??) + wsin(VA27) sin(\[\%ﬂ)

—p® (- sin(\ﬁ%w) + sin(ﬁ%w) + wcos(VA27) sin(\f)\%w))
=2 sin(ﬁ%ﬁ) sin(V/Ar) + wsin(vVA27) sin(\f/\%w)
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—p® (2 COS(\/XgTK') sin(VAT) 4 w cos(VA2r) sin(\f)\%ﬂ)). (40)

The representation (39) for b is next inserted into the right hand side of (40),
and all arising expressions are multiplied with the denominator in (39). In this way,
we deduce the equations
0= 451(1%) sinQ(\F)\% ) sin?(V ) + 2w€ sm(\f27r) sm(\ﬂgﬂ) sin(ﬁ%w) sin(v/Ar)

—2¢ Sin(\fé ) sin(V/ A7) sin(VA27) sm(\ﬁ%?r) — wesin®(VA27) sin2(\f>\%7r)

+4E ) cos (\F5 ) sin?(Vr) — 2§cos(ﬁg7r) sin(VAr) cos(VA2r) sin(\ﬂ%w)

+ 2w5 cos(\f27r) sm(\f?’ )COS(\/X%W) sin(VA)

— wé cos?(V/A2r) sin (\f%ﬂ) (41)
= 4si(§) sin? (V) + Q(wsi(:f) —¢) Cos(ﬁéw) sin(v/Ar) sin(ﬁ%ﬂ)

—wé SiHQ(\/X%ﬂ'). (42)

To further simplify the expressions on the right hand side, we use the formulas

cos(\a% )sm(\fﬂ) (sm(\/xlﬂ) +sin(VA37T)),
— 6= G el 4 of) = Cal = (S - 1 - )
- wé."
Inserting these relations in (42), we arrive at the identities
0= 455? sin? (VAT) + 2wé COS(\/X%W) sin(VA) sin(\F)\%ﬂ') — wé sinz(\a%ﬁ)
= 451(1?) sin? (V) + wé sin(\/x%w) sin(\/xgﬂ).
As the two summands on the right hand side have no common zeros on (0, 1), we

conclude the representation

() —elMy? 4e¥ sin®(VAr)

Ei(1) =we= sin(VAL7)sin(VAZT) '
Note that A is uniquely determined by (43), and that it is greater or equal than
%2, see (15). Altogether, there is at most one eigenvalue of (29) in (0,1), and if
it exists, it is greater or equal than %2. The associated eigenspace is furthermore
one-dimensional.

4) Let A € (0,1) satisfy (43). Then VA > & > 3, see (16). It remains to show
that A is indeed an eigenvalue of (29). We first prove that the denominator in (39),
being A5 (), is nonzero. So, assume Aj(\) was zero. By definition of A, (41) is still
valid. Rewriting (41) in product formula, we then deduce the identities

0=(2 sin(xf)\gﬂ) sin(VAT) + w sin(v/A27) sin(ﬁ%w))
- (21 sin(VAZ) sin(vVr) — € sin(v/A27) sin(VAZT))
+ (2cos(VA3T) sin(VAT) + w cos(VA27) sin(VAST))
: (251(? cos(\f)\gw) sin(VAr) — € cos(VA2n) sin(\[\%w))
= (2cos(VAZ7) sin(VAr) + w cos(VA2m) sin(VA3))
. (261(2‘) COS(\f/\%ﬂ') sin(VAr) — € cos(VA27) sm(\f/\%ﬂ))

Since the second factor on the right hand side is positive (as VA > %), we conclude
that the first one has to be zero. This expression is, however, equal to A;(\), see
(33). (This can be seen by reversing the reasoning in (40)). Now the arguments in
part 2) lead to a contradiction. This means that As(\) is nonzero.

(43)
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We then define b according to (39), set a® = 1, define a®) = @ = B,
b = b2 =p) by (31), and choose 9 as in (30).

Altogether, only the required transmission conditions need to be validated for 1.
By definition of b®*), formula (34) is satisfied. Due to (43), identity (42) is also true.
Dividing the right hand side of (42) by As()\), we then conclude that (40) holds.
This finally means that also the first transmission condition (33) is fulfilled. d

In the following, we construct eigenfunctions for the Dirichlet Laplacian L, from
(27). This is done by means of Bessel functions and the eigenvalues of (29). The
spectral analysis is concluded in Lemma 3.6. We recall for v > 0 the Bessel function
J, of order v as

oo (42
20 =31y

Jj=0

iTwijry Y (44)
involving the Gamma function T'(-). The mapping .J,, is smooth on (0, c0), see for
example the Theorem in Section 5.5.1 of [49]. The positive zeros of J, are denoted
by 0 < p{” <y < 5 .

Recall that ”izn,z is an eigenvalue of system (29) with associated eigenfunction
Yin,;. We define the numbers

= (02, keNTem,

and the associated mappings

‘}crjl(ﬁ (P) = Jmn,z(\/ Xiﬁzr)iﬁin,z(@)» e (07 1)? ¥ € (07 271—)5 (45>

with £ € N and [ € Nyg. Due to the choice of 5\'};‘,[, the function \I!};‘l vanishes on
the boundary of D. We further note that the functions \I/}Cnl have second weak
derivatives with singularities at » = 0. This eventually causes the weaker reg-
ularity statement than H? in Proposition 2. These singular functions are hence
incorporated separately by means of the spaces

My, = span{¥}?, | k€N, 1 € No\ {1}}, Ny, :=span{¥}; [ ke N}.  (46)

In the next lemma, we derive useful spectral properties of the Laplace opera-

tor Lin. The proof employs ideas from Theorem 2 in Section 5.5.2, Lemma 1 in

Section 6.4.2, and Theorem 1 in Section 6.4.2 of [49]. Recall for the statement
definition (27).

Lemma 3.6. Let ey, satisfy (25).

a) The family {©}; | k € N, | € No} is an orthonormal basis of L2(D) with
respect to the inner product (-,-)e,..p from Lemma 8.4.

b) The sets M., and Ny, are contained in the domain D(f/in). Furthermore, M,
is a subspace of PH?(D). The eigenvector relation

Lin U, = =\l keN, I €Ny,
is satisfied.

Proof. a) The asserted orthogonality follows by combining the choice of the func-
tions {%in,; | I € No} with Theorem 2 in Section 5.5.2 of [49]. The completeness
of the system {W}*; | k € N, I € Np} can be concluded in the same manner as in
the proof of Lemma 1 in Section 6.4.2 of [49], now employing the completeness of
{¥ing | 1 € No} in L2(—Z, 37) = L2(0, 2m).

b.i) Let k¥ € N and ! € Ng. We first focus on the transmission and boundary
conditions. The mapping \I/}cnl satisfies the required transmission conditions as a
consequence of the choice of 1y, 1, see (29). The function \Il}cnl furthermore satisfies
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homogeneous Dirichlet boundary conditions on 0D, as S\iknl ugf"‘“ 1) s a zero of
Jliin,l : .

We next show that every function W, is better than H L_regular. Denote by
(r, ) polar coordinates, and let ¢ € {1,...,4}. Since i, solves (29), it has the
representation

U (9) = af” cos(kinp) + b sin(kinge), ¢ € Ling, (47)

with real numbers al(l), bl(l). We then infer the formula

(W) D (r, ) = 27 (af") c0s(Kin,10) +b}") sin (ki 10))r"

2

: Z(_l)j (u(ﬁin,l))lﬁinyl-‘rzj L.
= g JT(v+j+1)

As the series on the right hand side converges uniformly in r € [0, 1], the function
W}?, is as regular as the function (al(i) cos(Kin, 1) + bl(i) sin(Kin,1¢p))rmt. If [ = 0,
this means that W}, is piecewise smooth. In case [ € N, W}, then belongs to the
space H#(Dy, ;) for every k < min{1, sin 1}, see [4, 5, 3, 55] for instance.

It hence suffices to show the stated eigenvalue eigenvector relations to conclude
that M, and Nj, are contained in D(Lin). Applying Theorem 2 in Section 5.5.2 of
[49] together with the choice of ¥, , see (29), we arrive at the desired relations

(Lin W)V (r,0) = AT D (r,0)

1 [ 7 \in
= 2000 T (N U) + 5 (G2 () T (3 Rir)
( Or(rdy T (M) = 3 nmlJﬁ,nx«&zm)w&?l(«p)

S, (0) iy, (VM) = =N (W) D ().

b.ii) It remains to show that every function in M, is at least piecewise H?-
regular. Let | € N with iy, = 1, where Ii?n,l is an eigenvalue of (29). Note that
there might be no [ € N with this property. With formula (47) and cartesian
coordinates, we arrive at the formula

00 z24a2\;
(T (r,p) = 1(%( 1+ by )> (—1 27“7( 14. )
’ 2 = JIT(j+2)

=: (P}, z)( )(951 2)
for (z1,22) € Din,. As a result of the uniform convergence of the series and its
derivatives, we conclude that (@}crfl)(i) is smooth on Djy ;. This means that ‘If}c’fl and
consequently also \I/}:‘l are elements of PH?(D). Similar reasoning shows that also
the functions ¥}, belong to PH?(D).
It remains to consider the case I € N with ki, ; > 1 (the case kin; < 1 is excluded
by definition of the space Min). Then, \If}fnl has the representation

| o (A2t (52
WP (ry ) = s thina(p)rnt 3 (=1 .

Qkin,1 JT(King +7+1)

j=0
Taking the uniform convergence of the series and its derivatives as well as the
piecewise smoothness of ¢, ; into account, the function ¥}"; satisfies the estimate

// 110, (W) D2 + 7 02(W) 2 4 110,0,(wip,) 02

m i
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+ E 10, (W) O + K 102(w) D) dpdr < oo,

proving that \I/}fl is an element of PH?(D). Altogether, the space My, is contained
in PH?(D). O

We next present a useful a-priori energy estimate for the Laplacian Ly, for func-
tions in M;,. The estimate is established in Lemma 2.2 and the subsequent Remark
in [36]. The statement uses the space

4
Yin = {¢ € [ H*(Din,i) | ¥ =0 on 9D,
=1

[¥]4,, =0=I[em0¢ly, , for ke{l,...,4}}. (48)
Lemma 3.7. Let eiy, satisfy (25). There is a constant C' = C(ey,) > 0 with

4
16l prz(py < CUlam + (3 1AED |22 0p, )?)
=1

for i € Yin.

Note that Lemma 3.6 shows that Min is a subspace of }Vfin. Standard reasoning,
see (67) for instance, then leads to the inequality

¥l prz(py < CllLint|lL2(D), Y € M, (49)
with a uniform constant C = C(g;,) > 0.

To derive a counterpart of Lemma 3.7 for functions in the space Ni, from (46),
we transfer ideas by Kellogg in the next two lemmas to our setting, see Theorem 5.2
and Lemma 5.6 in [36].

Let v € (1/2,1) and f € C([0,1]). In a first step, a norm estimate is derived for
the one-dimensional equation

P2 () + TR () = 2T (r) = f(r), e (0,1), ¢ e L*(0,1). (50)
We note that the expression on the left hand side corresponds to the radial part of
the operator Laplacian Li,, acting on functions in Nj,. The inequality provided by

the next lemma will thus be crucial for an energy estimate for Lin, see the proof of
Lemma 3.9.

Lemma 3.8. Let k > 2(1 —v) with parameter v € (1/2,1) from (50). The solution
P of (50) with boundary conditions (0) = (1) = 0 satisfies the inequality

1 1
/ (T () 4+ r3?) dr < C/ fAdr
0 0
with a uniform constant C' = C(k,v) > 0.

Proof. We first note that there is at most one solution ¢ € L?(0,1) to (50). (The
homogeneous counterpart has the fundamental system {r”,r~"}. The integrability
constraint rules out the latter basis function. As a result, the endpoint condition at
r = 1 suffices to ensure uniqueness.) Using the technique of variation of parameters,
we obtain the solution formula

T r 3
o(r) :ar”—&-ir”/ tl/z_”f(t)dt—z%r_”/ Ay =S 65(r)
j=1

0 0

for r € (0, 1), involving the number

1
o= —i/ (tY/ 2V — /24 (1) d.
0
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We establish the desired estimate separately for the three functions ¢q, ¢a, 3.
The choice of k > 2(1 — v) first implies the identities

1 1 2 2
a a
dr = dr = .
/0 ri3=r A fidr = /0 R

Applying the Cauchy—Schwarz inequality to the defining formula for «, the relations

1
o’ < i (tl e dt/ f2dt -C;g”/o f2dt (51)

are also obtained. This 1mp11es the first result

1
/0 = ——¢7(r)dr (m+2u—1 V2/ fAde. (52)

For the functions QSQ, @3, the analogous estimates
/ 1 ———p2d ! / f2at, (53)
o 32 r_8V2(1—I/ k+2(v—1))
o, 24
dr 4
[ adiar < gt [ £ (54)

are valid. Inequalities (52)—(54) then lead to the result

/01 L2 dr < Co(w, ) /1 far. (55)

r3=

It remains to estimate the first derivative of . Employmg (51), the relations

1 1
1
/N2 2.2 2u-2 2
dr = d d 56
/01"1*"‘((;51) " /07"1 avr rs (/~€+2ufl /f " (56)

are immediately obtained. For ¢, and ¢3, the analogous inequalities

1 1 1 1 1 T
/ —( L2dr = — — (1/7"’_1/ 27V £ (1) dt—|—r1/2f(r))2d7“
o’ o T 0

412

1 1 1 2y,
2(2<1—v><2<u—1>+n>+ya>/0 f2dr, (57)

1 1 1 1 1 . r , 5
/0 rl—ﬁ( §)2 dr = 402 ri- H(_VT 1/ t/2t f(t) dt"‘Tl/Qf(T)) dr

1
<= >d 58
=32 (2(1/ + )k / frdr (58)
are true. The asserted statement is now a consequence of (55)—(58). O

We are now in the position to establish the desired a-priori estimate in fractional
order Sobolev spaces for the operator L;, on the space Ny, from (46). Recall the
number & from (15).

u oz,

Lemma 3.9. Let €i, satisfy (25), ko € (2(1 —&),1), and ¢ € N, ™ The
inequality

161l ppr2-x0r2(p) < CllLindllz2(D)
is valid with a uniform constant C = C(ko) > 0.
Proof. 1) Let ¢ € Ni. We use the sets

Dig = {(z,y) € Din; | |(z,9)] = £}
for £ > 0, and denote by (7, ¢) polar coordinates. Recall the definition of Dj, ; in
(26). Note moreover that ¢ is smooth on each D; ¢ by definition of Nj, in (46).
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Combining the relation |z]0/2|z,y|r0/2 < /22 22, (21,75) € R2, with
Lemma 2.12 from [6], it suffices to prove the estimate

2 2
Ko Ko Ko v
P2 @llL2 oy + Y _IIr2 89172y + Y IIr'2 9;0k8ll72(py < CllLindllL2()

j=1 k=1

with a uniform constant C.
Transforming to polar coordinates, we infer the formula

Z/ o [(8260)(020) - (8:0,69)2] d(a.9) (59)

fZ/ /,nz — (9,0,061)? i — (0,0 (0))2 - + (82¢(D) (8,0 )0

+(0}0D)(920) 12

(0,0,8')(0,0')) s | dipdr,

see Section 1.5.4 in [52] for instance. Integrating the fourth expression on the right
hand side with respect to the r- and -variable by parts, the identity

Z/ / ()01 (0269 (826D) dy dr
72 / / r0=1(0,0,60)2 — (1 — ko) ~2(9,0,6) (8,61))] dpdr

_Z / o (0,60)(9261)]|r=¢ dep (60)

is obtained. Inserting (60) into (59) and manipulating the arising expressions alge-
braically, the equations

Z/ rrog)| [(0260)(9261) — (0,0,6)%] d(z, )

pro—3 (1) 70 (524 @
—Z// (0,69)2 + 10 (82610) (8,69

m1

+ (L + ko)1 2(0,0,0'") (8,0 dp dr

—Z/ O 01 (3,60) (92601, _¢ g

_Z/ / (2= No)(lJrliO) prio— 3( qus ) (1+Ho)rnof2(a(pard)(i))(a(pgb(i))

m i

+r*€o(32¢(1))( ¢(l)) + &= 50)(;+K0)—2rmo—3(8¢¢(i))2] dpdr

72/ (Z) Ro— 1 T(Zs(z))(ai(b(l))]lT:E dQD

m i

= Z/ / L+ o)™~ 2(0,61)%) + 0 (9761 (0,¢17)

Ko 12 Ko) pro— S(a;’(b( ))2] d(pdT
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—Z / 0= 1(8,69) (026)] e dip

follow. An integration by parts with respect to the r-variable then leads to

Z / e D[(0260)(0269) — (8,0,6D)? d(x, )

72/ / el [ (076) (0,:01) + "Lzl ro 5 (9,6) dp dr

" Z / (5559200t — (0 (0,0) (@26)

+L “2(9,69)?)]—¢] do. (61)

2) The first term on the right hand side of (61) is next treated separately by
means of Lemma 3.8. We first note that ¢ has the representation

zZ
¢(T cos @, T sin (P) = Z akJHi;1,1 ( \/ X}gﬁlr)iﬁin,l (50)) (62)
k=1

for r € (0,1), ¢ € (0,27), with numbers Z € N and ay,...,az € R. (The function

¢ is an element of Nin, see (46).) Since i1 is an eigenfunction of (29) to the
eigenvalue /<;m 1, we deduce the identity

r'2A¢W = 129260 4 120,600 — k2 r 73200 = fO 1 r e (0,1).  (63)

To apply Lemma 3.8, we note that the function f is continuous in r and that ¢
belongs to L?(D). Indeed, using Lemma 3.6, the formula

A Z >‘k 10k, Kin, W \/ﬁr)ﬂ)g)l(%@)

is valid. Combining (63) with Lemma 3.8, we then deduce the estimate

Z// o1 (9,.¢("))? dgpdr<CZ// r(A¢™)2 dpdr

Iin 3

with a constant C' = C(kgo) > 0. For the first term on the right hand side of (61),
we consequently arrive at the inequalities

4 1
Z/ / () no(82¢(z )( ¢(Z))d(pd7"
i=17/€ VI
4
22 16// o 0RO dw”// P (0,60 dip )

i=

> - Zm / [ e @290 dpdr + 401 BT i) (64)

additionally using the Young and Cauchy-Schwarz estimates.

3) We next focus on the face integrals on the right hand side of (61). To that end,
we analyze the behavior of ¢ near the center of D. Since ¢ has the representation
(62), it suffices to treat in the following only the function ¢(r, @) == Jy,. | (7)¥in,1 ().
As iy 1 is an eigenfunction of (29), definition (44) leads to the identity

(-0 (926)(r, )
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Km > (ﬂ)fiin,1+2j—1 i > . (ﬁ)ﬂin,1+2j
— ) (37 (1) (inat + 20) 5 rry) W (0)* Y (-1 sy
j=0 =0

Since ko > 2(1—kKin,1), this implies that the function rm*l(aréﬁ))(ag(z?@)) possesses
a continuous extension to [0, 1] X [, 4, and that it tends to zero as r — 0. Similar
reasoning further shows the same statements for the function r%0=2(9,¢(")2. The
Lebesgue theorem of dominated convergence hence yields the result

lim > / W TN @,00) (0200) + Bt (9,00 e dp = 0. (65)

4) For the next step, the formula
9200 = 29261 + 2240,0,6 + L 52
is useful. Combining (61) and (64), we derive the estimates

4

3 / r0e(AGD)2 d(z, y) + AC| EnLind |20

i=17D

\ V

4
Z (/ Fhog (i [(ag¢(.)) (62¢(l)) +2(8x8y¢)2]d(357y)

/ / 5 V) pro+1 (0202 dp dr

-/ 911 0,600)0260) + g0, [

4
=15 ( /D e 1(0260)? + (9369) + 2(0.0,6)? d(x, )

i=1
“2 [ o) @) + Hure (0,60 ¢ d).
In the limit £ — 0, the monotone convergence principle and (65) lead to the relation

(1+ 4é)||\/5inzin¢||2Lz(D)
4
>1y /D e [(0260)2 4 (9267 + 2(0,0,69)?) d(x,y).  (66)
i=1 in,i

Combining the Cauchy-Schwarz inequality with an integration by parts, we fur-
thermore infer the estimate

4
Ve Lindll 12Dy - |[VEmdll L2(py > — Z / ei(;)(Lmsz»)%(“ d(x,y)

—2/ cDIVo 2 d(z,y).

1n i

Taking additionally the Poincaré inequality into account, we conclude the remaining
estimate

IvVEmLindll22(p) = CllvEmdl pr (p)- (67)
Altogether, (66) and (67) imply the desired energy inequality. O

The following corollary is an important consequence of Lemmas 3.6 and 3.9, as
well as (49).
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Corollary 1. Let ey, satisfy (25), and > 1 —F. The domain D(Ls,) is a subspace
of PH*>7%(D) with |lul|ppr2-«py < Cl|Linullr2(py, v € D(Li), for a constant
C=C(k)>0

Proof. Combining Lemmas 3.6 with (49), the estimate
HuHPH?**‘(D) < CllvemLinul[2(p)

is valid for u € M;, with a uniform constant C' > 0. Lemma 3.9 1mphes the
analogous inequality on Ny, (with a constant C' = C(k) > 0). Let v+w € Min® Ny,
The triangle inequality and Lemma 3.6 then imply the desired estimates

v +wH%H2*N(D) < 2(”””?3112%(13) + ”w”%H?*N(D))

< 2C%(||vEmLinvl|72(py + [VEmLinw|22(py)

:2C2Hs/é—inLin(U+’LU)H%2(D). (68)

—————D(Lin) v
By Lemmas 3.4 and 3.6, the identity M;, ® N, = D(Liy) is valid. The
stated embedding hence is a consequence of (68). O

3.4. Conclusion of the regularity statement. We now establish the desired
regularity statement for functions in the domain of the operator Ag - from (19),
resulting in a regularity result for the solution to the interface problem (14). To
that end, we first use a cut-off argument to focus on thin cylinders around interior
edges. This principle is well known to experts in the field, see [16, 14, 15] for
instance. To have a self-contained presentation, we however sketch the arguments.

Let us first fix some notation for the next statements. Recall that S is the union
of all edges of the interfaces. Let ¢, C S be an interior edge, and § > 0 be so
small, that all cylinders around the interior edges with radius ¢ are disjoint from
each other. We denote by dist(ein, ) : @ — [0,00] the distance function to ei,.
Let additionally x5 : [0,00) — [0,1] be a smooth cut-off function with x5 = 1
on [0,6%/4] and suppxs C [0,95%/16]. Note that xs(dist(e,-)?) is cylindrically
symmetric on @ with respect to e, and smooth.

Lemma 3.10. Let ¢ satisfy (2), and let e;, € S be an interior edge. Let furthermore
u € D(Agr+). The function xs(dist(eim,)?)u belongs to D(Agr+).

Proof. After translating, scaling and rotating, we can assume that 6 = 1, and that
ein satisfies (24). We abbreviate v := x1 (dist(ein, -)?)u.

Recall definition (19). As the mapping x; (dist(ep, -)?) is smooth and u € H(Q),
v is also contained in H'(Q). Furthermore, v satisfies the same boundary conditions
as u, since the factor yi(dist(ep,,-)?) does not depend on x3. Using the product
rule for the Laplacian, we furthermore infer Av(® € L?(Q;).

It consequently remains to verify the first order transmission condition for v. By
construction, it suffices to focus on the interfaces that touch e;,. Let F be such an
interface. We assume the representation

F ={0} x [0,1] x [0, 1],

as the other interfaces can be treated in the same way. Let x = (x1,z2,23) =
(0, x9,23) € F. We calculate

Vs (dist(em, 2)?) - vy = x5(dist (e, £)%)01 (23 + 23)]2, =0 = 0.

This means that v fulfills the same interface conditions as u, whence v is an element
of the domain D(Ag r~). O

Recall for the next statement Definition 3.3, (17), and (15).
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Lemma 3.11. Let € satisfy (2), and let e, C S be an interior edge, where £ has
a strong discontinuity. Let furthermore u € D(Agr+) and k > 1 —%. The function
xs(dist(ein, -)?)u belongs to Va_,, N D(Agr+) and

[Ixs (dist(eim, Jullv, . < Cl|Ao,r- (xs(dist(ein, Ju)llL2(@)
with a number C' = C(4,¢,K).

Proof. 1) After translating, scaling and rotating, we can assume that § = 1, and
ein satisfies (24). We moreover adopt the constructions in Section 3.2, and assume
that '3 C T'*. (The case I's € I'* can be handled with the usual modifications
for homogeneous Neumann boundary conditions.) Throughout, C = C(4,¢, k) is a
constant that changes from line to line. As in the proof of Lemma 3.10, we set

v = 1 (dist(eim, )*)u € D(Agr+).
By construction of v, it suffices to prove the inequality

vl 2((0,1), PE2= % (DY) F [Vl E1 ((0,1), 511 (DY) + 1Vl Er2((0,1),L2( D)
< OllAor-vllL2(z,)- (69)

2) The function v is odd reflected at I's to the large cylinder Zi, := D x (—1,2),
and the resulting mapping is still denoted by v. The parameter €y, is reflected in
an even way. Note that v belongs to H'(Z;,), and that €in VD, x(~1,2) IS an
element of H(div, Zi,).

3) Let x3 : R — [0,1] be a smooth cut-off function with x3 = 1 on [0,1] and
suppxs C [-1/2,3/2]. We analyze the product xs(z3)v in the following, and
thereby use ideas and techniques from [16, 14]. To that end, we extend the function
X3(x3)v trivially by zero in zs-direction to the infinite cylinder D xR. The extended
function is denoted by the same symbol. Note that this extension argument does
not change the transmission behavior.

Put now
—A(tsv") = f1 € L*(Din; x R), (70)
for i € {1,2,3,4}. The above extension procedure then implies the fact
£l z2(oxr) < Cllfllz25,.)- (71)

Next we apply a partial Fourier-Transform with respect to the xs-variable, and
we denote the resulting function by @ for w € L?(D x R). The inverse transform
of a function v € L?(D x R) is denoted by ¥. We moreover call the new variable in
Fourier space £. Relation (70) then gives rise to the formula

(€2 - 32— 32) (x3v D) (21, 22,€) ="(f V), (w1,22,8) € Ding xR, (72)

The variable £ is considered to be fixed in the next steps (the statements are
then tacitly valid for almost all ¢). Fubini’s Theorem throughout provides L>2-
integrability of the arising expressions. Equation (72) in this respect means that
the mapping (02 + 832)A()Z§Z)v(i))(-,f) is an element of L?(Dj, ;). Furthermore,
“(x3v)(+, €) belongs to H} (D). Combining the fact div(e;, Vysv) € L2(D x R) with
the reasoning for (72), we conclude that “(x3v)(-,§) fulfills on D the boundary and

v

transmission conditions that are required in D(Liy ), see (27). Altogether, we arrive

v

at the fact “(x3v)(-,€) € D(Lin).
4) Corollary 1, the triangle inequality and (72) provide the relations

IPGs) ) sra-s(0) < CllEan (s0) (Ol
< OG- Ol3ey + NGOy (73)
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We next take also the estimate
0< _%(Ein§2A(>23v)('v f)a Iv/inA(;(S'U)('a 5)) L2(D)’ (74)

into account, that is a consequence of the positivity of —Lin. Combining (72)—(74),
we arrive at the inequalities

I"Ges) ) B sz ) < € (IV/EmE (o) ) 2y
= 2R (em€” (Xa0) (-, €), L (X30) () 1)
+ e (sv) (Ol o) + IVEm (D2 )
< ClVER (D ON32(n)- (75)

Integrating now with respect to £ and using Plancherel’s Theorem, we conclude the
estimate

(
(

||>Q(3U||%2(]R,PH2*“(D)) < CHfHQL?(Dx]R)
follows. In view of (71), we consequently derive the relation
IXsvll2, PH2-~(D)) < Cllfll 125, (76)

This means that the function v belongs to the space L2((0,1), PH?~%(D)).
5) The reasoning in (75) further yields the inequality

1€ (%3) (- )72y < CllvER (N N2z (D)
Integrating with respect to £ and using (71), we infer the estimate
IXsvllz2®,22(D)) < Cllfllp2(z,,)- (77)

In the following, we employ the equivalence of the piecewise H'-norm and the
graph norm in D(—Ls,)'/? several times. With the selfadjointness of the operator
(—Lin)*/? and the Cauchy-Schwarz estimate, we next deduce the inequalities

Iv/Em €l (= Lin) 2 (X30) (- )l L2 (D)
< ((€in\€|(*Ein)l/%(f%w)(w5)7 |§|(*Iiin)1/2A(>‘€3v)('a€))L2(D))

= ((€in‘§|2A(>23'U)('a f), (*Iv/in)A(j’(i%U)('? O)L?(D)) v

< IVEmlE (50) (O by IV (30) (-, )12 -

We now integrate with respect to &. The statements in (71) and (75), and the
representation of the space H' (R, H'(D)) by means of the partial Fourier Transform
in x3 now give rise to the relation

1/2

[VEmXsvllm ®,m1(D)) < Cllfll L2z, (78)
Combining (76)—(78), inequality (69) is valid. O

For the next statement, we collect all interior edges e, at which € has a strong
discontinuity, into a set £(¢), see Definition 3.3. We also set £(u) := 0, and recall
that ¢ is introduced at the beginning of this Subsection. The below lemma then
states that functions in the domain D(Aq r+) from (19) are H?-regular near every
edge of an interface at which € has no strong discontinuity.

Lemma 3.12. Let n € {e,pu} satisfy (2), and let w € D(Aor+). The function
w = (1—=3 ce(, Xo(dist(e, V))u is contained in PH?(Q) with

lwllprz@) < |Aor-wllL2(q)-



30 KONSTANTIN ZERULLA

Proof. 1) We only treat the case n = ¢ and I's C I'*, as the remaining can be
handled with similar arguments. By Lemma 3.10, the function w is an element
of D(Agr+). In view of Lemma 3.2, it suffices to show that w is piecewise H?-
regular. To reach this goal, we first analyze w on two adjacent cuboids @ and
()2 that share an interface F with two interior edges. After appropriate coordinate
transformations, we can assume the identities

Ql = (_170) X (_171)27 QZ = (Oa 1) X (_171)27 F= {0} x [_171]2'
A smooth cut-off function x : [-1,1] — [0,1] is furthermore employed. It satisfies
suppx C [-1+6/8,1—¢/8 and x = 1 on [—1+46/4,1 — §/4] for the number &

from the beginning of the current Subsection 3.4. Set also Q := (—1,1)3.
By construction, the function

f(30179€2,$3) = 77X(901)X($2)w($1,3€27333)

is then an element of the space

{f € PH'(Q) | Aflq. € L*(Qi), i € {1,2}, [+ /] = [01f]F =0,
f(G,£1,9)=0, f(£1,-,-) =0, d3f(-,-,£1) =0}.

By Proposition 8.1 in [54], the mapping f is then H2-regular on @Q; and Qs.

2) Note that w is also piecewise H2-regular in a neighborhood of the boundary
faces I'; and T's. (The cuboids that touch the exterior faces I'; or 'y are handled
as in part 1) but the cut-off procedure in the definition of f is not applied near the
respective boundary face.) Taking the definition of w into account, the function w
is altogether piecewise H?-regular on Q. O

Combining Lemmas 3.11 and 3.12, we derive the desired regularity statement
for functions in the domain D(Aq ). Recall for the statement definitions (15) and
(17).

Lemma 3.13. Let u € D(Agr+), and let n € {e,u} satisfy (2). Choose further
k=01in=u, and Kk >1—F if n =c. The estimate

ully,_, < CllAor-ullL2(q)
is valid with a uniform constant C = C(k,n, Q).

Proof. 1) In the following, C' = C(k,e,Q) > 0 is a constant that changes from line
to line. Integration by parts and the Poincare inequality imply the relations

||AO,F*UHLQ(Q)HVUHLZ(Q) 2 C”AO,F*UHLQ(Q)||u||L2(Q) Z —C/Q(Aoﬂp*u)udx

= C|IVullZ2(q) = Cllullzz(q)- (79)

2) For e € £(n), we set v, := x;s(dist(e, -)?)u. Combining the triangle inequality
with Lemmas 3.11 and 3.12, we infer the inequalities

HUHV27»{ < Z H/UEHVQﬂcJ'_”u_ Z 'UeHVZ,R

ec&(n) ec&(n)
<Y Ior-velzag +1Aor(w— > vo)lix@)-
e€&(n) ec&(n)

With Young’s inequality, we then infer the estimate

lul,_, < C( 0 IAorvelliaig) +1A0r-(u= 3 volag).  (80)
ec&(n) ec&(n)
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3) Let e € £(n), and abbreviate w, := xs(dist(e, -)?). Employing the product
rule for the Laplacian as well as Young’s inequality, we deduce the relations

N
180, r-vell72(q) = Y _I(Awe)ul? +2(Vuw,) - (Vu™) + weAul?||72 o,
i=1

N
<16 ([I(Awe)u ™72, + [(Vwe) - (Vul)[Faq + lwedu®[Faq,)-
i=1
We next take into account that all functions we have disjoint support. In view of
the regularity of w, on @ and and inequality (79), we arrive at the result

> Haor-velag < C(I1 Y (Awaulaig) +11 D (we) - (Yol

ec&(n) ec&(n) ec&(n)
X wedorulag)
e€&(n)
< C||Ao,r*u||%2(Q). (81)
Analogous reasoning also establishes the statement
B0, (u = Y ve)llZz(g) < Clldo,r-ullZag- (82)
ec&(n)

The desired estimate is a consequence of (80)—(82). O

Proposition 2 is a direct consequence of Lemma 3.13.

Proof of Proposition 2. System (14) has the weak formulation
L0 oo = [ npean eeni@ ()

In view of the Lax-Milgram Lemma (and the Poincaré estimate), (83) has a
unique (weak) solution 1 € Hf.(Q). Relation (83) being valid for all elements ¢
of H}(Q), we infer that div(nV) = nf is an element of L?(Q). This means that
nV1 satisfies the derivative interface conditions. Standard arguments further show
that 1 fulfills homogeneous Neumann boundary conditions on the boundary part
0Q\T'*, see part 2 of the proof for Proposition 8.12 in [54] for instance. This means
that ¢ belongs to the domain of the operator Ag -+, see (19). Lemma 3.13 now
implies the asserted regularity and energy statements. (I

We can also treat the pure Neumann case I'* = (), as the difference only arises in
the energy estimates. For the statement, recall the space Vo, from (17) and the
number & from (15).

Proposition 3. Let n € {e,u} satisfy (2), and let f € L?>(Q). We set k = 0 if
n=u, and K >1—FK if n = €. There is a unique function b € Vo_, solving

(l—A)w(i):f(i) on Q; forie{l,...,N},

Vi-v=0 on 0Q, (84)
[V]lF =0=[VY -ve]r for F € Fint.

It satisfies ||y, , < C|fll12q) with a constant C' = C(k,n, Q) > 0.

Proof. To unify the arguments, we introduce the appropriate Neumann-Laplacian
(Aggv) @ = Av®,
v € D(Agg) :={ve HY(Q) | Av') € L*(Q;), Vv-v =0 on dQ,
[¥]F =0=[nV¢]r for F € Fim,i € {1,...,N}}.
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As the reasoning in Lemmas 3.11-3.12 focuses only on the local behavior of func-
tions in the domain of Ag - around the interior edges and also allows homogeneous
Neumann boundary conditions, the mentioned statements are also valid for func-
tions in the domain D(Ag ). (In the proof of Lemma 3.12, one uses Proposition 8.2
from [54] instead of Proposition 8.1.)

Adapting the arguments in the proofs of Lemmas 3.2 and 3.13 to the current
setting of Neumann boundary conditions, we furthermore derive the energy estimate
llullv,_, < CI(I = Aop)ullz2(q) for u € D(Agy) with a uniform constant C' =

C(k,n,Q) > 0.
We moreover note that system (84) has the weak formulation

/nw<p+n(Vw)‘(V<P)dx:/nfsodw, e HY(Q).
Q Q

Employing the Lax-Milgram Lemma, (84) has a unique weak solution v € H*(Q).
Combining the reasoning in the proof for Proposition 2 with the above regularity
statement and energy estimate, we finally arrive at the asserted result. O

4. REGULARITY RESULT FOR THE SPACE X

This section is devoted to an embedding result for the space X; from (13). To this
end, we extend the well known regularity results for the spaces Hy (curl, div, Q) and
Hr(curl, div, Q), see Sections 1.3.4 and 1.3.5 in [24] for instance. The corresponding
spaces for our setting of discontinuous coefficients are

HN,OO(Curlv diV€7 Q) = {E € Ho(CuI'l, Q) | le(EE) = 0}7
Hy o(curl,dive, Q) := {E € Hy(curl,Q) | div(¢E) € L*(Q)}, (85)
Hrpo(curl, div p, Q) := {H € H(curl,@) | div(tH) =0, pH-v =0 on 0Q}.

The first and last space are already complete with respect to the norm in
H(curl, @) (making use of the bounded normal trace operator from H(div, Q) into
H~'/2(0Q)). The second space in (85) is complete with respect to the norm

2 2 2 . 2
IE[zy o = [Ell72(q) + llcurl El|72 o) + [[div(EE)[|72(q) -

Our first goal is to establish embeddings of the spaces from (85) into appropriate
fractional Sobolev spaces. In a next step, we then derive the desired embedding of
X1, see Proposition 4. In literature, we could detect neither the precise dependence
of kK on € and , nor the distinction between the regularity of the single components
of the electric and magnetic field. These results, however, turn out to be essential
for the error analysis in Section 6.2 and another paper that is in preparation. For
a clear presentation, we hence deduce the desired embeddings in a sequence of
lemmas. Note that [7, 11, 12, 8] contain regularity statements for the above or
related spaces in a more general setting, allowing general polyhedral domains for
instance. Our plan is to transfer parts of the reasoning in paragraphs 1.3.3-1.3.5 in
[24] to our setting of a transmission problem.

We start with the study of Hy go(curl, dive, Q).

Lemma 4.1. Let e satisfy (2). The curl-operator is injective on Hp go(curl,dive, Q).

Proof. Let E € Hy go(curl,dive, Q) with curl E = 0. Theorem 1.3.4 in [24] provides
a potential ® € H'(Q)? with E = L curl® and div® = 0 on Q. Integrating by
parts, we obtain the result

/E|E|2dx:/(curl<1>)-Ed:v:/<I>-curlEd:v:O. O
Q Q Q
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We next introduce the space
H. :={E € L*(Q)® | div(¢E) =0, cE-v =0 on 0Q}.

Note that H. is a closed subspace of L?(Q)3. (The divergence operator is closed
in L2(Q)? on its maximal domain H(div,Q), and the normal trace operator is
bounded on H(div, @).)

The following statement characterizes the preimage of the curl-operator for the
space H,. The result corresponds to Theorem I1.3.6 in [24], and extends Lemma 6.3
in [8] to our setting of multiple submedia in a cuboid. For the statement, we recall
the number & from (15), and introduce the space

Vi = (PH'™"(Q)* x H'(Q)) n{v € L*(Q)* | dsv € L*(Q)"}, (86)
HUH%A,N = ||U‘|%H1—N(Q)2xH1(Q) + ||a3v||2L2(Q)3a vE Vg

Lemma 4.2. Let € satisfy (2), and let kK > 1 —&. Each function E € H. has the
representation

E= 1curl‘1>
5

with a unique function ® € Hy go(curl, dive, Q). Moreover, ® belongs to the space
Vi—i, and it satisfies the estimate || @], < C||El|2q) with a uniform constant
C > 0 depending only on €,k,Q.

Proof. 1) Throughout the proof, C = C(e, k,Q) > 0 is a constant that is allowed
to change from line to line. Lemma 4.1 already implies that there is at most one
function ® with the required properties. Consequently, it remains to show the
existence of the desired vector ® as well as its regularity.

Using Theorem 1.3.6 in [24], there is a vector ® € H'(Q)? N Hy(curl, Q) with
%curl(f = E and div® = 0 on Q. The parameter ¢ being piecewise constant on
the subcuboids @1, ..., Qn, this implies the formula

div(eMdW) = 0. (87)

In general, ® does, however, not satisfy the additional transmission condition [[€<i>~
vr]7 = 0 for all interfaces F.
2) We next extend the traces [e® - vz]# for the effective interfaces F € F&if,

see the notation paragraph in Section 1. There is a function ¢ € HY(Q)NPH*(Q)
with Vi) x v = 0 on 9Q, [eVY - vr]r = [e® - vr]F for F € F and

[bllpre) <C Y Ie® - vrlFllvr) < ClElL2q)- (88)
FeFet

int

Recall that V(F) is defined in (11). To show this claim, we consider the model case
of four subcuboids

Ql = (_170)2 X (071)7 QQ = (0’1) X (_170) X (071)7 QB = (071)33

Q4:(_170)X(071)27 F]:@mQ3+1a]6{la2a3}a f4:aﬂ@’
(V) 5 () ) _ (),

and construct a function ¢ on Q := (—1,1)2 x (0,1) that satisfies the extension
property [[EVQZJ -vr, |7 = [e®-vF ] 7, homogeneous Neumann boundary conditions
on 8Q\I‘3, homogeneous Dirichlet boundary conditions on dQNI's, and the required
regularity and energy properties of 1[1 Due to symmetry, the trace ﬂs@ -vg, £, can
be extended in a similar way. The desired function 1/3 is then obtained by combining
this reasoning with a cut-off argument around the edges in @@ and the extension
result from Propositions 2.2 and 2.3 in [2].
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In the following, we use techniques from the proof of Lemma 3.1 in [20] and
Lemma 8.13 in [54]. Set g := ®1|7,, with ®; denoting the first component of ®.
Identify 77 with [—1, 0] x [0, 1], and consider the Laplacian Ax, on F; with domain

D(Az,) :={u € H*(F1) | u(-,0) = u(-,1) = 0, du(0,-) = dau(1,-) = 0}.

The operator —Az, is then selfadjoint and positive definite on L?(F;). We can
hence define positive definite and selfadjoint fractional powers (—Ax, )Y, v > 0, of
—Az,. Hence, —(—Azx,)" generates an analytic semigroup (e *(=4#1)"),5,. Note
further that the domain of (—Az, )/? coincides with the domain of the bilinear
form

alp, @)= | Ve -Vodr, D(a)={peH (F)|e(0)=¢p(,1) =0},
Fi1
that is associated with —Az,, see Theorem VI1.2.23 in [35] for instance. Combining
furthermore the trace theorem with the boundary conditions for ®, we conclude
that g is an element of the real interpolation space (L?(F1), D(—Ax, )1/2)1/2’2 with
I9ll(z2(70) D=2 5117201 00 < Cl@1 (@) (89)

Let x : [-1,1] — [0,1] be a smooth cut-off function with x = 1 on [—1/2,1/2]
and support in [—-3/4,3/4]. We then set

711(7A.7:1 )1/2

DD (21, 29, 23) = x(z1)z1 (e 9) (2, x3), (21,2, 23) € Q1.

In consideration of the analyticity of (e—t(—2#)" >0, we conclude the identities
y Yy >

J}(l)|-7'—1 = 07 811[)(1)‘]:1 =9, 12;(1)|1"3 = Ov

as well as homogeneous Neumann boundary conditions on all other faces of Q1. We
further calculate

ox = (X'(xl)xl +x(z1) — X(fcl)xl(—Aﬂ)1/2>67I1(7AF1
P = (X"(iﬁl)xl +2x (1) — 2X (21) 21 (A7) — 2x(21) (—AF, )2

ey (—Ap )12
—X(Cﬁl)xlAﬂ)e ET2

)1/2

We moreover note that the H'- and H2-norm on F; are equivalent to the norms
[(=Axr )% L2(7) and [|Ax,|z2(F) on D(—Ax)Y? and D(Ag,), roespectively.
Using Remark 6.3 and Proposition 6.4 in [41], we hence conclude that /(1) belongs
to H?(Q) with

1D 200 < Cllgll 2 D ar) /20100 < Cl®1m (@),
see (89). Define now

1/3(2)(551,%2,%3) = —12)(1)(—901,532,133)7 (1,22, 23) € Qo,
1/3(3)(331,1172,253) = 1[1(2)(391, —T2,x3), (1,22, 23) € Q3,
DB (21, 9, 23) == P (21, —22, 23), (1,22, 23) € Qu.

By construction, w belongs to PH?(Q)NH'(Q), and satisfies the extension property
[eVY - vr]F = [eP - vr]F as well as the continuity relation [eVY - vg, 7 =0
for j € {2,3,4}. Taking also (5) into account, we obtain the energy estimate

”J}HPH?(Q) < C||®1 ] m1(@) < ClE|L2(q)-

Altogether, w is the desired extension on Q.
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3) Proposition 2 provides a unique function 1; € D(Ap,5qQ) <> Va_y, with Aqﬁ(i) =
AP on Q; and

1$llv,—, < Clldllpaz(q) < ClEl ) (90)

Altogether, & = & — V?ZJ + V4 is the desired function. The asserted norm
estimate is a consequence of (5), (87)—(90) and the definition of Vo_,, in (17). O

The next proposition summarizes the results of the last two lemmas. The proof
is a modification of the one for Theorem 1.3.7 in [24]. As an intermediate result of
the proof is crucial for the below reasoning, we elaborate the argument.

Lemma 4.3. Let € satisfy (2), and choose k > 1 —®. Then Hpy go(curl,dive, Q)
embeds continuously into Vi_,.

Proof. Let E € Hy oo(curl,dive, Q). Lemma 4.2 yields that the operator %curl
is bijective from Hpy go(curl,dive, Q) into H.. Since it is also bounded and both
mentioned spaces are complete, we infer by the open mapping principle that % curl
is an isomorphism between these spaces. Lemma 4.2 and Remark 1.2.5 in [24]

further lead to the identities
1
— curl (HN,oo (curl,dive, Q)) = H,
€

1
== curl (Hy po(curl,dive, @) NVi_x).

As écurl is an isomorphism, this implies that Hy oo(curl, dive, Q) is a subspace of
V1_«. The estimate from Lemma 4.2 furthermore yields the relation

1l g1 eurr. ) + IElly, _, < Cllz cnrl Ellz2(q), (91)

with a uniform constant C' = C(g, k, Q) > 0. This means that the inverse (1/e curl)~?
is bounded from H. into Hpy go(curl,dive, @) N Vi_,. Altogether, the identity
I = (Lcurl)™ oL cuwrl is bounded from Hy go(curl,dive, Q) into V. O

In order to show the embedding property of the space X; from (13) into V;_, X
PH'(Q)?, we prove next that one can omit the L?-norm in the definition of ||| - o

Lemma 4.4. Let € satisfy (2). The estimate
1Bl 2y < Cvolllewr Bl g, + divER) 2 )

is valid for all functions E € Hy o(curl,dive, Q) with a uniform constant Cno =
Cno (E, Q) > 0.

Proof. 1) Let E € Hy o(curl,dive, @). The main tool is an appropriate decompo-
sition of E into a vector we can apply (91) to, and a remainder. For that purpose,
we consider the transmission problem

A = div(E®) on Q; forie{l,...,N},
p=0 on 0Q, (92)

[I(f)]]]: = [[z’:‘V(b l/]:]]]: =0 onF € Fi.
By Proposition 2, this system has a unique solution ¢ € V,_, for kK > 1 — K.
Employing the boundary conditions, we obtain the formula V¢ x v = 0 on 0Q),
see Lemma 2.1 in [21] for instance. The transmission conditions further imply that
the function V¢ is an element of Hy o(curl,dive, @). Consequently, the mapping
1 1= V¢ — E belongs to Hy go(curl,dive, @), and we can apply inequality (91) to
it. In this way, we obtain the relations

||E||L2(Q) < |W’||L2(Q) +IVollL2) < [cwrl Efl2(q) + VOl 2(q)

min e
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where C is the uniform constant from (91). In view of the weak formulation of
system (92) and the Poincaré inequality, we infer the estimates

1 ) 1 .
IV0la0) < iz [ GOEB) Ao < o 16l1s gy IR o
Cp .
< L V]2 V(B 1o gy (93)
employing the Poincaré constant Cp > 0 for Q. O

In view of the assumptions (2), the parameter p is piecewise constant on the
chain Q1,...,Q of cuboids. As the setting of two cuboids from [54] transfers to
the partition Ulel Q1 in a straightforward way, the reasoning for Proposition 9.7
in [54] yields the following statement.

Lemma 4.5. Let i1 satisfy (2). The space Hp go(curl, div p, Q) embeds continuously
into PHY(Q)3.

We now deduce the desired regularity statement for functions in the space Xj.
For the statement, recall the number % from (15) and the space V;_, from (86).

Proposition 4. Let ¢, satisfy (2), and k > 1 —R. The space X1 embeds contin-
uously into Vi_,, x PH(Q)3.

Proof. 1) Let (E,H) € X; = D(M) N X,. We first show the asserted regularity of
(E,H). In view of Lemma 4.5, it remains to deal with the electric field E.
Consider the elliptic transmission problem
Ay = divE® on Q; forie {1,...,N},
=0 on 0Q,
[¥]=0 for F € Fine,
[eVY -ve]r = [eE-ve]F for F € Fint,

(94)

which has a unique solution v € Vo, N H(Q). (The space V,_,, is defined in
(17).) Indeed, a modification of the reasoning in the proof for Lemma 4.2 and
the precondition [¢E - vz]r € V(F), F € FH, see (12), yield a unique mapping
Y € Voo N H(Q) with A = 0 on Q;, satisfying the required boundary and
transmission conditions in (94). We then arrive at the transmission problem (92),
having a unique solution ’(/VJ € Vo, N HY(Q), see Proposition 2. Altogether, ¢ :=
V41 € Vy_ N HL(Q) is the unique solution of (94).

Hence, E — V¢ is an element of Hy go(curl,dive, Q) C Vi_,, see Lemma 4.3.
The vector Vi being an element of V;_,, we infer the stated regularity result.

2) It remains to show the asserted embedding property. In the following, C =
C(e,k,Q) > 0 is a constant that changes from line to line. Lemma 4.5 yields the
required estimate for H, whence we again only treat the electric field component
E. Proposition 2 yields the estimate

N
[lly,_, < C > [divEVED) 12(q,). (95)
i=1
The reasoning for (88) and (90) furthermore leads to the bound
IVPllv, . <Co Y B velFllvr)- (96)
Ferek

int

Applying Lemma 4.3 to E — V4, the relations
1Bllv,_, < B =Vely,_, +[IVPlv,_,
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< C(IEll2(@) + llewl Bll2 ) + IV llL2 @) + IV, .
< O(IME B + Bl 2@ + [¥lvar. + Ve Ivi_)
follow. The desired embedding is a consequence of (95) and (96). O

5. WELLPOSEDNESS OF THE MAXWELL SYSTEM IN X,

The main result of Section 4 establishes a regularity statement for the space Xj,
see Proposition 4. To conclude a corresponding regularity result for the solutions
of the Maxwell system (1), we show in this Section that X is a state space of (1).
This is done by means of semigroup theory.

The proof of the next proposition transfers techniques from the proof of Propo-
sition 2.3 in [21] to the current setting. Recall for the statement that M; is the
part of M in X;.

Proposition 5. Let ¢ and u satisfy (2). The part My of M generates a contractive
Co-semigroup (e!M1);5q on X1. The family (e"™M1),> is the restriction of (€™ );>¢
to Xl.

Proof. 1) Employing the theory of subspace semigroups, see for instance Paragraph
11.2.3 in [22], it suffices to show that the family (e!);>o leaves the space X;
invariant, and that it is strongly continuous on it.

We first note that semigroup theory implies the inclusion ™ (D(M)) C D(M)
for t > 0. Regarding the magnetic conditions, the arguments in the proof of Propo-
sition 2.3 in [21] apply also here. This reasoning results in the invariance of the
space

Xmag = {(u,v) € X | div(pw) =0, (pv)-v =0 on 0Q}

under the resolvent map R(A, M) for A > 0, and in the invariance of Xpae with
respect to the family (e/);>.

2) Let (@,9) € X1, and set (u(t),v(t)) := e'™ (@, ) for t > 0. Semigroup theory
then yields that the function (u,v) belongs to C([0,00),D(M)). The Maxwell
equations (1) with J = 0 lead to the formula

Oyu = écurlv, t>0.

Taking the divergence of this equation, the relation 0 div(eui
L3(Qq4), i € {1,...,L}, 1 €{0,...,K}, for the subdomains (
This is equivalent to the identity

div(eu(t)) = div(ea) (97)

(t)) = 0 follows in
;1) from Section 1.

on Qll As a result, the mapping [0, c0) — H/(div, Ql,k), t — eu(t) is continuously
differentiable (employing here the continuous differentiability in time of u on X).
Due to the continuity of the normal trace operator on H(div, Q;;), the relations

Ofeu(t) - vr]F = [eurl o - vr] 7 =0, t>0,

follow in H~'/2(F) for every effective interface F € F£, see the notation paragraph
in Section 1. This shows that the function

[euw(t) - ve]F = [et - vre] 7 (98)
belongs to the space V (F) from (11) for F € F¢T and that the mapping [0, c0) —

int»
V(F), t = [eu(t) - vr]+ is continuously differentiable.
Altogether, we have derived that the vector (u(t),v(t)) belongs to X; for every
t >0, and that (u,v) is continuous on X;. The contractivity of (e!™);>¢ on X, as

well as (97) and (98) imply the contractivity of (e!™|x,);>0 on X;. O
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The next statement is a conclusion of Proposition 5, and it transfers parts of
Proposition 2.3 from [21] to our setting of discontinuous coefficients. Although the
proof basically follows the lines of the one for Corollary 9.24 in [54], we present it
here for the sake of a self-contained presentation. Note that the formula for pr is
also deduced in Section 1 of [45]. For the external current density J, the space

W = L'([0,T],D(My)) + WH([0,T], X1),
1A lw = i (Ifllzeqoroany + I2lweiqor,x),  fFEW,
fleLl([()#TL,D(Ml));
F2€WH([0,T],X1)
is employed for fixed T > 0.
Corollary 2. Let ¢ and p satisfy (2). Let T > 0, wo = (Eo, Hy) be initial data
from D(My) = D(M?) N X, and let g := (1J,0) : [0,T] — X; be the weighted
external current density that is continuous, and an element of W. The following
items are valid.
a) The Mazwell system (1) possesses a unique classical solution w = (E, H),
belonging to C([0,T], D(My)) N CL([0,T], X1). It satisfies the bounds
||w(t)||x1 < ||w0||X1 + ||9||L1([o,t],X1) J
[IMw(®)llx, < lwollpas+ (G +3)llgllw,
fort e [0,T).
b) The volume charge density p on Q; and the surface charge pr are given via

P (t) = div(e® ED(t)) = div(e™ E") — / t div(J?(s)) ds,
0

pr(t) = [eE(t) -vr]Fr = [eEy - vF]F — /Ot[[J(S) vr]Fds,

forte€[0,T),i€{l,...,N}, and F € Fif

int -

Proof. a) The stated classical wellposedness of (1) on X; follows from Proposition 5
and semigroup theory, see Theorem 8.1.4 in [51] for instance. Duhamel’s formula
leads to the representation

t t
w(t) = eMiyy +/0 =M (g) ds = Mgy, +/0 e(t_S)Ml(%J(S)a 0) ds.

Taking the contractivity of (et*1),5¢ into account, the relations

t
)]y, < ool + [ G300, ds

= llwollx, + [(23,0)]] 11 jo.ry.x1)

follow.
Let (1J,0) € W, ¢ >0, and J; € L*([0,T], D(My)), J; € WHL([0,T], X1) with
(%J,O) = Jl +J2 and

1(23,0)lw > 1Tl 22 o, 77,2000 )) + 12 llwra o,77,x) — ¢-

An integration by parts in the above Duhamel formula leads to the identities
t
Muw(t) = ™ Mwy + / Met =M (3, (s) + Jy(s)) ds
0

t t
:etMMwO—F/ e(tfs)MMJl(s)ds—/ (i
0

(t—s)M
; 75° )Ja2(s)ds
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t
= "™ Muwg + / eB=IMALY () ds — Ja(t) + ™M I5(0)
0

¢
+ /0 =M 3l (5) ds.

Combining Lemma 7.6 in [54] with Proposition 5, the relations

[IMw(t)llx, < lwollpar + 131l 2o, p0m)) + (F +3) 1¥2llwa go,,x1)
< Nwollpary + (F +3)([1(23,0)llw, +¢)

are derived. Letting ¢ tend to zero, we infer the second stated estimate.

b) The representation for the current density is obtained by modifying the argu-
ments from Proposition 2.3 in [21] and part 2) from the proof of Proposition 5.
The linear mapping X; — L*(Q;), (u,v) — div(e®u®) being continuous for
i € {1,...,N}, the regularity of w implies that p(* : [0,7] — L?*(Q;) is con-
tinuously differentiable. Similar reasoning further shows that [0,7] — L?*(Q;),
s — div(J¥(s)) is continuous. Taking the divergence in (1), leads to

Oy div(eWED (1)) = —div(ID(t)),  te[0,T7,

in L?(Q;). The first asserted formula is obtained by integration with respect to
t. Analogously, the arguments in part 2) of the proof for Proposition 5 result in
the stated formula for the surface charge pr in V(F) for every effective interface
FeFdt O

int*

Remark 2. In view of Proposition 4, Corollary 2 provides a classical solution of
the Maxwell system (1) in the space C*([0,T], V1_. x PH*(Q)?) for k > 1 —% with
the number & from (15) and the space V;_, from (86). O

6. ANALYSIS OF A DIRECTIONAL SPLITTING SCHEME

This section is concerned with the construction and analysis of a directional
splitting scheme for (1). The scheme can deal with the low regularity of the solution
of the Maxwell system, see Remark 2. In particular, the regularity requirement for
the initial data is weaker than for the ADI schemes from [56, 42, 10], see [29, 21,
19, 20, 23]. In Section 6.1, we introduce the splitting and analyze the splitting
operators. We furthermore comment on the efficiency of the scheme. Subsequently,
we bound the error of the scheme in Section 6.2. Here the regularity results from
Section 5 are essential.

6.1. Construction of a directional splitting scheme. In view of the H'-
regularity in xs-direction of the solution to (1), see Remark 2, we split the x3-
coordinate off and leave the x1,zs coordinates coupled. This strategy leads to the
splitting

19,Hs —19;H,
1 o ||
E\ [ ZcuwlH ) [ ccurla(Hy, Ho
M (H) - (—si curlE) - —%azE:s + i@gEg
%81]‘33 —iaz;El
—% cu1"12 (El, Eg) 0

A(E) o)

involving the curls-operator from Section 2.1. To define appropriate domains for
the operators A and B, we denote S := (a] ,a; ) x (a5 , a3 ), using the representation
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Q = (a,af) x (ay,a3) x (a3 ,a3). Employing also the space Hy(curly, S) from
Section 2.1, we consider the splitting operators A and B on the domains
D(A) = {(E7 H) € L2(Q)6 ‘ (E17E2) € LQ((a?j7 a;)r)’ H()(Cuﬂg, S))7
(H17 HQ) € LQ((QB_a a;): H(CUI‘IQ, S))7
1 E3,0,E3,01H3,0,H; € L*(Q),
E3 =0on Fl UFQ},
D(B) := {(E,H) € L*(Q)® | 33E1,03E2,0sHy,0:Hs € L*(Q),
E1 =0= E2 on Fg} (100)
With these domains, the operators A and B are closed and densely defined on
X = L?(Q)°. Note additionally that Corollary 2 provides a classical solution of the
Maxwell system (1) that is contained in D(A)ND(B). (This follows from Remark 2
and the embedding of X into D(M).)
Let 7 € (0,7) be a fixed time step size, n € N with nt < T, and (%J,O) €
C(]0,T], X1). We then approximate the solution (E,H) of (1) with initial datum

(Eo,Hy) at time ¢, := 7n < T by means of the Peaceman-Rachford directional
splitting

(5) =l (5] = - s sl a3 (50

_z <J(tn1)0+ J(tn)> } (101)

with exact initial data (E°, H’) = (E¢, Hy) € X. For a different operator splitting,
this Peaceman-Rachford time integrator is employed in [43, 56, 42, 21, 29, 30, 46,
38, 18, 20, 31, 47, 54], for instance.

In the next two lemmas we derive that both splitting operators are skewadjoint.
This implies that the scheme (101) is well defined and unconditionally stable, see
Lemma 6.3. Recall that the inner product on X = L?(Q)° is defined in Section 2.2.

Lemma 6.1. Let € and u satisfy (2). The operators A and B are skewsymmetric
on X.

Proof. 1) Let (E,H), (E,H) € D(A). We next employ Green’s identities from
Section 2.1. Taking the boundary conditions in D(A) into account, we infer the
equations

(A s ~ ) = [(82H3)E1 — (51H3)E2 + (Curlg(Hl, Hg))Eg — (32E3)H1
+ (81E3)I:I2 — (CU.I‘12 (El, Eg))ﬂg} dl‘
= / [Hg Curlg(]::‘;]_, EQ) + H182E3 - H201E3 - E3 CHIIQ(I:Il, ﬁg)
Q
- ElaQI:Ig + Egall:lg] dx
E E
- () (&)
This shows that A is skewsymmetric.

2) Let (E,H), (E,H) € D(B). Using the boundary conditions in D(B) for an
integration by parts, we arrive at the identities

(B <f1) : (E) ) - /Q [ — (05HL) By + (05H1)Ey + (95E2)Hy — (05E1)Hy] da
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= / [1:1283El — 1:1163EQ — Egag,ﬂl + ElagI:Ig] dz
Q

E E
——((2).B(: )
()7 (5)
Hence the operator B is also skewsymmetric. O

Using arguments from the proof of Lemma 4.1 in [29], we next conclude that
both splitting operators are skewadjoint.

Lemma 6.2. Let € and p satisfy (2). The operators A and B are skewadjoint on
X. In particular, the operators (I — L)™' and (I +7L)(I —7L)~! are contractive
on X for L € {A,B} and 7 > 0.

Proof. 1) As A and B are densely defined, closed, and skewsymmetric, see Lemma 6.1,
it suffices to show that the operators I + A and I + B have dense range in X. We
only consider the operators I — A and I — B, and show that the space of test func-
tions C2°(Q)" is contained in their range. (The operators I + A and I + B can be
treated with the same arguments.)

2) Let (E,H) € C2°(Q)®. We want to show the existence of a vector (E,H) €
D(A) with (I — A)(E,H) = (E, H). This is equivalent to the system

E, — 10,H; = Eq, H, + 0B = Hi,
E2 + %81H3 = EQ, H2 - %81E3 = 1:127 (102)
E; — 10,H; + 10, H, = E3, H; — (0B + 0B, = H;.

By formally inserting the left equations of the first and second line into the right
equation of the third line, we derive the formula

pHz — 91 (101 Hy) — 05(10,H3) = pHj + .E1 — 01Eo =: f € L*(Q).  (103)

2) Recall the rectangle S := (aj,a]) x (a;,a3 ), being the projection of Q =
(ay,ay) x (a5 ,a3) x (az,a3) to the 1 — x2 plane. We consider the equation

of
/ / (100 + 1(V oy ayt0) - (Var )] d(1, 22) s (104)
as_ S

:/_3 /stﬁd(xl,@)dxg, ¢ € L*((a3,a3), H'(S)),

being the weak formulation of (103). The Lax-Milgram Lemma provides a unique
solution w € L?((a3,ad), H'(S)) of (104). Taking ¢ € L%((az,a3),C(S)) in
(104), we moreover obtain that Hs := w satisfies (103) and that 1V, ,,Hj is an
element of L%((az,ay), Ho(div,S)). Put

E]_ = E]_ + %82H3, EQ = EQ - %81H3. (105)

By construction, the left equations in the first and second line of (102) are then
fulfilled. Using (103), we then derive the relation
B — 0 Ey = E; — 0,Es + dive, 2, (Vs 0, Hs) = p(Hs — H;) (106)
in H=(Q). As the right hand side belongs to L?(Q), we infer that curly(Eq, Es)
is an element of L?(Q).
We next deal with the boundary conditions for (Eq,E3). Let ¢ be an ele-
ment of L?((az,a3), H'(S)). By means of (105)—(106) and the fact 1V,, ,,Hz €
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ay), Ho(div, S)), we calculate

LZ((G/S )
/_3 /S(ElaE2) (020, —019) d(z1, 2) das
= /_3 /SE182¢> + 1(0oH3)02¢ — E2016 + 1(01H3)01 ¢ d(21, 22) das
= /73 /S—(52E1)¢ + (8:Eq)¢ — div(1Ve, o, H3)¢ d(z1, 22) das

CL+
:/ ’ /curlg(EhEg)qu(:rl,xg)dxg.
ag

With Lemma 1.2.4 in [24] we conclude (Eq,Es) € L?((a3 , a3 ), Ho(curly, S)).

3) Treating the remaining equations in (102) in a similar fashion, we arrive at a
desired vector (E,H) € D(A) with (I — A)(E,H) = (E, H).

4) We next deal with the splitting operator B, and proceed similar to the above
case for A. Solving the formula (I — B)(E,H) = (E, H) for (E,H) € D(B) amounts
to determining the solution of the system

E;, + 19;H, = By, H; - iagEz =Hj,
E; — %aﬂql = Es, H, + ﬁa:ﬂ:]l =H,, (107)

Formally inserting the equation on the right hand side of the second line of (107)
into the one on the left hand side of the first line yields

E; - LOJE, = B, — 10;H, € L7(Q). (108)
As in the proof of Lemma 4.3 in [29], we obtain a unique E; € L2(S, H?(a3,ad))
It

solving (108). (We use here the fact that ¢ and p are constant in x3-direction.)
satisfies the boundary condition E; = 0 on I's. We put

H, := H, — *53E1
Then, dsH, is an element of L2(Q), and (108) leads to the identity
Ei + 10sH, = By + 10sH, — LOJE, = Ey.
The remaining relations of (107) can be handled in the same way. Altogether, we
obtain a vector (E,H) € D(B) with (I — B)(E,H) = (E,H). O

Combining formula (4.5) in [21] with Lemma 6.2, we can now conclude the
unconditional stability of scheme (101).

Lemma 6.3. Let ¢ and p satisfy (2), 7 > 0, and T > nt. Let also (E°, H") €
D(B), and (£J,0) € C([0,T],D(A)). Then the estimate

(" B < (B BO)lloy + T mas (2. 0)loga

18 valid.

Using the reasoning in the proof of Lemma 6.2, we can also draw an important
conclusion on the complexity of scheme (101).

Remark 3. Let € and u satisfy (2), and let 7 > 0. Each application of scheme (101)
essentially amounts to solving only two-dimensional decoupled elliptic transmission
problems for E3 and H3, and one-dimensional decoupled elliptic problems for E;
and E,. To show this claim, we first note that the main effort for (101) consists in
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evaluating the resolvents of A and B. In the following, we analyze both resolvent
operators sgpafately. o

1) Let (E,H) € X = L*(Q)%, and (E,H) = (I — ZA)~'(E,H). We then arrive
at system (102) (with o instead of 1 and 75, instead of ﬁ) From the identity on
the right hand side of the third line in (102), we obtain the relations

N
- ag
/ uHzpdr = / / pHzo + 5 curly(Eq, Eo)p d(z1, 22)
Q a;y JS

+
a3
= / /[/J,Hg(p + %Elaggo — %Egalw] d(l‘h .732) dzs
ag S

for all ¢ € L%((az,af), H'(S)). Inserting the equations on the left hand side of
the first and second line of (102), we arrive at the relation

/ pHz0 — ZE 000 + TE201 0 da
Q

+
ag
= [ [ Mg+ (Ve B (Vi) zn) oy (109)
ag S

for all ¢ € L?((a3,a3), H*(S)). Having solved the essentially two-dimensional
problem (109), E; and E5 are directly obtained via the formulas on the left hand
side of the first and second line of (102). A similar statement is true for Es.

2) Let (E,H) = (I — 3B)~'(E,H). Then system (107) is valid with £ instead
of L and 3, instead of % The identity on the left hand side of the first line in (107)
leads to the equation

af . .
/ eE1pdr = / / eE1¢ — ZH2030 d(21, 32) das, ¢ € Hy((a3,ad),L*(9)).
Q ag S

Plugging in the formula on the right hand side of the second line of (107), we
conclude the weak formulation

af 5 ) 5
/ B¢+ FHo050 do =/ /€E1¢+ 1 (0sE1)(939) d(1, 22) ds,
Q ay JS

¢ € Hl((agz,a),L?(S)), of (108). Having solved this one-dimensional elliptic
problem, ﬁg is directly obtained as ﬁg = I:IQ — i@gﬁl. Similar statements are
true for EQ and ﬁl. O

6.2. Error bound for the directional splitting scheme. This Section is de-
voted to a first order convergence result for scheme (101). The statement is proved
by combining the regularity results from Section 5 with the statements about the
splitting operators from Section 6.1.

In order to expand the semigroup (e
employ the functions

tM )i>o for positive times, we additionally

1 k ,
. —_—_ = _ )1 .sM L tM

Ayt = e /O (t— sy leMuds,  Ao(t):=e'™,  (110)
for w € X,t > 0 and j € N, see [28, 29] for instance. Note that Proposition 5
implies that A;(¢) leaves the space X7 invariant for j € Ny, and ¢ > 0.

Standard semigroup theory and Proposition 5 moreover lead to the useful rela-
tions
1
gv

1
-, (111)
4!

1A Ol £,y < 14 Dl £ pany) <
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1
tMAj+1(t) = Aj(t) — ‘FI on 'D(]\4)7 7 € Np, (112)

for t > 0, see Section 4 in [29]. The operator A;(t) furthermore maps D(M7) into
D(M,) for all t > 0.

We next demonstrate an error bound for the directional splitting scheme (101).
Here arguments from the proofs of Theorem 4.2 in [29], Theorem 5.1 in [21], and
Theorem 10.7 in [54] are employed. Throughout the statement and the associated
proof, the solution of the Maxwell system (1) is denoted by w = (E, H), while the
approximate solution at time ¢, = nr is w,. For the external current J in (1), we
also use the space

WT = Wl)l([ovT]le) N C([OvT]vp(Ml))

with corresponding norm

Il == 1 llwra o1, x0) T oy, p000) +
for a fixed final time T > 0, see Section 2.2. Note the relation D(M;) = D(M?)NX,.

Theorem 6.4. Let ¢ and p satisfy (2), T > 1, and wo = w(0) € D(M?)N Xo. Let
also (£J,0) € Wr, and 7 € (0,T). There is a constant C > 0 with

lw(tn) = wallr2@) < CTT (llwollpan) + I1(2,0) )
for alln € Ny with nt <T. The number C' depends only on e, i1, and Q.

Proof. 1) We first estimate the local error. Throughout the proof, C' > 0 denotes
a constant that depends only on ¢, u, and Q. It is allowed to change from line to
line. Let k € Ny with (k4 1)7 < T, and recall the notation ¢, = k7. Inserting the
identity

1 1 19/
Itk +5) = 2J(tr) —I—/O I (ty +7)dr, s €[0,7], (113)
into the Duhamel formula for w, we infer the representation

witery) = ™ Mu(ty) +/ TN (_L3(1, 1 5),0)ds
0

e Map(ty) +/ M (~13(t3),0) dr
0

+/ e(T—S)M/ (—1J'(ty +r),0) drds
0 0

=™ Mu(ty) + TAl(T)(—gJ(tk), 0) + Ri(7),

involving the remainder term

Ri(7) = / e<H>M/ (=13 (ty +17),0) drds.
0 0
Using (113) in scheme (101), we on the other hand obtain the equations
Torr(w(t)) = (1= 5B) 7 (I + 5A)[(T — 5471 + §B)u(ti) +7(~23(14),0)

+ Q/OT(iJ’(tk +7),0) dr]
= (I=3B) ' [(I = A1) (I + 3A)(I + §B)w(ty)

+7(I+ ZA)(—1J(te),0) + Z(I + TA) /OT(—;J’(tk +7),0)dr|.

Note that A is extrapolated in the second identity, as Bw(ty) is in general not con-
tained in D(A), see Remark 2. (The original solution w(t) of (1) belongs, however,
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to D(B) for every t > 0, as X; embeds into D(B), see Corollary 2 and Propo-

sition 4.) Note furthermore that the functions (—2J(¢),0), A1(7)(—2J(¢),0) and
(—=1J'(t),0) belong to D(A) N D(B) for every t € [0,T], see Propositions 4 and 5,
as well as (13).

Subtracting the representations for w(tx+1) and 77 k+1(w(t)), we conclude

Trer1(w(te)) — w(tes)
— (I-ZB) Y (I-ZA_y)" [(H—TA )(I+§B)—(I—§A_1)(I—%B)eTM}w(tk)

+ (1= 3B) 7 |[(T+34) = (I = 3B)M(7)] (- 23(1).0)
LI - 3B) (I + TA)/ (—L3'(t + 1),0) dr — Ry (7)
=t e1,(T) + 62,k( )+ €3, (T) — Ri(7). (114)
In the next steps, we separately estimate the summands on the right hand side of
(114).

2) We first deal with e; (7). Recall that the operators A;(7) and As(7) leave
the spaces D(M;) and X invariant. Thus M A;(7)w(tg) is an element of D(B), and
A;(T)w(ty) belongs to D(M?) for j € {1,2}. Algebraic manipulations and (112)
hence lead to the relations

e1.(7)
=(I-3B)™" 1[ (I+3A4_, I+IB)—<I—5A_1)<I—gB)eTM}w(tk)
=(I-1B)! -1 [I +IM+ A B—(I—3M+ ﬁA,lB)eTM]w(tk)
—(I-IB) Y (I-ZA_))" [1 — ™ L TN (T 4+ ™)+ A B(I - M)]w(tk)
= (I=5B)7 (I = 3A)7 [ = TMA(7) + M + 5 MMy (7)
— AL BMA(T)|w(t)
—(I-IB) Y(I-TA_;)" [f T2M? Ay (7) + T M?A (1) — §A_1BMA1(T)}w(tk).
Combining Corollary 2, Remark 2 and (111), we conclude the estimates
e e (D)l < CT2|lw(te)Ip(ar2)nxo (115)

1T+ §B)er i ()]l < C72|lw(te)llpar)nxo-

3) We next deal with the second term on the right hand side of (114). We
note that the vector MAz(7)(—21J(t),0) is contained in D(B) for every t € [0, 7],
as Wr — C([0,T],D(My)), Aa(7) leaves D(M;) invariant, and X; < D(B), see
Proposition 4. With (112), algebraic manipulations then lead to the relations

ex(r) = 7(I = §B) 7 (I + 5A) = (I = $B)A ()] (=23 (1), 0)
=7°(I — $B)"'[§M — MAy(7) + 5 BMAy(7)] (—23(t1), 0).
Proposition 4 and (111) then lead to the estimate
le2x (M| + I + § B)ez (7| < CT2((= 23, 0) [ (116)

4) To bound ez x(7) and Rk(7), we employ the embedding of X; into D(A) N
D(B), see Proposition 4, as well as the contractivity of (e’ );>¢ in X1, see Propo-
sition 5. We then infer the inequalities

lesk (M)l + 12+ §FB)esr(n)]l < CTI(= 23, 0)lwrr (e i) 1) (117)
IR ()| + |(I + FB)Ri(T)|| < CTI(—= 23, 0)[lwrr 4 tas 11,0 (118)
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5) The stated bound on the global error is now obtained in the standard way
from the above results for the local error and the stability of scheme (101). Using
the Lady Winderemere’s fan argument, we first infer the global error formula

n—1

wn—w(t) = Y (=58 0+ 50 -3 0+ 5m)]
k=0

(Trsnw(te) = wltes))-

We next combine (114)—(118) with the stability statement in Lemma 6.2. Abbre-
viating the Cayley transform (I + ZL)(I —ZL)~! of L € {A, B} by v-(L), we then
infer the stated bound

10, — ||<Z|| — 2B) I (7 (A)=(B)" i (A))

T+ BN (Trps1w(te) — wt 1)) || + ([ Trnw(tn-1) — w(ts)||
< CZ ”w tk ‘D(MQ)QXO +7 ”( J’O)”WT + T”(_%J’0)||W1’1([tk7tk+1]7xl))

= CTT(HWollli) (=23, 0)llws.)-
For the last estimate we employ Corollary 2 and the relation nr < T. O
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