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SUPER-LOCALIZED ORTHOGONAL DECOMPOSITION FOR

HIGH-FREQUENCY HELMHOLTZ PROBLEMS

PHILIP FREESE†, MORITZ HAUCK†, DANIEL PETERSEIM‡

Abstract. We propose a novel variant of the Localized Orthogonal Decomposition
(LOD) method for time-harmonic scattering problems of Helmholtz type with high
wavenumber κ. On a coarse mesh of width H, the proposed method identifies local finite
element source terms that yield rapidly decaying responses under the solution operator.
They can be constructed to high accuracy from independent local snapshot solutions on
patches of width `H and are used as problem-adapted basis functions in the method. In
contrast to the classical LOD and other state-of-the-art multi-scale methods, the local-
ization error decays super-exponentially as the oversampling parameter ` is increased.
This implies that optimal convergence is observed under the substantially relaxed over-
sampling condition ` & (log κ

H
)(d−1)/d with d denoting the spatial dimension. Numerical

experiments demonstrate the significantly improved offline and online performance of the
method also in the case of heterogeneous media and perfectly matched layers.

Key words: Helmholtz equation; high-frequency; heterogeneous media; numerical ho-
mogenization; multi-scale method; super-localization

AMS subject classifications: 65N12, 65N15, 65N30, 35J05

1. Introduction

This paper studies the numerical solution of time-harmonic acoustic scattering problems
that can be modeled by the Helmholtz equation. The Helmholtz problem is an indefinite
and non-hermitian problem and, especially for large wavenumbers κ, its numerical solution
is a challenging task. Due to the highly oscillatory nature of the analytical solution and
the κ-dependent pollution effect [BS97], classical polynomial-based finite element methods
need to meet very restrictive conditions on the mesh size H of the underlying mesh.
Typically, these conditions are much stronger than the minimal requirement Hκ . 1 from
approximation theory needed for the approximation of an oscillatory function.

In the literature, there have been many attempts to tackle this issue. We highlight
two classes of methods that are theoretically able to suppress the pollution effect, namely
hp-finite elements and multi-scale methods. The strategy of hp-finite elements [MS10,
MS11, MPS13] is to couple the polynomial degree p of the approximation space to κ in
a logarithmic way. Then, the quasi-optimality of the numerical approximation can be
ensured under the resolution condition Hκ . p.

The work of all authors is part of a project that has received funding from the European Research
Council ERC under the European Union’s Horizon 2020 research and innovation program (Grant agreement
No. 865751). The work of Philip Freese was partially funded by the Deutsche Forschungsgemeinschaft DFG
(Project-ID 258734477 – SFB 1173).
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Multi-scale methods, in contrast, use problem-adapted ansatz spaces, which are con-
structed by solving multiple mutually independent local problems. An effective approach
for constructing such problem-adapted ansatz spaces is the Localized Orthogonal Decom-
position (LOD). The LOD was originally introduced as numerical homogenization method
for elliptic diffusion problems with arbitrary rough coefficients [MP14, HP13, MP20] and
later generalized to Helmholtz problems [GP15, Pet16, BGP16, Pet17, PV20, HP21a]. Its
basis functions are computed by solving local subspace correction problems on element
patches of size `H with ` denoting the oversampling parameter of the method. Faithful
numerical approximations to the Helmholtz problem are obtained under the resolution
condition Hκ . 1 and the oversampling condition ` & log κ. With their higher degree of
adaptivity with respect to the problem, multi-scale methods and especially the LOD are
intrinsically able to handle heterogeneous coefficients and singularities in the analytical
solution. Those scenarios are not easily treated in methods with universal shape functions
such as hp-finite elements.

Certainly, there exist many other numerical methods for the Helmholtz problem that
were not mentioned yet. Widely known is the class of Trefftz methods [Tre26, CJZ91,
Sto98, HMP16], which use, on each mesh element, functions that are locally solutions of
the Helmholtz equation as test and trial functions (e.g. plain waves, generalized harmonic
polynomials). Moreover, also other multi-scale methods like the multiscale finite element
method (MsFEM) [HW97, EH09] have been successfully applied to the Helmholtz problem
[FG17, FLCG19, CHW21].

The LOD implicitly computes its problem-adapted ansatz spaces as approximation to
the space given by the application of the solution operator to some (coarse) classical finite
element space; see [AHP21]. This connection has recently been exploited in [HP21b] to
develop a conceptually new LOD multi-scale method for the elliptic multi-scale problem.
It identifies local source terms in the coarse finite element space that yield rapidly decay-
ing (in some cases even local) responses under the solution operator. This rapid decay
makes it possible to approximate the global responses by localized counterparts, which are
solutions to problems on element patches of size `H in the coarse grid. These localized
responses are then used as problem-adapted basis functions. The error caused by this
approximation is henceforth referred to as localization error. For the elliptic multi-scale
problem, the localization errors of the novel multi-scale method decays super-exponentially
as ` is increased. This is a substantial improvement compared to the existing localization
strategies [MP14, HP13, KY16, KPY18, BGS21] with exponentially decaying localization
errors.

This paper aims to show that the novel localization strategy is not limited to the
elliptic model problem but, just like the LOD, can be generalized to a large variety of
problem classes beyond elliptic homogenization problems. As a proof of concept, this
paper generalizes the novel localization strategy [HP21b] to a class of indefinite and non-
hermitian problems represented by the Helmholtz problem in the high-frequency regime.
Under a stability assumption on the basis of the method and the resolution condition
Hκ` . 1 (in practice also Hκ . 1 is sufficient), a κ-explicit stability and error analysis of
the proposed multi-scale method is presented; see Theorems 5.2 and 5.3. The stability and
error estimates are explicit in quantities that are proportional to the smallest singular value
of some patch-local coarse-scale operators. Numerical experiments clearly demonstrate
a super-exponential decay of the singular values as ` is increased, although a rigorous
mathematical proof is still open. Nevertheless, this motivates an (`-adaptive) a-posteriori
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error control strategy for the localization error using the easily accessible singular values as
quasi-local error indicators. Given the super-exponential decay of the singular values, the
oversampling condition needed for the stability of the method is ` & (log κ

H )(d−1)/d with
d denoting the spatial dimension. This is a major improvement compared to ` & log κ
for the LOD. Under the asymptotically same condition, the proposed method yields an
optimally convergent approximation which is, by the power (d − 1)/d, better than the
condition ` & log κ

H for the LOD.
This relaxed oversampling condition is of great practical importance as, especially for

large κ, it enables significant computational savings compared to the LOD. First and
foremost, the relaxed oversampling condition allows for smaller patch problems, which
considerably reduces the offline computational costs. Moreover, also the online computa-
tional costs are lower due to the improved locality of the basis functions, which implies a
sparser coarse system matrix.

For the sake of simplicity, our analysis covers only Helmholtz problems in homogeneous
media. Nevertheless, in the spirit of [BGP16, PV20], the method naturally extends to the
case of heterogeneous media which is demonstrated numerically in Section 6. In addition,
this paper addresses the issue of physically meaningful boundary conditions. Although
being widely used and convenient for mathematical theory, the impedance boundary con-
dition as an approximation of the Dirichlet-to-Neumann map on some artificial boundary
yields significant errors, especially for large κ; see [GLS21]. Similarly, as in [CFGNT18]
for the LOD, we demonstrate that the proposed multi-scale method is naturally and eas-
ily combined with perfectly matched layers (PML) [Ber94, CT01, BHNPR07] which are
known to be an effective and efficient way to eliminate spurious reflections at the artificial
boundary.

The structure of this paper is as follows. Section 2 briefly introduces the model problem
and states some important analytical results. In Section 3, we present a prototypical multi-
scale method with optimal κ-independent convergence rates. Using the novel localization
approach presented in Section 4, the method is then turned into a practically feasible
method in Section 5. Finally, Section 6 illustrates the performance of the proposed method
in numerical experiments. We show that the method can also be applied to heterogeneous
media and is easily combined with the PML.

2. Model problem

Let us consider the Helmholtz equation with homogeneous impedance boundary condi-
tions on a bounded polygonal Lipschitz domain Ω ⊂ Rd, d = 1, 2, 3 which is assumed to
be scaled to unit size. Given a right-hand side f ∈ L2(Ω), we seek u : Ω → C being the
solution of

(2.1)
−∆u− κ2u = f in Ω,

∇u · n− iκu = 0 on ∂Ω

with κ > 0 denoting the wavenumber, i the imaginary unit, and n the outward unit normal
vector. The weak formulation of (2.1) is based on the sesquilinear form a : V×V → C which
acts on the solution space V := H1(Ω) (the space of complex-valued square-integrable
functions on Ω with square-integrable weak derivative) and is defined as

a(u, v) := (∇u , ∇v)L2(Ω) − κ2(u , v)L2(Ω) − iκ(u , v)L2(∂Ω).
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The inner products of the spaces L2(Ω) and L2(∂Ω) (the spaces of complex-valued square-
integrable functions on Ω and ∂Ω, respectively) are denoted by (· , ·)L2(Ω) and (· , ·)L2(∂Ω),

respectively. As usual in the Helmholtz context, the solution space V is endowed with the
following κ-dependent norm

‖u‖2V := ‖∇u‖2L2(Ω) + κ2‖u‖2L2(Ω).

With respect to this norm, the sesquilinear form a is continuous, i.e., there is a κ-
independent constant Ca > 0 such that

|a(u, v)| ≤ Ca ‖u‖V‖v‖V .
For a given f ∈ L2(Ω), Fredholm theory [Mel95] shows that there exists a unique weak
solution u ∈ V to the weak formulation of (2.1), such that, for all v ∈ V,

(2.2) a(u, v) = (f, v)L2(Ω)

satisfying

(2.3) ‖u‖V ≤ Cst(κ)‖f‖L2(Ω)

with a κ-dependent constant Cst(κ) > 0. For the geometric configuration in this work, i.e.,
bounded Lipschitz domain and pure impedance boundary conditions, it can be shown that
Cst depends polynomially on κ, i.e., Cst = O(κn) for some n ∈ N; see [EM12]. In the case
where Ω is convex or smooth and star-shaped with respect to a ball, it is proved in [Mel95]
that Cst = O(1). It should be noted that for more general boundary conditions and non-
convex geometries, trapping scenarios can arise with Cst growing at least exponentially in
κ; see [BCWG+11] for an example.

An immediate consequence of (2.3) is the inf-sup stability of a

(2.4) 0 < α(κ) ≤ inf
u∈V

sup
v∈V

Ra(u, v)

‖u‖V‖v‖V
= inf

v∈V
sup
u∈V

Ra(u, v)

‖u‖V‖v‖V
with α(κ) = (2Cst(κ)κ)−1 and Rz denoting the real part of the complex number z ∈ C.

We will refer to L : L2(Ω) → V as the solution operator of the Helmholtz problem,
mapping f ∈ L2(Ω) to the unique solution u ∈ V of the weak formulation (2.2). For z ∈ C
we denote with z the complex conjugate. The solution operator to the adjoint Helmholtz
problem, i.e., a(u, v) in (2.2) is substituted by a(v, u), is denoted by L∗. As shown in
[MS11, Lemma 3.1], for f ∈ L2(Ω) the solution operators L and L∗ are connected by the
relation

(2.5) L∗f = L f .
Remark 2.1 (Heterogeneous media, scatterers, boundary conditions). The construction of
our method is easily extended to more complicated scenarios of heterogeneous materials,
scattering problems and, for instance, mixtures of Dirichlet, Neumann and Robin boundary
conditions. It shall be mentioned, that the analytical well-posedness of Helmholtz problems
in heterogeneous media is a delicate issue; see [ST18, GPS19, GS20] for some recent results.

3. Prototypical multi-scale method

This section introduces a prototypical multi-scale method which has convergence prop-
erties independent of the wavenumber. Its trial and test spaces are obtained by applying
the (adjoint) solution operator to right-hand sides in classical finite element spaces. Such
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methods are only considered for theoretical purposes, as in general, global problems need
to be solved for computing the method’s basis functions.

Let us introduce the possibly coarse, conforming mesh TH consisting of closed simplicial
or quadrilateral elements with a diameter at most H > 0. Henceforth, we assume that TH
is quasi-uniform and that its elements are non-degenerate in the sense of [BS08, Definition
4.4.13]. Denoting with P0(TH) the space of TH -piecewise constant functions, we define
ΠH : L2(Ω) → P0(TH) as the L2-orthogonal projection onto P0(TH). Recall that, for
all T ∈ TH , it satisfies the following local stability and approximation properties (see
[PW60, Beb03])

(3.1)
‖ΠHv‖L2(T ) ≤ ‖v‖L2(T ) for all v ∈ L2(T ),

‖v −ΠHv‖L2(T ) ≤ π−1H‖∇v‖L2(T ) for all v ∈ H1(T ).

We introduce a prototypical problem-adapted Petrov–Galerkin method which is based
on the trial and test spaces

VH := span{L1T |T ∈ TH}, V∗H := span{L∗1T |T ∈ TH},

where 1T denotes the characteristic function of an element T ∈ TH . The prototypical
multi-scale method seeks uH ∈ VH such that, for all vH ∈ V∗H ,

(3.2) a(uH , vH) = (f , vH)L2(Ω).

The following necessary assumption ensures that the coarse mesh TH is able to resolve
oscillatory Helmholtz solutions; see Lemma 3.2 below.

Assumption 3.1 (Resolution condition). Suppose that the mesh size of TH satisfies

Hκ ≤ π√
2
.

Under this assumption, the well-posedness and the κ-independent approximation prop-
erties of the prototypical Petrov–Galerkin method can be proved.

Lemma 3.2 (Stability and κ-independent approximation). If Assumption 3.1 is fulfilled,
then the sesquilinear form a is inf-sup stable with regard to the trial space VH and the test
space V∗H , i.e., there exists Cid > 0 independent of κ and H such that

Cid inf
uH∈VH

sup
vH∈V∗H

Ra(uH , vH)

‖uH‖V‖vH‖V
≥ α(κ) > 0

Here, α denotes the inf-sup constant of the continuous problem (2.2).
Moreover, there exists Cer > 0 independent of κ and H such that, for all right-hand

sides f ∈ Hs(Ω) with s ∈ [0, 1], the unique solution uH of the Petrov–Galerkin method
(3.2) satisfies the κ-independent error bound

π

2
‖u− uH‖V ≤ H‖f −ΠHf‖L2(Ω) ≤ CerH

1+s‖f‖Hs(Ω).

Proof. For a proof see, e.g., [AHP21, Theorem 3.9 and Example 3.10a] or [HP21a, Lemma
4.6 and 4.7]. �
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Figure 4.1. Illustration of a `-th order patch for ` = 1, . . . , 4 with gray
scale indicating the order.

4. Localization strategy

The canonical basis functions {L1T |T ∈ TH} and {L∗1T |T ∈ TH} of the problem-
adapted trial and test spaces VH and V∗H , respectively, are non-local and have a slow
(algebraic) decay. For a practically feasible variant of method (3.2), localized bases have
to be identified. Recently, in [HP21b], a novel localization approach was introduced for
the elliptic model problem which has superior localization properties compared to other
state-of-the-art approaches [MP14, HP13, KY16, KPY18, BGS21]. This section extends
this novel localization approach to a class of indefinite non-hermitian problems, using
the Helmholtz problem as an example. In contrast to [HP21a], the target regime of the
proposed method is the high-frequency case where the oscillatory behavior of the solution
is just resolved by the coarse mesh TH . For this regime, the multi-resolution approach in
[HP21a] is not applicable.

By relation (2.5), it suffices to analyze the localization of the trial space VH ; a localized
basis of the test space can then be obtained without further computation. The idea of
the localization strategy is to identify local TH -piecewise constant source terms that yield
rapidly decaying (or even local) responses under the solution operator L of the Helmholtz
problem.

Our localization is based on (local) patches, given as neighborhoods of mesh elements,
in the coarse mesh TH . The first order element patch N(S) = N1(S) of a union of elements
S ⊂ Ω is given by

N1(S) :=
⋃
{T ∈ TH |T ∩ S 6= ∅} .

The `-th order patch N`(T ), ` = 2, 3, 4, . . . , of T is then recursively given by

N`(T ) := N1(N`−1(T ));

see Figure 4.1 for a schematic illustration.
For the subsequent derivation, we fix an oversampling parameter ` ∈ N and denote, for

arbitrary T ∈ TH , the `-th order patch of T by ω := N`(T ). Let ` be chosen such that no
patch coincides with the domain Ω. On the patch ω, we define the space Vω := {v|ω | v ∈
V}, i.e., the restriction of V to the patch ω. Furthermore, let TH,ω denote the submesh
of TH with elements in ω and let ΠH,ω : L2(ω) → P0(TH,ω) denote the L2(ω)-orthogonal
projection onto P0(TH,ω).
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The novel localization strategy requires the solution of local patch problems with Dirich-
let and impedance boundary conditions prescribed on Γ := ∂ω\∂Ω and ∂ω ∩ ∂Ω, respec-
tively. For proving the well-posedness of such problems, we need the Friedrich’s inequality
(see e.g. [BS08, Rou13]) which states the existence of a constant CF > 0 such that, for all
v ∈ Vω,Γ := {v ∈ Vω | v|Γ = 0},
(4.1) ‖v‖L2(ω) ≤ CFH`‖∇v‖L2(ω).

Henceforth, we suppose that CF is independent of the parameters H and `; see also the
following remark.

Remark 4.1 (Friedrich’s constant). Provided that, for example, TH is a Cartesian mesh,
all patches are intervals/rectangles/cuboids of diameter O(H`). By transformation tech-
niques, one can then prove that CF is independent of H and `. For the general setting,
however, the dependence of CF on the parameter `, cannot be figured out explicitly. Nev-
ertheless, if the meshes TH are generated by uniform refinement of an initial coarse mesh
T0 (capturing the geometric characteristics of the domain Ω), it is reasonable to assume
that CF is well-behaved. This can be justified by the fact that the geometric complexity
of the mesh and its element patches is already determined by the initial mesh and does
not increase by uniform refinement.

The following assumption poses a stronger condition on the smallness of the mesh size
than Assumption 3.1.

Assumption 4.2 (Resolution condition revisited). Suppose that the mesh size of TH
satisfies

Hκ` ≤ 1

CF

√
2
.

In practice, the additional `-dependence seems artificial, as for the LOD [Pet17, HP21a],
such an additional condition is not needed. Indeed, the numerical experiments in Section
6 indicate that, in practice, the weaker Assumption 3.1 is sufficient.

The following lemma states the coercivity of the sesquilinear form aω : Vω × Vω → C

aω(u, v) := (∇u , ∇v)L2(ω) − κ2(u , v)L2(ω) − iκ(u , v)L2(∂Ω∩∂ω)

with respect to the norm ‖ · ‖2Vω := ‖∇ · ‖2L2(ω) + κ2‖ · ‖2L2(ω).

Lemma 4.3 (Coercivity of aω). If Assumption 4.2 is fulfilled, it holds, for all v ∈ Vω,Γ,
that

Raω(v, v) ≥ 1

3
‖v‖2Vω .

Proof. For all v ∈ Vω,Γ, we obtain using Friedrich’s inequality (4.1) and Assumption 4.2

Raω(v, v) = ‖∇v‖2L2(ω) − κ2‖v‖2L2(ω) ≥ (1− C2
FH

2`2κ2)‖∇v‖2L2(ω) ≥
1

2
‖∇v‖2L2(ω).

The coercivity follows, utilizing that, for all v ∈ Vω,Γ,

‖v‖2Vω = ‖∇v‖2L2(ω) + κ2‖v‖2L2(ω) ≤ (1 + C2
Fκ

2H2`2)‖∇v‖2L2(ω) ≤
3

2
‖∇v‖2L2(ω). �
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We aim to identify (almost) local basis functions ϕ = ϕT,` ∈ VH associated with the
element T ∈ TH . For coefficients (cK)K∈TH,ω that need to be determined afterwards, the
construction of these basis functions follows the ansatz

ϕ = Lg with g = gT,` :=
∑

K∈TH,ω

cK1K .

The Galerkin projection of such a given ϕ onto the local subspace Vω,Γ defines a localized

approximation ϕloc = ϕloc
T,` ∈ Vω,Γ, which satisfies, for all v ∈ Vω,Γ,

(4.2) aω(ϕloc, v) = (g , v)L2(ω).

Due to the coercivity of aω (Lemma 4.3) and the Lax–Milgram lemma, ϕloc is well-defined.
In general, the local function ϕloc is a poor approximation of the possibly global function
ϕ. However, there exist nontrivial choices of g that yield highly accurate approximations in
the V-norm. The following discussion requires a brief reminder on traces of Vω-functions;
see [LM72] for details. We denote the trace operator restricted to Γ ⊂ ∂ω by

γ0 = γ0,ω : Vω → H1/2(Γ)

and abbreviate its range by X := H1/2(Γ). For given t ∈ X, we define the Helmholtz-
harmonic extension γ−1

0 which is a continuous right-inverse of γ0. To be precise, the

extension γ−1
0 t satisfies γ0γ

−1
0 t = t and is Helmholtz-harmonic, i.e., for all v ∈ Vω,Γ,

(4.3) aω(v, γ−1
0 t) = 0.

Note that well-posedness is again ensured by the coercivity of aω; see Lemma 4.3. The
normal derivative of ϕloc, denoted by γ∂nϕ

loc, is defined as the element of X ′ that satisfies,
for all v ∈ Vω,

〈γ∂nϕloc , γ0v〉X′×X = −(g , v)L2(ω) + aω(ϕloc, v).

Now we state our main observation, which establishes a criterion for the choice of g
ensuring the smallness of the localization error. Using the properties of the trace and
Helmholtz-harmonic extension operators, we obtain, for all v ∈ V,

(4.4) a(ϕ− ϕloc, v) = (g, v)L2(ω) − aω(ϕloc, v) = −〈γ∂nϕloc, γ0 v〉X′×X = (g, γ−1
0 γ0 v)L2(ω),

where we used the Helmholtz-harmonic extension in the last equality. Hence, by the inf-
sup stability of the continuous problem (2.4), a small localization error is equivalent to
a small norm of the normal derivative γ∂nϕ

loc which, in turn, is equivalent to choosing g
(almost) L2-orthogonal to the space

(4.5) Y := γ−1
0 X ⊂ Vω

of Helmholtz-harmonic functions on ω. An optimal realization of g can hence be achieved
by the singular value decomposition of the operator ΠH,ω|Y , i.e., choosing g as the right
singular vector corresponding to the smallest singular value.

Henceforth, we suppose that the above choice of g satisfies, for some parameter
σT (κ,H, `) > 0, the following estimate

(4.6) ‖g‖Y ′ := sup
v∈Y

(g , v)L2(ω)

‖v‖Vω
≤ σT (κ,H, `)‖g‖V ′ω .

The quantity σT coincides, up to a constant, with the smallest singular value of the op-
erator ΠH,ω|Y and will be used in the remainder as a measure for the (quasi-) orthogonality
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of g on Y . The dependence of σT on the wavenumber is due to the wavenumber-dependent
space Y and the norm of the solution space.

We conjecture that σT decays super-exponentially in ` which is subsequently justified
with a numerical experiment.

Conjecture 4.4 (Super-exponential decay). The quantity σT decays super-exponentially
in `, i.e., there exist constants Csd(κ,H, `) > 0 depending polynomially on κ,H, and `,
but being independent of T and C > 0 independent of κ,H, `, and T such that

σT (κ,H, `) ≤ Csd(κ,H, `) exp
(
−C` d

d−1

)
.

Remark 4.5 (The case d = 1). For one spatial dimension, the space Y of Helmholtz-
harmonic functions is at most two-dimensional. Thus, for ` ≥ 1, g can indeed be chosen
L2-orthogonal on Y , i.e., the basis is in fact local. This locality is in line with our conjecture
interpreting d

d−1 as infinity. Figure 4.2 shows the local SLOD basis functions and the ideal

(non-localized) LOD basis functions from [HP21a] corresponding to an interior element
and an element at the boundary. It shall be noted that the imaginary part of the LOD
basis function corresponding to the interior element is very small and thus not visible. For
the respective SLOD basis function, the imaginary part is zero.

Figure 4.2. Global ideal LOD basis (left) and local SLOD basis for ` = 1
(right) with their corresponding L2-normalized right-hand sides g in one
space dimension for an interior element (top) and an element at the bound-
ary (bottom). The real (resp. imaginary) parts are depicted using solid
(resp. dashed) lines.

Next, we provide numerical experiments that demonstrate the super-exponential decay
of the singular values of the operator ΠH,ω|Y and thus justify Conjecture 4.4. We select
an element T of a fixed Cartesian mesh TH which is far away from the boundary and
consider the patches ω = N`(T ), ` = 1, . . . , 4; see Section 6 for the precise setup of the
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Figure 4.3. Singular values σm of the operator ΠH,ω|Y in descending order
for several oversampling parameters for κ = 25 (left) and κ = 26 (right).

numerical experiment. Figure 4.3 depicts the singular values of the operator ΠH,ω|Y in a
semi-logarithmic plot.

One observes that, for all `, the decay of the singular values is step-like with jumps
between the plateaus doubling from left to right. Note that, for ` = 4, the last jump is
smaller than expected which is due to the finite precision arithmetic of the computer. This
observation is precisely the super-exponential decay (quadratic exponentially for d = 2)
of the singular values. Let us point out that, for all `, the smallest singular value is well
separated. Hence, it is clear that g, cf. (4.6), should be chosen as the right singular vector
corresponding to this singular value. For patches touching the boundary, one observes a
similar decay behavior as in Figure 4.3.

Using techniques from LOD theory [MP20, AHP21], one can rigorously derive a pes-
simistic bound for σT . This pessimistic bound shows that the novel localization techniques
performs at least as good as state-of-the-art approaches like the LOD.

Lemma 4.6 (Pessimistic exponential decay). The quantity σT (κ,H, `) decays at least
exponentially in `, i.e., there exist constants C,C ′ > 0 independent of κ,H, `, and T such
that

σT (κ,H, `) ≤ C ′max{1, H−1κ−1} exp (−C`) .

Proof. This result can be proved using techniques from LOD theory and can be obtained
by straight-forward modifications of the proof of [HP21b, Lemma 6.4]. �

5. Super-localized multi-scale method

Using the novel localization strategy of the previous Section, we turn the prototypical
multi-scale method (3.2) into a feasible scheme. For a fixed oversampling parameter `, we
define the ansatz space of the localized method as the span of the localized basis functions
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ϕloc
T,` defined in (4.2), i.e.,

VH,` := span{ϕloc
T,` |T ∈ TH}, V∗H,` := span{ϕloc,∗

T,` |T ∈ TH}.
The localized method then calculates the Petrov–Galerkin approximation with trial space
VH,` and test space V∗H,`, i.e., it seeks uH,` ∈ VH,` such that, for all vH,` ∈ V∗H,`,
(5.1) a(uH,`, vH,`) = (f , vH,`)L2(Ω).

A minimal requirement for the stability and convergence of the Galerkin method (5.1)
is that {gT,` |T ∈ TH} spans P0(TH) in a stable way. Numerically, this can be ensured
as outlined in [HP21b, Appendix B]. For the subsequent numerical analysis, we make the
following assumption.

Assumption 5.1 (Riesz stability). The set {gT,` |T ∈ TH} is a Riesz basis of P0(TH),
i.e., there exists a constant Crb(κ,H, `) > 0 depending only polynomially on H, ` such that,
for all (cT )T∈TH , it holds

C−1
rb (κ,H, `)

∑
T∈TH

|cT |2‖gT,`‖2V ′ω ≤
∥∥∥ ∑
T∈TH

cT gT,`

∥∥∥2

V ′
≤ Crb(κ,H, `)

∑
T∈TH

|cT |2‖gT,`‖2V ′ω ,

where ω = N`(T ).

In what follows, we investigate the inf-sup stability and the convergence properties of
the novel super-localized multi-scale method. The respective estimates are explicit in the
quantity

σ(κ,H, `) := max
T∈TH

σT (κ,H, `).

The following theorem shows that the novel method is inf-sup stable under a condition
on the oversampling parameter `.

Theorem 5.2 (Stability). Let Assumption 4.2 and 5.1 be satisfied and let ` be chosen
such that

(5.2) ε(κ,H, `) := α−1(κ)(1+3Ca)CaCol `
d/2C

1/2
rb (κ,H, `)σ(κ,H, `) ≤ min

{
1

2
,

α(κ)

27CaCid

}
with α denoting the inf-sup constant of the continuous problem (2.4) and Col > 0 depending
only on mesh properties of TH (non-degenerateness and quasi-uniformity). Then, the
localized method (5.1) is inf-sup stable, i.e., there exists a constant Clo > 0 independent
of κ, H, and ` such that

Clo inf
uH,`∈VH,`

sup
vH,`∈V∗H,`

Ra(uH,`, vH,`)

‖uH,`‖V‖vH,`‖V
≥ α(κ).

Proof. Let us consider the following bijective mapping between VH and VH,`
ι : VH → VH,`, uH :=

∑
T∈TH

cTϕT,` 7→
∑
T∈TH

cTϕ
loc
T,` =: uH,`.

First, we show the continuity of ι. For arbitrary uH,` ∈ VH,`, the triangle inequality yields

‖uH,`‖V ≤ ‖uH‖V + ‖uH − uH,`‖V .
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Using the inf-sup stability of the continuous problem (2.4) combined with (4.4), we obtain
for the second term

α(κ)‖uH − uH,`‖V ≤ sup
‖v‖V=1

Ra(uH − uH,`, v) ≤ sup
‖v‖V=1

∣∣ ∑
T∈TH

cT (gT,` , γ
−1
0 γ0v)L2(ω)

∣∣
≤ sup
‖v‖V=1

∑
T∈TH

σT (κ,H, `)|cT | ‖gT,`‖V ′ω‖γ−1
0 γ0v‖Vω ,

where we used (4.6) in the last inequality. Lemma 4.3 yields the estimate ‖γ−1
0 γ0v‖Vω ≤

(1 + 3Ca)‖v‖Vω independent of the patch ω. The finite overlap of the patches yields∑
T∈TH

‖v‖2Vω ≤
∑
T∈TH

C2
ol`

d‖v‖2VT = C2
ol`

d‖v‖2V ,

where C2
ol`

d bounds the number of patches containing a fixed mesh element. From this
and the Cauchy–Schwarz inequality, we get

α(κ)‖uH − uH,`‖V ≤ (1 + 3Ca)Col`
d/2σ(κ,H, `)

√∑
T∈TH

|cT |2‖gT,`‖2V ′ω

≤ (1 + 3Ca)Col`
d/2C

1/2
rb (κ,H, `)σ(κ,H, `)

∥∥∥ ∑
T∈TH

cT gT,`

∥∥∥
V ′

≤ (1 + 3Ca)CaCol`
d/2C

1/2
rb (κ,H, `)σ(κ,H, `)‖uH‖V

and thus, using (5.2), ‖uH,`‖V ≤ 3
2‖uH‖V , i.e., the continuity of ι. Similarly, one can show

‖uH‖V ≤ 2‖uH,`‖V , i.e., the continuity of ι−1. The same estimates can analogously be
shown for

ι∗ : V∗H → V∗H,`, vH :=
∑
T∈TH

cTϕ
∗
T,` 7→

∑
T∈TH

cTϕ
loc,∗
T,` =: vH,`.

Second, we show the inf-sup stability of the localized problem using the inf-sup stability
of the continuous problem (2.4). We consider a fixed but arbitrary uH,` ∈ VH,` and define
uH := ι−1uH,` ∈ VH . Furthermore, we set vH,` := ι∗vH ∈ V∗H,`, where vH ∈ V∗H is chosen
such that

Ra(uH , vH) ≥ α(κ)

Cid
‖uH‖V‖vH‖V ,

cf. Lemma 3.2. Algebraic manipulations and elementary estimates yield

Ra(uH,`, vH,`) ≥ Ra(uH , vH)− |a(uH,` − uH , vH)| − |a(uH,`, vH,` − vH)|.
We estimate the terms on the right-hand side separately. For the first term, we obtain
using the continuity of ι and ι∗ that

Ra(uH , vH) ≥ α(κ)

Cid
‖uH‖V‖vH‖V ≥

α(κ)

3Cid
‖uH,`‖V‖vH,`‖V .

For the second term, one obtains using (5.2)

|a(uH,` − uH , vH)| ≤ Ca‖uH,` − uH‖V‖vH‖V ≤
α(κ)

9Cid
‖uH,`‖V‖vH,`‖V .

The third term can be estimated analogously. Absorbing the second and the third term
in the first, the inf-sup stability of the localized method follows. �
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Utilizing Conjecture 4.4, one can rewrite the oversampling condition 5.2 as

(5.3) ` & (log κ
H )(d−1)/d.

As seen in the following theorem, the same asymptotically condition also guarantees an
optimal order of convergence. In both cases, this is a substantial improvement compared
to the oversampling conditions for the LOD, which are ` & log κ for stability and ` & log κ

H
for an optimal order of convergence. It shall be noted that the κ-dependence in the above
oversampling conditions can be eliminated using Assumption 3.1 or 4.2.

Theorem 5.3 (Convergence). Let the assumptions from Theorem 5.2 be fulfilled. Then,
the solution uH,` of the localized Petrov–Galerkin approximation (5.1) satisfies

(5.4) ‖u− uH,`‖V ≤
2

π
CerH

1+s‖f‖Hs(Ω) + δ(κ,H, `)‖f‖L2(Ω)

with
δ(κ,H, `) = 3

(
1 + CaCidα

−1(κ)
)
Cidκ

−1α−1(κ)ε(κ,H, `)

and Cer from Lemma 3.2.

Proof. For this proof, we use the notation from the proof of Theorem 5.2. We begin
estimating with the triangle inequality

‖u− uH,`‖V ≤ ‖u− uH‖V + ‖uH − uH,`‖V .
The first term can be estimated using Lemma 3.2. For the second term, we apply Strang’s
lemma [EG04, Lemma 2.25] as uH,` ∈ VH,` can be seen as non-conforming and non-
consistent approximation to uH ∈ VH

‖uH − uH,`‖V ≤
(
1 + CaCidα

−1(κ)
)

inf
wH,`∈VH,`

‖uH − wH,`‖V

+ Cidα
−1(κ) sup

vH,`∈V∗H,`

|a(uH , vH,`)− (f , vH,`)L2(Ω)|
‖vH,`‖V

.

Here, the first term can be estimated, choosing wH,` := ιuH . Using similar arguments as
in the proof of Theorem 5.2, this yields

‖uH − ιuH‖V ≤ ε(κ,H, `)‖uH‖V ≤ Cidκ
−1α−1(κ)ε(κ,H, `)‖f‖L2(Ω).

For the second term, elementary algebraic manipulations yield, for all vH ∈ V∗H ,

a(uH , vH,`)− (f , vH,`)L2(Ω) = (f , vH − vH,`)L2(Ω) − a(uH , vH − vH,`).
Choosing vH := ι∗,−1vH,`, we obtain

|a(uH , vH,`)− (f , vH,`)L2(Ω)|
≤ 2κ−1ε(κ,H, `)‖f‖L2(Ω)‖vH,`‖V + 2CaCidκ

−1α−1(κ)ε(κ,H, `)‖f‖L2(Ω)‖vH,`‖V .
Putting together the estimates finishes the proof. �

Remark 5.4 (A-posteriori error control strategy for localization error). Whilst the first
term on the right-hand side of (5.4) can be controlled a-priori, an a-posteriori error control
strategy for the second term (the localization error) seems beneficial. For all T ∈ TH , the
singular values of the patch-local operators ΠH,ω|Y might be used as (quasi-)local error
indicators. It shall be noted that no extra computations are needed for evaluating these
error indicators. In case that the error indicator shows a large local error, one might
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locally increase the oversampling parameter ` and thereby decrease the localization error.
This approach yields a numerical algorithm guaranteeing a prescribed upper bound for
the localization error.

6. Numerical experiments

In this section, we investigate the proposed multi-scale method (henceforth referred to
as SLOD) numerically and compare it with the LOD from [HP21a]. All our experiments
were done using Matlab and a short version of the code is available as a supplement. It
shall be noted that this code is for demonstration purposes only. Hence, it is not optimized
and, e.g., does not exploit the structure of the coefficient.

In the subsequent numerical experiments, we consider the domain Ω := (0, 1)2 endowed
with a coarse Cartesian mesh TH of mesh size H. For discretizing the continuous patch-
problems (4.2) and (4.3), we use the Q1-finite element method on fine Cartesian meshes
of the respective patches with mesh size 2−10. All errors are computed against a Q1-finite
element reference solution on the global Cartesian mesh of mesh size 2−10.
The space Y from (4.5) of Helmholtz harmonic functions on the patch ω = N`(T ) is sam-
pled using 5 · #TH,ω samples of random discrete Dirichlet data on ∂ω\∂Ω. The random
Dirichlet data is generated by linearly interpolating independently and identically dis-
tributed (iid) values (from a uniform distribution) prescribed at the boundary vertices of
the fine Cartesian patch-mesh lying on ∂ω\∂Ω. For more information on efficient sampling
techniques for spaces of harmonic functions, see also [BS18]. Next, the computed reduced
space is used for calculating the singular value decomposition of the operator ΠH,ω|Y in
order to determine gT,` as well as its corresponding singular value σT which might be used
as error indicator for the a-posteriori error control strategy; see Remark 5.4. It shall be
noted that, for patches ω that are close to the boundary ∂Ω, the choice of g is more in-
volved. Stability for such patches can be ensured by allowing the communication between
at most O(`d) patches. The corresponding algorithm can be found in the supplementary
material; for a discussion of the algorithm, see [HP21b, Appendix B].

Remark 6.1 (Computational costs). The computation can be divided into an offline phase
being independent of the right-hand side and an online phase which needs to be repeated
if the right-hand side is changed. In the offline phase, the basis functions of the method
are precomputed and the coarse stiffness matrix is assembled. Note that (for homogeneous
media) it suffices to compute only O(`d) basis functions, whilst the remaining ones can
be obtained by translation; see [GP15, Section 3]. For a fixed oversampling parameter `,
the computational costs for the proposed multi-scale method are comparable to those of
the LOD (considering the usual LOD implementation described in [EHMP19]). However,
due to the relaxed oversampling condition (5.3), significantly smaller `’s are sufficient for
reaching a prescribed level of accuracy. This shrinks the computational costs, as both, the
overall number of patch-problems and their size is reduced considerably. For the online
phase, the smaller oversampling parameter allows for a sparser system matrix which, in
turn, reduces the computational costs.

6.1. Super-exponential decay of localization error. For this numerical experiment,
we consider the right-hand side f ≡ 1, as for this choice the first term in (5.4) vanishes
and thus, only the localization error δ remains. Figure 6.1 shows the relative V-norm
localization errors of our localization approach (referred to as SLOD) and for the stabilized
LOD from [HP21a]. The localization errors are plotted for several coarse grids TH in
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dependence of ` for κ = 25, 26. As reference, we indicate lines showing the expected rates
of decay of the localization errors. Please note the special scaling of the axes which is chosen
such that quadratically exponentially decaying functions appear linear with negative slope.

Figure 6.1 numerically confirms the super-exponentially decay of the localization errors
of the proposed multi-scale method. The localization error of the LOD decays expo-
nentially; see [HP13, MP14]. This numerical experiment confirms, that the SLOD has
localization errors several orders of magnitude smaller than the LOD.
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Figure 6.1. Localization errors for the SLOD and LOD for several values
of H for κ = 25 (left) and κ = 26 (right).

6.2. Optimal convergence under mesh refinement. Here, we consider the right-hand
side f(x, y) = sin(πx) cos(πy). Figure 6.2 depicts the relative V-norm errors for several `
in dependence of H for κ = 25, 26 in a double-logarithmic plot. As reference, we indicate a
line of slope 2 which is the expected convergence rate in H for right-hand sides f ∈ H1(Ω);
see Theorem 5.3.

In Figure 6.2, one clearly observes convergence of order 2 in H for the SLOD. Note that
for the SLOD, the lines corresponding to the oversampling parameters ` = 2, 3 can hardly
be distinguished. As, for the LOD, the localization error decays much slower than for
the SLOD (see Figure 6.1), the localization error dominates the overall error. Therefore,
for the LOD, one rather observes the decay of the localization error than the desired
convergence in H.

6.3. High-contrast heterogeneous media. Here, we demonstrate the application of
the SLOD to the heterogeneous Helmholtz equation −∇ · (A∇u) − κ2u = f with homo-
geneous impedance boundary conditions. For some parameter 0 < ε � 1, the coefficient
A takes the value ε2 inside some periodically aligned inclusions of size ε/2 and the value
1 elsewhere; see Figure 6.3 (left) for a depiction of A. For the choice κ = 9, a special
interplay between the wavenumber and the periodic structure of the inclusions yields a
negative-valued effective wavenumber in homogenization theory which triggers an expo-
nential decay of the modulus of the Helmholtz solution in the bulk domain. This physically
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Figure 6.2. Convergence plots for the SLOD and LOD for several over-
sampling parameters ` for κ = 25 (left) and κ = 26 (right).

interesting effect is caused by Mie resonances in the small inclusions; see [PV20]. As right-
hand side, we use an approximate point source located at z = (0.125, 0.5)T that vanishes
outside a circle of radius 0.05, i.e.,

f(x, y) =

104 · exp

(
−1

1− (x−z1)2+(y−z2)2

0.052

)
, (x− z1)2 + (y − z2)2 < 0.052

0, else

.(6.1)

Figure 6.3 (right) depicts the real part of the SLOD solution for H = 2−6 and ` = 2. Note
that, for the sake of illustration, the color map is truncated to the interval [−2.5, 2.5]. The
SLOD solution has a relative error of 3.3 · 10−3 with respect to the weighted norm

‖ · ‖2V,A := ‖A1/2∇ · ‖2L2(Ω) + κ2‖ · ‖2L2(Ω).

For reaching a similar accuracy on the same coarse mesh, the LOD needs an oversampling
parameter of ` = 5 which is a significant difference to ` = 2 for the SLOD.

6.4. Perfectly matched layers (PML). For this numerical experiment, we again con-
sider the point source (6.1), but this time with z = (0.5, 0.5)T . Our implementation
of the perfectly matched layer is similar to [BHNPR07], but adapted to the multi-scale
setting. We consider the fixed coarse Cartesian mesh TH with H = 2−7 and divide the
domain Ω into an inner part ΩF := (4H, 1−4H)2, the physical domain, and the absorbing
layer ΩA := Ω\ΩF. For this configuration, the absorbing layer has a width of 4H. The
(unbounded) absorbing function in x-direction is given as

ρx(x) =


i
κ

(
1
−x + 1

4H

)
, 0 < x ≤ 4H

i
κ

(
1

1−x − 1
4H

)
, 1− 4H ≤ x < 1

.
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Figure 6.3. Heterogeneous coefficient A (left) and real part of the corre-
sponding SLOD solution (right) for ` = 2, H = 2−6, and κ = 9.

In the y-direction the absorbing functions are chosen accordingly. As usual for PML, we
use homogeneous Dirichlet boundary conditions on ∂Ω. The full PML Helmholtz system
may be found in [BHNPR07, Section 3]. We apply the SLOD to this PML formulation
and truncate the solution to the physical domain ΩF.

We choose the parameters ` = 2 and κ = 26. Figure 6.4 shows the real part of the
SLOD solution with PML (left) and the relative error computed against the PML reference
solution (right). The relative error with respect to ‖ · ‖VΩF

is 6.5 · 10−3.

Figure 6.4. Real part of SLOD solution with PML (left) and relative
error (right) for ` = 2, H = 2−7, and κ = 26.

7. Conclusion

In this paper, we introduced a novel multi-scale method for high-frequency Helmholtz
problems. It is conceptually similar to the LOD but utilizes a substantially improved
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localization strategy. The resulting relaxed oversampling condition has a significant impact
on the computational costs; in the offline phase as well as in the online phase, significant
savings can be achieved.

Under a stability assumption on the method’s basis, a rigorous wavenumber-explicit
stability and error analysis of the proposed method was performed. Additionally, we
proposed an a-posteriori error control strategy for the localization error, which uses easily
computable (quasi-)local error indicators. It controls the localization error by adaptively
increasing the patch-size of patches with a large associated error indicator.

A sequence of numerical experiments demonstrated the effectiveness of the proposed
multi-scale method. In contrast to the LOD, it yields faithful numerical approximations
already for the relatively small oversampling parameters ` = 2, 3. In practice, the de-
pendence of ` on the wavenumber is hardly noticeable. We demonstrated that the pro-
posed method can handle numerically challenging high-contrast heterogeneous Helmholtz
problems. Furthermore, it was shown that the method is easily combined with perfectly
matched layers (PML). We highlight that our approach may be transferred to other related
problems, such as elastic wave propagation [BG16] or Maxwell’s equations [GHV18, HP20]
that have already been studied in the classical LOD setting.
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