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a b s t r a c t 

If the effective thermal conductivity of a silica powder in any gas atmosphere is to be calculated analyti- 

cally, one is faced with a whole series of decisions. There are a lot of different models for the gas thermal 

conductivity in the pores, the thermal accommodation coefficient or the effective thermal conductivity it- 

self in the literature. Furthermore, it has to be decided which input parameters should be used. This paper 

gives an overview and recommendations as to which calculation methods are best suited for the material 

classes of precipitated silica, fumed silica, silica gel and glass spheres. All combinations of the described 

methods result in a total of 2800 calculation models which are compared with pressure-dependent ther- 

mal conductivity measurements of 15 powdery materials with 7 different gases using Matlab computa- 

tions. The results show that with a model based on a spherical unit cell, which considers local Knudsen 

numbers, the measuring points of all powder-gas combinations can be determined best with an average 

variance of about 18.5%. If the material class is known beforehand, the result can be predicted with an 

average accuracy of about 10% with the correspondingly determined methods. 

© 2022 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The calculation of the effective thermal conductivity of porous 

edia has concerned scientists for more than a century. Under- 

tanding the influence of the different heat transfer mechanisms 

s fundamental in many fields like super insulation materials [1,2] , 

stronomy [3,4] , reactor technology, fluidized beds and many more. 

here is an almost infinite number of numerical [5–7] and ana- 

ytical [8–10] prediction models. Despite this, or perhaps because 

f it, the user is often faced with the question of which calcu- 

ation method is the right one for the own specific case. Tsotsas 

t al. [11] show an illustrative review of early models of differ- 

nt complexity. Parzinger [12] also provides a very comprehensive 

isting of 59 different models for the prediction of the effective 

hermal conductivity of porous media in his thesis. Aichelmayer 

13] gives a broad review of different models which he classifies 

ccording to their suitability for different solid-fluid conductivity 

atios. Bjurström et al. [14] compare several models to calculate 

he thermal conductivity of silica gel. They obtain the best results 

ith Luikov’s model [15] which is also investigated in the present 
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017-9310/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article u
ork. Jayachandran [16] compared measurements of glass-air and 

eramic-air packed beds with different models and found good 

greement of their 2-D square cylinder unit cell model with mea- 

ured data. Bouquerel et al. [17] list and compare different mod- 

ls for all heat transfer mechanisms in vacuum insulation panels 

lled with different silica based core materials. They also show 

easured values from the literature and make general statements 

oncluding that accurate modeling of gas thermal conductivity is a 

ajor challenge. 

In the literature empirical fitting parameters are often used to 

dapt the model results to available measurement results of cer- 

ain materials [18] . In some cases this approach can make sense, 

ince the investigated porous media can be of very different na- 

ure and therefore deviate strongly from the model conceptions. 

owever, in the present work adjustable parameters to give good 

ts to experimental data will be deliberately avoided in order to 

emonstrate and compare the raw, unaltered form of the models 

s they are presented to the end user. Models are often validated 

ith measured values from different authors due to a lack of mea- 

urement data. The measurements are often carried out in differ- 

nt laboratories by different people using different methods. In this 

ork, however, all thermal conductivity values originate from the 

ame apparatus and were recorded at the same temperature. Like- 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Nomenclature 

ETC Effective thermal conductivity 

GTC Gas thermal conductivity 

λ Thermal conductivity 

FS Fumed silica 

PS Precipitated silica 

SG Silicagel 

GS Glass spheres 

d peak Peak value of pore size measurements 

d dist Pore size distribution 

CO 2 Carbon dioxide 

SF 6 Sulfur hexafluoride 

SO 2 Sulfur dioxide 

β Dimensionless coefficient 

Kn Knudsen number 

α Thermal accommodation coefficient 

M G Molar mass of gas molecules 

M S Molar mass of solid surface molecules 

T Temperature 

L Mean free path of gas molecules 

k Boltzmann constant 

d kin Kinetic molecular diameter 

p Pressure 

x Pore size 

V Volume 

D gr Particle size, grain size 

d pore Measured pore size 

KC Kozeny’s Correction 

φ Porosity 

� 1 − φ
φuc Porosity of a unit cell 

φcorr Corrected porosity which accounts for λg 

Nu r Empirical parameter for radiation in ZBS model 

S Mean-variance between progressions of measured 

and calculatet thermal conductivity over pressure 

curve 

N Number of materials investigated 

J Number of gases investigated 

D aggl Agglomerate size 

D aggr Aggregate size 

D prim 

Primary particle size 

Indices 

base Related to λs + λr (measured at very low pressures) 

c Related to the coupling between λs and λg 

eff,SV Effective, calculated with Schumann and Voss 

model 

g Gas inside pores 

g’ Gas in specific pore size 

m Measured 

0 At ambient conditions 

p Particle 

r Radiation 

s Solid backbone of a porous media 

ise, the secondary parameters such as pore or particle size dis- 

ribution were determined using the same and thus comparable 

ethods and were performed with the exact same samples like 

he thermal conductivity measurements. 

In this paper, an overview of a variety of analytical calculation 

odels for the determination of the effective thermal conductivity 

f porous media is provided. They are classified in terms of their 

omplexity and input parameters. The results of the calculations 

re compared with thermal conductivity measurements of silica- 
2 
ased porous materials at different residual gas pressures, using 

ifferent types of gases (air, helium, argon, CO 2 , SO 2 , SF 6 , and kryp-

on). Six precipitated silicas, three fumed silicas, three silica gels 

nd three glass packed beads were analyzed. Thus, from a chemical 

oint of view, the solid material is the same for all samples stud- 

ed, although the surface properties may differ. The focus of the 

nvestigation is on the heat conduction through the disperse gas 

hase at varying gas pressures below atmospheric conditions and 

ts coupling with the solid phase. In Chapter 4.1 and 4.2 effective 

hermal conductivity models which only use the so-called primary 

arameters are presented. These are the thermal conductivities of 

he fluid and solid phase as well as the porosity of the materi- 

ls. The so-called secondary parameters needed for the models in 

hapter 4.3 are limited to the particle or pore size or their distri- 

utions respectively. Evaluating other models often requires knowl- 

dge of additional input parameters like packing arrangement or 

umber of contact points which in general, are not available. Con- 

equently, required data in this work do not go beyond pore- and 

article sizes. The mentioned primary and secondary parameters 

an either be measured directly or taken from the literature. An 

xception is the gas thermal conductivity inside the pores, since 

t is a function of the gas pressure and the pore size. In the liter-

ture, one can find many options for calculating gaseous thermal 

onductivity in the pores of porous media with consideration of 

he Smoluchowski effect. An overview of the most common ones 

s presented in Chapter 3 . The presented effective thermal conduc- 

ivity (ETC) models are combined with the different gas thermal 

onductivity (GTC) models and then compared with the measured 

alues. Due to the enormous amount of models and calculation 

ethods in this field, it was impossible to examine all those found 

n the literature. The aim was to provide an overview of the best- 

nown and most diverse models. 

GTC models and ETC models with secondary parameters re- 

uire pore and/or particle size information. The selection and post- 

rocessing of such measurement data represents a decision as 

ifficult and much debated as that of the correct computational 

odel. Therefore, this paper also discusses several options on this 

ssue. Thus, the user ultimately has to reach three basic decisions: 

hich ETC model, which GTC model and which geometric size in- 

ut parameter should be taken for the particular case. This work 

ill help the user in decision-making, as all the options presented 

or the three questions are combined and compared with the un- 

erlying measurement data using a numerical computing platform. 

he impacts of the different options are examined and recommen- 

ations are made for the four material groups investigated. 

. Materials and methods 

.1. Porous media 

In this paper, a total of 15 powdery substances were investi- 

ated, all of which consist of amorphous silicone-dioxide ( SiO 2 ). 

hese are six precipitated silicas (PS), three fumed silicas (FS), 

hree silica gels (SG) and three types of glass beads (GS). Five 

S samples are from ”W. R. Grace and Company” (Gr), one is 

rom ”Evonik Industries” (Ev). The fumed silica samples are from 

Wacker” (Wa) and ”Evonik Industries” (Ev). Silica gel samples are 

ll from ”W. R. Grace and Company” (Gr). Two types of glass spheres 

re from ”Bassermann Minerals” (Ba) and the other one is a no- 

ame blasting agent (Bl). Table 1 lists all the solid materials in- 

estigated and the specifications available for each. X and � stand 

or ”data unavailable” and ”data available”, respectively. For ma- 

erials with a multiscale structure, two or three values are listed 

or primary particle size D prim 

, aggregate size D aggr and agglom- 

rate size D aggl in case of fumed or precipitated silica, or D prim 

nd D aggl in case of silica gel. PS and FS have a three-scale struc- 
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Table 1 

List of all investigated porous materials with according available properties. The material names are composed of material 

type_company_number. 

Material Porosity φ [-] Mean particle size D prim / D aggr / D aggl [ μm] Peak pore size d peak [ μm] Pore size distribution d dist 

PS_Gr_01 0.88 0.0208 / 0.1174 / 12.5 0.023 � 

PS_Gr_02 0.91 0.0058 / 0.1738 / 8.9 0.382 � 

PS_Gr_03 0.89 0.0119 / 0.1176 / 8.8 0.008 � 

PS_Gr_04 0.87 0.0198 / 0.1041 / 12.5 0.023 � 

PS_Gr_05 0.81 X / 0.2211 / 7 0.269 � 

PS_Ev a 0.88 0.0272 / 0.2119 / 6.5 0.020 � 

FS_Wa 0.94 0.0223 / 0.0944 / 43.1 0.012 � 

FS_Ev 0.93 0.0267 / 0.0564 / 38.9 0.014 � 

FS_VIP b 0.90 0.0244 / 0.1390 / 66.9 0.023 � 

SG_Gr_01 0.90 0.0134 / 3.2 / - 0.008 � 

SG_Gr_02 0.90 0.0125 / 11.2 / - 0.008 � 

SG_Gr_03 0.67 0.0038 / 8 / - 1.548 � 

GS_Bl 0.35 56.9 / - / - 17.913 � 

GS_Ba_01 0.56 3.5 / - / - 1.091 � 

GS_Ba_02 0.31 22.2 / - / - 6.273 � 

a Hydrophobic PS 
b Ready mixed core material for vacuum insulation panels, which consists of fumed silica, cellulose fibers and silicon carbide as an 

opacifier. 

Table 2 

Material values of the powdery materials used for the calculations. 

Thermal conductivity of silica (samples 1 - 12) 1 W/mK [21] 

Density of silica (samples 1 - 12) 2200 kg/m 

3 [21] 

Thermal conductivity of glass spheres (samples 13 -15) 1.38 W/mK [22] 

Density of glass spheres (samples 13 -15) 2560 kg/m 

3 [23] 
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ure. The primary particles sinter together during the production 

o form aggregates with sizes in the three-digit nanometer range. 

hese aggregates tend to connect to form the so-called agglom- 

rates due to Van der Waals forces. In the case of silica gels, a 

arge network of primary particles was crushed to form the par- 

icles. Here, no further agglomeration is assumed. Therefore, only 

wo size scales are given in the table, the primary particles and the 

ggregates. Primary particle sizes were measured with a Xenocs 

euss 2.0 SAXS (small-angle x-ray scattering) camera for all mul- 

iscale samples. Agglomerate sizes have been measured by laser 

iffraction ( Co. Malvern and Co. Sympatec ) using a wet dispersion 

rocess. Aggregate sizes have been measured by dynamic light 

cattering in deionized water using a Zetasizer ( Co. Malvern Pan- 

lytical Ltd, UK ) with a 10-minute upstream dispersion step with 

n ultrasonic tip. The glass sphere sizes were determined by a dig- 

tal light microscope ( Co. Keyence ). For the pore size distributions 

ercury intrusion porosimetry measurements using an AutoPore 

II ( Co. micromeritics, USA ) and a Pascal Series Mercury Intrusion 

orosimeter ( Co. Thermo Fisher ) have been carried out. Pore size 

istributions of all materials are shown in the appendix in Fig. A.1 . 

ome of the presented data have already been published in Meier 

t al. [19,20] . All solid material values for the different samples are 

hown in Table 2 . 

.2. Gases 

The gas pressure-dependent thermal conductivity has been 

easured for all materials listed in Table 1 . For this purpose, all of

he gases listed in Table 3 have been used for an individual mea- 

urement (except for krypton which was only used for some of the 

aterials due to supply difficulties). 

.3. Thermal conductivity measurements 

The gas pressure-dependent thermal conductivity was mea- 

ured with a self-constructed guarded hot plate apparatus. It is 

ocated in a vacuum chamber so that the residual gas atmo- 
3 
phere can be adjusted between approximately 0.05 mbar and at- 

ospheric pressure. The special feature of the apparatus is that 

he entire measuring chamber as well as the hot plate can be re- 

oved from the apparatus in order to carry out sample prepara- 

ion, i.e. compaction of the powdery materials with a hydraulic 

ress directly on site. This avoids cracks and gaps between the 

lates and the samples as far as possible. A more precise descrip- 

ion of the setup and an error consideration can be taken from 

ur earlier work [24] . For sample preparation, the powdered ma- 

erials are baked and dried directly in the apparatus for at least 3 

ours at 95 ◦C and < 1 mbar. The vacuum chamber is purged twice 

ith the regarding gas. Finally, N = 13 thermal conductivity values 

re recorded at gas pressures between 0.05 mbar and atmospheric 

ressure starting at atmospheric pressure. 

. Calculation of the gas thermal conductivity 

When calculating the gas thermal conductivity, the dilution of 

he gas or the type of gas flow is decisive. A measure for this is

he Knudsen number ( Kn ). It is explained in more detail in Chap- 

er 3.2 . Kn is often used to categorize into different flow regions. 

 common classification into molecular flow ( Kn > 10 ), transition 

egion ( 10 > Kn > 0 . 1 ), slip flow ( 0 . 1 > Kn > 0 . 01 ) and continuum

ow ( 0 . 01 > Kn ) was proposed by Chambre [25] . In the continuum

egion and free molecular flow, the thermal conductivity can eas- 

ly be derived using the kinetic theory of gases [26] . In the contin- 

um region, the thermal conductivity is almost independent of the 

ressure because of two mutual canceling effects. For one thing, 

he more particles are available to transport energy, the higher 

he thermal conductivity is. Secondly, if there are many particles, 

he mean free path becomes smaller, thus the energy is not trans- 

orted as far between the individual collisions, which leads to a 

eduction of the thermal conductivity. Both effects almost cancel 

ach other out [27] . With increasing Knudsen number, however, 

he mean free path is increasingly influenced by the particle-wall 

ollisions, and thus by the pore size, rather than by the particle- 

article collisions. This behavior results in a pressure dependence 

nd is called Soluchowski or Knudsen effect. An exact derivation 

f the thermal conductivity of gases in the transition region would 

e very difficult due to the complexity of the Boltzmann equa- 

ion. Therefore, it is common to interpolate between the contin- 

um solution and the free molecular flow solution. This results in 

n equation developed by Prasolov [28] ( Eq. 1 ). 

gas = 

λ0 

1 + βKn 

(1) 
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Table 3 

List of gases used for the thermal conductivity measurements and their properties of interest. 

Thermal conductivity λ0 [ 
W 
mK 

] Molar mass M[ g 
mol 

] Kinetic molecular diameter d kin [10 −10 m ] Isentropic Exponent ( κ( 
c p 
c v 

)[ −] ) 

Air 0.0262 28.96 3.69 1.4 

Helium 0.1536 4.00 2.19 1.68 

Argon 0.0177 39.95 3.64 1.68 

CO 2 0.0171 44.01 4.55 1.29 

Krypton 0.0095 83.8 4.13 1.68 

SF 6 0.0135 146.05 6.17 1.29 

SO 2 0.0095 64.07 5.42 1.29 

Fig. 1. Dimensionless parameter β for all gas types investigated in this paper cal- 

culated with equations from Table 4 . 

Table 4 

Different equations from the literature to calculate the dimensionless parameter β . 

Equation References 

β = 2 ∗ 2 − α

α

2 κ

κ + 1 

1 

Pr 
(2) [15,29,30] 

β = 

2 − α

α

2 κ

κ + 1 

1 

Pr 
(3) [31] 

β = 2 
2 − α

α
(4) [32–34] 

β = 

1 

α

9 κ − 5 

κ + 1 
(5) [35] 

β = 

5 π

16 

9 κ − 5 

κ + 1 

2 − α

α
(6) [24,36,37] 
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Fig. 2. Accommodation coefficients calculated with different models plotted over 

the molar mass of the gas molecule. Song’s model also depends on degree of free- 

dom of the respective molecule so it was only calculated for the types of gas inves- 

tigated in this paper. 
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From the structure of this equation it is clear that 

lim 

n →∞ 

λg (Kn ) = 0 and lim 

Kn → 0 
λg (Kn ) = λ0 . It is well known that

as molecules do not tend to perform a complete energy exchange 

ith the wall during the collision. This leads to a temperature 

ump at the interface. Mathematically, this phenomenon can also 

e understood as an increase of the wall distance. In Eq. (1) this 

ffect is represented by the dimensionless parameter β . There 

re several definitions for β in the literature, which are listed in 

able 4 . It is a function of at least one of the following parameters:

sentropic exponent κ (which is the relation between specific heat 

t constant pressure and specific heat at constant volume 
c p 
c v 

), the 

hermal accommodation coefficient α (which will be discussed in 

hapter 3.1 in detail) and the Prandtl Number P r. The resulting 

values for the investigated gases in combination with a silica 

urface differ greatly from the gases and also from the equations 

s can be seen in Fig. 1 . 

.1. Accommodation coefficient 

The thermal accommodation coefficient (TAC) α is a measure 

or the imperfection of the energy exchange of a gas molecule 

t wall impact. The TAC is for heat transport via molecular colli- 

ions like the emission coefficient for radiative transfer. Essentially, 

t depends on the following influencing variables: Molar mass of 
4 
as molecules M G , degrees of freedom of gas molecules, molar 

ass of the solid surface material M S , surface properties (rough- 

ess, adsorbed molecules, impurities) and temperature. In the lit- 

rature only a few data are available with partly significant devia- 

ions. General agreement exists, however, on the tendency that the 

ccommodation coefficient decreases with increasing temperature 

nd decreasing molar mass of the gas. Some well-known formulas 

or calculating the accommodation coefficient are given below. 

The resulting TACs are plotted against the molar mass of the 

as particles in Fig. 2 . From the solid sphere theory and the law of

onservation of momentum, an approximation of the TAC can be 

erived from the masses of the gas molecules and the molecules 

f the solid surface. According to Baule [38] , if only translational 

nergy is transferred and each gas particle hits the surface only 

nce, Eq. (7) can be derived. 

= 

2 M G M S 

(M G + M S ) 2 
(7) 

This equation was extended by Goodman [39] , who used it to 

btain good agreement with measured values in the temperature 

ange 0 - 500 K. He postulated Eq. (8) . 

= 2 . 4 

M G 

M S (
1 + 

M G 

M S 

)2 
(8) 

Another approximation mentioned by Kaganer [29] is shown in 

q. (9) . 

= 1 −
(

M S − M G 

M S + M G 

)2 

(9) 

Song [40] not only takes the masses of the molecules but also 

he degrees of freedome of the gas molecules into account. He de- 



S. Sonnick, L. Erlbeck, M. Meier et al. International Journal of Heat and Mass Transfer 187 (2022) 122519 

r

w  

a

s

t

i

d

c

α

3

a

m  

t

m

m

c

L

a

g

d

t

s

p

t

a

i

c

f

t

f

t

e  

s

f

m

g

v

s

λ

d  

v

Table 5 

Summary of different methods to calculate gas thermal conductivity in pores. 

Dimensionless parameter β TAC α Characteristic length x 

Eq. (2) Baule ( Eq. 7 ) d peak 

Eq. (3) Goodman ( Eq. 8 ) d dist 

Eq. (4) Kaganer ( Eq. 9 ) d peak ∗
π

6 
Eq. (5) Song ( Eq. 10 ) d dist ∗

π

6 
Eq. (6) Bauer ( Eq. 11 ) D aggl & KC 

D aggr & KC 

D prim & KC 

3
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ives Eq. (10) , 

α = exp 

[ 
C 0 

(
T − T 0 

T 0 

)] (
M 

∗
G 

C 1 + M 

∗
G 

)

+ 

{ 
1 − exp 

[ 
C 0 

(
T − T 0 

T 0 

)] } 2 . 4 

M G 

M S 

(1 + 

M G 

M S 
) 2 

(10) 

here M 

∗
G 

= M G for monatomic gases and M 

∗
G 

= 1 . 4 ∗ M G for di-

tomic or polyatomic gases and 

C 0 = -0.57 dimensionless 

C 1 = 6.8 units of M G 

T 0 = 273 K. 

Bauer, on the other hand, describes a negligible influence of the 

urface properties and recommends for estimation a correlation of 

he molar mass of the gas and the TAC at room temperature, which 

s shown only graphically in his paper [41] . The relationship is best 

escribed by a function of the form y = 

a 
(x + x 0 ) 2 

. For this particular 

ase, Eq. (11) could be derived from the figure. 

= 1 − 144 . 6 

(M G + 12) 2 
(11) 

.2. The knudsen number and the characteristic length 

The Knudsen number is a measure of the dilution of the gas 

nd describes the ratio between the mean free path of the gas 

olecules L to a characteristic length x ( Kn = L/x ). The higher

he Knudsen number, the greater is the dilution of the gas. The 

ean free path of the gas molecules is the average distance a gas 

olecule can travel before it collides with another one. It can be 

alculated according to the kinetic theory of gases via Eq. (12) [42] . 

 = 

k T √ 

2 π d 2 
kin 

p 
(12) 

There are various interpretations in the literature for the char- 

cteristic length in a porous material. The original definition by Ka- 

aner [29] refers to two opposing parallel plates. In this case, the 

istance between the plates is the characteristic length. The situa- 

ion is different in the void spaces of a porous material. The pore 

hapes are usually very chaotic and deviate strongly from two op- 

osite plates. Therefore, the aim of an analytical solution is to find 

he best approximation to reality for different porous media. There 

re different approaches to this purpose, which will be discussed 

n the following. Many authors simply use the mean pore size as 

haracteristic length. This assumption deviates relatively strongly 

rom the real conditions, but represents a simple and fast estima- 

ion method. Another common method is to use a correction factor 

or the pore size or, if no pore size measurement data are available, 

o calculate the pore size from the particle size. Details on this are 

lucidated in Chapter 3.3 . If available, it is possible to use the pore

ize distribution d dist instead of the mean or peak pore size d peak 

or the calculation. In this case, a corresponding Knudsen number 

ust be calculated for each occurring pore size, and from this a 

as thermal conductivity. It can then be weighted according to the 

olume fraction associated with the different pore sizes, as it is 

hown in Eq. (13) . 

g = 

∫ 
λ′ 

g 

dV 

V max 
dx (13) 

With λ′ 
g as gas thermal conductivity in pores with pore size x , 

V as pore volume of the pores with size dx and V max as total pore

olume. 
5 
.3. Corrections of the geometric parameters 

In addition to the mentioned calculation methods, some sug- 

estions for the correction of the measured quantities exist in or- 

er to either convert them into the required parameters or to 

dapt them to the models. If, for example, no direct measured val- 

es for the pore size are available, the Kozeny’s correction (KC) for 

alculating the average gap distance x for equal-sized spherical par- 

icles from the particle sizes D prim 

, D aggr or D aggl and the porosity 

can be used [29,43,44] . It results from the ratio of pore volume 

nd particle surface area and is shown in Eq. (14) . 

 = 

2 

3 

φ

1 − φ
D gr (14) 

Even if measured values for the pore size or the pore size dis- 

ribution are available, correction methods can be useful due to the 

act that measured pore sizes do not necessarily represent the av- 

rage gap distance in pores. In our previous works [24,45] , the av- 

rage gap distance in spherical pores was calculated from the pore 

ize with Eq. (15) . 

 = 

π

6 

d pore (15) 

.4. Summary of possible calculation methods for the gas thermal 

onductivity 

The calculation options for the TAC α, the dimensionless pa- 

ameter β and the characteristic length x described in the previ- 

us chapters are summarized in Table 5 . The variations result in 

75 possible combinations to calculate the gas thermal conductiv- 

ty with Eq. (1) . 

. Calculation of the effective thermal conductivity 

The effective thermal conductivity λe f f is the macroscopically 

bserved, apparent thermal conductivity of a material composite 

r a porous medium. It is composed of the thermal conductivi- 

ies of the individual components, their proportion and the struc- 

ural distribution. In the following, various models for predicting 

he effective thermal conductivity of porous media are presented. 

asically, it is assumed that the total thermal conductivity is com- 

osed of the four components: solid thermal conductivity λs , ther- 

al conductivity by radiation λr , gas thermal conductivity λg and 

he coupling term λc as it is shown in Eq. (16) . Convection can 

e neglected since the gases are not moving in such small pores 

46,47] . 

e f f = λs + λr + λg + λc (16) 

The two components λs and λr are assumed to be independent 

f gas pressure. Their sum can be determined by thermal conduc- 

ivity measurements at very low pressures, since it can then be as- 

umed that the thermal conductivity of the gas is completely sup- 

ressed. These two mechanisms are represented by the baseline 

n the bottom of Fig. 3 and are summarized below as λ . The 
base 
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Fig. 3. Schematic diagram of typical thermal conductivity versus Knudsen number 

curve; x-axis is logarithmic and inverted. 
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as thermal conductivity is a function of the Knudsen number Kn , 

hich in turn is a function of pressure as well as of the geometric 

ize of the void space. It can be determined as described in Chap- 

er 3 . The coupling term λc can be understood as the interaction 

etween the other heat transfer mechanisms, primarily between 

s and λg . For example, having a unit cell of two ideal spheres in 

ontact with infinitesimally small contact area, the solid heat con- 

uction in the direction of the line connecting the two centers of 

he spheres is also infinitesimally small if the gas heat conduction 

s completely suppressed. If the gas between the spheres now ob- 

ains a non-zero thermal conductivity, the effective thermal con- 

uctivity of the entire unit cell exceeds the pure gas thermal con- 

uctivity (provided that λp is greater than λg ). Fig. 3 shows not an 

ctual measurement or calculation. It is only a schematic represen- 

ation to visualize different heat transfer mechanisms. 

Different types of prediction models for the effective thermal 

onductivity of porous media are presented below. According to 

heir approach and complexity, they are divided into the categories 

Geometry independent models”, ”Unit Cell Models” and ”Models 

ith consideration of local Knudsen numbers”. 

.1. Geometry independent models 

For this type of prediction model, one needs minimal knowl- 

dge about the investigated materials. It is sufficient to know the 

hermal conductivities of the two phases and the porosity. These 

ata are called primary parameters in some references. Accord- 

ng to [13] , these models work best for small solid/fluid thermal 

onductivity ratios. Accordingly, they should be applicable in the 

resent investigation especially for pressure ranges close to atmo- 

pheric pressure and gases with rather high thermal conductivity. 

.1.1. Series and parallel connection model 

The simplest model for describing the thermal conductivity of 

orous media is a serial or parallel connection of the thermal re- 

istances of the individual phases. The weighting of the individual 

hases is usually done according to their porosity. The pure serial 

r parallel connection represents the lower and upper limit case. 

ombinations of the two limiting cases are usually used. The serial 

art can be understood as the contribution of the coupling effect. 

 well-known model of this kind was already developed by Rus- 

el [48] in 1935. He presented two versions of his formula which 

iffer in which of the two phases is disperse. In the case of pow- 

ery substances, the fluid can always be regarded as the disperse 

hase. The corresponding version is shown in Eq. (17) . Since Rus- 
6 
el’s model does not provide for a continuous solid path, the ef- 

ective thermal conductivity approaches zero when the gas ther- 

al conductivity disappears. In order to prevent this and to make 

he model comparable with the others, the measured value λbase is 

dded to the original equation. 

e f f = λbase + λg 

( 

�2 / 3 + 

λg 

λp 

(
1 − �2 / 3 

)
�2 / 3 − � + 

λg 

λp 

(
1 − �2 / 3 + �

)
) 

(17) 

� is 1 − φ and φ is the porosity, which is defined as the volu- 

etric ratio of void spaces in a porous media. 

.1.2. Maxwell 

Maxwell formulated two limiting cases for very large and very 

mall porosities in his composite medium problem as early as 1873 

49] . The first case mentioned assumes a fluid with suspended 

herical solid particles and the second a solid with widely spaced 

herical fluid-filled voids. In both cases, the spheres show no in- 

eractions with each other. Therefore, λbase is added to the result 

gain. In the present work only the first version is used which is 

hown in Eq. (18) . 

e f f = λbase + λg 

( 

2 φ + 

λp 

λg 
(3 − 2 φ) 

3 − φ + 

λp 

λg 
φ

) 

(18) 

.1.3. Scaling model 

Swimm et al. [36] propose a scaling model that is developed 

n the basis of simple interconnections of thermal resistances. It 

rovides for a linear dependence of the coupling effect on the gas 

hermal conductivity for a wide range of solid to fluid thermal con- 

uctivity ratios. The corresponding function is shown in Eq. (19) . 

e f f = λbase + λg (1 + F φ) (19) 

According to this, in one of our previous works [24] , the rela- 

ionship shown in Eq. (20) was determined for precipitated silica 

ith air as the pore gas and a porosity range between 0.76 and 

.92. For this purpose, the results were fitted to thermal conduc- 

ivity measurements with F as the only fit parameter. Five differ- 

nt precipitated silicas were used, each of which was compressed 

o different degrees in order to include as large a porosity range as 

ossible. 

e f f = λbase + λg (−18 . 68 φ + 18 . 94) (20) 

.2. Unit cell models 

The models discussed in this chapter, consider particle geome- 

ry in some way. These are all unit cell models. A unit cell is a sub-

titute geometry for the smallest structures that repeat over and 

ver again in a porous medium. The unit cell geometry is derived 

rom the porosity and/or the particle size. 

.2.1. Sphere model 

Kaganer proposes a model for spherical backed beds based on 

 cylindrical unit cell with two spheres in contact in his 1969 pa- 

er [29] . A sketch of this unit cell is shown in Fig. 4 . The heat flux

t each distance to the contact point is calculated as a series con- 

ection from the thermal resistances 
2 x ′ p 
λp 

and 

x ′ g 
λg 

, and weighted as 

 parallel connection according to their circular area fractions per- 

endicular to the heat flux direction. The resulting thermal con- 

uctivity is then assigned to a certain area fraction of the total 

eat transfer area via porosity. In addition, the average number of 

ontact points of the spheres is also calculated from the porosity. 

he effective thermal conductivity after integration over the radius 

f the cylindrical unit cell finally results in Eq. (21) . Again, λbase 

s added, since the contact points of the spheres are infinitesimally 
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Fig. 4. Cylindrical unit cell of the sphere model. 
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Fig. 5. Unit cell of Luikovs model reconstructed after [15] . 
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λbase h 
mall and thus the effective thermal conductivity together with the 

as thermal conductivity would otherwise approximate zero. 

e f f = λbase + λg 

[
5 . 8(1 − φ) 2 

k 

(
1 

k 
ln 

λp 

λg 
− 1 − k 

2 

)
+ 1 

]
(21) 

ere k = 1 − λg 

λp 
. 

Cunnington and Brodt [50,51] also use Eq. (21) . In this model, 

he gas thermal conductivity is independent of the location and is 

ither assumed as λg = λ0 for the case of continuum flow or de- 

ermined by taking into account the Soulochowski effect via a re- 

ationship listed in Chapter 3 . Particle size is not considered in this 

ype of computational model. Numerous authors [52,53] present 

imilar unit cell models. They are the attempt to take into account 

he coupling effect between solid and gas thermal conductivity by 

he simplified consideration of a geometry as close to reality as 

ossible. It is common to weight the coupling contribution and the 

ure gas thermal conductivity with corrected porosities for exam- 

le by comparing the porosity of the unit cell with the real poros- 

ty. Some different approaches to this are listed in [54] . 

.2.2. Schumann and Voss 

The model of Schumann and Voss [55] is based on a planar unit 

ell with a particle geometry in the form of a hyperbola. The exact 

unction of the hyperbola is determined by a shape factor which is 

enoted as P in the following. P is related to the porosity of the 

nit cell φuc as described in Eq. (22) . 

uc = P (P + 1) ln 

(
1 + P 

P 

)
− P (22) 

Since this equation has a limit value of 0.5, the maximum pos- 

ible unit cell porosity in this model is φuc = 0 . 5 . Most of the ma-

erials investigated here have a higher porosity than this. For this 

ases P was assumed to be 200 which leads to a unit cell porosity 

ery close to φuc = 0 . 5 . Consequently, a corrected porosity φcorr is 

ntroduced in Eq 23 . For the particular case of φuc = 0 . 5 the term
φuc 

1 −φuc 
becomes one and the corrected porosity can be written as 

corr = φ − (1 − φ) . For φ < 0 . 5 , φcorr = 0 . 

corr = φ − (1 − φ) 
φuc 

1 − φuc 
(23) 

The original Schumann and Voss equation for the effective ther- 

al conductivity is shown in Eq. (24) . 

e f f,SV 

= λg 

⎛ 

⎝ φ3 + 

λs 

λg 
(1 − φ3 ) 

1 + P 

(
1 − λs 

λg 

)
⎡ 

⎣ 1 + 

P (1 + P ) 
(

1 − λs 

λg 

)
1 + P 

(
1 − λs 

λg 

)
⎤ 

⎦ ln 

( 

1 + P 

P λs 

λg 

) 

⎞ 

⎠ 

(24) 
7 
To include the corrected porosity and once again to account for 

base at very low pressure levels, the formula was extended as can 

e seen in Eq. (25) . 

e f f = λbase + (1 − φcorr ) ∗ λe f f,SV + φcorr ∗ λg (25) 

.2.3. Luikov 

The unit cell presented by Luikov et al. [15] consists of a skele- 

on of thermal resistors, as can be seen in Fig. 5 . The spot in the

iddle accounts for the contact resistance between particles. The 

eometric sizes of the unit cell L and l can be calculated from the 

article size and the porosity of the bulk material. 

In the original literature the relation 

h 
l 

is given in tabular 

orm only. In the present work the polynomic equation shown in 

q. (26) with a coefficient of determination of 0.9995 was used in- 

tead. 

h 

l 
= 209 . 03 φ6 − 744 . 65 φ5 + 1054 . 40 φ4 − 762 . 77 φ3 

+ 304 . 07 φ2 − 68 . 73 φ + 8 . 70 (26) 

Luikov’s method for the calculation of the effective thermal 

onductivity is shown in Eq. (27) . 

e f f = 

1 

1 

( h L ) 
2 + A 

+ νg ∗
(

1 − h 

L 

)2 

+ 

2 

1 + 

h 
l 

+ 

1 

νg 
h 
L 

(27) 

Where 

 = 

1 

λc 

λp 
+ 

νg 

4 k k k m 

(
h 
L 

)2 ∗ 10 

3 

h 

L 
= 

h 
l 

1 + 

h 
l 

nd 

g = 

λg 

λp 

The factors k m 

and k k are an empirical coefficient and the coef- 

cient of particle adhesion, respectively. They are assumed to be 

 m 

= 1 and k k = 1 . 5 according to an example calculation in the

riginal paper. For λc the following term is used to ensure that 

he thermal conductivity at very low pressures corresponds to the 

easured one. This is again due to comparability to the other 

odels. 

c = 

λp 

λp − 1 
2 
( L ) 
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.2.4. Zehner, Bauer, Schlünder 

In their 1970 paper [56] , Zehner, Bauer, and Schlünder devel- 

ped what is probably the best-known model for bulk particles of 

ifferent geometries. They introduced the shape factor C which de- 

ermines the geometry of the model particle in a unit cell. The for- 

ula for determining the particle geometry is shown in Eq. (28) . 

 

2 + 

z 2 

(B − (B − 1) x ) 2 
= 1 (28) 

Where 

 = C 

(
1 − φ

φ

) 10 
9 

For spherical fillings, C = 1 . 25 as suggested by the authors. 

ince no recommendation was made for multi-scale geometries 

nd hierarchical structures, C = 1 . 25 is used in this work for all

aterials. The resulting model particle geometry, however, does 

ot correspond to a sphere. This is explained by the fact that one 

ries to compensate errors which are made by the assumption of 

arallel heat flow lines in the following procedure. The final func- 

ion for the effective thermal conductivity, obtained by integration 

ver the radius of the unit cell is given in Eq. (29) . 

e f f = λbase + λg ∗
{ (

1 −
√ 

1 − φ
)

+ 

√ 

1 − φ 2 

1 − λg 
λp 

B 
 (

1 − λg 
λp 

)
B (

1 − λg 
λp 

B 

)2 ln 

λp 

Bλg 
− B +1 

2 
− B −1 

1 − λg 
λp 

B 

] } (29) 

In Eq. (29) the pure gas thermal conductivity is weighted with 

he corrected porosity 

(
1 −
√ 

1 − φ
)

and the coupling part deter- 

ined with the unit cell with 

√ 

1 − φ respectively. This relation- 

hip was derived using the analogy of heat conduction and dif- 

usion and was determined by measuring diffusion coefficients of 

orous media. 

The Zehner, Bauer, Schlünder model is often called ZBS-model 

nd is used and sometimes modified by many researchers. Sih and 

arlow [57] for example postulated a modified form and compared 

t with 424 measured data. The comparison shows the predictions 

o be accurate within a range of ± 30% relative error. 

.3. Unit cell models with consideration of local Knudsen numbers 

In the models shown in 4.1 and 4.2 , a homogeneous thermal 

onductivity over the entire gas space is assumed. However, this 

eads to an inaccurate representation of reality in the Knudsen 

ange, since the thermal conductivity depends on the distance to 

he wall at each point. If one assumes locally different Knudsen 

umbers in the void space, correspondingly varying gas thermal 

onductivities result over the radius of the unit cell. Near the con- 

act point of the particles, small gap widths x ′ g ( Fig. 4 ) with high

nudsen numbers occur. As one moves further away from the 

oint of contact in the x-direction, the gap width increases and Kn 

ecreases. This results in a variation of the total thermal conductiv- 

ty of the unit cell that depends on the particle size. As in the unit

ell models without consideration of the local Knudsen number, 

he coupling term determined over the unit cell and the pure gas 

hermal conductivity is weighted according to corrected porosities. 

n this particular case, decisions must therefore be made regarding 

he characteristic geometry both when determining the gas ther- 

al conductivity and when designing the unit cell. Therefore, the 

odels following now are calculated for all materials with multi 

cale geometry with corresponding multiple input parameters for 

he particle size if available, i.e. for PS and FS for the primary parti-

le, aggregate and agglomerate size and for SG for primary particle 

nd aggregate size. 
8 
.3.1. Sphere model 

Swimm et al. [58] propose to calculate the thermal conductivity 

n a cylindrical unit cell with locally different Knudsen numbers. 

he unit cell is divided into a finite number of cylindrical shells 

nd their thermal resistances are calculated as parallel connections. 

ince the void distance in each cylindrical shell is different, differ- 

nt Knudsen numbers and thus different gas thermal conductivi- 

ies result. The void distance over the radius for a division into N 

ylinder shells for the i-th shell results in Eq. (30) . Accordingly, D 

nd R are the diameter and the radius of the primary particles, ag- 

regates or agglomerates. 

 (i ) = D − 2 

√ 

R 

2 −
(

i 

N 

R 

)2 

(30) 

The area perpendicular to the heat flow of the regarding cylin- 

er shell is A i = π(2 i − 1) 
(

R 
N 

)2 
. The coupling conductivity of the 

ntire unit cell can consequently be calculated via Eq. (31) , in 

hich λ′ 
g is calculated as a function of x (i ) for every i with the

espective formula from Chapter 3 . 

c = 

2 

Rπ

N ∑ 

i =1 

A i 

(
D − x (i ) 

λ′ 
g 

+ 

x (i ) 

λp 

)−1 

(31) 

To calculate the effective thermal conductivity of the bulk ma- 

erial, the thermal conductivity of the pure gas phase λg and that 

f the unit cell λc are weighted according to a corrected porosity 

corr as shown in Eq. (32) . 

e f f = λbase + φcorr λg + (1 − φcorr ) λc (32) 

For the spherical unit cell Eq. (23) results in Eq. (33) as it was

sed by the original authors. 

corr = 

3 φ − 1 

2 

(33) 

To illustrate the influence of the local Knudsen numbers, the 

hermal conductivity curves in a unit cell with spherical particles 

f different radii are shown in Fig. 6 . For comparison, the curve 

rogression with homogeneous gas thermal conductivity in the en- 

ire unit cell, as used by Kaganer, for example, is also shown. 
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Swimm’s model was improved by Guo and Tang [37] especially 

or aerogels by considering an overlapping of the spheres and tak- 

ng into account a coupling not only in the gap between the parti- 

les but also between particle chains and air gaps. As this is aero- 

el specific, it was not further investigated in this paper. 

.3.2. Zehner, Schlünder 

Zehner and Schlünder [34] further developed their well-known 

odel from [56] by also considering the Smoluchowski effect lo- 

ally in the interparticle voids. For this purpose, a local Knud- 

en number is calculated at each location by correcting the global 

nudsen number Kn to Kn ∗ = 

Kn 
(1 −x (r)) 

. After integration over the 

adius of the unit cell λc can be written as shown in Eq. (34) . 

c = λ0 
2 

N−M 

{ [ 
N−(1+ Kn ) 

λ0 
λp 

] 
B 

(N−M) 2 
ln 

N 
M 

B −1 
N−M 

(1 + Kn ) − B +1 
2 B 

λp 

λ0 
[ 1 − (N − M) − (B − 1) Kn ] 

} (34) 

ith 

 = B 

[
λ0 

λp 
+ Kn (1 + Nu 

∗
r ) 

]
nd 

 = (1 + Nu 

∗
r )(1 + Kn ) 

The Knudsen number occurring here can be distinguished from 

he Knudsen number used to calculate pure gas thermal conductiv- 

ty. The particle size must be used to calculate the Knudsen num- 

er in order to adequately describe the size of the gap in which the 

oupling thermal conductivity occurs. For materials with a multi- 

cale structure, the decision between primary particle size, aggre- 

ate size and agglomerate size is again of crucial importance. Nu r 
s an empirical parameter to account for the radiation. The cal- 

ulation can be taken from the original literature. With the cor- 

ected porosity 1 −
√ 

1 − φ one gets Eq. (35) for the effective ther- 

al conductivity. 

e f f = (1 −
√ 

1 − φ)(λg + φλ0 Nu r ) + 

√ 

1 − φλc (35) 

.4. Slavin 

In this unit cell model from Slavin [59] the roughness of the 

articles is taken into account. The model treats the spheroids as 

eing perfect spheres, separated at their contact points by a short 

ylinder of area d and length 2hr representing the surface rough- 

ess. In the present investigation for multi scale structures the 

adii of the next smaller structure was chosen as hr. For the pri- 

ary particles a complete smooth surface and for the glass spheres 

 constant roughness of 0.1 μm was assumed. As in other models, 

he unit cell is divided into different regions which are then con- 

idered as parallel or in series. The gas thermal conductivity in the 

pace between the particles is divided into an inner and an outer 

egion. Where the regions begin and end depends on the parti- 

le size and the mean free path. In the inner region, the Smolu- 

howski effect is considered with a global Knudsen number. The 

ndividual calculation steps can be taken from the original litera- 

ure. Eq. (36) shows the calculation of the effective thermal con- 

uctivity of the unit cell as a parallel and series connection of the 

ndividual heat resistances G x of different parts of the unit cell. 

e f f = 

{
G rv + G gv 

[
G r + N c 

(
G s (G i + G o + G c ) 

G s + G i + G o + G c 

)]}
L s 

A cp + A v 
(36) 

N c is the average effective number of contact points of a par- 

icle which is 1.5 according to Slavin et al., the height of the unit 

ell L s = 

√ 

8 
3 R and A cp and A v are the area of the particle and the
9 
oid space respectively. To ”fix” the low pressure conductivity and 

or comparability with the other models the contact resistance was 

et to G c = λbase 
A cp + A v 

N c L 
. Slavin’s model does not include a classical 

erm λg like the other models. Therefore, the results here do not 

istinguish between the calculation methods for β and the geo- 

etric size x . 

. Evaluation procedure 

In order to evaluate the results obtained with the different 

odels and calculation methods, they need to be compared with 

he measured ETCs. The mean-variance S of the calculated to the 

easured thermal conductivity values for gas pressure levels j = 

 : N as shown in Eq. (37) is used for this purpose. 

 = 

∑ N 
j=1 

∣∣∣ λm ( j) −λe f f ( j) 

λm ( j) 

∣∣∣
N 

(37) 

This approach results in one S value for every solid gas combi- 

ation. Thus, an average of the mean-variances S for all materials 

nd gases S all can be calculated for every combination of calcu- 

ation methods. For example the average variance for the sphere 

odel in combination with Eq. (3) for β , Baules model for α and 

he pore size distribution + sphere correction for x . In this way a 

otal number of 175 S all values are generated for every ETC model 

nd stored in a matrix called R all . The S all values provide informa- 

ion to assess the suitability of the models for calculating the ther- 

al conductivity curves of any unknown silica-based porous mate- 

ial. In order to be able to make a statement about the suitability 

f the models for the calculation of individual material groups, av- 

rage values of the corresponding variances S PS , S F S , S SG and S GS are 

lso calculated and stored in tables R PS , R F S , R SG and R GS , respec-

ively. A summary of the calculation steps that were performed for 

he evaluation using a MATLAB ( Co. The MathWorks Ink. ) calcula- 

ion program is shown below. The entire code for one exemplary 

TC model is provided as supplementary material. 

for D part = [ D aggl ; D aggr ; D prim 

] 

for α = [ Eq. (7) : Eq. (11) ] 

for β = [Eq. (2) : Eq. (6)] 

for λg = f (x ) - Six options for x (see Table 5 ) 

for m = 1 : N (N = 15 materials) 

for i = 1 : J (J = 7 gases) 

λe f f = [Eq. (17), (18), (20), (21), (25), (27), (29), 

(32), (34), (36)] 

S = [Eq. 37] 

end 

S = 

∑ 

S(m,i ) 
N∗J 

end 

end 

end 

end 

R all , R PS , R F S , R SG , R GS = 

⎡ 

⎢ ⎣ 

S 1 , 1 · · · · · ·
. 
. . 

. . . 
. 
. . 

· · · · · · S 7 , 25 

⎤ 

⎥ ⎦ 

For each effective thermal conductivity model a total of five ma- 

rices R are calculated, each with 175 S values, one with mean val- 

es for all tested materials and four more for each material class 

PS, FS, SG, GS). Each matrix consists of 7 x 25 mean-variances S 

hich were determined using the described combination of calcu- 

ation methods. The lowest mean-variance in each case indicates 

he best-suited combination for the corresponding material class. 
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. Results and discussion 

After calculating the thermal conductivity progressions for all 

orous medium-gas combinations with all mentioned combina- 

ions of equations for α, β and x , the variances S (or matrices 

 ) were summarized in tables, which are accordingly available as 

upplementary material. The smaller the S value, the better the re- 

pective combination of calculation models works for the corre- 

ponding class of materials (PS, FS, SG, GS) or, in the case of S all ,

or the totality of all materials. The best three combinations for 

ach ETC model were extracted and are called ”favorites” in the 

ollowing. The lists of favorites for all material classes are shown 

n the appendix in Tables B.1–B.5 . To get an additional overview 

f which GTC models lead to the most promising results in gen- 

ral, mean values of all variances which have been calculated with 

he different models for α, β and x are shown in Table 6 . There is

ne row for the totality of all materials and one for every material 

lass. Since all model combinations which include the respective 

TC models have been taken into account for the calculation of the 

ean variances the absulut values are very high. But even if influ- 

nces of the ”good” as well as of the ”worse” ETC-models can be 

ound here, it serves as an adequate measure to compare the in- 

uences of the calculation methods for α, β and x . The difference 

etween them, on the other hand, allows a statement to be made 

bout which GTC model provides good results for which material 

lass with the highest probability. On the other hand, the spread 

f the data can be used to make a qualitative statement about the 

ensitivity of the results to the different GTC models. The greater 

he spread, the more important it is to choose the right model in 

he corresponding category. 

The compilation in Table 6 shows that in general it seems rea- 

onable to use one of the older models, e.g. Baule’s or Goodman’s 

or the calculation of the TAC. These models predict significantly 

maller TACs than the newer ones ( Fig. 2 ). This finding does not

llow any statement about the actual thermal accommodation co- 

fficients between a silica surface and the different gases. Only a 

ecommendation for the calculation of the gas thermal conductiv- 

ty can be given here. The hypothesis that either recent literature 

lassifies TACs fundamentally too high (which is not suspected by 

he authors) or that an adjustment is necessary in some common 

odels for the calculation of the gas thermal conductivity, is sup- 

orted by the findings of our previous work [45] , which indicates 
Table 6 

Average variances which were obtained with the calcula- 

tion methods for α, β and the geometric size in percent. 

all PS FS SG GS 

α

Baule 46.8 38.6 51.6 40.3 64.7 

Goodman 48.4 39.0 53.5 41.4 69.2 

Kaganer 55.4 40.5 60.8 45.7 89.1 

Song 56.6 41.2 63.0 46.9 90.6 

Bauer 59.0 41.9 65.5 48.6 96.7 

β

Eq. (2) 50.5 39.5 55.6 42.7 75.0 

Eq. (3) 57.0 41.1 62.8 46.9 92.8 

Eq. (4) 55.1 40.8 61.1 45.8 86.8 

Eq. (5) 52.9 40.3 59.1 44.5 80.3 

Eq. (6) 50.7 39.5 55.7 42.8 75.4 

x 

d peak 46.0 36.2 34.2 40.1 82.8 

d dist 42.2 29.0 37.9 31.2 83.4 

d peak ∗
π

6 
43.9 37.5 34.9 40.4 69.0 

d dist ∗
π

6 
38.2 29.8 31.1 30.8 69.4 

D aggl + KC 107.5 84.2 214.6 

D aggr + KC 48.9 29.2 31.7 64.1 

D prim + KC 46.1 35.7 27.6 41.1 89.9 

6
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10 
ower TACs as well. Taking into account that recent measurements 

r simulations from the literature regarding the TAC [60,61] are 

ore in line with the newer models of e.g. Bauer or Song it can 

e assumed that they are more physically correct than the older 

nes even though they seem to have more accordance in the cur- 

ent investigation. 

The best equations to calculate the dimensionless parameter β
re Eq. (2) and Eq. (6). They differ only slightly and lead to the 

ighest β-values as is shown in Fig. 1 . In contrast, there is exactly 

 factor of 0.5 between Eq. (2) and Eq. (3). Interestingly, Eq. (3) 

ccurs particularly often in the favorites in combination with the 

ewer models for α. This reinforces the tendency to even lower β- 

alues and therefore higher gas thermal conductivities. This com- 

ination occurs strikingly often for PS. A possible explanation for 

his is a higher concentration of silanol groups on the surface of 

S compared to FS for example and potentially the clear differ- 

nt particle shape. Silanol groups affect the molar mass of the sur- 

ace layer, by which the gas molecules collide, and thus the energy 

ccommodation between them. Different pore shapes or rough- 

ess can have many effects on the thermal conductivity like mul- 

iple molecule collisions, changes of the mean free distance of gas 

olecules, or of the coupling effect. 

As expected, it is advisable to calculate the gas thermal con- 

uctivity with the help of the pore size distribution and Eq. (13) , 

f corresponding data are available. Additionally, it can be recom- 

ended for most materials to use the correction from Eq. (15) . If 

o measured data of the pore size distribution are available, the 

ozeny correction can be applied as described. It is essential to en- 

ure that in this case the aggregate size is used for PS and the pri-

ary particle size for FS or SG. For precipitated as well as fumed 

ilica this procedure seems to be even more promising than the 

se of the pore size distribution. However, the results shown in 

able 6 only indicate a rough trend and must not be overestimated. 

he results may be overlaid by other influencing parameters and 

o not necessarily coincide with the actual model combinations to 

e favored for the different material classes as described below. 

n the following subsections Fig. 7 shows the measured data for 

ll materials investigated in comparison to the calculated results 

f the model combination, which fitted best on the over all aver- 

ge. Figs. 8 to 11 show the same measured values in comparison 

o the favorite model combination for the different individual ma- 

erial classes. 

.1. All materials 

The best results for all porous materials on average were 

chieved with the Sphere ETC model with consideration of the lo- 

al Knudsen number ( Section 4.3.1 ) in combination with Bauer’s 

odel for α, Eq. (6) for β and the pore size distribution without 

orrection as the geometric size. Thus, if the material of interest 

s from unknown nature or if a material is involved that was not 

xamined in this study, this model combination leads to the most 

romising results. In this case the aggregate size should be used as 

he geometric size parameter of the unit cell of the sphere model. 

he calculated values have a mean-variance of 18.5% to the mea- 

urements and are shown in Fig. 7 together with the measured val- 

es. 

.2. Precipitated silica 

The measurement results of precipitated silica were also best 

btained by the sphere model with consideration of local Knudsen 

umbers as it was presented by Swimm et al. ( Section 4.3.1 ). The

ocal Knudsen number in the sphere model is best calculated using 

he agglomerate size in case of PS. However, for the determination 

f the gas thermal conductivity, the simple calculation via the peak 
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Fig. 7. Results of the best model combination to forecast thermal conductivity over pressure progressions (solid lines) and according to measurement results (asterisks) for 

an arbitrary silica material. 

11 
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Fig. 8. Results of the best model combination to forecast precipitated silica thermal conductivity over pressure progressions (solid lines) and according to measurement 

results (asterisks). 

o

t

o  

c

s

t

i

m

f

s

F

(

f the mercury intrusion porosimetry measurements together with 

he formula from Bauer for α and Eq. (4) for β is suitable. This is 

ne of the very few examples where the use of the peak size was

onvincing. If the pore size distribution with correction is used in- 

tead, the mean-variance is only 0.07% worse. Since the assump- 
ig. 9. Results of the best model combination to forecast fumed silica thermal conduc

asterisks). 

12 
ion suggests that the good performance of the peak size could be 

ncidental, the use of the pore size distribution can also be recom- 

ended instead. Thus, a mean accuracy of 10.6% can be obtained 

or forecasting the thermal conductivity progression of precipitated 

ilica as it is shown in Fig. 8 . 
tivity over pressure progressions (solid lines) and according measurement results 



S. Sonnick, L. Erlbeck, M. Meier et al. International Journal of Heat and Mass Transfer 187 (2022) 122519 

Fig. 10. Results of the best model combination to forecast silica gel thermal conductivity over pressure progressions (solid lines) and according to measurement results 

(asterisks). 
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.3. Fumed silica 

The thermal conductivity progressions of fumed silica can be 

redicted by many models with a very good accuracy. In the fa- 

orites, the S F S value is mostly around 10%. There is a very clear 

endency to Baule’s and Goodman’s models for α, Eq. (2) and 

q. (6) for β as well as the pore size distribution with correc- 

ion for x . However, the very best result was achieved with the 

aganer’s model for α, Eq. (2) for β and the pore size distribution 

or x in combination with the new model from Zehner and Schlün- 

er ( Section 4.3.2 ) and the aggregate size for the calculation of the

ocal Knudsen number in the unit cell. This combination leads to 
(

ig. 11. Results of the best model combination to forecast glass spheres thermal conduct

asterisks). 

13 
he mean-variance of 9.2%. The respective progressions are plotted 

n Fig. 9 . 

.4. Silica gel 

An even more accurate prediction than with fumed silica could 

nly be achieved with silica gel. Although most of the S SG val- 

es in the favorites are closer to 15%, the smallest value was just 

.7%. That is the most precise combination of prediction meth- 

des of the whole investigation. It was obtained, like for PS, by 

he sphere model with consideration of the local Knudsen number 

 Section 4.3.1 ). However, this time it was the aggregate size that 
ivity over pressure progressions (solid lines) and according to measurement results 
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Fig. 12. Flowchart for the selection of models to calculate effective thermal conductivity of different silica based porous materials. 
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as most suitable for the calculation of the local Knudsen num- 

er, not the agglomerate size. However, this is due to the fact that 

his size scale does not exist for silica gels. Therefore, it is also the 

largest particles” that should be used for the calculation with the 

phere model. 

.5. Glass spheres 

Surprisingly, glass spheres have turned out to be the most un- 

redictable material class in terms of ETC, although the porous me- 

ia offer the seemingly most straightforward structure. Best results 

ould be obtained again with the sphere model from Section 4.3.1 . 

his is not surprising, because the spherical shape of the unit cell 

ts very well to the original shape of the particles. The sphere 

odel delivers the best results in combination with Eq. (6) for β , 

ong’s model for α and the particle size with Kozeny’s correction 

or the calculation of the GTC. Results are shown in Fig. 11 accord- 

ngly. 

. Conclusion 

In the present study, 15 porous media which are all based 

n silicon dioxide have been characterized in terms of pressure- 

ependent thermal conductivity in combination with 7 different 

ases each. Furthermore, the structural properties of the materials 

ave been investigated. Pore size distributions were measured with 

ercury intrusion porosimetry and particle sizes with small angle 

-ray scattering, dynamic light scattering, laser diffraction and dig- 

tal light microscopy. Ten popular analytical models from the lit- 

rature to calculate the effective thermal conductivity of porous 

edia are presented and categorized as follows: Geometry inde- 

endent models, unit cell models and unit cell models with con- 

ideration of local Knudsen numbers. Additionally, several models 

o calculate the gas thermal conductivity in the pores of the ma- 

erials have been presented. Altogether the study results in 2800 

ossible combinations which have been examined using a Matlab 

ode and compared with the measurements. The crucial finding 

f the paper is probably that basically all models promise better 

ccuracy than is achieved in practice with the real measurement 

ata presented. This is not surprising, because most of the mod- 

ls have been created for special material groups or with regard 

o some other measured data. The effective thermal conductivity 

f an unknown porous silica material with an arbitrary Knudsen 

as inside of the pores can be forecasted with an average accu- 

acy of about 18.5%, using the sphere model with consideration 

f the local Knudsen number. In conclusion, this rather compli- 
14 
ated model, which requires the use of a computer performs best 

n the overall average. But, also the simple models presented by 

ussel or Maxwell still deliver an acceptable overall variance of 

bout 20%. However, it turns out that it is helpful to know about 

he material class, because by selecting a suitable GTC and ETC 

odel combination, a significantly smaller average error of about 

0% can be achieved. More precisely, for the material classes PS, 

S, SG and GS minimum average errors of 10.5%, 9.2%, 8.7% and 

1.9% could be obtained, respectively. In all cases it was a unit 

ell ETC model with consideration of the local Knudsen number 

hich performed best. The size scale of the unit cell should be 

aken from the largest particle size scale for PS, SG and GS. That 

eans agglomerate size for PS, aggregate size for SG and the sim- 

le (primary) particle size for GS. One exception is FS, which is 

est calculated using the aggregate size, even though FS tends to 

orm large agglomerates. The size scale that is decisive for the heat 

ransport does not seem to be that of the agglomerates but that 

f the aggregates. This behavior can be explained by the unusual 

tructure of FS and makes clear why fumed silica is usually pre- 

erred in the production of vacuum insulation panels instead of 

he cheaper precipitated silica, despite similar porosity and parti- 

le size. In most of the cases it can be recommended to use the 

ore size distribution to calculate the gas thermal conductivity if 

t is available. Additionally, it can be helpful to use the pore size 

orrection which is shown in Eq. (15) in some cases. If the pore 

ize distribution is not available, the particle size with Kozeny’s 

orrection ( Eq. 14 ) can be used instead. If so, it is advisable to

se the aggregate size for PS and the primary particle size for FS 

nd SG. 

The study has shown that different models for calculating ther- 

al conductivities have their justification because different models 

t best for different materials. Fig. 12 shows a scheme for one po- 

ential selection of models for different silica based materials rec- 

mmended by the authors of the study. If one follows the advice 

iven in this paper, gas pressure-dependent thermal conductivities 

f silica-based porous materials can be predicted with fairly good 

ccuracy in most cases. The knowledge can be used in the devel- 

pment of new thermal insulation or in all other areas where the 

hermal conductivity of porous media in combination with a Knud- 

en gas is of interest. 
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ppendix A. Pore size distributions 

Taking a closer look at the pore size distributions which are 

hown in Fig. A.1 one can see the different pore structures of the 

aterials. It is evident that different materials, even from the same 
ig. A1. Pore size distributions of all materials investigated, measured with mercury intr

umulative volume fraction and are plotted in solid and dashed lines respectively. The x-a

15 
aterial group, can show a significant difference in the position of 

he pore peak even if porosity and thermal conductivity only differ 

lightly. In the case of PS two samples (PS.Gr.02 and PS.Gr.05) show 

 peak in the size scale of the aggregates and the other four in the

rimary particle size scale. Nevertheless, they do not have much in 

ommon in terms of porosity or thermal conductivity. This shows 

hat it can lead to inaccuracies to use the peak size only for the 

alculation of the GTC. Instead, the whole distribution should be 

aken into account if possible. Furthermore, the narrow distribu- 

ion of the glass beads is striking. From this, it can be seen that the

ile structure is fundamentally different from the other materials. 
usion porosimetry. The primary and secondary axes represent the relative and the 

xis shows the pore sizes in μm . 

https://doi.org/10.13039/501100006360
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ppendix B. Favorites of model combinations 

Table B1 

Over all favorites - three GTC model combinations with the low

α

Russel 1 Goodm

2 Goodm

3 Baule 

Maxwell 1 Song 

2 Song 

3 Baule 

Scaling Model 1 Baule 

2 Baule 

3 Goodm

Sphere model 1 1 Baule 

2 Baule 

3 Goodm

Schumann and Voss 1 Baule 

2 Baule 

3 Goodm

Luikov 1 Baule 

2 Baule 

3 Goodm

Zehner, Bauer, Schlünder 1 Baule 

2 Baule 

3 Goodm

Sphere model 2 1 Kagan

primary particles 2 Bauer 

3 Bauer 

Sphere model 2 1 Bauer 

aggregates 2 Kagan

3 Bauer 

Sphere model 2 1 Bauer 

agglomerate 2 Bauer 

3 Kagan

Zehner, Schlünder 1 Kagan

primary particles 2 Bauer 

3 Song 

Zehner, Schlünder 1 Kagan

aggregates 2 Kagan

3 Kagan

Zehner, Schlünder 1 Kagan

agglomerate 2 Kagan

3 Kagan

Slavin 1 Baule 

primary particles 2 Baule 

3 Baule 

Slavin 1 Baule 

aggregates 2 Baule 

3 Baule 

Slavin 1 Baule 

agglomerate 2 Baule 

3 Baule 
16 
ll values for every ETC model. 

β x S all 

Eq. (5) d dist ∗
π

6 
0.2003 

Eq. (4) d dist ∗
π

6 
0.2012 

Eq. (2) d dist 0.2014 

Eq. (2) d dist ∗
π

6 
0.2092 

Eq. (6) d dist ∗
π

6 
0.2092 

Eq. (5) d dist 0.2095 

Eq. (6) d dist ∗
π

6 
0.2206 

Eq. (2) d dist ∗
π

6 
0.2207 

Eq. (2) d dist ∗
π

6 
0.2223 

Eq. (5) d dist ∗
π

6 
0.2476 

Eq. (4) d dist ∗
π

6 
0.2480 

Eq. (5) d dist ∗
π

6 
0.2488 

Eq. (5) d dist ∗
π

6 
0.2132 

Eq. (4) d dist ∗
π

6 
0.2139 

Eq. (5) d dist ∗
π

6 
0.2166 

Eq. (2) d dist ∗
π

6 
0.4382 

Eq. (6) d dist ∗
π

6 
0.4427 

Eq. (2) d dist ∗
π

6 
0.5018 

Eq. (6) d dist ∗
π

6 
0.2667 

Eq. (2) d dist ∗
π

6 
0.2669 

Eq. (2) d dist ∗
π

6 
0.2670 

Eq. (5) d dist 0.2285 

Eq. (2) d dist 0.2287 

Eq. (6) d dist 0.2287 

Eq. (6) d dist 0.1849 

Eq. (5) d dist 0.1850 

Eq. (2) d dist 0.1851 

Eq. (6) d peak 0.1860 

Eq. (2) d peak 0.1863 

Eq. (5) d peak 0.1870 

Eq. (3) d dist 0.3608 

Eq. (3) d dist 0.3629 

Eq. (3) d dist 0.3630 

Eq. (2) d dist 0.3272 

Eq. (6) d dist 0.3273 

Eq. (3) d dist ∗
π

6 
0.3274 

Eq. (2) d peak 0.4790 

Eq. (6) d peak 0.4790 

Eq. (3) d peak ∗
π

6 
0.4790 

d peak 0.6675 

d dist 0.6675 

d peak ∗
π

6 
0.6675 

d peak 0.4759 

d dist 0.4759 

d peak ∗
π

6 
0.4759 

d peak 0.5151 

d dist 0.5151 

d peak ∗
π

6 
0.5151 
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Table B2 

Precipitated silica favorites - three GTC model combinations with the lowest S PS values for every ETC model. 

α β x S PS 

Russel 1 Kaganer Eq. (4) d dist 0.1567 

2 Bauer Eq. (5) D aggr + KC 0.1581 

3 Kaganer Eq. (3) d dist 0.1583 

Maxwell 1 Bauer Eq. (3) D aggr + KC 0.1432 

2 Song Eq. (3) D aggr + KC 0.1507 

3 Bauer Eq. (4) D aggr + KC 0.1511 

Scaling Model 1 Goodman Eq. (3) d dist 0.1551 

2 Kaganer Eq. (4) d dist ∗
π

6 
0.1558 

3 Goodman Eq. (4) d dist 0.1561 

Sphere model 1 1 Bauer Eq. (3) D aggr + KC 0.1415 

2 Bauer Eq. (4) D aggr + KC 0.1524 

3 Song Eq. (3) D aggr + KC 0.1528 

Schumann and Voss 1 Bauer Eq. (5) D aggr + KC 0.1403 

2 Song Eq. (4) D aggr + KC 0.1423 

3 Song Eq. (5) D aggr + KC 0.1467 

Luikov 1 Baule Eq. (2) d dist ∗
π

6 
0.1927 

2 Baule Eq. (6) d dist ∗
π

6 
0.1941 

3 Goodman Eq. (2) d dist ∗
π

6 
0.2130 

Zehner, Bauer, Schlünder 1 Bauer Eq. (4) D aggr + KC 0.1382 

2 Bauer Eq. (3) D aggr + KC 0.1407 

3 Song Eq. (3) D aggr + KC 0.1416 

Sphere model 2 1 Bauer Eq. (3) D aggr + KC 0.2140 

primary particles 2 Song Eq. (3) D aggr + KC 0.2283 

3 Bauer Eq. (4) D aggr + KC 0.2290 

Sphere model 2 1 Bauer Eq. (3) D aggr + KC 0.1954 

aggregates 2 Bauer Eq. (3) d dist 0.2062 

3 Song Eq. (3) D aggr + KC 0.2101 

Sphere model 2 1 Bauer Eq. (4) d peak 0.1051 

agglomerate 2 Bauer Eq. (3) d peak ∗
π

6 
0.1058 

3 Bauer Eq. (3) d peak 0.1064 

Zehner, Schlünder 1 Baule Eq. (2) D aggl + KC 0.2073 

primary particles 2 Baule Eq. (6) D aggl + KC 0.2089 

3 Goodman Eq. (2) D aggl + KC 0.2280 

Zehner, Schlünder 1 Bauer Eq. (3) D aggr + KC 0.1908 

aggregates 2 Bauer Eq. (3) d dist 0.1952 

3 Song Eq. (3) D aggr + KC 0.1998 

Zehner, Schlünder 1 Kaganer Eq. (3) d peak 0.2904 

agglomerate 2 Kaganer Eq. (4) d peak 0.2914 

3 Song Eq. (3) d peak 0.2916 

Slavin 1 Bauer d peak 0.4384 

primary particles 2 Bauer d dist 0.4384 

3 Bauer d peak ∗
π

6 
0.4384 

Slavin 1 Bauer d peak 0.4294 

aggregates 2 Bauer d dist 0.4294 

3 Bauer d peak ∗
π

6 
0.4294 

Slavin 1 Baule d peak 0.4805 

agglomerate 2 Baule d dist 0.4805 

3 Baule d peak ∗
π

6 
0.4805 
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Table B3 

Fumed silica favorites - three GTC model combinations with the lowest S FS values for every ETC model. 

α β x S FS 

Russel 1 Baule Eq. (2) d dist ∗
π

6 
0.1020 

2 Baule Eq. (6) d dist ∗
π

6 
0.1032 

3 Goodman Eq. (2) d dist ∗
π

6 
0.1221 

Maxwell 1 Baule Eq. (5) d dist ∗
π

6 
0.0944 

2 Goodman Eq. (6) d dist ∗
π

6 
0.0945 

3 Goodman Eq. (2) d dist ∗
π

6 
0.0949 

Scaling Model 1 Baule Eq. (2) d dist ∗
π

6 
0.1119 

2 Baule Eq. (6) d dist ∗
π

6 
0.1130 

3 Bauer Eq. (5) D prim + KC 0.1228 

Sphere model 1 1 Baule Eq. (5) d dist ∗
π

6 
0.0951 

2 Baule Eq. (2) d dist 0.0957 

3 Goodman Eq. (5) d dist ∗
π

6 
0.0959 

Schumann and Voss 1 Baule Eq. (2) d dist ∗
π

6 
0.0951 

2 Baule Eq. (6) d dist ∗
π

6 
0.0958 

3 Goodman Eq. (2) d dist ∗
π

6 
0.1090 

Luikov 1 Baule Eq. (5) D prim + KC 0.1363 

2 Baule Eq. (4) D prim + KC 0.1369 

3 Goodman Eq. (6) D prim + KC 0.1396 

Zehner, Bauer, Schlünder 1 Goodman Eq. (6) d dist ∗
π

6 
0.0931 

2 Goodman Eq. (2) d dist ∗
π

6 
0.0932 

3 Baule Eq. (5) d dist ∗
π

6 
0.0960 

Sphere model 2 1 Goodman Eq. (3) d dist ∗
π

6 
0.1038 

primary particles 2 Song Eq. (2) d dist ∗
π

6 
0.1041 

3 Kaganer Eq. (6) d dist ∗
π

6 
0.1041 

Sphere model 2 1 Kaganer Eq. (6) d dist ∗
π

6 
0.0988 

aggregates 2 Goodman Eq. (3) d dist ∗
π

6 
0.0989 

3 Kaganer Eq. (2) d dist ∗
π

6 
0.0992 

Sphere model 2 1 Baule Eq. (2) d peak 0.1187 

agglomerate 2 Baule Eq. (2) d peak ∗
π

6 
0.1188 

3 Baule Eq. (6) d peak 0.1198 

Zehner, Schlünder 1 Baule Eq. (3) d dist 0.0986 

primary particles 2 Kaganer Eq. (4) d dist ∗
π

6 
0.1003 

3 Kaganer Eq. (5) d dist ∗
π

6 
0.1004 

Zehner, Schlünder 1 Kaganer Eq. (2) d dist ∗
π

6 
0.0919 

aggregates 2 Kaganer Eq. (6) d dist ∗
π

6 
0.0920 

3 Goodman Eq. (3) d dist ∗
π

6 
0.0928 

Zehner, Schlünder 1 Song Eq. (3) d peak 0.7584 

agglomerate 2 Kaganer Eq. (3) d peak 0.7585 

3 Bauer Eq. (3) d peak 0.7588 

Slavin 1 Bauer d peak 0.3411 

primary particles 2 Bauer d dist 0.3411 

3 Bauer d peak ∗
π

6 
0.3411 

Slavin 1 Bauer d peak 0.3345 

aggregates 2 Bauer d dist 0.3345 

3 Bauer d peak ∗
π

6 
0.3345 

Slavin 1 Baule d peak 0.5514 

agglomerate 2 Baule d dist 0.5514 

3 Baule d peak ∗
π

6 
0.5514 
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Table B4 

Silica gel favorites - three GTC model combinations with the lowest S SG values for every ETC model. 

α β x S SG 

Russel 1 Kaganer Eq. (5) d dist 0.1567 

2 Song Eq. (3) d dist ∗
π

6 
0.1573 

3 Song Eq. (6) d dist 0.1580 

Maxwell 1 Kaganer Eq. (3) d dist 0.1779 

2 Song Eq. (3) d dist 0.1798 

3 Kaganer Eq. (4) d dist 0.1834 

Scaling Model 1 Goodman Eq. (2) d dist 0.1317 

2 Goodman Eq. (6) d dist 0.1319 

3 Goodman Eq. (3) d dist ∗
π

6 
0.1322 

Sphere model 1 1 Kaganer Eq. (5) d dist 0.1919 

2 Kaganer Eq. (4) d dist 0.1922 

3 Song Eq. (3) d dist ∗
π

6 
0.1931 

Schumann and Voss 1 Kaganer Eq. (3) d dist ∗
π

6 
0.1654 

2 Kaganer Eq. (6) d dist 0.1656 

3 Kaganer Eq. (2) d dist 0.1659 

Luikov 1 Baule Eq. (2) d dist ∗
π

6 
0.1565 

2 Baule Eq. (6) d dist ∗
π

6 
0.1584 

3 Goodman Eq. (2) d dist ∗
π

6 
0.1910 

Zehner, Bauer, Schlünder 1 Kaganer Eq. (3) d dist ∗
π

6 
0.1762 

2 Kaganer Eq. (6) d dist 0.1767 

3 Goodman Eq. (3) d dist 0.1768 

Sphere model 2 1 Baule Eq. (2) D aggl + KC 0.2528 

primary particles 2 Baule Eq. (2) D aggr + KC 0.2528 

3 Baule Eq. (6) D aggl + KC 0.2542 

Sphere model 2 1 Bauer Eq. (3) d dist ∗
π

6 
0.0867 

aggregates 2 Song Eq. (3) d dist ∗
π

6 
0.0901 

3 Song Eq. (3) d dist 0.0906 

Sphere model 2 

agglomerate 

Zehner, Schlünder 1 Baule Eq. (2) D aggl + KC 0.2419 

primary particles 2 Baule Eq. (2) D aggr + KC 0.2419 

3 Baule Eq. (6) D aggr + KC 0.2424 

Zehner, Schlünder 1 Kaganer Eq. (3) D prim + KC 0.2315 

aggregates 2 Bauer Eq. (3) D prim + KC 0.2315 

3 Song Eq. (3) D prim + KC 0.2334 

Zehner, Schlünder 

agglomerate 

Slavin 1 Bauer d peak 0.4889 

primary particles 2 Bauer d dist 0.4889 

3 Bauer d peak ∗
π

6 
0.4889 

Slavin 1 Baule d peak 0.5983 

aggregates 2 Baule d dist 0.5983 

3 Baule d peak ∗
π

6 
0.5983 

Slavin 

agglomerate 
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Table B5 

Glass spheres favorites - three GTC model combinations with the lowest S GS values for every ETC model. 

α β x S GS 

Russel 1 Baule Eq. (5) d dist ∗
π

6 
0.1450 

2 Baule Eq. (4) d dist ∗
π

6 
0.1482 

3 Goodman Eq. (5) d dist ∗
π

6 
0.1511 

Maxwell 1 Baule Eq. (2) D aggl + KC 0.1274 

2 Baule Eq. (2) D aggr + KC 0.1274 

3 Baule Eq. (2) D prim + KC 0.1274 

Scaling Model 1 Baule Eq. (2) d dist ∗
π

6 
0.3123 

2 Baule Eq. (6) d dist ∗
π

6 
0.3158 

3 Baule Eq. (2) d peak ∗
π

6 
0.3387 

Sphere model 1 1 Baule Eq. (2) d dist ∗
π

6 
0.2121 

2 Baule Eq. (6) d dist ∗
π

6 
0.2144 

3 Baule Eq. (2) d peak ∗
π

6 
0.2212 

Schumann and Voss 1 Baule Eq. (2) d dist ∗
π

6 
0.1954 

2 Baule Eq. (6) d dist ∗
π

6 
0.1973 

3 Baule Eq. (2) d peak ∗
π

6 
0.2017 

Luikov 1 Baule Eq. (2) d peak ∗
π

6 
1.3121 

2 Baule Eq. (6) d peak ∗
π

6 
1.3258 

3 Baule Eq. (2) d dist ∗
π

6 
1.3577 

Zehner, Bauer, Schlünder 1 Baule Eq. (2) d dist ∗
π

6 
0.3360 

2 Baule Eq. (6) d dist ∗
π

6 
0.3398 

3 Baule Eq. (2) d peak ∗
π

6 
0.3432 

Sphere model 2 1 Song Eq. (6) D prim + KC 0.1185 

primary particles 2 Song Eq. (2) D prim + KC 0.1186 

3 Bauer Eq. (2) D prim + KC 0.1204 

Sphere model 2 

aggregates 

Sphere model 2 

agglomerate 

Zehner, Schlünder 1 Baule Eq. (2) d peak ∗
π

6 
0.7804 

primary particles 2 Baule Eq. (6) d peak ∗
π

6 
0.7805 

3 Baule Eq. (2) d dist ∗
π

6 
0.7807 

Zehner, Schlünder 

aggregates 

Zehner, Schlünder 

agglomerate 

Slavin 1 Baule d peak 1.5975 

primary particles 2 Baule d dist 1.5975 

3 Baule d peak ∗
π

6 
1.5975 

Slavin 

aggregates 

Slavin 

agglomerate 

S
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Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ijheatmasstransfer. 
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