KIT | KIT-Bibliothek | Impressum | Datenschutz

Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices

Pham, Hoa Thi; Awange, Joseph; Kuhn, Michael; Van Nguyen, Binh; Bui, Luyen K.

Abstract:

Accurate crop yield forecasting is essential in the food industry’s decision-making process, where vegetation condition index (VCI) and thermal condition index (TCI) coupled with machine learning (ML) algorithms play crucial roles. The drawback, however, is that a one-fits-all prediction model is often employed over an entire region without considering subregional VCI and TCI’s spatial variability resulting from environmental and climatic factors. Furthermore, when using nonlinear ML, redundant VCI/TCI data present additional challenges that adversely affect the models’ output. This study proposes a framework that (i) employs higher-order spatial independent component analysis (sICA), and (ii), exploits a combination of the principal component analysis (PCA) and ML (i.e., PCA-ML combination) to deal with the two challenges in order to enhance crop yield prediction accuracy. The proposed framework consolidates common VCI/TCI spatial variability into their respective subregions, using Vietnam as an example. Compared to the one-fits-all approach, subregional rice yield forecasting models over Vietnam improved by an average level of 20% up to 60%. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000142386
Veröffentlicht am 27.01.2022
Originalveröffentlichung
DOI: 10.3390/s22030719
Scopus
Zitationen: 28
Web of Science
Zitationen: 23
Dimensions
Zitationen: 31
Cover der Publikation
Zugehörige Institution(en) am KIT Geodätisches Institut (GIK)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 1424-8220
KITopen-ID: 1000142386
Erschienen in Sensors
Verlag MDPI
Band 22
Heft 3
Seiten 719
Schlagwörter crop yield prediction; vegetation condition index (VCI); thermal condition index (TCI); independent component analysis (ICA); principle component analysis (PCA); machine learning
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page