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1 Introduction

After the discovery of the Higgs boson [1, 2] one of the major tasks of the Large Hadron
Collider (LHC) at CERN, and in particular the High-Luminosity LHC, is to investigate
the scalar sector of the Standard Model (SM) of particle physics. In principle, within the
SM all parameters are known: the scalar potential contains two parameters, the Higgs
boson mass (mH) and the vacuum expectation value (v). Both are available to high
precision [3] and their combination determines the triple and quartic Higgs boson couplings
via λ = m2

H/(2v2) ≈ 0.13. However it is important to verify this value of λ (and thus
the structure of the scalar sector) independently, therefore experimental measurements
are crucial.

There are two promising approaches which are sensitive to the value of λ. Firstly there
is double Higgs boson production, where the dominant production process is via gluon fusion.
The coupling λ already enters at leading order (LO), providing a good sensitivity. On the
experimental side, however, a measurement of this cross section with a reasonable precision
is very challenging (see, e.g., refs. [4, 5]). A second process through which information about
λ can be obtained is single Higgs boson production. The LHC is anticipated to be able to
measure this cross section with a precision at the percent level. In the theory predictions,
however, λ only enters via quantum corrections at next-to-leading order (NLO), reducing
the sensitivity to its value in this process (see, e.g., refs. [6–9]).

In this paper we consider double Higgs boson production at next-to-next-to-leading
order (NNLO) in the large-mt limit. Special emphasis is put on the real-radiation correction
of which the real-virtual part, to date, is only known in the infinite top quark mass limit.
We compute finite 1/mt corrections up to order 1/m6

t . We describe technical aspects of our
calculation in detail, which might be useful for other processes.

Leading order corrections to gg → HH were first considered more than 30 years
ago [10, 11]. At NLO the infinite top quark mass limit is known from [12] and finite 1/mt

corrections were considered in [13, 14]. At NLO various further approximations have been
constructed. Among them is an expansion in the high-energy limit [15, 16], for small
transverse momentum of the Higgs bosons [17] and around the top quark threshold [18]. In
the latter, the large-mt expansions of the form factors were combined with information from
the threshold expansion using conformal mapping and Padé approximation; this produces
good approximations of the virtual NLO corrections up to a di-Higgs invariant mass of
about 700GeV. In refs. [19, 20] a method has been developed where the two-loop amplitude
is expanded for small Higgs boson mass and evaluated numerically.

Exact NLO corrections for the real-radiation contribution were first obtained in ref. [21].
The complete exact NLO results are known from refs. [22–24], where they are computed
using numerical methods. In contrast to the approximations discussed above, which are
in general available in analytic form, these numerical computations are quite expensive in
terms of CPU time. It is therefore advantageous still to use approximations in the region
of the phase space where they are valid. For example in ref. [25] the exact results from
refs. [22, 23] were combined with the high-energy expansion of refs. [15, 16]. The CPU-time
expensive calculations were only necessary for relatively small values of the Higgs transverse
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momentum, say below pT ≈ 200GeV, and the fast evaluation of the analytic high-energy
expansions could be used for the remaining phase space.

The dependence on the renormalization scheme of the top quark mass has been discussed
in ref. [26]. Sizeable uncertainties were observed for large values of the di-Higgs invariant
mass. To reduce this uncertainty a NNLO calculation is necessary. A full NNLO calculation
is currently out of reach, so it is important to construct approximations valid in different
regions of the phase space. In the region where the large-mt expansion — the topic of this
paper — is valid the scheme uncertainty is small. It is nevertheless useful to have such
corrections at hand since they serve as valuable input for approximation methods such as,
e.g., the one described in ref. [18].

At NNLO, only approximations in the large-mt limit are available so far. In the infinite-
mt limit the cross section has been computed in refs. [27–29] and finite 1/mt expansion terms
for the virtual corrections are available from [30, 31]. In ref. [32] a NNLO approximation
has been constructed which incorporates, in addition to the exact NLO corrections and the
infinite-mt results at NNLO, the exact expression for the double-real radiation contributions
at NNLO.

Even N3LO corrections are available for gg → HH, although only in the infinite top
quark mass limit. The results presented in refs. [33, 34] are based on ingredients computed
in refs. [35–39].

In the present work we consider the 1/mt corrections at NNLO. The virtual corrections
to the form factors have been computed in [31] including terms to order 1/m8

t . In section 2.6
we describe our procedure to obtain the corresponding contribution to the cross section to
this order. The main purpose of this paper is to complement the virtual corrections by the
corresponding real-radiation contributions. We compute all contributions up to order 1/m6

t

and the channels which involve quarks to 1/m8
t .

The real-radiation contribution can be divided into one-loop 2→ 4 processes and two-
loop 2→ 3 processes; sample Feynman diagrams are shown in figure 1. In the following we
denote these contributions as “real-real” and “real-virtual”, respectively. We are interested
in the total cross section which is conveniently obtained using the optical theorem applied to
the forward-scattering amplitude (see figure 2). At NNLO this leads to five-loop diagrams.
However, in the large-mt limit one observes a factorization into n-loop tadpole and (5− n)-
loop so-called phase-space integrals, where in our case we have n = 2 or n = 3. The tadpole
integrals are well studied in the literature, however the phase-space integrals are not; we
discuss in detail the various integral families, their reduction to master integrals and provide
analytic results.

We want to mention that a part of the real-radiation contribution, where the two
Higgs bosons couple to different top quark loops (cf. figure 1(c)) have been computed in
ref. [31]. In the forward-scattering picture of figure 2 such contributions have three closed
top quark loops and we denote them the “n3

h contribution”. Note that there are further n3
h

contributions which have a closed loop with only gluon couplings (as shown in figure 1(d)).
Such terms are not included in ref. [31], but are computed in this paper.

The remainder of the paper is organized as follows: in the next section we discuss
the individual parts of our calculation. This concerns in particular the setup used for the
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(a) (b) (c) (d) (e) (f)

Figure 1. Sample Feynman diagrams contributing to the real radiation. Contributions such as
those shown in (c) lead to n3

h contributions which have already been computed in ref. [31]. The n3
h

contributions of (d) contain a top quark loop without a Higgs coupling and have not been computed
in ref. [31]; they are considered here.

(a) (b) (c) (d)

Figure 2. Sample Feynman diagrams in the forward-scattering kinematics. Three- and four-particle
cuts are shown by blue and green dashed lines, respectively. The n3

h contributions as shown in (b)
have already been considered in [31] but those in (c) have not; they are considered here.

computation of the real-radiation corrections including the asymptotic expansion and the
reduction to phase-space master integrals. Furthermore, we discuss the ultraviolet and
collinear counterterms to subtract the divergences from initial-state radiation. Section 3 is
dedicated to the phase-space master integrals. We provide details on the transformation
of the system of differential equations to ε form and on the computation of the boundary
conditions in the soft limit. We discuss our analytic and numerical results in section 4
and summarize our findings in section 5. In the appendix we provide useful additional
material such as explicit formulae used for the computation of the collinear counterterms,
the integrands of the phase-space master integrals, NNLO virtual corrections to the channel
qq̄ → HH and NNLO virtual corrections involving four closed top quark loops. Furthermore,
we describe in detail our approach to obtain the leading 1/mt term for double Higgs
production from the analytic expressions of the single-Higgs production cross section.

2 Computation

2.1 Partonic channels and generation of amplitudes

We write the perturbative expansion of the partonic cross sections as

σij→HH+X(s, ρ) = δigδjgσ
(0)
gg + σ

(1)
ij + σ

(2)
ij . . . , (2.1)

where the superscripts (0), (1) and (2) stand for the LO, NLO and NNLO contributions, s
is the centre-of-mass energy and ρ is defined in eq. (2.4). At NLO and NNLO we further
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subdivide the cross sections according to the number of closed top quark loops and write

σ
(1)
ij = σ

(1),n2
h

ij + δigδjgσ
(1),n3

h
gg ,

σ
(2)
ij = σ

(2),n2
h

ij + σ
(2),n3

h
ij + δigδjgσ

(2),n4
h

gg . (2.2)

Note that the superscripts nkh counts the number of closed top quark loops which have
at least one coupling to a Higgs boson. The contributions σ(1),n3

h
gg and σ(2),n3

h
ij have been

computed in ref. [31]. In this paper we concentrate on σ(2),n2
h

ij which can be decomposed as

σ
(2),n2

h
ij = σ

(2),n2
h

ij,virt + σ
(2),n2

h
ij,real + σ

(2),n2
h

ij,coll , (2.3)

where the individual contributions are discussed in the remainder of this section. Most
emphasis is put on σ(2),n2

h
ij,real since the complicated calculation for σ(2),n2

h
ij,virt was performed in [31]

and for σ(2),n2
h

ij,coll “only” convolutions of lower-order cross sections and splitting functions have
to be computed. σ(2),n4

h
gg is discussed in appendix D.

We compute the cross section in the large-mt limit. It is thus convenient to introduce
the variable

ρ = m2
H

m2
t

, (2.4)

such that after the expansion in 1/mt the coefficients of ρn depend on x = m2
H/s. The

analytic calculation of the phase-space integrals is performed in an expansion around the
production threshold of the two Higgs bosons, for which it is convenient to define

δ = 1− 4x , (2.5)

such that the threshold corresponds to δ = 0.
To compute σ(2),n2

h
ij,real we first generate the forward-scattering amplitudes for the relevant

partonic channels, applying the optical theorem to obtain the real-radiation contributions.
These amplitudes involve two external momenta q1 and q2, with s = (q1 + q2)2. One
has to consider the gg, gq, qq̄, qq and qq′ partonic channels, where q and q′ denote two
different light quark flavours. Note that both quark and anti-quark contributions have to be
taken into account, i.e., gq and qq also stand for the gq̄ and q̄q̄ contributions, respectively.
Similarly in qq′, all quark-quark, quark-anti-quark and anti-quark-anti-quark contributions
have to be considered, where in each case the quark flavours are different. For all channels
one obtains the same result after replacing a quark by an anti-quark and vice versa. We also
compute channels with one or both external gluons replaced with ghosts (c) and anti-ghosts
(c̄), i.e., in addition to the channels listed above we have gc, gc̄, cc, cc̄, c̄c̄, cq and c̄q. This
allows us to sum over the gluon polarizations according to∑

λ

ε(λ),∗
µ (q1)ε(λ)

ν (q2) = −gµν ,

where λ runs from 0 to 3.
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Channel qgraf diagrams gen-filtered diagrams building block diagrams
gg 16,631,778 160,154 4,612
gc 1,671,006 5,426 336
cc̄ 406,662 3,879 243
cc (not considered) (not considered) 8
gq 1,671,006 5,426 336
cq (not considered) (not considered) 8
qq̄ 406,662 3,879 243
qq (not considered) (not considered) 8
qq′ 203,331 34 4

Table 1. The number of “full” diagrams generated by qgraf and after filtering with gen, compared
to the number of “building block” diagrams, for each channel. For the cc, cq and qq channels we
have only applied the “building block” approach.

We generate the amplitudes using qgraf [40], however this program does not allow one
to filter only diagrams which admit a cut through the required final-state particles (here
two Higgs bosons and one or more gluons or light fermion pairs), as depicted in figure 2 by
the green and blue dashed lines. We thus generate all possible forward-scattering diagrams
and post-process them using gen [41] which is able to filter the qgraf output based on our
required cuts.

Due to the large qgraf output (for the gg channel, 16.6 million diagrams, 42 GB
in total) it proved necessary to separate the diagrams into subsets containing particular
numbers of top quark, light quark, cut- and un-cut Higgs lines which could be filtered by
gen separately, in parallel. After filtering, the number of diagrams remaining is greatly
reduced (for the gg channel, to a total of 160 thousand diagrams, 416 MB in total). In
table 1 we show the numbers of diagrams for all channels which we compute.

2.2 Real radiation: asymptotic expansion and building blocks

After producing the filtered set of Feynman diagrams, we consider the large-mt limit and
apply an asymptotic expansion for m2

t � s,m2
H . This expresses each diagram as a sum of

products of so-called “hard subgraphs” (which have to be expanded in their small quantities:
masses and momenta) and “co-subgraphs” which are obtained from the original diagrams
by shrinking the subgraph lines to a point. The rules which must be applied to determine
all of the relevant subgraphs of a diagram are implemented in the software exp [42, 43],
which produces FORM [44] code to perform the expansion.

The subgraphs generated by the asymptotic expansion are, in this case, one- and two-
loop one-scale vacuum integrals; this class of integrals is well studied, and it is possible to
compute tensor integrals which contract with external momenta or line momenta of the co-
subgraph. Such routines are implemented in MATAD [45]. The co-subgraphs of the expansion
lead to two- and three-loop forward-scattering integrals (or “phase-space” integrals) which
depend on s and m2

H . The two-loop phase-space integrals involve three-particle cuts
whereas the three-loop phase-space integrals involve both three- and four-particle cuts and
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(a) (b) (c) (d)

Figure 3. The forward-scattering diagrams of figure 2, with black circles representing the expanded
hard subgraphs in the large-mt expansion. Three- and four-particle cuts are shown by blue and
green dashed lines, respectively.

thus contribute to both the real-virtual and real-real contributions. From the diagrams
in figure 2 one obtains the diagrams in figure 3 where the black circles represent the
expanded subgraphs.

In principle, the computation can now be performed using the method and tools
described above and in section 2.1, that is,

1. generate the diagrams with qgraf and filter for valid cuts with gen,

2. use q2e/exp to identify subgraphs and generate FORM code,

3. compute the asymptotic expansion with FORM and MATAD,

yielding expressions in terms of the remaining phase-space integrals which must still be
computed. In practice however, this approach is very computationally challenging due to
the enormous number of five-loop forward-scattering diagrams generated and the complexity
of expanding each of those diagrams due to the large number of propagators present. We
use this method to compute in full only the leading contribution to the large-mt expansion
(terms of order 1/m0

t ) in order to cross-check an alternative approach described below. For
the channels gq, qq̄ and cc̄, we additionally perform this cross-check to order 1/m2

t in the
large-mt expansion.

Many of the diagrams have identical subgraphs, which are expanded in the same small
parameters. This suggests that it is beneficial to pre-compute the subgraphs, expanding
them to the required order only once and storing the results. We can then generate two- and
three-loop forward-scattering amplitudes with “effective vertices” in place of the subgraphs,
of which there are comparatively very few (for the gg channel we generate 4612 diagrams,
compared to the 160 thousand diagrams discussed in section 2.1. In table 1 we show the
numbers of diagrams for all channels). As an example, in figure 4 we show diagrams which
involve the 4-gluon-2-Higgs effective vertex; there are 3600 “full” diagrams, one of which
is shown in figure 4(a), and just one effective-vertex diagram shown in figure 4(b). This
subset of diagrams has been discussed in ref. [46]. In the course of the calculation, the
effective vertices are replaced with the pre-expanded subgraphs. We call this the “building
block approach”.

In practice, we adopt something of a hybrid approach in order to avoid having to
deal with two-loop building blocks which are challenging to compute. This means that we
implement the following one-loop building blocks: ggH, gggH, ggggH, ggHH, gggHH,

– 6 –
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(a) (b)

Figure 4. (a) An example “full” Feynman diagram, which contributes to the real-real-virtual
corrections of gg → HH. There are 3600 such diagrams. (b) The equivalent “building-block”
diagram, of which there is only one.

Figure 5. Sample Feynman diagrams contributing to the building blocks.

ggggHH, shown graphically in figure 5. We compute them to order 1/m8
t with all external

momenta off shell, and dependence on the open external Lorentz and colour indices retained.
The resulting expressions range between 84 kB for ggH and 164 MB for ggggHH. This
means that they have to be inserted into the phase-space diagrams carefully, to obtain
acceptable performance. Initially the coefficients of each term of the 1/m2

t expansion are
inserted only as placeholder symbols, while the rest of the diagram is computed. Once
the expression is written in terms of a linear combination of phase-space integrals, the
placeholder symbols are replaced by using Term environments in FORM to sort the coefficients
of the phase-space integrals and 1/mt expansion coefficients individually, so as not to blow
up the intermediate size of the whole expression.

For the building blocks involving up to three gluons, the Lorentz and colour structures
factorise and can thus be inserted separately into the computation of the kinematic and
colour parts of the diagrams, as is required by the structure of our setup to compute the
diagrams. For the four-gluon building blocks this is no longer the case, so we proceed in
the following way. First, we simply compute the expansion of the building blocks to arrive
at a result in the form

Bµνρσ, abcd
ggggHH =

∑
i

Kµνρσ
i (mt, {pk}) Cabcdi (2.6)

where the factors Ki contain the kinematic dependence. {pk} is the set of external momenta
of the building block. The colour structures are given by the Ci factors. We now define the
symbol δi such that

δi ⊗ δj =
{

1 i = j

0 i 6= j
, (2.7)
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Figure 6. Examples for diagrams for which we perform a direct expansion of the two-loop tadpole
subgraph, so as to avoid having to compute two-loop building blocks.

which allows us to re-write eq. (2.6) as

Bµνρσ, abcd
ggggHH =

(∑
i

Kµνρσ
i (mt, {pk}) δi

)
⊗

∑
j

δjC
abcd
j

 . (2.8)

We can thus compute the Lorentz and colour parts of diagrams involving this building
block separately, and finally multiply them according to eq. (2.7). If a diagram contains
two insertions of this building block (such as the diagram shown in figure 4) we introduce
two independent sets of the δ symbols.

For diagrams for which the top quark dependence can not be completely constructed
from these building blocks (i.e. diagrams which would require two-loop building blocks),
we can generate diagrams with at least one (one-loop) building block vertex and treat the
remaining top quark propagators explicitly with exp. This means that at most, we have to
directly expand the subgraphs of four-loop forward-scattering diagrams. Two examples of
such diagrams are shown in figure 6. For some diagrams of this type (such as the second
example) exp also generates a one-loop subgraph which we discard, since this case is already
included in the building block computation.

2.3 Real radiation: partial fraction decomposition and IBP reduction

After integrating out the top quark loops we end up with two- and three-loop phase-space
integrals. It is useful to distinguish three different sets of integral families according to the
number of loops and the cuts through two Higgs bosons and massless particles (see also
figure 7 below):

• Two-loop families with one or two three-particle cuts. These appear in the real
corrections at NLO and real-virtual corrections involving three top quark loops at
NNLO.

• Three-loop families with a three-particle cut. These appear in the remaining real-
virtual corrections at NNLO.

• Three-loop families with one or two four-particle cuts. These produce the real-real
corrections at NNLO.

In total 16 two-loop families, 28 three-loop families with a three-particle cut and 64
four-particle cut families are required to map all diagrams.

– 8 –
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Figure 7. Minimal set of integral families, obtained by LIMIT, for the two-loop (first line), three-loop
real-virtual (second line) and three-loop real-real (third to fifth lines) phase-space contributions.
The arrow on external lines denotes the momentum q1 and the blue dashed lines represent the cuts.

We generate the four-point amplitudes with three independent external momenta, q1, q2
and q3. After using the forward-scattering kinematics, i.e. q3 = −q2, some of the propagators
become linearly dependent; a partial fraction decomposition is needed to obtain proper input
for the IBP reduction. For this purpose we have developed the program LIMIT [47] which
automates this step of our calculation. This program is based on ideas presented in ref. [48].

In the following we describe the workflow of LIMIT. First, LIMIT identifies linear relations
among the propagators of a given family, derives relations to perform a partial fraction
decomposition, and generates FORM routines to apply these relations to the integrals. Each
initial, linearly dependent, family may yield multiple linearly independent families.

Next, families with multiple cuts are split into multiple families with one cut each, since
each integral with two cuts corresponds to the sum of two integrals with one cut. Splitting
the families in this way is necessary because LiteRed [49, 50] can only handle families with
a single cut. Now we use LiteRed to identify vanishing sectors of the families and to derive
symmetry relations for the non-vanishing sectors. Based on this, LIMIT then generates FORM
code to nullify vanishing integrals and apply the symmetry relations, reducing the number
of terms present in each amplitude.

Finally, LIMIT identifies equivalent families based on their graph polynomials and groups
them into classes. For each class, LiteRed is employed to derive relations for translating
integrals of each family to integrals of a single representative family. As not all linearly
independent families have the same number of propagators, LIMIT then tries to embed
classes of families with fewer lines into classes of families with more lines. The rules for
mapping integrals into this minimal number of representative families are translated into
FORM code and applied to the amplitudes.

By applying LIMIT to the three sets of integral families mentioned above, we obtain 4,
5 and 14 integral families, respectively. Their graphical representation is shown in figure 7.
For more details we refer to [47].
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Figure 8. Three-loop three-particle cut master integrals. Solid and dashed lines denote massive and
massless lines, respectively. The blue dashed line symbolizes the cut and crosses denote propagators
raised to negative power.

Using LiteRed we relate equivalent sectors of families in the three different classes
and perform an IBP reduction to master integrals. In total O (500 000) integrals need to
be reduced, which takes LiteRed less than two days. The two-loop reduction leads to 16
master integrals with a three-particle cut. They have already been studied in ref. [31] where
the n3

h contributions were computed where both Higgs bosons couple to different top-quark
loops. We furthermore obtain 17 three-loop three-particle cut and 57 four-particle cut
master integrals. They are shown in figure 8, as well as figures 9 and 10, respectively.

Details on the computation of the master integrals are provided in section 3. After
inserting the results for the master integrals we obtain an expansion for each Feynman
diagram in 1/mt and ε. For the real-radiation contribution we observe poles of order 1/ε4.

2.4 Ultraviolet counterterms

The NNLO real-radiation amplitude receives a one-loop counterterm contribution induced
by the NLO corrections, which are required to order ε. To be more precise, we have to
renormalize αs, mt and the (external) gluon field. The corresponding renormalization
constants are given by

Zαs = 1 + αs
4πε

(
−11

3 CA + 4
3nfTf

)
,

Zm = 1− 3αs
4πεCF ,

ZOS
3 = 1

ζ0
3

= 1− αs
3επTfnh

[
1 + ε ln µ2

m2
t

+ ε2
(
ζ2
2 + 1

2 ln2 µ
2

m2
t

)

+ ε3
(
−ζ3

3 + ζ2
2 ln µ2

m2
t

+ 1
6 ln3 µ

2

m2
t

)
+O(ε4)

]
, (2.9)
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Figure 9. Three-loop four-particle cut master integrals. Solid and dashed lines denote massive and
massless lines, respectively. The blue dashed line symbolizes the cut and crosses denote propagators
raised to negative power.
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Figure 10. Continuation of figure 9.
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where µ is the renormalization scale and αs = αs(µ). We first perform the renormalization
in the full theory (i.e., we have nf = 6 = nl + nh = 5 + 1). Afterwards, we perform a
decoupling from α

(6)
s to α(5)

s . Note that we renormalize the top quark mass first in the MS
scheme; the transition to the on-shell scheme in the final result is straightforward.

2.5 Collinear counterterms

The NNLO collinear counterterms are obtained from the convolution of the LO and NLO
cross sections σ(0)

gg and σ(1)
ij and the gluon or quark splitting functions. In general such a

convolution has the form

σbare
ij (x)
x

=
∑
k,l

σkl(z)
z
⊗ Γki ⊗ Γlj , (2.10)

with
(f ⊗ g)(z) =

∫ 1

0
dx dy f(x)g(y)δ(z − xy) . (2.11)

In eq. (2.10) the superscript “bare” refers to the renormalization of the parton distribution
functions, i.e. the subtraction of the 1/ε poles in connection to radiation from incoming
partons. It does not refer to the renormalization of the ultraviolet divergences; here we
assume that all ultraviolet counterterms are already taken into account. The kernels Γij in
eq. (2.10) are obtained from the splitting functions as follows

Γij(x) = δijδ(1− x)− α
(5)
s (µ)
π

P
(0)
ij

ε

+
(
α

(5)
s (µ)
π

)2{ 1
2ε2

[(
P

(0)
ik ⊗ P

(0)
kj

)
(x) + β0P

(0)
ij

]
− 1

2εP
(1)
ij

}
+O

(
α3
s

)
, (2.12)

where P (0)
ij and P

(1)
ij are one- and two-loop splitting functions which can be found in

refs. [51–55]. For further details we refer to refs. [56, 57] where the computation of the
collinear counterterms is discussed for NNLO and N3LO single Higgs boson production. The
combinatorics for single and double Higgs production is identical and thus the formalism
outlined in detail in [56] can be applied in the context of this calculation. Additionally, this
reference contains explicit formulae which solve eq. (2.10) for the renormalized cross section
σij within perturbation theory. The resulting collinear counterterms are computed from
convolution integrals of the following form,

σ
(2)
gg,coll = −1

ε

(
µ2

µ2
f

)ε ∫ 1

1−δ
dz P (0)

gg (z)σ(1)
gg (x/z) + . . . , (2.13)

where the ellipses represent further contributions to the collinear NNLO counterterm σ
(2)
gg,coll.

Note that in eq. (2.13) we distinguish the renormalization scale µ from the factorization
scale µf . We compute the collinear counterterms in the nl flavour theory, i.e., in eq. (2.12)
the one-loop coefficient of the QCD beta function is given by

β0 = 11
12CA −

1
3Tfnl , (2.14)
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(a) LO (b) NLO, n2
h (c) NLO, n3

h (d) NNLO, n2
h

(e) NNLO, n2
h (f) NNLO, n3

h (g) NNLO, n3
h (h) NNLO, n4

h

Figure 11. Sample forward-scattering Feynman diagrams for the virtual corrections at LO, NLO
and NNLO.

where nl is the number of massless quarks. We compute all contributions in terms of SU(Nc)
colour factors CA = Nc and CF = (N2

c − 1)/(2Nc) and the trace normalization Tf = 1/2.
Inspection of eq. (2.12) shows that at NNLO the collinear counterterm starts at O(1/ε2)

whereas the real and virtual corrections contain poles up to O(1/ε4). In appendix A we
provide useful formulae for the analytic computation of the convolution integrals, such as
the one shown in eq. (2.13). These are obtained by expanding in δ; we have computed all
contributions up to order ρ3 and δ30.

2.6 Virtual corrections

Virtual corrections only exist for the gg and qq̄ channels. In the latter case they contribute
for the first time at NNLO and are suppressed by 1/m2

t at the level of the amplitude
(and so by 1/m4

t at the level of the cross section). We discuss them in appendix C. In
this section we concentrate on the channel gg → HH. Sample Feynman diagrams for the
forward-scattering kinematics are shown in figure 11. At NNLO we distinguish contributions
which have two, three and four closed top quark loops and we denote the corresponding
contributions by n2

h, n3
h and n4

h respectively. Note that all n3
h virtual corrections are already

contained in ref. [31], even those with a top quark loop which has no coupling to the Higgs
bosons (such as the diagram in figure 11(g)). The n2

h terms develop poles up to 1/ε4 which
cancel against those of the real-radiation corrections. The n4

h contribution appears only
in the virtual corrections and is therefore finite. The corresponding analytic results are
presented in appendix D.

For the virtual corrections we do not use the optical theorem but compute the contri-
bution to the cross section from the form factors obtained in ref. [58] in an expansion up to
order 1/m8

t . The triangle form factors are even available up to order 1/m14
t .

The starting point is the amplitude for the process gg → HH which has two independent
tensor structures. Expressed in terms of the “box” and “triangle” form factors it is given by

δabM = δab ε1,µε2,ν
GF√

2
αs(µ)

2π Tfnh s

[(
3m2

H

s−m2
H

Ftri + Fbox1

)
Aµν1 + Fbox2A

µν
2

]
, (2.15)
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where GF is the Fermi constant, a and b are adjoint colour indices and the two Lorentz
structures are given by

Aµν1 = gµν − 1
q12

qν1q
µ
2 ,

Aµν2 = gµν + 1
p2
T q12

(q33q
ν
1q
µ
2 − 2q23q

ν
1q
µ
3 − 2q13q

ν
3q
µ
2 + 2q12q

µ
3 q

ν
3 ) , (2.16)

with
qij = qi · qj , p 2

T = 2q13q23
q12

− q33 . (2.17)

Analytic results for the form factors Ftri, Fbox1, Fbox2 are available in the ancillary files of
ref. [58].

The differential cross section is constructed in terms of the amplitude of eq. (2.15)
according to

dσ
dy = NA

2 ·N2
A · (2− 2ε)2

1
2sf

2PS(ε) |M?M| (2.18)

where the factors 1/2, 1/N2
A = 1/82 and 1/(2− 2ε)2 are due to the identical particles in the

final state, and the gluon colour and spin averages, respectively. The factor f2PS comes
from the d-dimensional two-particle phase space and is given by

f2PS(ε) =
(
eγE

4π

)ε(µ2

s

)ε 22ε−3 πε−1 δ1/2−ε

Γ(1− ε) (y(1− y))−ε . (2.19)

We perform the integration to obtain the cross section after expanding in δ. If we were
to integrate over t, the integration boundaries would be δ dependent. We therefore make
the following change of variables:

t→ −s4
(
1 + δ − 4y

√
δ + 2

√
δ
)
. (2.20)

In terms of the new integration variable y the integration boundaries become [0, 1] and the
δ dependence is isolated to the integrand. This allows us to expand in δ at the level of the
integrand, and thus integrate each term of the expansion individually. In the supplementary
material to this paper we provide the results in such a way that the (divergent) virtual
corrections can be extracted.

We perform the construction described above for the ultraviolet renormalized form
factors as published in ref. [58]. The renormalization of the gluon wave function, top quark
mass and strong coupling in the LO expression induces 1/ε poles at NLO and 1/ε2 poles at
NNLO. The insertion of the one-loop counterterms in the virtual NLO expression (which
has an ε expansion starting at 1/ε2) induces 1/ε3 poles at NNLO.

3 Phase-space master integrals

3.1 Transformation to ε form

In this section, we discuss the computation of the 17 three-loop three-particle cut master
integrals depicted in figure 8, as well as the 57 three-loop four-particle cut master integrals
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depicted in figures 9 and 10. We follow the method of differential equations [59, 60] and
use LiteRed to take the derivative of each master integral w.r.t. x and reduce the resulting
integrals back to master integrals. Thus, we obtain two systems of differential equations:
one for the three-particle cut integrals and one for the four-particle cut integrals. These
systems have the form

∂x~L = M(x, ε) ~L . (3.1)

~L is the vector of master integrals, and the matrix M is block-triangular with entries
rational in both x and ε. In the following we take two approaches to solve eq. (3.1): in
section 3.2 we seek a canonical basis of master integrals [61] and in section 3.3 we compute
them in terms of an asymptotic series in δ.

3.2 Finding a canonical basis

A canonical basis ~C is a particularly useful basis of integrals in which the differential
equations take the form

∂x ~C = ε
∑
i

M̂i

x− xi
~C , (3.2)

where the xi are constants and the matrices M̂i do not depend on ε or x. A system of the
form of eq. (3.2) can be integrated order-by-order in ε in terms of Goncharov Polylogarithms
(GPLs) [62] over the letters xi.

To find a rational transformation from ~L to ~C we use the program Libra [63] and
adapt Lee’s algorithm [64] to the problem at hand. As the matrix M(x, ε) contains rational
functions with numerator and denominator degrees as high as 20 in our case, a direct
application of Lee’s algorithm would lead to unmanageable intermediate expression swell.
We thus deviate from the standard algorithm by first bringing all diagonal blocks to Fuchsian
form (that is, they have only simple poles in x), followed by bringing the off-diagonal blocks
to Fuchsian form. We then normalize the eigenvalues of all residues to be proportional to ε
or take the form aε± 1/2, where a is an integer.

Consequently, we arrive at an intermediate basis ~I, related to ~L by a rational trans-
formation, in which the differential equations are in Fuchsian form and do not contain
spurious poles:

∂x~I =
∑
i

M̃i(ε)
x− xi

~I . (3.3)

For the three-particle cut master integrals the poles xi are given by 0, 1/4 and 1, corre-
sponding to the kinematic limits s→∞, s→ 4m2

H and s→ m2
H , respectively. In the case

of the four-particle cut master integrals there are also poles at −1/4 and −1, corresponding
to the kinematic limits s→ −4m2

H and s→ −m2
H respectively.1

1Both of these poles only appear in the differential equations for master integrals such as I(4)
30 (see

figure 9), for which the momentum (q1 − q2)2 = −s flows through the massive lines.
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Rational transformations render the eigenvalues of all poles proportional to ε, apart
from ±1/4. Therefore to find a canonical basis, we need to rationalize the square roots√

1− 4x and
√

1 + 4x. For the three-particle cut master integrals only the first square root
plays a role. For this system, we perform the variable change

x = z

(z + 1)2 (3.4)

mapping the physical interval x ∈ [1/4, 0) to z ∈ [1, 0). In the case of the four-particle cut
master integrals we need to rationalize both square roots simultaneously, requiring the more
complicated variable change

x = k4 − 6k2 + 1
4(1 + k2)2 . (3.5)

This change maps x ∈ [1/4, 0) to k ∈ [0,
√

2− 1).
With all roots rationalized, we now proceed by normalizing the corresponding eigenvalues

to be proportional to integers, bringing the off-diagonal blocks into Fuchsian form once more
and factoring out ε to arrive at a canonical basis in z and k for the three- and four-particle
cut systems, respectively. These resulting system can be integrated in terms of GPLs and
their boundary conditions can be fixed in the limit x→ 1/4.

Once we have the leading-order term in the δ expansion for the master integrals (see
section 3.3), the exact expressions for the master integrals can be computed in two ways.
The first is to transform the leading-δ terms of all master integrals into the canonical basis.
The differential system can then be integrated order-by-order in ε and the integration
constants are fixed by comparing the resulting expressions to the boundary conditions in
the limit δ → 0.

The second option is to first compute the path-ordered exponential U of the canonical
differential equation matrix M

U = P exp
[
ε

∫
dx
∑
i

M̂i

(x− xi)

]
, (3.6)

in terms of which we can write the master integrals of the canonical basis as

~I(x) = U~I0 , (3.7)

where ~I0 does not depend on x. Libra can decompose ~I0 as

~I0 = K(ε) ~c , (3.8)

where K depends only on ε and ~c is the minimal number of necessary boundary conditions.
The entries of ~c are given by the leading-order terms in the δ expansion of a certain subset of
original master integrals, determined by Libra to be sufficient to fix all boundary conditions.

The main difference between these two approaches is the apparent number of necessary
boundary conditions. For example using the first approach, we need the integrals I(4)

1 , I(4)
2

and I
(4)
3 to determine I(4)

1 , . . . , I
(4)
10 , whereas Libra finds that I(4)

1 is sufficient. Thus, it
makes use of relations among the leading-δ terms of different integrals.
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In our calculation we have used both methods for the three-loop three-particle cut
master integrals. For the three-loop four-particle cut master integrals we have only used the
first method since our non-trivial letters make the construction of the matrix U difficult.

In the following section we describe how we compute the boundary conditions. We will
compute the leading-order term in the δ expansion for all master integrals; the integrals
which are not necessary to integrate the differential system serve as a cross check.

3.3 Computation of the boundary conditions

In the previous subsection we have presented the construction of the exact results for
the phase-space master integrals. The purpose of this subsection is to provide boundary
conditions needed to compute the exact expressions. In the next subsection we briefly
describe a formalism which allows us to compute the δ expansion of all master integrals
to a high enough order in δ to be sufficient for practical applications. In fact, in the
combination of the real-radiation contribution with the virtual corrections and the collinear
counterterm it is necessary to use the δ-expanded results in order check the cancellation of
the ε poles analytically.

We start with some definitions which are common to the three- and four-particle
phase-space integrals. For the phase-space measures of the Higgs bosons we write

Dpj ≡
dd−1pj
(2π)d−1

1
2Ej

=
pd−2
j dpj

(2π)d−1
1

2Ej
dΩ(j)

d−1 with j = 3, 4 , (3.9)

and the phase-space measures of massless particles are given by

Dpj ≡
1
2
pd−3
j dpj

(2π)d−1 dΩ(j)
d−1 with j = 5, 6 . (3.10)

When necessary, we use a parametrization for the momenta such that the scalar products
take the form

q1 · p5 = s

4κ5(1− cos θ5), q2 · p5 = s

4κ5(1 + cos θ5),

q1 · p6 = s

4κ6(1− cos θ6), q2 · p6 = s

4κ6(1 + cos θ6) ,

q1 · (p5 + p6) = s

4κ56(1− cos θ56), q2 · (p5 + p6) = s

4κ56(1 + cos θ56) , (3.11)

where qi and pj are momenta of the initial and final state, respectively.
In the following, we use the symbol “≈” to denote that the leading-order term in δ

expansion agrees on the left- and right-hand sides of the equation, but that the sub-leading
terms may differ.

For the (d− 1)-dimensional angular integration, we use the following property:

∫
dΩ(j)

d−1 = 2π d−3
2

Γ
(
d−3

2

) ∫ 1

−1

(
1−cos2 θj

) d−4
2 dcosθj

∫ 1

−1

(
1−cos2φj

) d−5
2 dcosφj = 2π d−1

2

Γ
(
d−1

2

) .
(3.12)
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3.3.1 Three-particle phase space

All 17 three-particle cut master integrals can be written as

I
(3)
i =

(
eγEµ2

4π

)3ε ∫
Dp3Dp4Dp5 (2π)d δ(d)(q1 + q2 − p3 − p4 − p5)Q(3)

i , (3.13)

where Q(3)
i are one-loop integrals, which can easily be read off from figure 8. For convenience

we provide explicit expressions in appendix E. Note that the Q(3)
i do not depend on p3

and p4, since the external momenta of the loop diagrams are q1, q2, p5 and the combination
p3 + p4. The latter can be eliminated by using momentum conservation. By performing the
integration over p4 and taking the leading order in δ, we obtain

I
(3)
i ≈

(
eγEµ2

4π

)3ε ∫
Dp3Dp5

4π
s
δ

(
δ − ~p 2

3
m2
H

− κ5

)
Q(3)
i (3.14)

which indicates

|~p3| ≤ mH

√
δ, κ5 ≤ δ . (3.15)

There are six one-loop integrals appearing in the 17 master integrals. Three of them
(L1, L2, L3) are massless one-loop two-point functions and are known for a general dimen-
sion d:

L1 =
∫ dd`
i(2π)d

1
−(`+ p5)2

1
−(`+ q1 + q2)2 ≈

1
(4π)2−ε

Γ(1− ε)2Γ(ε)
Γ(2− 2ε) s−εeiεπ ,

L2 =
∫ dd`
i(2π)d

1
−`2

1
−(`+ q1 + q2)2 = 1

(4π)2−ε
Γ(1− ε)2Γ(ε)

Γ(2− 2ε) s−εeiεπ ≈ L1 ,

L3 =
∫ dd`
i(2π)d

1
−(`+ p5)2

1
−(`+ q1)2 ≈

1
(4π)2−ε

Γ(1− ε)2Γ(ε)
Γ(2− 2ε)

2ε
(s(1− cos θ5)κ5)ε . (3.16)

Note that in the soft limit there are only five independent one-loop integrals since L2 ≈ L1.
The remaining three integrals (L4, L5, L6) are either triangle or box diagrams, and their
soft limit can be computed using expansion by regions [65–67]. In particular, we use
the implementation in the Mathematica package asy2.m [67]. Applying this method is
straightforward but the details of the computation are rather technical; we do not discuss
them here but simply refer to ref. [67]. Rather, in this paper, we discuss an alternative way
to obtain the same results by making use of the Mellin-Barnes representation, which serves
as a cross-check of the calculation based on expansion by regions. In the following, it is
assumed that the integration contours of the Mellin-Barnes integrals are chosen properly,
(see, e.g., ref. [68]) and we abbreviate the product of Γ-functions as

Γ [x1, . . . , xn] ≡
n∏
i=1

Γ (xi) . (3.17)
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We begin by expressing the integrals in the Mellin-Barnes representation:

L4 =
∫ dd`
i(2π)d

1
−(`+ p5)2

1
−(`+ q1)2

1
−(`+ q1 + q2)2 (3.18)

= −eiπε

(4π)2−ε

∫
dz1dz2

κz1
5 e

iπz1Γ[−z2, z2 + 1,−ε, z2 − z1, z1 + ε+ 1,−z2 − ε]
2z2sε+1(1− cos θ5)−z2Γ(1− 2ε) ,

L5 =
∫ dd`
i(2π)d

1
−`2

1
−(`+ p5)2

1
−(`+ q2)2

1
−(`+ q1 + q2)2

= eiπε

(4π)2−ε

∫
dz1dz2

κz1
5 e

iπz1Γ[z1 + 1,−z2, z2 + 1,−ε, z2 − z1, z1 + ε+ 2,−z2 − ε− 1]
2z2+1sε+2(1 + cos θ5)−z2Γ[z1 + 2,−2ε] ,

L6 =
∫ dd`
i(2π)d

1
−`2

1
−(`+ q1)2

1
−(`− p5 + q1)2

1
−(`− p5 + q1 + q2)2

= eiπε

(4π)2−ε

∫
dz1dz2

κz1
5 e

iπz1Γ[−z2,−ε,−ε, z2 − z1, z1 + ε+ 2,−z2 − ε− 1]
2z1+1sε+2(1 + cos θ5)−z2(1− cos θ5)−z1+z2Γ[−2ε,−z2 − ε]

× Γ(z2 − z1 − ε− 1)
Γ(−z1 + z2 − ε)

.

Note that the Mellin-Barnes representation of a given Feynman integral is not unique; here
we show the representations used in our calculation. We choose them in such a way that the
exponent of κ5 is z1. From eq. (3.15), we see that the leading-order term in δ is obtained
from the leading-order term in κ5. We solve z1 integrals above by closing the integration
contour in the right half plane and taking the residues of the poles of Γ-functions. For
example, in L5 only the poles of Γ(z2 − z1) contribute and their locations are z1 = z2 − n
where n = 0, 1, 2, . . .. Thus the leading order in κ5 corresponds to z1 = z2 pole. Keeping
this in mind, we first solve the z2 integral also by closing the integration contour in its
right half plane. This time, the poles from Γ(−z2) and Γ(−z2 − ε− 1) contribute. Among
these, the pole at z2 = −ε − 1 gives the smallest value of z2, so we consider the residue
at this pole. The resulting expression is now a one-dimensional integral over z1, and its
leading-order term in κ5 is obtained by taking the residue at z1(= z2) = −ε − 1. In this
way, we extract the leading-order term of L5 in κ5. The calculation of L4 and L6 proceeds
in a similar way. For L4, the two poles at z2 = 0 and z2 = −ε contribute to the leading
order and we have to take both of them into account. For L6, the leading-order term is
obtained from the pole at z1 = z2 − ε− 1 instead of z1 = z2. The results are given by

L4 ≈
1

(4π)2−ε

Γ(1 + ε)Γ(−ε)2
(
2ε(1− cos θ5)−εκ−ε5 − eiπε

)
sε+1Γ(1− 2ε)Γ(ε+ 1) ,

L5 ≈
−1

(4π)2−ε
2ε(cos θ5 + 1)−ε−1κ−ε−1

5 Γ(−ε)2Γ(ε)
sε+2Γ(−2ε) ,

L6 ≈
1

(4π)2−ε
22ε+1e−iπε

(
1− cos θ2

5
)−ε−1

κ
−2(ε+1)
5 Γ(−ε)3Γ(ε+ 1)2

sε+2Γ(−2ε) . (3.19)

We follow ref. [31] to perform the three-particle phase-space integration and obtain the
following results for the leading-δ contribution of the master integrals:

I
(3)
1 ≈ δ5/2

[
s

7680π5ε
− s(15 log δ − 56 + 20 log 2)

38400π5 +O(ε1)
]
,
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I
(3)
2 ≈ δ5/2

[
− s2

10240π5ε
+ s2(15 log δ − 56 + 20 log 2)

51200π5 +O(ε1)
]
,

I
(3)
3 ≈ δ5/2

[
s

7680π5ε
− s(15 log δ − 56 + 20 log 2)

38400π5 +O(ε1)
]
,

I
(3)
4 ≈ δ5/2

[
− s2

10240π5ε
+ s2(15 log δ − 56 + 20 log 2)

51200π5 +O(ε1)
]
,

I
(3)
5 ≈ δ5/2

[
s

7680π5ε
− s(30 log δ − 107 + 45 log 2)

57600π5 +O(ε1)
]
,

I
(3)
6 ≈ δ5/2

[
− s2

10240π5ε
+ s2(30 log δ − 107 + 45 log 2)

76800π5 +O(ε1)
]
,

I
(3)
7 ≈ δ5/2

[−15 log δ + 46− 30 log 2
115200π5ε

+O(ε0)
]
,

I
(3)
8 ≈

√
δ

[
− 1

2048π5s2ε4
+ 2 log δ − 4 + 3 log 2

1024π5s2ε3
+O(ε−2)

]
,

I
(3)
9 ≈

√
δ

[ 3
8192π5sε4

− 3(2 log δ − 4 + 3 log 2)
4096π5sε3

+O(ε−2)
]
,

I
(3)
10 ≈

√
δ

[ 1
4096π5sε4

+ −5 log δ + 10− 8 log 2
4096π5sε3

+O(ε−2)
]
,

I
(3)
11 ≈

√
δ

[
− 3

16384π5ε4
+ 3(5 log δ − 10 + 8 log 2)

16384π5ε3
+O(ε−2)

]
,

I
(3)
12 ≈ δ

5/2
[
− 1

5760π5ε
+ 15 log δ − 56 + 20 log 2

28800π5 +O(ε1)
]
,

I
(3)
13 ≈ δ

5/2
[
− 1

5760π5ε
+ 15 log δ − 56 + 20 log 2

28800π5 +O(ε1)
]
,

I
(3)
14 ≈ δ

5/2
[
− 1

5760π5ε
+ 30 log δ − 107 + 45 log 2

43200π5 +O(ε1)
]
,

I
(3)
15 ≈ δ

5/2
[15 log δ − 46 + 30 log 2

86400π5sε
+O(ε0)

]
,

I
(3)
16 ≈

√
δ

[ 1
1536π5s3ε4

− 2 log δ − 4 + 3 log 2
768π5s3ε3

+O(ε−2)
]
,

I
(3)
17 ≈

√
δ

[
− 1

3072π5s2ε4
+ 5 log δ − 10 + 8 log 2

3072π5s2ε3
+O(ε−2)

]
, (3.20)

where for brevity for some integrals we have truncated the ε expansion at 1/ε2 and do
not display the finite term, and we set µ2 = s. Note that the µ dependence can easily
be reconstructed by multiplying (µ2/s)3ε. The complete set of ε orders needed for our
calculation and also additional terms in the δ expansion can be found in the supplementary
material of this paper [69]. In order to fix the boundary conditions of the differential
equations discussed in section 3.2, only the results for I(3)

1 , . . . , I
(3)
6 and I(3)

8 , . . . , I
(3)
11 are

needed. Therefore in practice, only L1, L2, L3, L5 and L6 need to be computed. All other
master integrals in eq. (3.20) and also the higher-order terms of the δ expansion serve as
cross-check.
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3.3.2 Four-particle phase space

The 57 four-particle phase-space master integrals can be parametrized as

I
(4)
i =

(
eγEµ2

4π

)3ε ∫
Dp3Dp4Dp5Dp6(2π)dδ(d) (q1 + q2 − p3 − p4 − p5 − p6)Q(4)

i , (3.21)

where the soft limit all Q(4)
i are given in appendix E. We group the Higgs momenta (p3, p4)

into pHH ≡ p3 + p4 and the parton momenta (p5, p6) into pgg ≡ p5 + p6 by inserting

1 =
∫

d(m2
HH) dd−1pHH

1
2
√

(~pHH)2 +m2
HH

δ(d)(pHH − p3 − p4) , (3.22)

1 =
∫

d(m2
gg) dd−1pgg

1
2
√

(~pgg)2 +m2
gg

δ(d)(pgg − p5 − p6) , (3.23)

where m2
HH = p2

HH and m2
gg = p2

gg. The momentum assignments of Q(4)
i are chosen such

that they do not depend on p3, p4 or pHH in the soft limit, which is possible because of
the fact that p3 and p4 appear only in the combination pHH , which can be eliminated
using momentum conservation. The dependence of p5, p6 and pgg is chosen such that Q(4)

i

factorizes in these variables, i.e., when a propagator contains p5 + p6 we replace it with pgg
and in the remaining cases we keep p5 and p6.

With the help of this parametrisation, it is straightforward to perform the phase-space
integration over p3, p4, p5 and p6 using the well-known trick of boosting to the centre-of-mass
frames of pHH and pgg. The resulting integrals can be evaluated in an expansion in δ. The
leading-δ terms read

I
(4)
1 ≈ δ9/2

[
s2

120960π5 −
s2ε(315 log δ − 1126 + 504 log 2)

7620480π5 +O(ε2)
]
,

I
(4)
2 ≈ δ9/2

[
− s3

161280π5 + s3ε(315 log δ − 1126 + 504 log 2)
10160640π5 +O(ε2)

]
,

I
(4)
3 ≈ δ9/2

[
s3

483840π5 −
s3ε(315 log δ − 1126 + 504 log 2)

30481920π5 +O(ε2)
]
,

I
(4)
4 ≈ δ9/2

[
− s

90720π5 + sε(315 log δ − 1126 + 504 log 2)
5715360π5 +O(ε2)

]
,

I
(4)
5 ≈ δ9/2

[
− s2

362880π5 + s2ε(315 log δ − 1126 + 504 log 2)
22861440π5 +O(ε2)

]
,

I
(4)
6 ≈ δ7/2

[
− 1

26880π5 + ε(105 log δ − 394 + 168 log 2)
564480π5 +O(ε2)

]
,

I
(4)
7 ≈ δ7/2

[
s

35840π5 −
sε(105 log δ − 394 + 168 log 2)

752640π5 +O(ε2)
]
,

I
(4)
8 ≈ δ9/2

[
− s

120960π5 + sε(315 log δ − 1189 + 504 log 2)
7620480π5 +O(ε2)

]
,

I
(4)
9 ≈ δ7/2

[ 1
20160π5s

+ ε(−105 log δ + 394− 168 log 2)
423360π5s

+O(ε2)
]
,
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I
(4)
10 ≈ δ

9/2
[ 1

90720π5 + ε(−315 log δ + 1189− 504 log 2)
5715360π5 +O(ε2)

]
,

I
(4)
11 ≈

√
δ

[ 1
8192π5s2ε4

+ −5 log δ + 10− 8 log 2
8192π5s2ε3

+O(ε−2)
]
,

I
(4)
12 ≈

√
δ

[
− 3

32768π5sε4
+ 3(5 log δ − 10 + 8 log 2)

32768π5sε3
+O(ε−2)

]
,

I
(4)
13 ≈

√
δ

[
− 1

6144π5s3ε4
+ 5 log δ − 10 + 8 log 2

6144π5s3ε3
+O(ε−2)

]
,

I
(4)
14 ≈ δ

5/2
[ 1

7680π5 + ε(−15 log δ + 58− 24 log 2)
23040π5 +O(ε2)

]
,

I
(4)
15 ≈ δ

5/2
[
− s

10240π5 + sε(15 log δ − 58 + 24 log 2)
30720π5 +O(ε2)

]
,

I
(4)
16 ≈ δ

5/2
[
− 1

5760π5s
+ ε(15 log δ − 58 + 24 log 2)

17280π5s
+O(ε2)

]
,

I
(4)
17 ≈

√
δ

[ 1
8192π5s2ε4

+ −5 log δ + 10− 8 log 2
8192π5s2ε3

+O(ε−2)
]
,

I
(4)
18 ≈

√
δ

[
− 3

32768π5sε4
+ 3(5 log δ − 10 + 8 log 2)

32768π5sε3
+O(ε−2)

]
,

I
(4)
19 ≈

√
δ

[
− 1

6144π5s3ε4
+ 5 log δ − 10 + 8 log 2

6144π5s3ε3
+O(ε−2)

]
,

I
(4)
20 ≈ δ

5/2
[ 1

7680π5ε2
+ −15 log δ + 46− 24 log 2

23040π5ε
+O(ε0)

]
,

I
(4)
21 ≈ δ

5/2
[
− 1

5760π5sε2
+ 15 log δ − 46 + 24 log 2

17280π5sε
+O(ε0)

]
,

I
(4)
22 ≈

√
δ

[ 1
2048π5s2ε4

+ −5 log δ + 10− 8 log 2
2048π5s2ε3

+O(ε−2)
]
,

I
(4)
23 ≈

√
δ

[
− 3

8192π5sε4
+ 3(5 log δ − 10 + 8 log 2)

8192π5sε3
+O(ε−2)

]
,

I
(4)
24 ≈

√
δ

[
− 1

1536π5s3ε4
+ 5 log δ − 10 + 8 log 2

1536π5s3ε3
+O(ε−2)

]
,

I
(4)
25 ≈ δ

9/2
[ 1

120960π5 + ε(−315 log δ + 1126− 504 log 2)
7620480π5 +O(ε2)

]
,

I
(4)
26 ≈ δ

9/2
[
− s

161280π5 + sε(315 log δ − 1126 + 504 log 2)
10160640π5 +O(ε2)

]
,

I
(4)
27 ≈ δ

7/2
[ 1

26880π5ε
+ −105 log δ + 352− 168 log 2

564480π5 +O(ε1)
]
,

I
(4)
28 ≈ δ

9/2
[
− 1

90720π5s
+ ε(315 log δ − 1126 + 504 log 2)

5715360π5s
+O(ε2)

]
,

I
(4)
29 ≈ δ

7/2
[
− 1

20160π5sε
+ 105 log δ − 352 + 168 log 2

423360π5s
+O(ε1)

]
,

I
(4)
30 ≈ δ

5/2
[ 1

7680π5s2ε2
+ −15 log δ + 46− 24 log 2

23040π5s2ε
+O(ε0)

]
,

I
(4)
31 ≈ δ

5/2
[
− 1

10240π5sε2
+ 15 log δ − 46 + 24 log 2

30720π5sε
+O(ε0)

]
,
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I
(4)
32 ≈ δ

5/2
[
− 1

5760π5s3ε2
+ 15 log δ − 46 + 24 log 2

17280π5s3ε
+O(ε0)

]
,

I
(4)
33 ≈ δ

5/2
[ 1

7680π5s2ε2
+ −15 log δ + 46− 24 log 2

23040π5s2ε
+O(ε0)

]
,

I
(4)
34 ≈ δ

5/2
[
− 1

5760π5s3ε2
+ 15 log δ − 46 + 24 log 2

17280π5s3ε
+O(ε0)

]
,

I
(4)
35 ≈ δ

7/2
[ 1

26880π5ε
+ −105 log δ + 352− 168 log 2

564480π5 +O(ε1)
]
,

I
(4)
36 ≈ δ

9/2
[ 1

120960π5 + ε(−315 log δ + 1126− 504 log 2)
7620480π5 +O(ε2)

]
,

I
(4)
37 ≈ δ

9/2
[
− s

161280π5 + sε(315 log δ − 1126 + 504 log 2)
10160640π5 +O(ε2)

]
,

I
(4)
38 ≈ δ

7/2
[
− 1

20160π5sε
+ 105 log δ − 352 + 168 log 2

423360π5s
+O(ε1)

]
,

I
(4)
39 ≈ δ

9/2
[
− 1

90720π5s
+ ε(315 log δ − 1126 + 504 log 2)

5715360π5s
+O(ε2)

]
,

I
(4)
40 ≈ δ

5/2
[ 1

7680π5s2ε2
+ −15 log δ + 46− 24 log 2

23040π5s2ε
+O(ε0)

]
,

I
(4)
41 ≈ δ

5/2
[
− 1

10240π5sε2
+ 15 log δ − 46 + 24 log 2

30720π5sε
+O(ε0)

]
,

I
(4)
42 ≈ δ

5/2
[
− 1

5760π5s3ε2
+ 15 log δ − 46 + 24 log 2

17280π5s3ε
+O(ε0)

]
,

I
(4)
43 ≈ δ

5/2
[ 1

7680π5s2ε2
+ −15 log δ + 46− 24 log 2

23040π5s2ε
+O(ε0)

]
,

I
(4)
44 ≈ δ

5/2
[
− 1

5760π5s3ε2
+ 15 log δ − 46 + 24 log 2

17280π5s3ε
+O(ε0)

]
,

I
(4)
45 ≈ δ

7/2
[ 1

26880π5ε
+ −105 log δ + 352− 168 log 2

564480π5 +O(ε1)
]
,

I
(4)
46 ≈ δ

5/2
[
− 1

15360π5sε2
+ 15 log δ − 46 + 24 log 2

46080π5sε
+O(ε0)

]
,

I
(4)
47 ≈ δ

5/2
[ 1

20480π5ε2
+ −15 log δ + 46− 24 log 2

61440π5ε
+O(ε0)

]
,

I
(4)
48 ≈ δ

7/2
[
− 1

20160π5sε
+ 105 log δ − 352 + 168 log 2

423360π5s
+O(ε1)

]
,

I
(4)
49 ≈ δ

5/2
[ 1

11520π5s2ε2
+ −15 log δ + 46− 24 log 2

34560π5s2ε
+O(ε0)

]
,

I
(4)
50 ≈ δ

3/2
[ 1

6144π5s2ε3
+ −15 log δ + 40− 24 log 2

18432π5s2ε2
+O(ε−1)

]
,

I
(4)
51 ≈ δ

3/2
[
− 1

4608π5s3ε3
+ 15 log δ + 8(3 log 2− 5)

13824π5s3ε2
+O(ε−1)

]
,

I
(4)
52 ≈

√
δ

[ 1
8192π5s2ε4

+ −5 log δ + 10− 8 log 2
8192π5s2ε3

+O(ε−2)
]
,

I
(4)
53 ≈

√
δ

[
− 3

32768π5sε4
+ 3(5 log δ − 10 + 8 log 2)

32768π5sε3
+O(ε−2)

]
,
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I
(4)
54 ≈

√
δ

[
− 1

6144π5s3ε4
+ 5 log δ − 10 + 8 log 2

6144π5s3ε3
+O(ε−2)

]
,

I
(4)
55 ≈

√
δ

[
− 3

8192π5sε4
− 3(−5 log δ + 10− 8 log 2)

8192π5sε3
+O(ε−2)

]
,

I
(4)
56 ≈

√
δ

[ 9
32768π5ε4

+ 9(−5 log δ + 10− 8 log 2)
32768π5ε3

+O(ε−2)
]
,

I
(4)
57 ≈

√
δ

[ 1
2048π5s2ε4

+ −5 log δ + 10− 8 log 2
2048π5s2ε3

+O(ε−2)
]
. (3.24)

As in eq. (3.20) the ε expansion of some integrals has been truncated before the finite term
can be displayed, and we set µ2 = s. We provide higher order ε and additional terms in the
δ expansion in the ancillary files [69]. Of the 57 boundary conditions given in eq. (3.24) we
only require the information from the following integrals, and a dedicated calculation is only
necessary for one integral of each set: {I(4)

1 , I
(4)
2 , I

(4)
3 }, {I

(4)
11 , I

(4)
12 }, {I

(4)
17 , I

(4)
18 }, {I

(4)
22 , I

(4)
23 },

{I(4)
52 , I

(4)
53 }, {I

(4)
55 , I

(4)
56 }. The remaining integrals of the sets only differ by a trivial factor

which is obtained from a numerator factor in the soft limit. The remaining 44 integrals of
eq. (3.24) serve as consistency and cross check.

3.4 Deep δ expansion of the master integrals

In this subsection, we briefly mention a method to obtain for the master integrals higher
order terms in the δ expansion with the help of differential equations. This method is used
also in refs. [15, 31, 70, 71]. After changing from x to δ the differential equations in eq. (3.1)
can be written as

∂δ~L = M(δ, ε) ~L . (3.25)

We are interested in ~L as a series expansion in δ and ε which has the form

~L =
∑

n1,n2,n3

~cn1,n2,n3δ
n1(log δ)n2εn3 , (3.26)

where the coefficients ~cn1,n2,n3 are constants containing ζ2, ζ3, ζ4 and log 2. The matrix
M(δ, ε) in eq. (3.25) consists of rational functions of δ and ε and it can be expanded in
both variables and truncated at a certain order. By substituting the ansatz in eq. (3.26)
into eq. (3.25) we obtain a set of recurrence relations for the coefficients ~cn1,n2,n3 where the
initial conditions are obtained by the leading terms calculated in the previous subsection.
Thus, by solving the recurrence relations, it is possible to obtain the deep δ expansion of
the master integrals efficiently.

3.5 Comparison of exact and δ-expanded phase-space master integrals

Following the approach described in the previous subsections we were able to obtain analytic
results for all three- and four-particle cut master integrals, which are exact in s and m2

H .
However, the expressions are quite large (in some cases of the order of several MB) and
contain GPLs which have to be evaluated at some fixed value of their argument. We did
not make any effort to obtain minimal expressions, since for our application it is sufficient
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Figure 12. Comparison of exact and expanded phase-space master integrals for four typical
examples, where the results are normalized to the exact expressions. The panel in the top row
correspond to three-particle cut master integrals and the corresponding pictures can be found in
figure 8. The pictures for the four-particle cut master integrals in the bottom row can found in
figure 9. The considered ε order is indicated on the y-axis labels.

to consider an expansion in the limit δ → 0. This can be obtained in a straightforward way
by either expanding the exact results or by using the boundary conditions of section 3.3 in
combination with the differential equations.

In figure 12, for four typical examples of ε coefficients of master integrals, we compare
the δ-expanded and exact results. We normalize the curves to the exact expressions and plot
the expansions as functions of δ. In each panel three curves are shown, which correspond to
approximations including 10, 30 and 50 terms of the δ expansion. All curves tend to 1 for
δ → 0, so the plots focus on the region 0.8 < δ < 1 where the expansions start to diverge
from the exact results.

The ε0 term of the three-particle cut integral I(11) (the first panel of figure 12) is an
example for which as few as 10 δ-expansion terms provide an excellent approximation. Even
for δ = 1 the deviation from the exact result is at the level of 0.01%. Including additional
expansion terms leads to further improvement. For the other three examples shown, we
observe that the δ10 curves show deviations from the exact result at the percent level, even
for δ values as small as 0.8. The approximations including expansion terms to order δ30

and δ50 show percent-level agreement with the exact results for δ values up to around 0.9
and 0.95, respectively.

In our final expression for the cross sections, we use the expansions up to δ30; from
a practical point of view this is sufficient, since our large-mt approximation is only valid
below the top threshold at s = 4m2

t . This corresponds to δ = 1−m2
H/m

2
t ≈ 0.48, where the

deviation of the expansions up to δ30 from the exact results is below 0.0001% for all master
integrals. On the other hand, the expansions up to δ10 show deviations of several percent.
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4 Results

We are now in a position to combine the virtual, real-radiation and collinear counterterm
corrections according to eq. (2.3). It is interesting to check their contributions to the
cancellation of the poles. In the gg channel the highest-order poles, i.e. the 1/ε4 and 1/ε3
terms, receive contributions only from the virtual and real-radiation corrections. Starting
from 1/ε2 the collinear counterterm also contributes. In fact, there are two sources which
can be identified from eq. (2.12): either the term proportional to 1/ε2 is convoluted with
the LO cross section, or there are two convolutions of the one-loop splitting functions in
the O(αs) term, again with the LO cross section. The convolutions involving the two-loop
splitting function and the convolutions of the one-loop splitting function with NLO partonic
cross sections develop only 1/ε poles.

For the partonic channels with quarks or anti-quarks in the initial state there are no
virtual corrections.2 As a consequence the renormalized real-radiation contribution develops
at most 1/ε2 poles which cancel against those of the collinear counterterm contributions.

In the following we present analytic results for the renormalized partonic NNLO
cross sections for all five channels. We restrict the expressions to the two leading terms
in the δ expansion and we present only results up to order 1/m2

t (or, ρ1). To obtain
compact expressions we set µ2 = m2

H . The top quark mass is renormalized in the on-shell
scheme. In the supplementary material to this paper [69] we provide expansions for general
renormalization scale µ up to δ30 and 1/m6

t (ρ3) (and for the quark-induced channels up to
1/m8

t (ρ4)) for both on-shell and MS top quark masses. For the gg channel our result is as
follows:

σ
(2),n2

h
gg = a4

sG
2
Fm

2
H

π

{
δ3/2

(
19

6912 + nl
1296

)
+ ρ

[√
δ

(
133

552960 + 7
103680nl

)
+ δ3/2

(
613614937
398131200 −

695
1492992 log ρ− 121217

51840 log 2 + 1964
1215 log2(2)

− 17129
25920 log3(2) + 7

45 log4(2)− 7753π2

103680 + 18515π2

186624 log 2− 7π2

135 log2(2)

− 931π4

829440 −
171070393
477757440ζ3 + 1211

2880ζ3 log 2 + log δ
{
− 363953

466560 + 29009
25920 log 2

− 12341
17280 log2(2) + 7

30 log3(2) + 3479π2

103680 −
203π2

5760 log 2 + 539
3840ζ3

}
+ log2(δ)

{
29009
155520 −

1421
5760 log 2 + 91

720 log2(2)− 203π2

34560

}
+ log3(δ)

{
− 1421

51840

+ 7
240 log 2

}
+ 7

2880 log4(δ) + nl

{
− 1067831

111974400 −
533

22394880 log ρ

+ 50359
3732480 log 2− 161

19440 log2(2) + 91
38880 log3(2) + 119π2

311040 −
49π2

155520 log 2

+ 371
311040ζ3 + log δ

[
1057

233280 −
49

8640 log 2 + 7
2880 log2(2)− 7π2

51840

]
+ log2(δ)

[
− 49

51840 + 7
8640 log 2

]
+ 7

77760 log3(δ)
})]

+O(δ5/2) +O(ρ2)
}
. (4.1)

2With the exception of the finite virtual correction in the qq̄ channel discussed in appendix C.
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Note that the subset of the n3
h real-radiation terms with a closed top quark loop which has

no coupling to Higgs bosons only contribute to higher-order δ terms not shown in eq. (4.1).
The n4

h terms (see eq. (D.1) in appendix D) are not included in this expression.

The result for the gq channel is given by

σ
(2),n2

h
gq = a4

sG
2
Fm

2
H

π

{
ρδ5/2

(
− 259448903

7873200000 + 3096503
65610000 log 2− 170443

5832000 log2(2)

+ 7777
874800 log3(2) + 553π2

432000 −
1099π2

874800 log 2 + 4151
777600ζ3 + log δ

[
8090963

524880000

− 346577
17496000 log 2 + 623

64800 log2(2)− 973π2

2332800

]
+ log2(δ)

[
− 227423

69984000

+ 3871
1166400 log 2

]
+ 2569

6998400 log3(δ) + nl

[
42287

262440000 −
973

4374000 log 2

+ 49
583200 log2(2)− 7π2

6998400 + log δ
{
− 119

2187000 + 7
194400 log 2

}
+ 7

2332800 log2(δ)
])

+ ρ2
[
δ3/2

(
− 1446053

755827200 + 2829953
1007769600 log 2

− 207221
111974400 log2(2) + 54439

83980800 log3(2) + 18179π2

223948800 −
7693π2

83980800 log 2

+ 29057
74649600ζ3 + log δ

{
369229

403107840 −
16807

13436928 log 2 + 4361
6220800 log2(2)

− 6811π2

223948800

}
+ log2(δ)

{
− 275233

1343692800 + 27097
111974400 log 2

}
+ 17983

671846400 log3(δ)

+ nl

{
10241

1007769600 −
637

41990400 log 2 + 343
55987200 log2(2)− 49π2

671846400

+ log δ
[
− 637

167961600 + 49
18662400 log 2

]
+ 49

223948800 log2(δ)
})

+ δ5/2
(
− 189454926667

5290790400000 −
10087

279936000 log ρ+ 8996488777
176359680000 log 2

− 1218467
39191040 log2(2) + 2780833

293932800 log3(2) + 5301953π2

3919104000 −
392971π2

293932800 log 2

+ 1484279
261273600ζ3 + log δ

{
5876601277

352719360000 −
2211991

104976000 log 2 + 222767
21772800 log2(2)

− 347917π2

783820800

}
+ log2(δ)

{
− 40606843

11757312000 + 197737
55987200 log 2

}
+ 918601

2351462400 log3(δ) + nl

{
1138687

6298560000 −
1435327

5878656000 log 2 + 2503
27993600 log2(2)

− 2503π2

2351462400 + log δ
[
− 702131

11757312000 + 2503
65318400 log 2

]
+ 2503

783820800 log2(δ)
})]

+O(δ7/2) +O(ρ3)
}
. (4.2)

Here we display the ρδ5/2, ρ2δ3/2 and ρ2δ5/2 terms. Note that the leading ρ0 term starts at
δ7/2 and so does not appear here. The channels qq̄, qq and qq′ are further suppressed, as
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can be seen from their analytic expressions:

σ
(2),n2

h
qq′ = a4

sG
2
Fm

2
H

π

{
ρδ7/2

(
565457

1607445000 −
599

1275750 log 2 + log2(2)
4050 − π2

72900

+ log δ
[
− 599

3827250 + log 2
6075

]
+ log2(δ)

36450

)
+ ρ2

[
δ5/2

(
493577

15746400000

− 3773
87480000 log 2 + 49

1944000 log2(2)− 49π2

34992000 + log δ
{
− 3773

262440000

+ 49
2916000 log 2

}
+ 49

17496000 log2(δ)
)

+ δ7/2
(

344611787
840157920000 −

181147
333396000 log 2

+ 1783
6350400 log2(2)− 1783π2

114307200 + log δ
[
− 181147

1000188000 + 1783
9525600 log 2

]

+ 1783
57153600 log2(δ)

)]
+O(δ9/2) +O(ρ3)

}
, (4.3)

∆(2),n2
h

qq = a4
sG

2
Fm

2
H

π

{
− 7

104976000ρ
2δ7/2 +O(δ9/2) +O(ρ3)

}
, (4.4)

∆(2),n2
h

qq = a4
sG

2
Fm

2
H

π

{
31

1020600ρ
2δ7/2 +O(δ9/2) +O(ρ3)

}
, (4.5)

where σxy = ∆xy + σqq′ .
In the ancillary files [69] we provide the renormalized cross sections with tags for the

virtual, real-radiation and collinear counterterm contributions, which allows one to extract
the individual contributions if desired. This means that these expressions contain poles in
ε, which cancel upon removing the tags.

In figure 13 we plot the partonic cross section for all five channels as a function of√
s, with the renormalization scale µ2 = m2

H . Furthermore we use mt = 173.21GeV,
mH = 125GeV and α(5)

s (mH) = 0.1127. We combine all corrections, including the n3
h terms

from ref. [31], the n4
h terms from appendix D and the qq̄ → HH virtual corrections from

appendix C. In the lower part of each plot we show the ratio to the highest ρ term, which
is ρ3 for the gg and ρ4 for all other channels.

The overall picture is similar to the LO, NLO and NNLO n3
h contributions [13, 31]; a

reasonable convergence pattern is observed for
√
s . 320GeV, which rapidly deteriorates for

values of
√
s above the top quark threshold. For the qg, qq and qq′ channels one observes

a better convergence behaviour than for the gg channel. Similar to NLO, the qq̄ channel
shows the worst behaviour. Note that there is a strong hierarchy in the numerical size of
the various contributions, ranging from O(10−2) fb for the gg channel to O(10−5) fb for the
qq and qq′ channels. It is interesting to note that below threshold the mass corrections in
all cases significantly increase the cross section, as can be seen in the ratio plots.

By construction all curves have to approach zero in a continuous way for
√
s→ 2mH .

This is clearly visible from the plots for all channels with quarks in the initial state, however
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Figure 13. The five NNLO partonic contributions as a function of
√
s, with the renormalization

scale µ2 = m2
H . The colours and line styles denote the inclusion of higher orders in the ρ = m2

H/m
2
t

expansion. Note that the cross sections have been multiplied by two powers of as = α
(5)
s /π. The

vertical black line indicates the top quark threshold at
√
s = 2mt. In the lower part of the plots the

ratio to the highest ρ term is shown.
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Figure 14. gg contribution to the total partonic cross section at LO, NLO and NNLO as a function
of
√
s.

for the gg channel the plot gives the impression that this is not the case for the ρ2 and ρ3

curves. Inspecting the analytic result reveals that there are terms containing ρ2√δ log4(δ)
and ρ3√δ log4(δ) which are responsible for a rapid rise in the cross section close to the
threshold.

Figure 14 shows the LO, NLO and NNLO contribution from the gg channel to the cross
section as a function of

√
s. At LO we use the exact expressions and at NLO and NNLO

expansions up to ρ4 and ρ3, respectively. The NLO corrections increase the cross section by
about a factor two and the NNLO contributions add approximantly another 20%.

Although the radius of convergence of the large-mt expansion is quite limited here,
it contains useful information for the construction of approximated NNLO results. For
example, in ref. [18] NLO virtual corrections to double Higgs boson production are considered.
The analytic structure of the form factors close to the top quark threshold is combined
with results obtained in the large-mt limit. Stable approximations are only obtained after
including power-suppressed 1/mt terms. This approach has been applied in refs. [72, 73]
to the Higgs-gluon form factor and also there it was found that it is important to include
higher-order 1/mt terms to obtain a stable result in the high-energy region.

5 Conclusions

The main achievement of this paper is the computation of the NNLO real-radiation
contribution to the total cross section of the process gg → HH in an expansion for large
top quark mass. This improves the description beyond the infinite top quark mass limit
and provides important information for NNLO approximation procedures.

We provide a detailed description of the various steps of our calculation and in particular
discuss the computation of the three- and four-particle phase-space master integrals. We
provide various intermediate results which might be useful for other calculations. In
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the ancillary files of this paper we provide separate results for the virtual corrections,
real-radiation contribution and the collinear counterterm.

The inclusion of the power-suppressed terms significantly increases the cross section
below the top quark threshold. For example, at NNLO, for a partonic center-of-mass energy√
s ≈ 300GeV the cross section increases almost by a factor of two after including the 1/m4

t

and 1/m6
t terms.
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A Auxiliary formulae for the collinear counterterm

In this appendix we provide some details on the analytic computation of the convolution
integrals in an expansion in δ.

All integrals contributing to eq. (2.10) have the form∫ 1

1−δ
dz Q(z)σX(x/z) , (A.1)

where Q(z) is either a single splitting function or the convolution of two splitting functions
and σX is one of the following LO or NLO cross sections,

σX ∈
{
σ(0)
gg , σ(1)

gg , σ(1)
gq , σ

(1)
qq̄

}
. (A.2)

These are renormalized finite quantities which we need up to O(ε2) at LO and O(ε) at NLO.
We introduce the variables

x = m2
H

s
, δ = 1− 4x, z = 1− δ

1− δν , (A.3)

and obtain ∫ 1

1−δ
dz =

∫ 1

0

δ(1− δ)
(1− δν)2 dν , (A.4)

and
x

z
= 1− δν

4 . (A.5)
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This allows us to rewrite eq. (A.1) as∫ 1

1−δ
dz Q(z)σX(x/z) =

∫ 1

0
dν Q

( 1− δ
1− δν

)
δ(1− δ)
(1− δν)2σX

(1− δν
4

)
, (A.6)

where Q(z) can be rational functions of z, a plus distribution or a delta function. It may
also contain logarithms or dilogarithms. In the latter case it is convenient to rewrite the
arguments using the identities

Li2(−z) = 1
2Li2(z2)− Li2(z) ,

Li2(z) = −Li2(1− z)− log(z) log(1− z) + π2

6 ,

Li2(z2) = −Li2(1− z2)− 2 log(z) log(1− z)− 2 log(z) log(1 + z) + π2

6 . (A.7)

In this way, we obtain Q(z) in terms of Li2(1− z) and Li2(1− z2) and the expansion around
δ = 0, which corresponds to z = 1, is straightforward.

A.1 σ(0)
gg

Let us first consider the contributions involving the LO cross section which has a simple
series expansion in δ

σ(0)
gg (x)

∣∣∣
x= 1−δ

4

=
∞∑
n=0

δ
1
2 +n−ε

Nmax
ε∑
u=0

εuc(n,u),(0)
gg , (A.8)

where for our application we have Nmax
ε = 2. Note that the coefficients c(n,u),(0)

gg are available
from an explicit calculation of σ(0)

gg (x). In the following we discuss the various cases for
Q(z) which appear.

For the case of Q(z) = zr, where in our case only r ≥ −1 is needed, we have

∫ 1

1−δ
dz σ(0)

gg (x/z) zr =
∞∑
n=0

δ3/2+n(1− δ)r+1
n∑
j=0

Nmax
ε∑
u=0

(n− j + r + 1)!
(r + 1)!(n− j)!

δ−ε

3
2 + n− ε

c(j,u),(0)
gg εu ,

(A.9)

and for Q(z) = 1/(1 + z),∫ 1

1−δ
dz σ

(0)
gg (x/z)
1+z

=

∞∑
n=0

δ
3
2 +n(1−δ)

n∑
k=0

k∑
j=0

n−k∑
s=0

Nmax
ε∑
u=0

1
2n−k+1

(n−k)!
s!(n−k−s)!

δ−ε

3
2 +k+s−ε

c(j,u),(0)
gg εu . (A.10)

These formulae are obtained with the help of eqs. (A.3) and (A.4) which are used to replace z
by ν. Afterwards we insert eq. (A.8), expand in δ and integrate each term individually. This
approach is also used for the results which we present below. Due to the more complicated
functions Q(z) some of the formulae are more involved. Although the formulae we present
are exact, we apply an upper limit to the δ expansion when we use them in our calculations.
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Now we consider Q(z) =
[

(log(1−z))r
1−z

]
+
. Using the definition of the plus distribution we

obtain ∫ 1

1−δ
dz
[(log(1− z))r

1− z

]
+
σ(0)
gg (x/z) =∫ 1

1−δ
dz (log(1− z))r

1− z

(
σ(0)
gg

(
x

z

)
− σ(0)

gg (x)
)

+ (log δ)r+1

r + 1 σ(0)
gg (x) . (A.11)

In order to compute the finite integral on the r.h.s., we consider Q(z) = (1− z)−1+η which
leads to∫ 1

1−δ
dz σ(0)

gg (x/z) (1− z)−1+η =

∞∑
l=0

∞∑
m=0

Nmax
ε∑
u=0

Γ(1 + η + l)
Γ(1 + η)l! δ

1
2 +m+l+η−ε(1− δ)εuc(m,u),(0)

gg

Γ(η)Γ(3
2 +m+ l − ε)

Γ(3
2 +m+ l + η − ε)

.

(A.12)

Note that this formula is exact in η. Using σ(0)
gg (x) instead of σ(0)

gg (x/z) we have∫ 1

1−δ
dz σ(0)

gg (x) (1− z)−1+η =

∞∑
l=0

∞∑
m=0

Nmax
ε∑
u=0

Γ(1 + η + l)
Γ(1 + η)l! δ

1
2 +m+l+η−ε(1− δ)εuc(m,u),(0)

gg

Γ(η)Γ(1 + l)
Γ(1 + l + η) . (A.13)

After combining both expressions we obtain

∫ 1

1−δ
dz (1− z)−1+η

[
σ(0)
gg

(
x

z

)
− σ(0)

gg (x)
]

=
∞∑
n=0

δ
1
2 +n−ε(1− δ)

n∑
j=0

Nmax
ε∑
u=0

εuc(j,u),(0)
ggΨj,n + η

(log δ + ψ(n− j + 1))Ψj,n +
Ψ(1)
j,n −Ψ(2)

j,n

2

+O(η2)

 , (A.14)

where

Ψj,n = ψ (n− j + 1)− ψ
(3

2 + n− ε
)
,

Ψ(1)
j,n = ψ′ (n− j + 1)− ψ′

(3
2 + n− ε

)
,

Ψ(2)
j,n = [ψ (n− j + 1)]2 −

[
ψ

(3
2 + n− ε

)]2
. (A.15)

Here ψ(x) is the polygamma function and ψ′(x) ≡ ψ(1) its derivative. The results for
eq. (A.11) are obtained by expanding the l.h.s. of eq. (A.14) in η according to

(1− z)−1+η = 1
1− z

[
1 + η log(1− z) + η2

2 (log(1− z))2 + · · ·
]
. (A.16)
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Note that the r.h.s of eq. (A.14) is already expanded in η. The comparison of the η0 and η1

terms provides results for eq. (A.11) for r = 0 and r = 1, which we need for our calculations.
Next we treat cases such as

Q(z) = log(z) log(1− z)
1− z , Q(z) = z2 log(1− z), . . . , (A.17)

i.e., Q(z) contains factors of z and 1 − z with positive or negative exponents, and/or
logarithms with z or 1− z as argument. Here it is convenient first to consider

Q(z) = zr1(1− z)r2 , (A.18)

with non-integer exponents r1 and r2. The resulting formula can then be expanded around
r1, r2 = −1, 0, . . . in order to obtain the result for the desired Q(z) of eq. (A.17). The
generic result for Q(z) from eq. (A.18) is given by

∫ 1

1−δ
dz σ(0)

gg (x/z) zr1(1− z)r2 =
∞∑
n=0

δ
3
2 +n−ε+r2(1− δ)1+r1

n∑
j=0

Nmax
ε∑
u=0

Γ(r1 + r2 + 2 + n− j)Γ(r2 + 1)Γ(3
2 + n− ε)

Γ(r1 + r2 + 2)Γ(5
2 + n− ε+ r2)(n− j)!

εuc(j,u),(0)
gg . (A.19)

To obtain the result for Q(z) = z2 log(1 − z) we set r1 = 2 and r2 = η. Afterwards we
expand eq. (A.19) in η and take the coefficient of the linear term, on both sides. In a similar
way one can treat Q(z) = log(z) by setting r1 = η and r2 = 0.

In case Q(z) (from eq. (A.17)) contains a log(z) term a non-integer value for r1 must
be chosen.

Cases such as

Q(z) = log(z) log(1 + z)
1 + z

, z2 log(1 + z), . . . (A.20)

can be treated in a similar way. Here a convenient auxiliary function is given by

Q(z) = zr1(1 + z)r2 , (A.21)

where the desired result is again obtained by a suitable choice of r1 and r2 supplemented
by proper expansions. The generic integral is given by

∫ 1

1−δ
dz σ(0)

gg (x/z) zr1(1 + z)r2 =
∞∑
n=0

n∑
k=0

k∑
j=0

n−k∑
s=0

Nmax
ε∑
u=0

2r2−n+kδ
3
2 +n−ε(1− δ)1+r1

Γ(−r2 + n− k)Γ(r1 + r2 + 2 + k − j)
Γ(−r2)(n− k − s)!s!Γ(r1 + r2 + 2)(k − j)!ε

uc(j,u),(0)
gg

1
3
2 + k + s− ε

. (A.22)

Note that the expression on the r.h.s. is significantly more complex than eq. (A.19). This
is due to the fact that the factor (1 + z)r2 introduces a new type of denominator whereas
(1− z) ∼ δ and thus no new structure is introduced.
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Having dealt with logarithms, we now turn to functions Q(z) which involve dilogarithms.
For Q(z) = zrLi2(1− z) we have

∫ 1

1−δ
dz zrLi2(1− z) σ(0)

gg (x/z) =
∞∑
n=1

δ
3
2 +n−ε(1− δ)1+r

n−1∑
k=0

k∑
j=0

Nmax
ε∑
u=0

1
(n− k)2

(r + n− j + 1)!
(r + n− k + 1)!(k − j)!

Γ(n− k + 1)Γ(3
2 + k − ε)

Γ(5
2 + n− ε)

εuc(j,u),(0)
gg ,

(A.23)

and for Q(z) = Li2(1− z)/(1− z) the corresponding integral has the form

∫ 1

1−δ
dz Li2(1− z)

1− z σ(0)
gg (x/z) =

∞∑
n=1

δ
1
2 +n−ε(1− δ)

n−1∑
k=0

k∑
j=0

Nmax
ε∑
u=0

(n− j)!Γ(3
2 + k − ε)

(n− k)3(k − j)!Γ(3
2 + n− ε)

εuc(j,u),(0)
gg . (A.24)

For Q(z) = Li2(1− z)/(1 + z) we have

∫ 1

1−δ
dz Li2(1− z)

1 + z
σ(0)
gg (x/z) =

∞∑
n=1

δ
3
2 +n−ε(1− δ)

n−1∑
h=0

h∑
k=0

k∑
j=0

h−k∑
w=0

Nmax
ε∑
u=0

εuc
(j,u),(0)
gg

2h−k+1

(h− k)!(n− h+ k − j)!
(h− k − w)!w!(k − j)!(n− h)2

Γ(3
2 + k + w − ε)

Γ(5
2 + n− h+ k + w − ε)

, (A.25)

and for Q(z) = zrLi2(1− z2) the integral is given by

∫ 1

1−δ
dz zrLi2(1− z2) σ(0)

gg (x/z) =
∞∑
n=1

δ
3
2 +n−ε(1− δ)1+r

n−1∑
k=0

k∑
j=0

[n−k2 ]∑
w=0

w∑
h=0

Nmax
ε∑
u=0

εuc(j,u),(0)
gg

(−1)w((n− k − w)!)2(r + 2n− k − j − 2w + 1)!2n−k−2w

(n− k − w)2(n− k − 2w)!(w − h)!h!(r + 2n− 2k − 2w + 1)!(k − j)!

×
Γ(3

2 + k + h− ε)
Γ(5

2 + n+ h− w − ε)
. (A.26)

Finally, for Q(z) = Li2(1− z2)/(1 + z) we have

∫ 1

1−δ
dz 1

1 + z
Li2(1− z2) σ(0)

gg (x/z) =
∞∑
n=1

δ
3
2 +n−ε(1− δ)

n−1∑
k=0

k∑
j=0

[n−k−1
2 ]∑

w=0

w∑
h=0

Nmax
ε∑
u=0

εuc(j,u),(0)
gg

(−1)w((n− k − w − 1)!)2(2n− k − j − 2w)!2n−k−2w−1

(n− k − w)(n− k − 2w − 1)!(w − h)!h!(2n− 2k − 2w)!(k − j)!

×
Γ(3

2 + k + h− ε)
Γ(5

2 + n+ h− w − ε)
. (A.27)
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A.2 σ(1)
gg , σ

(1)
gq , σ

(1)
qq̄

In this subsection we consider the NLO partonic cross sections σ(1)
gg , σ

(1)
gq and σ(1)

qq̄ which
have the following expansion in δ

σX(x)
∣∣∣
x= 1−δ

4

=
∞∑
n=0

δ
1
2 +n

Nmax
ε∑
u=0

u+2∑
v=0

εu(log δ)vc(n,u,v)
X , (A.28)

with known coefficients c(n,u,v)
X . For our application Nmax

ε = 1 is sufficient. Note the explicit
presence of log δ terms which cannot be factorized as at LO in eq. (A.8). With the help of
eq. (A.5) we also introduce

σX(x/z)
∣∣∣
x= 1−δ

4

=
∞∑
n=0

(δν)
1
2 +n

Nmax
ε∑
u=0

u+2∑
v=0

εu(log ν)v c̃(n,u,v)
X , (A.29)

where the coefficients c̃(n,u,v)
X are functions of log δ, which for the relevant values of u and v

are given in terms of c(n,u,v)
X by:

c̃
(n,0,0)
X = c

(n,0,0)
X + c

(n,0,1)
X log δ + c

(n,0,2)
X (log δ)2 ,

c̃
(n,0,1)
X = c

(n,0,1)
X + 2c(n,0,2)

X log δ ,

c̃
(n,0,2)
X = c

(n,0,2)
X ,

c̃
(n,1,0)
X = c

(n,1,0)
X + c

(n,1,1)
X log δ + c

(n,1,2)
X (log δ)2 + c

(n,1,3)
X (log δ)3 ,

c̃
(n,1,1)
X = c

(n,1,1)
X + 2c(n,1,2)

X log δ + 3c(n,1,3)
X (log δ)2 ,

c̃
(n,1,2)
X = c

(n,1,2)
X + 3c(n,1,3)

X log δ ,

c̃
(n,1,3)
X = c

(n,1,3)
X . (A.30)

Note that the coefficients in eq. (A.30) can be used to write eq. (A.28) in the form

σX(x)
∣∣∣
x= 1−δ

4

=
∞∑
n=0

δ
1
2 +n

Nmax
ε∑
u=0

εuc̃
(n,u,0)
X . (A.31)

We are now in the position to insert the relevant expressions for Q(z) in eq. (A.6) and
perform an expansion in δ. The NLO cross sections are only convoluted with one-loop
splitting functions which leaves us with Q(z) = zr and Q(z) =

[
1

1−z

]
+
. For Q(z) = zr

we have∫ 1

1−δ
dz σX(x/z) zr =

(1− δ)r+1
∞∑
n=0

δ
3
2 +n

n∑
j=0

(r + n− j + 1)!
(r + 1)!(n− j)!

Nmax
ε∑
u=0

u+2∑
v=0

εuc̃
(j,u,v)
X

(−1)vv!
(3/2 + n)v+1 . (A.32)
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For Q(z) =
[

1
1−z

]
+
we use eq. (A.11) for r = 0 and obtain for the integral on the r.h.s.∫ 1

1−δ
dz 1

1− z

(
σX

(
x

z

)
− σX(x)

)
= (1− δ)

×
∞∑
n=0

n∑
j=0

δ
1
2 +n

Nmax
ε∑
u=0

εu
[
ψ(n− j + 1)c̃(j,u,0)

X −
u+2∑
v=0

ψ(v)
(3

2 + n

)
c̃

(j,u,v)
X

]
. (A.33)

For Nmax
ε = 1, terms with up to three derivatives of the polygamma function appear on the

r.h.s. of eq. (A.33).

B Cross-check from gg → H

In this appendix we describe how the leading terms in the 1/mt expansion (i.e. the m0
t terms)

of the Higgs pair cross section can be cross-checked using known results from single-Higgs
boson production. The approach described below can be used to cross-check the divergent
building blocks entering the individual channels.

At leading order in 1/mt the Higgs-pair cross section is obtained by interpreting the
Higgs boson mass in the single-Higgs cross section as the invariant mass of the Higgs
boson pair, mHH , and subsequently integrating over mHH (see also ref. [34]). Our master
formula reads

σ
[x]
HH =

∫ √s
2mH

dmHH
dσ

[x]
HH

dmHH
=
∫ √s

2mH
dmHHf

ε
H→HH

(
CHH
CH

− 6λv2

m2
HH −m2

H

)2

σ
[x]
H

∣∣∣
mH→mHH

,

(B.1)

where the superscript “[x]” of σ[x]
HH and σ

[x]
H represent the (divergent) individual pieces.

For example, σ[rr]
HH denotes the real-real and σ[coll]

HH the collinear counterterm contribution.
In eq. (B.1) the function f εH→HH takes into account the d-dimensional two-particle phase
space and is given by

f εH→HH = eεγE
Γ(1− ε)
Γ(2− 2ε)

(m2
HH − 4m2

H)1/2−ε

16π2v2

(
µ2

m2
H

)ε
. (B.2)

The ratio of the matching coefficients CHH and CH , including higher order terms in ε,
reads [38]

CHH
CH

= 1 + 2ε+ α
(5)
s (µ)
π

[
3ε
2 +

(
3
2 log µ2

m2
t

− 11
3

)
ε2
]

+
(
α

(5)
s (µ)
π

)2{
19
8 −

11nh
12 + 2nl

3

+ ε

[
−95

16 + 91nh
144 −

13nl
8 + log µ2

m2
t

(71
8 −

11nh
6 + 13nl

12

)]}
, (B.3)

where mt ≡ mt(µ) is the top quark mass renormalized in the MS scheme.
Our aim is to compute the integral in eq. (B.1) in an expansion in δ. To do so it is

convenient to use the following change of variable,

m2
HH = 4m2

H(1− δν)
1− δ . (B.4)
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(a) (b)

Figure 15. Sample Feynman diagrams for the process qq̄ → HH.

This allows us to rewrite f εH→HH as

f εH→HH = eεγE
Γ(1− ε)
Γ(2− 2ε)

(4δ)1/2−ε (1− δ)−1/2+ε (1− ν)1/2−ε

16π2v2

(
µ2

m2
H

)ε
(B.5)

and the integral in eq. (B.1) is then written as

∫ √s
2mH

dmHHf
ε
H→HH

(
CHH
CH

− 6λv2

m2
HH −m2

H

)2

σ
[x]
H

∣∣∣
mH→mHH

=

∫ 1

0
dν 2mHδ√

1− δ
√

1− δν
f εH→HH

(
CHH
CH

− 6λv2(δ − 1)
m2
H(−3− δ + 4δν)

)2

σ
[x]
H

∣∣∣
mH→mHH

. (B.6)

In this form, we can expand the integrand in terms of δ before integration, considerably
simplifying the computation. Note that the single Higgs boson cross sections σ[x]

H , which
are expressed in terms of x = m2

H/s, now depend on

x→ m2
HH

s
= 1− δν . (B.7)

We have used this method to check the m0
t terms of the LO, NLO and NNLO cross

sections, including terms of order ε2, ε1 and ε0, respectively. The results for the partonic
cross sections of single Higgs production, expanded to the proper orders in ε, are taken
from ref. [57].

C Virtual corrections to qq̄ → HH

In this appendix we discuss the virtual corrections to the process qq̄ → HH. The coupling
of the initial-state quark anti-quark pair to the Higgs bosons in the final state has to be
mediated by top quarks. Thus at the lowest order it proceeds via two-loop diagrams such
as those shown in figure 15. As a consequence such virtual corrections contribute for the
first time at NNLO.

Diagrams involving a triple-Higgs boson coupling (cf. figure 15(a)) vanish for massless
quarks q since the (effective) coupling of the qq̄ pair to one Higgs boson requires a helicity flip.
However, diagrams such as the one in figure 15(b) can provide non-vanishing contributions.
We have shown by an explicit calculation that such diagrams vanish in the mt →∞ limit.
However, non-vanishing contributions exist starting from 1/m2

t . In the following we describe
their calculation and present the results.
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In principle there are two methods to compute the total cross section. We can either
compute the two-loop amplitude qq̄ → HH and integrate over the phase space, or we
can consider five-loop forward-scattering qq̄ → qq̄ diagrams and take the imaginary part.
We have used both approaches and have obtained identical results. Note that the real
corrections to the qq̄ channel discussed above are finite. Thus we expect the two-loop virtual
corrections qq̄ → HH also to be finite.

We first describe the computation of the amplitudeM(qq̄ → HH). This is conveniently
done using the projector

Pqq̄→HH = δij

Nc

/q1/q3/q2
2ut− 2m4

H

, (C.1)

where Nc = 3 and q1 and q2 are the incoming momenta of the quark and anti-quark,
respectively, and q3 is the incoming momentum of one of the Higgs bosons. t = (q1 + q3)2

and u = (q2 + q3)2 are Mandelstam variables and i and j are colour indices of the quark
and anti-quark, respectively. Asymptotic expansion in the large-mt limit, which we apply
with the help of exp [42, 43], leads to two-loop vacuum integrals and products of one-loop
vacuum and one-loop massless form factor integrals. We perform the calculation with a
general QCD gauge parameter and check that it drops out in the sum of all contributing
diagrams. Next we square the amplitude obtain the differential cross section

dσqq̄→HH
dy = f2PS(ε)

2 ·N2
c · 22·2sNc(2ut− 2m4

H)
∣∣∣M?

qq̄→HHMqq̄→HH
∣∣∣ , (C.2)

where the denominators in the first factor are due to the two identical Higgs bosons in the
final state, the colour and the spin averages, and the flux factor. The function f2PS(ε) can
be found in eq. (2.19) and y is defined in eq. (2.20). The integrand is expanded in δ, and
we then perform the integration over y for each expansion term separately. Our result for
the total cross section up to terms of order 1/m6

t (ρ3) is given by

σqq̄→HH = a4
sG

2
Fm

2
H

π

{
δ5/2ρ2

(
22201

2952450000 −
1639 log 2
73811250 + 121 log2 2

7381125 −
1639 log ρ
147622500

+ 121 log 2 log ρ
7381125 + 121 log2 ρ

29524500 + 121π2

29524500

)
+ δ5/2ρ3

(
− 588401

124002900000

+ 5891 log 2
6200145000 + 22 log2 2

2460375 + 5891 log ρ
12400290000 + 22 log 2 log ρ

2460375 + 11 log2 ρ

4920750

+ 11π2

4920750

)
+O

(
δ7/2

)
+O

(
ρ4
)}

. (C.3)

The ancillary files of this paper [69] contain the σqq̄→HH expansion to ρ4 and δ30.
An alternative approach to obtain the cross section σqq̄→HH is based on the computation

of the imaginary part of the forward scattering amplitude, which has been applied to the
real corrections described in the main part of this paper. From the computational point of
view this is much more demanding since we have to consider five-loop amplitudes which
factorize into one- and two-loop vacuum contributions and one-loop form factor integrals.
We have cross-checked eq. (C.3) up to order 1/m6

t (ρ3) using this approach.
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Figure 16. The ratio between the qq̄ → HH virtual corrections and the full qq̄ cross section, as
plotted in figure 13(c).

In figure 16 we show the size of σqq̄→HH compared to σqq̄. The virtual corrections
form a significant part of the total cross section, particularly near the production threshold.
Therefore they should be included for a proper NNLO description of the qq̄ channel.

D Virtual NNLO corrections proportional to n4
h

In this appendix we provide analytic results for the NNLO corrections which involve (in the
forward-scattering kinematics) four closed top quark loops. Such n4

h terms are only present
in the virtual corrections, see figure 11(h). The leading terms in the ρ and δ expansion are
given by

σ
(2),n4

h
gg = a4

sG
2
Fm

2
H

π

{ √
δ

20736 + δ3/2

20736 +ρ

(
−
√
δ

155520−
13δ3/2

311040

)
+O(δ5/2)+O(ρ2)

}
, (D.1)

and all terms up to ρ4 and δ30 can be found in the ancillary files of this paper [69].

E Explicit expressions for Q(3)
i and Q(4)

i

In tables 2 and 3 we provide explicit expressions for Q(3)
i and Q(4)

i introduced in section 3.3,
where the denominators as given by

D1 = −(−p5 + q1 + q2)2 ≈ −s ,

D2 = −(p5 − q1)2 ≈ κ5(1− cos θ5)s
2 ,

D3 = m2
H − (p5 + p6 − q1 − q2)2 ≈ −3s

4 ,

D4 = −(p4 + p5 + p6 − q1)2 ≈ s

4 ,
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i Q
(3)
i i Q

(3)
i i Q

(3)
i i Q

(3)
i i Q

(3)
i

1 L1 2 (D1 +m2
H)L1 3 L2 4 (D1 +m2

H)L2 5 L3

6 (D1 +m2
H)L3 7 L4 8 1

D2
L5 9 (D1+m2

H)
D2

L5 10 L6

11 (D1 +m2
H)L6 12 1

D1+m2
H
L1 13 1

D1+m2
H
L2 14 1

D1+m2
H
L3 15 1

D1+m2
H
L4

16 1
D2(D1+m2

H)L5 17 1
D1+m2

H
L6

Table 2. Q(3)
i expressed in terms of the denominator factors from eq. (E.1) and the integrals Li

from eqs. (3.16) and (3.19).

i Q
(4)
i i Q

(4)
i i Q

(4)
i i Q

(4)
i i Q

(4)
i

1 1 2 D3 3 D4 4 1
D3

5 D4
D3

6 1
D1D7

7 D3
D1D7

8 D8
D1D7

9 1
D1D3D7

10 D8
D1D3D7

11 1
D1D5D7D8

12 D3
D1D5D7D8

13 1
D1D3D5D7D8

14 1
D10D7

15 D3
D10D7

16 1
D10D3D7

17 1
D10D2D7D8

18 D3
D10D2D7D8

19 1
D10D2D3D7D8

20 1
D2D9

21 1
D2D3D9

22 1
D2D6D8D9

23 D3
D2D6D8D9

24 1
D2D3D6D8D9

25 1
D1D11

26 D3
D1D11

27 1
D11D8

28 1
D1D11D3

29 1
D11D3D8

30 1
D1D11D8D9

31 D3
D1D11D8D9

32 1
D1D11D3D8D9

33 1
D1D11D6D8

34 1
D1D11D3D6D8

35 1
D1D6

36 1
D1D11

37 D3
D1D11

38 1
D1D3D6

39 1
D1D11D3

40 1
D1D11D2D6

41 D3
D1D11D2D6

42 1
D1D11D2D3D6

43 1
D1D11D6D8

44 1
D1D11D3D6D8

45 1
D11D8

46 1
D10D11D8

47 D3
D10D11D8

48 1
D11D3D8

49 1
D10D11D3D8

50 1
D10D11D6D8

51 1
D10D11D3D6D8

52 1
D10D6D7D8

53 D3
D10D6D7D8

54 1
D10D3D6D7D8

55 1
D5D6D8

56 D3
D5D6D8

57 1
D3D5D6D8

Table 3. Q(4)
i expressed in terms of the denominator factors from eq. (E.1).

D5 = −(p5 + p6)2 ≈ −m2
gg ,

D6 = −(p6 − q1)2 ≈ κ6(1− cos θ6)s
2 ,

D7 = −(p5 + p6 − q1)2 ≈ κ56(1− cos θ56)s
2 ,

D8 = −(p5 − q2)2 ≈ κ5(1 + cos θ5)s
2 ,

D9 = −(p6 − q2)2 ≈ κ6(1 + cos θ6)s
2 ,

D10 = −(p5 + p6 − q2)2 ≈ κ56(1 + cos θ56)s
2 ,

D11 = −(−p6 + q1 + q2)2 ≈ −s . (E.1)

After the symbol “≈” the leading-order term in δ is given.
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