KIT | KIT-Bibliothek | Impressum | Datenschutz

Sparse domination implies vector-valued sparse domination

Lorist, Emiel; Nieraeth, Zoe

Abstract:

We prove that scalar-valued sparse domination of a multilinear operator implies vector-valued sparse domination for tuples of quasi-Banach function spaces, for which we introduce a multilinear analogue of the UMD condition. This condition is characterized by the boundedness of the multisublinear Hardy-Littlewood maximal operator and goes beyond examples in which a UMD condition is assumed on each individual space and includes e.g. iterated Lebesgue, Lorentz, and Orlicz spaces. Our method allows us to obtain sharp vector-valued weighted bounds directly from scalar-valued sparse domination, without the use of a Rubio de Francia type extrapolation result. We apply our result to obtain new vector-valued bounds for multilinear Calderón-Zygmund operators as well as recover the old ones with a new sharp weighted bound. Moreover, in the Banach function space setting we improve upon recent vector-valued bounds for the bilinear Hilbert transform.


Verlagsausgabe §
DOI: 10.5445/IR/1000142401
Veröffentlicht am 27.01.2022
Originalveröffentlichung
DOI: 10.1007/s00209-021-02943-z
Scopus
Zitationen: 5
Web of Science
Zitationen: 3
Dimensions
Zitationen: 4
Cover der Publikation
Zugehörige Institution(en) am KIT Fakultät für Mathematik (MATH)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0025-5874, 1432-1823
KITopen-ID: 1000142401
Erschienen in Mathematische Zeitschrift
Verlag Springer
Band 301
Heft 1
Seiten 1–35
Vorab online veröffentlicht am 12.01.2022
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page