KIT | KIT-Bibliothek | Impressum | Datenschutz

Non-convex nested Benders decomposition

Füllner, Christian ORCID iD icon; Rebennack, Steffen

Abstract:

We propose a new decomposition method to solve multistage non-convex mixed-integer (stochastic) nonlinear programming problems (MINLPs). We call this algorithm non-convex nested Benders decomposition (NC-NBD). NC-NBD is based on solving dynamically improved mixed-integer linear outer approximations of the MINLP, obtained by piecewise linear relaxations of nonlinear functions. Those MILPs are solved to global optimality using an enhancement of nested Benders decomposition, in which regularization, dynamically refined binary approximations of the state variables and Lagrangian cut techniques are combined to generate Lipschitz continuous non-convex approximations of the value functions. Those approximations are then used to decide whether the approximating MILP has to be dynamically refined and in order to compute feasible solutions for the original MINLP. We prove that NC-NBD converges to an 𝜀-optimal solution in a finite number of steps. We provide promising computational results for some unit commitment problems of moderate size.


Verlagsausgabe §
DOI: 10.5445/IR/1000142408
Veröffentlicht am 27.01.2022
Originalveröffentlichung
DOI: 10.1007/s10107-021-01740-0
Scopus
Zitationen: 9
Web of Science
Zitationen: 9
Dimensions
Zitationen: 10
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Operations Research (IOR)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0025-5610, 1436-4646
KITopen-ID: 1000142408
Erschienen in Mathematical Programming
Verlag Springer
Band 196
Seiten 987–1024
Vorab online veröffentlicht am 07.01.2022
Nachgewiesen in Dimensions
Scopus
Web of Science
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page