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Abstract: The CMS Inner Tracker, made of silicon pixel modules, will be entirely replaced prior
to the start of the High Luminosity LHC period. One of the crucial components of the new Inner
Tracker system is the readout chip, being developed by the RD53 Collaboration, and in particular
its analogue front-end, which receives the signal from the sensor and digitizes it. Three different
analogue front-ends (Synchronous, Linear, and Differential) were designed and implemented in
the RD53A demonstrator chip. A dedicated evaluation program was carried out to select the most
suitable design to build a radiation tolerant pixel detector able to sustain high particle rates with high
efficiency and a small fraction of spurious pixel hits. The test results showed that all three analogue
front-ends presented strong points, but also limitations. The Differential front-end demonstrated
very low noise, but the threshold tuning became problematic after irradiation. Moreover, a saturation
in the preamplifier feedback loop affected the return of the signal to baseline and thus increased the
dead time. The Synchronous front-end showed very good timing performance, but also higher noise.
For the Linear front-end all of the parameters were within specification, although this design had the
largest time walk. This limitation was addressed and mitigated in an improved design. The analysis
of the advantages and disadvantages of the three front-ends in the context of the CMS Inner Tracker
operation requirements led to the selection of the improved design Linear front-end for integration
in the final CMS readout chip.
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1 CMS pixel detector upgrade for the High Luminosity LHC

The High Luminosity upgrade [1] of the CERN Large Hadron Collider (LHC) [2] will boost its
potential for physics discoveries, but also impose extreme operating conditions for the experiments.
Along with the accelerator, the Compact Muon Solenoid (CMS) [3] detector will be substantially
upgraded during Long Shutdown 3, starting in 2025 [4]. This upgrade is referred to as the CMS
Phase-2 Upgrade [5]. The silicon tracking system, located at the heart of CMS, detects trajectories
of charged particles. It will be entirely replaced during the Long Shutdown 3 because of the
accumulated radiation damage and to take advantage of the increased luminosity. The goal of the
upgrade is to maintain or improve the tracking and vertex reconstruction performance of the detector
in the harsh environment of the High Luminosity LHC (HL-LHC). The CMS Phase-2 tracker will
consist of the Outer Tracker, made of silicon modules with strip and macro-pixel sensors, and the
Inner Tracker (IT), based on silicon pixel modules [6].

The high granularity of the IT offers excellent spatial resolution, which is important for a
precise three-dimensional reconstruction of particle trajectories, as well as the identification of
primary interaction vertices and secondary decay vertices. One quarter of the latest layout of the
Phase-2 IT in the 𝑟-𝑧1 view is shown in figure 1. The IT will consist of a barrel component with four

1CMS adopts a right-handed coordinate system with the origin centred at the nominal collision point inside the
experiment. The 𝑥 axis points towards the centre of the LHC, the 𝑦 axis points vertically upwards and the 𝑧 axis points
along the beam direction. The azimuthal angle 𝜙 is measured from the 𝑥 axis in the 𝑥-𝑦 plane, the radial coordinate
in this plane is denoted by 𝑟 and the polar angle 𝜃 is measured from the 𝑧 axis. The pseudorapidity 𝜂 is defined as
𝜂 = − ln tan(𝜃/2) [6].
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Figure 1. Layout of one quarter of the Phase-2 Inner Tracker in the 𝑟-𝑧 view. Green lines correspond to pixel
modules with two readout chips and orange lines represent modules with four chips. The modules shown
in brown correspond to the innermost ring of the last TEPX disc (𝑧 = 2650 mm), which will be used by the
Beam Radiation Instrumentation and Luminosity (BRIL) project [7] for dedicated luminosity and background
measurements. The grey line represents the beam pipe envelope.

cylindrical layers, referred to as the Tracker Barrel Pixel detector (TBPX). Eight smaller double-discs
forming the Tracker Forward Pixel detector (TFPX) and four larger double-discs forming the Tracker
Endcap Pixel detector (TEPX) will be placed in the forward direction on each side. The forward
acceptance will be extended up to a pseudorapidity of |𝜂 | = 4 [6], as indicated by the red line
in figure 1.

The IT detector will have an active area of 4.9 m2 and it will be composed of 3892 pixel
modules. Two pixel sizes are currently being considered for the Phase-2 IT: 100 × 25 µm2 pixels and
50 × 50 µm2 pixels. With a pixel size of 2500 µm2 there would be about 2 billion readout channels.
The detector design strives for a minimal mass of the detector to avoid degradation of the tracking
performance due to the interactions of particles with the detector material. Therefore, lightweight
mechanical structures made of carbon fiber, two-phase CO2 cooling [6] and a low voltage powering
scheme based on serial powering [8] will be used. The data will be transmitted through low-mass
electrical links and optical fibers [6] to further reduce the detector mass.

The main building block of the IT system is a hybrid pixel module, shown in figure 2. It is
composed of a silicon sensor bump-bonded to two or four readout chips. Pixel modules with two
readout chips are indicated in green in figure 1 and modules with four chips are indicated in orange.
The readout chips of the module are wire-bonded to a flexible printed circuit board with passive
components and connectors, called the high density interconnect, that distributes power (low voltage
to power the pixel chips and high voltage to bias the sensor), clock and control signals and collects
data from the chips. Signals produced in the sensor are transmitted to the front-end electronics,
where they are processed and the data are stored during the planned 12.8 µs trigger latency interval.
The hit information is sent to the back-end data acquisition system of the experiment only after receipt
of a Level-1 trigger [9] signal. In the innermost layer of the IT, the hit rate will reach 3.5 GHz cm−2,
while the CMS Level-1 accept rate will increase from 100 to 750 kHz [9].

– 2 –
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Figure 2. A 3D exploded view of the Phase-2 Inner Tracker pixel module with four readout chips [10]. From
top to bottom the following components can be seen: the high density interconnect, the silicon pixel sensor,
the RD53 readout chips, and the rails to mount the module on a support structure and to ensure the electrical
isolation of the module.

2 RD53A analogue front-ends

A high-performance radiation tolerant pixel readout chip is essential for good tracking performance
of the IT operating during the HL-LHC era. Such a readout chip is being designed in TSMC [11]
65 nm CMOS technology by the RD53 Collaboration [12], a joint effort between the ATLAS and
CMS experiments. A large-scale demonstrator chip called RD53A [13] containing design variations
was produced. Its purpose is to demonstrate the suitability of the chosen technology for low threshold,
low noise, and low power operation at high hit rates, to verify sufficient radiation tolerance [14], and
to select the most suitable design for the final readout chip. It is a mixed signal chip, having both
analogue and digital circuits. It features custom-designed intellectual property blocks, such as clock
data recovery and phase locked loop blocks [15] for the clock recovery from the command stream
running at 160 Mb/s; a high speed output transmitter with a current mode logic cable driver [16]
sending data at 1.28 Gb/s on up to four output lanes; and a shunt low-dropout regulator [17] for serial
powering of the pixel modules. The chip size is 20.0 × 11.8 mm2, which is about half the size of the
final chip, as it shares the chip reticle with CMS Outer Tracker chips. The pixel matrix is composed
of 400 × 192 square pixels with 50 µm pitch. All the common analogue and digital circuitry needed
to bias, configure, monitor, and read out the chip is placed at the bottom chip periphery [13].

The analogue-to-digital conversion is performed by the analogue front-end (AFE), whose basic
structure (shown in figure 3) includes a charge sensitive amplifier (CSA), usually referred to as
preamplifier (PA), a feedback circuit taking care of the signal return to baseline and leakage current
compensation, a threshold discriminator, a threshold trimming circuit to address pixel-to-pixel varia-
tion of the threshold voltage, and a time-over-threshold (TOT) counting of the input signal amplitude.
In the RD53A chip the TOT40 digitization with 4-bit resolution is done with respect to rising edges of
the 40 MHz LHC clock.2 Therefore, one TOT40 unit corresponds to 25 ns [13]. The chip also features

2In the final pixel chip, the counting will be performed on both the rising and the falling edge of the clock, resulting in
a finer TOT80 counting at 80 MHz with one TOT80 unit equal to 12.5 ns [18].
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Figure 3. Signal processing steps in different stages of a generic analogue front-end, from signal collection to
digitization.

Figure 4. RD53A layout of four analogue islands,
i.e. sixteen pixels, surrounded by the fully synthe-
sized digital “sea” [13].

Figure 5. Photograph of the RD53A chip, wire-bonded
to a test card, indicating the placement of the three
analogue front-ends.

a circuit for the generation of internal calibration charge injection signals. The circuit, connected
to the input of the PA, enables the injection of a well-defined and programmable charge to test the
front-end functionalities and calibrate the chip response. Every pixel in the RD53A chip contains
the same circuit based on two switches that generate voltage steps fed to an injection capacitor [13].

The RD53A AFEs are grouped by four, i.e. 2 × 2 pixels, into analogue “islands”, which are
embedded in a synthesized digital “sea”, as shown in figure 4. Three different AFE designs have been
proposed within the RD53 project to explore different options for the ATLAS and CMS experiments
leaving open the possibility that the experiments might make different choices. The chip is divided
horizontally into three sections, each one having one AFE design, as indicated in figure 5. The
synchronous (SYNC) AFE is implemented between columns 0 and 127, the linear (LIN) AFE
between columns 128 and 263, and the differential (DIFF) AFE between columns 264 and 399. It
was not possible to have an equal area for all three designs because the 400-pixels wide matrix is
built of 8 × 8 pixel cores [13]. The three AFEs share the digital logic and the chip periphery in the
RD53A chip [13]. All three AFEs are based on a CSA with a feedback loop ensuring the return to
baseline of the PA output after each hit. The gain of the PA can be chosen globally thanks to different
feedback capacitors (CF) present in each AFE. The specific features of each AFE are discussed in
the following paragraphs.
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Synchronous front-end. The schematic of the Synchronous front-end is shown in figure 6. It
features a single-stage CSA with a Krummenacher feedback (IKrum, VREF_Krum) [19], which ensures
both the sensor leakage current compensation and the constant current discharge of the feedback
capacitor. The Krummenacher current (IKrum) drives the speed of the PA output return to baseline.
The PA is AC-coupled (CAC) to a synchronous discriminator composed of a differential amplifier,
providing a further small gain, and a positive feedback latch, which performs the signal comparison
with a threshold (Vth) and generates the discriminator output. The latter can also be switched to a
local oscillator with a selectable frequency higher than the standard LHC clock, in order to perform
a fast TOT counting. The distinctive feature of this AFE is a so-called “auto-zero” functionality.
In traditional designs, the transistor mismatch causing pixel-to-pixel variations of the threshold
is compensated with a trimming digital-to-analogue converter (DAC). In the SYNC AFE instead,
internal capacitors (Caz) are used to compensate voltage offsets automatically. A periodic acquisition
of a baseline (VBL) is required, which can be done during LHC abort gaps [13, 20].

Linear front-end. The Linear front-end implements a linear pulse amplification in front of the
discriminator. The schematic of this AFE is shown in figure 7. As for the SYNC AFE, the PA of the
LIN AFE is based on a CSA featuring a Krummenacher feedback (IKrum, VREF_Krum). The signal
from the CSA is fed to a low power threshold discriminator based on current comparison, which
compares the signal with the threshold (Vth). It is composed of a transconductance stage followed
by a transimpedance amplifier (TIA) providing a low impedance path for fast switching. A 4-bit
binary weighted trimming DAC with adjustable range (IDAC) allows for a reduction in the threshold
dispersion across the pixel matrix [13, 21].

Differential front-end. The PA of the Differential front-end, shown in figure 8, has a continuous
reset (Iff), unlike the other two designs, which use the Krummenacher feedback with constant current
reset. This continuous feedback is able to prevent the input from saturation for a leakage current
of up to 2 nA [18]. For higher currents, a dedicated leakage current compensation (LCC) circuit
can be enabled. The LCC is disconnected from the input when disabled, which improves the AFE
stability and noise performance. The DC-coupled precomparator provides additional gain in front
of the comparator and acts as a differential threshold circuit, i.e. the global threshold is adjustable
through two distributed threshold voltages (Vth1 and Vth2) instead of one. The precomparator stage
is followed by a classic time-continuous comparator. The threshold is trimmed in each pixel using a
local 5-bit trimming DAC (TDAC) [13].

The basic functionalities of the RD53A chip and each of the three AFEs were previously verified
and reported [22–26]. The objective of this work was to evaluate the three AFE designs against the
CMS requirements, in terms of spurious hit rate, dead time, and radiation tolerance and to compare
their performance. A dedicated evaluation program was established and the most relevant detector
performance parameters were studied. The key measurements that enabled CMS to identify the
most suitable option for integration into the CMS pixel detector are presented in this paper. All
presented test results were obtained with the BDAQ53 test system [27], using the calibration injection
circuit, with RD53A chips bump-bonded to sensors with rectangular pixels, i.e. 100 × 25 µm2, if not

– 5 –
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otherwise stated, and operated at cold temperature (T ≈ −10 °C), which is the lowest temperature
that could be achieved with the cooling systems available for the lab setups.

3 CMS requirements for the analogue front-end

The first step towards the choice of the AFE for the CMS final chip was the establishment of the
evaluation criteria. The most relevant detector parameters were used to derive the following CMS
requirements:

Optimal threshold. The new CMS readout chip will feature 50 × 50 µm2 pixels, while the pixel
size is 100 × 150 µm2 in the present CMS pixel detector [28]. The readout chip can be bump-bonded
either to sensors with square pixels of the same size or to rectangular pixels of 100 × 25 µm2, thanks
to electrode routing in the sensor [6]. Silicon sensors with a thickness of 150 µm will be used.
This is about half the thickness of the current 285 µm thick sensors [28]. The main advantage of
thin sensors is better radiation tolerance, but the collected signal charge is smaller. The charge
distribution obtained with 120 GeV protons from a test beam collected in a 130 µm thick sensor with
100 × 150 µm2 pixels is shown in figure 9. The most probable value (MPV) is about 7900 e− before
irradiation. While this number is about 10% lower than the expectation, it is well compatible with it
within the measurement uncertainties (e.g. due to the charge calibration). The MPV decreases by
about 2000 e− after irradiation to 1.2 × 1015 neq/cm2 [6]. Based on the expected signal, a detection
threshold of 1000 e− is required by CMS for the innermost layer of the IT to ensure sufficient
detection efficiency, especially with irradiated sensors. A threshold of 1200 e− is sufficient for the
outer layers of the detector, where the fluence is lower.

The number of pixels hit increases with the incidence angle of the particle, giving clusters
with large hit multiplicity in particular in the high-𝜂 part of the barrel. In this specific part of the
detector, the charge collection path in a pixel is similar to the pixel dimension in the 𝑧 direction,
hence & 50 µm for square pixels and & 100 µm for rectangular pixels, to be compared with a charge
collection path of 150 µm at normal incidence. For this reason, in the high-𝜂 region of the barrel
square pixels are disfavoured, being more prone to remain below threshold, notably after irradiation.
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Figure 9. Test beam measurement of the collected charge before (left) and after (right) irradiation to
1.2 × 1015 neq/cm2, using single pixel clusters, in a 130 µm thick pixel sensor with 100 × 150 µm2 pixels. The
red line represents a fit to a Landau distribution convoluted with a Gaussian [6].
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Radiation tolerance. The IT is the CMS subdetector closest to the LHC interaction point and
therefore it is exposed to the highest radiation levels. Two scenarios are envisaged for the HL-LHC:
in the “nominal” scenario, the accelerator would deliver a maximum of 140 proton-proton (pp)
collisions per bunch crossing, to reach a total integrated luminosity of 3000 fb−1 by the end of
the physics program. In the “ultimate” scenario, the number of pp collisions per bunch crossing
would be pushed up to 200, reaching an integrated luminosity of 4000 fb−1. A fluence reaching
2.6 × 1016 neq/cm2 and a total ionizing dose (TID) up to 1.4 Grad are expected in the innermost
layer in the nominal scenario, while the figures would scale up to 3.4 × 1016 neq/cm2 and 1.9 Grad in
the ultimate scenario. The RD53A chip was designed to withstand a TID of at least 500 Mrad and an
average leakage current up to 10 nA/pixel [14]. However, with this specification the radiation levels
expected in CMS, reaching 1.9 Grad in the ultimate luminosity scenario, would imply a replacement
of the innermost layer of the IT barrel after every two years of operation. The CMS Collaboration
aims for a single replacement of the innermost layer during the ten-year lifetime of the detector,
hence a higher radiation tolerance is necessary.

Noise occupancy. For a stable operation at low threshold it is important to minimize the front-end
noise to have an acceptable fraction of spurious hits in the data. Single pixels that are too noisy can
be disabled, to keep the overall noise occupancy low, but their fraction must be low in order not to
significantly affect the detector efficiency. Based on the occupancy simulation for different parts of
the detector, shown in figure 10, the average noise occupancy of the new front-end is required to be
below 10−6, i.e. two orders of magnitude below the lowest expected occupancy.

Dead time. CMS requires a maximum dead time of 1% in the innermost layer of the IT barrel to
ensure high detection efficiency even at the highest expected hit rate. This requirement translates
to a maximum efficiency loss of 1% at maximum hit rate caused by the total dead time (digital +
analogue). The dead time in the RD53A chip has a minor contribution from the digital buffering and
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Figure 10. Simulation of the hit occupancy as a function of pseudorapidity for all layers and double-discs of
the IT for simulated top quark pair production events with a pileup of 200 events [6].
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a major contribution from the CSA of the AFE. While the digital contribution is due to the limited
hit buffer size and cannot be reduced with the chip settings, the AFE dead time depends on the TOT
response calibration. The TOT response to a given input charge can be set in the chip to a certain
number of TOT40 units (one TOT40 unit corresponds to one 40 MHz clock cycle, i.e. to 25 ns). The
charge resolution is obtained by dividing the input charge by the corresponding number of clock
cycles and can therefore be expressed in e−/TOT40 units.

A Monte Carlo simulation of hit efficiency losses due to the digital, analogue, and total dead
time is shown in figure 11 for two charge resolutions: 1500 e−/TOT40 and 3000 e−/TOT40. The
simulation was performed for two pixel module positions in the innermost layer of the IT barrel: the
centre (𝑧 = 0), denoted L1c, and the edge, denoted L1e. For each position, both pixel geometries
were simulated. The rectangular pixels are represented with solid bins and the square pixels with
hashed bins. The square pixels have a slightly higher inefficiency. As expected, the TOT charge
resolution has no influence on the digital dead time, and the hit losses caused by the AFE are smaller
with the coarser charge resolution of 3000 e−/TOT40. The efficiency losses are higher in the centre
making the dead time requirement difficult to meet. With the charge resolution of 1500 e−/TOT40

the requirement is not satisfied in any of the two module positions, while with 3000 e−/TOT40 the
requirement is satisfied on average. The hit efficiency losses are slightly above the requirement in
the centre and slightly below at the edge. The charge resolution of 3000 e−/TOT40 was therefore
taken as the TOT calibration requirement for the AFE evaluation.

The impact of charge resolution on tracking performance was also evaluated. Simulation of the
tracking performance for the reconstruction of single muons with a transverse momentum of 10 GeV
was performed with planar 150 µm-thick sensors, with both sensor pixel geometries and two different
thresholds: 1200 e− and 2400 e−. The resolution on the transverse (𝑑0) and longitudinal (𝑧0) impact
parameters, denoted 𝜎(𝑑0) and 𝜎(𝑧0) respectively, integrated over the full 𝜂 range are shown in fig-
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Figure 11. Hit efficiency losses due to the digital buffering (green) and analogue dead time (blue) simulated in
the 200 pileup scenario for two charge resolutions: 1500 e−/TOT40 and 3000 e−/TOT40. The simulation was
done for the centre (c) and edge (e) of the innermost layer (L1) of the IT barrel and for two pixel geometries:
the solid bins represent the 100 × 25 µm2 pixels and hashed bins represent the 50 × 50 µm2 pixels. The red
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ure 12 for three charge resolutions: 600 e−/TOT40, 3000 e−/TOT40 and 6000 e−/TOT40. The impact
parameter resolution deteriorates for a higher threshold and appears to be insensitive to the charge res-
olution. Since a higher charge resolution does not affect the tracking performance, a charge resolution
of 3000 e−/TOT40 was taken as the baseline calibration for the inner regions of the Inner Tracker.
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Figure 12. Influence of the charge resolution on the transverse (left) and longitudinal (right) impact parameter
resolution obtained from simulation. The 100 × 25 µm2 pixels are represented in blue and the 50 × 50 µm2

pixels are represented in red. The full markers and solid lines indicate the threshold of 1200 e− and the open
markers and dashed lines indicate the threshold of 2400 e−.

4 Equalization of threshold dispersion

The calibration injection circuit is used to inject a range of charges to measure the threshold of each
pixel and the threshold dispersion across the matrix. The occupancy versus charge of a pixel is
a sigmoid from 0 to 100% occupancy, commonly called an S-curve. An example of an S-curve
plot including more than 26 000 pixels is shown in figure 13(a). The calibration charge at which
50% occupancy is reached is taken as a measurement of the charge equivalent of the threshold of
each pixel. The mean value of the pixel threshold distribution represents the global threshold and
the root-mean-square (RMS) is the threshold dispersion. Typically, pixel-to-pixel variations result
in a threshold dispersion of several hundred electrons, which can be reduced to less than hundred
electrons after setting optimal trim bits for each pixel with a dedicated tuning algorithm. Examples
of untuned and tuned threshold distributions are shown in figure 13(b) and figure 13(c), respectively.

The threshold tuning capability of the three AFE designs was tested and proven to be functional
in many samples, some of which were irradiated and re-evaluated afterwards. An assembly of
an RD53A chip and a sensor with 50 × 50 µm2 pixels was irradiated at Karlsruhe Institute of
Technology [29] with 23 MeV protons up to a fluence of 3 × 1015 neq/cm2, corresponding to a TID
reaching 350 Mrad. The RD53A chip was not powered during irradiation. The sample was irradiated
at room temperature and maintained at cold temperature after irradiation to avoid annealing. It was
tested at −10 °C in a dry environment. The sensor bias voltage was adjusted to reach an average
leakage current of 10 nA/pixel, which is the maximum specified value for the RD53A chip [14].
The pixels with a noise occupancy higher than 10−4 were considered noisy and masked, based on
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Figure 13. S-curves (a) and threshold distribution before (b) and after (c) tuning obtained with all pixels
of the LIN AFE of one RD53A chip. The red lines in the threshold distributions represent fits to Gaussian
distributions and the mean (𝜇) and width (𝜎) of the fit functions are given.
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Figure 14. Threshold distributions of the SYNC AFE (a), the LIN AFE (b), and the DIFF AFE (c) obtained
with an RD53A chip after irradiation. The mean and RMS were calculated using all non-masked pixels in
each AFE.

the lowest hit occupancy expected from the simulation presented in figure 10. The remaining pixels
were tuned to a threshold of 1000 e−. Pixels with an anomalously high threshold that could not
be adjusted with the range of the trim bits were masked in the tuning procedure. The threshold
distributions of the three AFEs after tuning are shown in figure 14.

All three AFEs were functional after irradiation and could reach the required threshold with a
threshold dispersion of about 100 e−. The threshold tuning of the LIN AFE worked well and only
0.1% of pixels were masked. The auto-zeroing in the SYNC AFE worked well too, however the
leakage current caused a higher noise in this front-end and 3% of the pixels were masked. The
threshold distribution of the DIFF AFE features a narrow core and long tails, and 11.2% of pixels
were masked. The large fraction of masked pixels in the DIFF AFE is the consequence of a long tail
in the untuned threshold distribution, shown in figure 15. Pixels with a too high threshold cannot be
tuned to the desired threshold value because the range covered by the trim bits is a global setting for
the whole chip. As the threshold dispersion depends on several AFE parameters, many parameter
combinations were tried to mitigate the problem, and the 11.2% of masked pixels was the best result
that could be achieved with this irradiated sample.
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Figure 15. Untuned threshold distribution of the DIFF AFE in the irradiated RD53A chip.

This study triggered an investigation and the design team discovered that the combined effect of
irradiation and cold temperature resulted in a PMOS threshold increase in the DIFF precomparator,
resulting in a small voltage margin. Simulations showed that the voltage margin is smaller at cold
temperature and decreases with irradiation, reaching a value close to zero for the DIFF AFE design
implemented in the RD53A chip after irradiation to 200 Mrad, which explains the problematic
threshold tuning observed after irradiation to 350 Mrad. A design improvement of the DIFF
precomparator was proposed and simulated, obtaining an extension of the expected operation range
up to 500 Mrad, although this radiation level is still low compared to the dose expected in the CMS
detector. With such operation range, replacements of the innermost layer would be required every
two years once the ultimate luminosity is reached, while CMS is aiming at a single replacement
during the whole high-luminosity program. For this reason the attention turned to the other two
AFEs, which seem promising candidates for a higher radiation tolerance.

5 Noise evaluation

The evaluation of the noise levels in the RD53A chip was done by sending triggers, without any
charge injection, so that each recorded hit was induced by the noise. The average noise occupancy
is then defined as the number of noise hits per pixel and per trigger. It was measured for the three
AFEs, using a non-irradiated RD53A chip with a sensor with the highest capacitance, i.e. rectangular
pixels, operated at a temperature of about −10 °C. Single noisy pixels can be disabled to reduce
the rate of noise hits. However, the fraction of disabled pixels should not significantly increase the
detection inefficiency. A single pixel was considered noisy if its noise occupancy was above 10−4

based on the lowest occupancy expected in the IT detector from simulation (figure 10). Therefore, as
a first step of the noise evaluation, every pixel with more than 100 hits in 106 triggers was disabled
at a threshold of 1200 e−. As a second step, a new set of 106 triggers was sent to each front-end to
measure the noise occupancy of the non-masked pixels. In case of very low noise more triggers
were sent. Results of noise occupancy measurements are presented in figure 16. The fraction of
masked noisy pixels is indicated in the legend and the maximum noise occupancy of 10−6, required
by CMS, is indicated by the red line. The TOT was calibrated to 1100 e−/TOT40.

First, the influence of the threshold on the average noise occupancy was evaluated. The result
is shown in figure 16(a). The threshold was gradually decreased from 1200 e−, keeping the same
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Figure 16. Noise occupancy measurement of the three AFEs implemented in the RD53A chip as a function
of the threshold (a) and the PA bias current (b). The SYNC AFE is shown in blue, the LIN AFE in green and
the DIFF AFE in violet. The CMS requirement for the maximum noise occupancy is indicated in red. The
number of masked noisy pixels is given for each AFE.

noisy pixels disabled. As expected, the average noise occupancy decreases with increasing threshold,
regardless of the front-end design. The DIFF front-end shows very good noise performance, with the
average noise occupancy several orders of magnitude below the requirement, even for low thresholds.
No hits were found in this front-end in 106 triggers at higher thresholds, hence a higher number of
triggers was sent to evaluate the average noise occupancy. The other two AFEs satisfy the noise
requirement down to a threshold of 1000 e−, which is consistent with the requirement on the detection
threshold. Nonetheless, it can be noticed that the fraction of masked pixels is higher in the SYNC AFE.

The influence of the PA bias current on the noise was also studied. When this current increases,
the transconductance of the input transistor is increased, which results in lower noise with a penalty
of an increase in the analogue current consumption. The average noise occupancy was measured
for different PA bias currents and is presented in figure 16(b) as a function of the measured analogue
current consumption per pixel. All the other front-end settings that could contribute to the current
consumption were kept constant during this measurement. As expected the noise in all three AFEs
decreases when more current is provided. The DIFF AFE shows again a very good noise performance,
with the average noise occupancy well below the requirement, even when operated with low PA bias.
The LIN and the SYNC AFE need 3.5 µA and 4.5 µA per pixel, respectively, to reach the required noise
level. All three AFEs can meet the CMS noise requirement if the PA bias current is adjusted, hence this
parameter is a handle to reduce the front-end noise at the price of an increase in the power consumption.

6 Dead time and time-over-threshold calibration

An important consideration for a highly efficient particle detector is the event loss due to the dead
time, especially at high luminosity and high pileup. As explained in section 3 the dead time caused
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by the AFE depends on the TOT calibration, and a charge resolution of 3000 e−/TOT40 is necessary
to achieve the 1% dead time required for the innermost layer of the IT barrel. The TOT response can
be set by adjusting the discharge current of the PA. When the PA discharge current increases, the PA
output returns faster to the baseline and the corresponding TOT is smaller, as illustrated in figure 17.
Therefore, a faster PA discharge leads to a reduced detector dead time. In the following the required
charge resolution of 3000 e−/TOT40 is also referred to as the fast discharge.
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Figure 17. Sketch of the influence of the discharge current on the signal shape at the output of the PA and on
the corresponding TOT.

The TOT charge resolution of the three AFEs was measured with a constant charge injection
of 6000 e− for different PA discharge currents. First, the charge resolution of all three AFEs was
set to about 1100 e−/TOT40, as can be observed in figure 18(a). This resolution is not reached for
the same current in different AFEs. In the next step, the PA discharge current was increased to
verify the front-end compliance with the dead time requirement. As expected, when the discharge
current increases the PA discharges faster and the charge resolution is coarser. All three AFEs can
reach the required charge resolution indicated by the red line. The SYNC and LIN AFEs can also
discharge faster, while the DIFF AFE shows a saturation of the PA discharge current DAC and would
be operated at its limit to reach the dead time required for the inner layers.

A dedicated measurement was carried out on the DIFF AFE, to better understand the observed
saturation effect. The charge resolution of the DIFF AFE versus the discharge current was measured
for different input charges, ranging from 3 to 20 ke−. The result, presented in figure 18(b), confirms
the saturation of the discharge current DAC in this AFE, occurring at 30% of the DAC range,
regardless of the input charge. This implies a marginal operation of this particular AFE to reach the
dead time requirement.

Increasing the discharge current reduces the dead time, as mentioned above, but it also reduces
the AFE stability, and therefore it is likely to induce more noise. Hence the noise was re-evaluated
for the fast discharge operation. The noise was measured for two detection thresholds, 1000 e−

and 1200 e−, and two charge resolutions, 1100 e−/TOT40 and the required 3000 e−/TOT40. The
combination of these four parameters defined four measurement scenarios for which the average
noise occupancy was measured. The measurement method was the same as in section 5. Pixels
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Figure 18. The charge resolution as a function of the PA discharge current (a) measured with a constant
charge injection of 6000 e− for the three RD53A AFEs and (b) measured for different input charges for the
DIFF AFE only.

with more than 100 hits in 106 triggers were declared noisy and masked, then the average noise
occupancy of non-masked pixels was defined as the number of noise hits per pixel and per trigger,
measured over 106 events.

The fraction of masked pixels is shown in figure 19(a) and the average noise occupancy in
figure 19(b) for the four considered scenarios. The average noise occupancy of all three AFEs is
higher at fast discharge and is the highest at fast discharge and low threshold, as expected. The
DIFF AFE demonstrates again excellent noise performance, with almost no noisy pixels and the
average noise occupancy well below the requirement, even at fast discharge. At slow discharge
the noise in this AFE was so low that only an upper limit was estimated. The LIN AFE has few
noisy pixels and the average noise occupancy satisfies the requirement for any scenario. The SYNC
AFE appears to be the noisiest of the three, reaching almost 3.8% of noisy pixels when operated at
fast discharge and low threshold. The higher noise in this AFE, significantly increasing with more
aggressive chip settings, was considered a critical aspect for the operation in the innermost layer of
the CMS Inner Tracker.

7 Late-detected hits

The time response of the pixel readout chip is important to assign detected hits to their corresponding
LHC bunch crossings (BXs) and to limit the number of spurious hits from out-of-time pileup
interactions. The time response of the AFE, i.e. the combination of the PA rise time and the
discriminator speed, is a function of the input charge. Pulses with the same peaking time but different
amplitude pass the discriminator threshold at different times. High amplitude signals, depicted in
light blue in figure 20, pass the threshold within one BX, i.e. within 25 ns. If the deposited charge is
just above the threshold instead, the signal rises more slowly and is detected later by the discriminator.
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Figure 19. Fraction of masked noisy pixels (a) and the average noise occupancy after masking (b) of the
three AFEs in the RD53A chip. The blue colours represent the charge calibration of 1100 e−/TOT40 and the
red colours represent the charge calibration of 3000 e−/TOT40. The darker colours are used for the threshold
of 1000 e− and the lighter colours are used for the threshold of 1200 e−.
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Figure 21. Simulated time walk curve of the linear
front-end in the RD53A chip.

Such a hit, shown in red, might be assigned to the following BX, and appears as a spurious hit in
another event. The smallest charge (Qmin) that can be detected within the correct BX (dark blue
signal) is equivalent to the so-called “in-time threshold”, which is higher than the threshold of the
discriminator. The time behaviour of an AFE is typically described by its time walk curve, i.e. the
response delay of the discriminator as a function of the input charge. An example of a simulated
time walk curve of the LIN AFE is shown in figure 21. Given that the discriminator of the SYNC
AFE is locked to the clock, the following method is used to compare the timing of the three AFEs.
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Front-end time response measurement. The charge injection in the RD53A chip can be delayed
with respect to the rising edge of the clock with a step size of 1.5625 ns [13]. The front-end time
response was measured by injecting calibration pulses with different amplitudes and with different
time delays. The detection threshold was set to 1000 e− and the full range of available charges up to
35 ke− was scanned, using a finer charge step for low charges where timing is critical. For every
pixel the charge was injected 50 times for each time delay. Figure 22 shows the two-dimensional
plot of charge versus time for all three AFEs. The 𝑥 axis represents time in nanoseconds and 𝑡 = 0
indicates the time when the highest charge is detected. The 𝑦 axis, showing the injected charge in
electrons, is limited to 10 ke− in this figure. The colour code indicates the detection probability for
a given BX, for each combination of charge and injection delay. The yellow zone corresponds to
100% detection efficiency, while in the white-coloured region no hit is detected. The left edge of
the coloured region corresponds to the time walk curve. In the upper part of the plot, the coloured
region is a straight rectangle with a time width of 25 ns, which confirms that high charges are always
detected within one BX. Small charges instead are detected later, resulting in a tail in the detection
region. This tail extends up to about 40 ns in the SYNC and DIFF AFE, indicating that these two
AFEs have a comparable time response. The DIFF AFE is able to correctly assign slightly smaller
charges than the SYNC AFE. The LIN AFE appears to be the slowest of the three, with the largest
time walk of more than two BXs.
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Figure 22. The measured time response of the SYNC AFE (left), the LIN AFE (middle), and the DIFF
AFE (right) obtained with one RD53A chip.

Combination with time of arrival simulation. A Monte Carlo simulation was performed within
the standard CMS simulation and reconstruction software framework called CMSSW [30] to evaluate
the influence of the time response of each AFE on the detector performance and to estimate the
resulting fraction of spurious hits. The time of arrival of particles was simulated for different
locations in the IT detector, given that it depends on the position of the pixel module with respect to
the interaction point. Sixteen different locations were studied: the centre (𝑧 = 0) and edge module of
each barrel layer, the innermost and outermost module of the first and last small disc, as well as
of the first and last large disc (figure 1). For each location about 2000 minimum bias QCD events,
without pileup and without a transverse momentum cut, were simulated. For the simulation of the
beam spot a Gaussian distribution with a width (𝜎) in 𝑧 of 4 cm, corresponding to a Gaussian width
of 130 ps in time, was simulated. The simulated pixel hits, corresponding to single pixels with
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Figure 23. Different steps of the time response evaluation method.

deposited charge, were sorted by released charge, ranging from 600 e−3 to 50 ke−, with a granularity
of 150 e− and a time resolution of 0.25 ns. The simulated time of arrival versus charge distribution
for the central module (𝑧 = 0) of the innermost layer of the IT barrel is presented in figure 23(a).

Such a distribution was combined with the time response measurement introduced in the
previous section. The 𝑥 axis of the time response is reversed, obtaining the acceptance region, in
time and charge, giving the probability of a charge to be detected in the correct BX. This way, instead
of showing when a hit is detected by the electronics, the figure indicates when a hit has to occur to
be detected in a given BX. The 𝑦 axis has to be extended to match the charge range in the simulation.
Assuming that the time response remains constant for very large signals, the yellow region with
sharp edges is extended up to 50 ke−. For illustration, the time response of the LIN AFE, after such
modifications, is presented in figure 23(b).

When the acceptance region of the front-end is superimposed with the hit distribution from
simulation, as indicated in figure 23(c), the hits that are inside the yellow part of the acceptance
region have a 100% probability to be assigned to the correct BX. On the other hand, hits that are
outside of the detection region have zero probability to be detected in time. Figure 23(d) shows the

3Given that charges smaller than 600 e− are not expected to be detected because of the threshold, the simulation started
at this charge to avoid overloading the computing time.
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hits that will be assigned to a wrong BX, obtained from the exclusion of the two overlaid plots. The
integral of the exclusion plot divided by the total number of hits gives the fraction of late-detected
hits in a given location of the future detector.

An important part of this method is the time alignment of the two overlapping plots. The
origin of the time axis of both the measurement and the simulation have to be correctly aligned.
The 𝑡 = 0 of the simulation corresponds to the time when the two proton bunches overlap in the
interaction region, corrected with the expected time-of-flight from the interaction point to the given
module. The zero of the chip acceptance can be shifted to maximize the overlap, as it would be
done in the detector by calibration. For this measurement, the peak of the simulation is placed three
fully efficient bins from the left edge of the acceptance region, i.e. 4.625 ns, as it is indicated in
figure 23(c). This estimate of about 5 ns was used to account for the imperfect time alignment in the
detector due to the variations in the length of the electrical links, jitter, and other contributions, and
also including some margin.

Fraction of late hits. The method described above was used to evaluate the fraction of hits detected
late by the three AFE designs. The result is shown in figure 24 for the selected detector locations. The
left half of the histogram corresponds to the IT barrel layers, numbered from the centre outwards L1
to L4. For each layer the study was done for two pixel modules, one at the edge (e) and the one in the
centre (c) of the barrel. The fraction of late hits increases with the distance from the interaction point.
The right half of the histogram is dedicated to the discs, numbered D1 to D12 with increasing distance
from the interaction point. For each disc one module on the innermost (i) and one on the outermost
(o) ring is presented. For any given disc the fraction of late detected hits is higher on the outer ring.

An ideal front-end with infinitely fast time response was also simulated and the fraction of hits
detected late was estimated using the same method described above. Results are shown in grey
in figure 24 overlaid to the estimates of the actual analogue front-ends, because they represent the
irreducible background. For the considered positions, this fraction is between 0.38% and 7.26%.
These are hits generated by particles whose travel time up to the sensor is more than 25 ns longer than
the minimum, for which the detector is tuned. The SYNC and DIFF AFE have similar performance,
causing few percent of misassigned hits on top of the background. The DIFF is slightly faster. The
LIN AFE instead is significantly slower, causing up to additional 11% of late hits in the detector, on
top of the irreducible 7% in the worst case.

LIN AFE slow time response mitigation. Following the outcome of the previous measurement,
a modification of the discriminator circuit was proposed by the design team to improve the time
response of the LIN AFE. The discriminator is composed of two stages: a transconductance stage and
a transimpedance amplifier (TIA). In the TIA two diode-connected transistors, initially introduced
to minimise the static current consumption at the output of the discriminator, were forcing other
transistors to operate in the deep sub-threshold regime, consequently making them slower. A
significant improvement in time walk at the cost of a marginal increase in static current consumption
was achieved by removing those two transistors. This led to a simpler TIA stage in the new design of
the LIN AFE [31], for the next version of the chip, called RD53B [18].

Circuit simulations were used to extract the time walk curves of both the original and the
improved LIN AFE designs. They were transformed into time response plots and combined with

– 19 –



2
0
2
1
 
J
I
N
S
T
 
1
6
 
P
1
2
0
1
4

0

5

10

15

20

L1e L1c L2e L2c L3e L3c L4e L4c D1i D1o D8i D8o D9i D9o D12i D12o

Fr
ac

tio
n 

of
 la

te
 h

its
 (%

)

Position in the detector

SYNC

LIN
DIFF

Ideal FE

IT Barrel IT Disks

Figure 24. Fraction of hits detected late by the three RD53A AFEs for 16 pixel module positions. The IT
barrel layers are numbered from the centre outwards L1 to L4 and for each layer the module at the edge is
denoted “e” and the one in the centre is denoted “c”. The IT discs are numbered D1 to D12 with increasing
distance from the interaction point and for each disc the innermost ring is denoted “i” and the outermost one
is denoted “o”.

the time of arrival simulations to estimate the fraction of late hits for the simulated designs. The
simulated RD53A design was compared to the measurement and the difference in late hits is shown
in figure 25. The simulated AFE gives a slightly higher number of late hits. Nevertheless, the
simulation demonstrates a very good agreement with the measurement, the difference in late hits
being below 1%. This confirms the validity of the simulation, which can therefore be used to predict
the fraction of late hits in the improved design. The difference in late hits between the original design
(RD53A) and the new one (RD53B) is also shown in figure 25. The new LIN AFE demonstrates on
average 5% less misassigned hits. The improved design of the LIN AFE was also implemented in a
test chip and verified before and after irradiation. The simulation and measurement results after
an irradiation up to 1 Grad confirmed the improvement in time walk, which remains below 20 ns,
whereas it increases to around 30 ns in the RD53A version [31].

Late-hit occupancy. The fraction of late-detected hits was converted to the occupancy due to late
hits, using the simulated hit occupancies extracted from figure 10. The result is shown in figure 26
for all the positions in the detector. The irreducible background of misassigned hits is almost uniform
in the tracker and amounts to between 10−5 and 10−4, regardless of the AFE design. The late-hit
occupancy levels are at least one order of magnitude above the required noise level, indicated by the
red line in the figure. Hence the spurious hit rate in the detector is dominated by the time response
of the AFE, not by the noise. Moreover, the performance of the improved design of the LIN AFE is
comparable to the other two AFEs, although it remains slightly higher.
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8 Conclusions

A new generation pixel readout chip is being designed for the upgrade of the CMS Inner Tracker to
cope with stringent requirements imposed by unprecedented radiation levels and hit rates. Three
different analogue front-ends were designed by the RD53 Collaboration and implemented in a large
scale demonstrator chip (RD53A). The three designs were characterized and the expected detector
performance was evaluated against the requirements to choose the most suitable option for CMS.

The differential analogue front-end showed the best noise performance, with the noise occupancy
several orders of magnitude below the requirement, as well as a very good time response. Nevertheless,
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this analogue front-end showed a problematic threshold tuning after irradiation, at cold temperature
(−10 °C) and with high leakage current. An improved design was proposed, expected to extend the
operation with effective threshold tuning up to 500 Mrad, according to the simulation results. A
saturation in the preamplifier feedback requires operation at the limits of the time-over-threshold
response in order to match the dead time requirement for the innermost layer of the Inner Tracker.

The synchronous analogue front-end features an automatic threshold tuning performed periodi-
cally by the auto-zeroing circuit and offers a very good timing performance. However, it appeared to
be the noisiest of the three analogue front-ends. The noise increased for lower thresholds and fast
preamplifier return to baseline, becoming critical for the operation settings of Layer 1.

The linear analogue front-end satisfied all the requirements, but featured a slower time response.
However, an improved design was developed and is expected from simulation to reach a timing
performance almost equivalent to the other two analogue front-ends. Since all the performance
parameters of this analogue front-end satisfy CMS requirements and the main drawback was
addressed and mitigated, the linear analogue front-end was identified as the lowest-risk option for
the future pixel detector. CMS selected the linear analogue front-end with an improved design for
the integration into the next version of the RD53 pixel chip for CMS (the C-ROC). A prototype is
expected to become available in 2021.
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